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Slnce the fundamenta,l paper of H Pomcare [1] there were many ela.ssmal Works
.concerning toral dyna.mloal systems without critical points (ses, e. g., [2—6]). More
- recently, Chin' Yuanchun 71 investigated certain: conorete toral dynamical systems

given by differential equations, but still without critical points. On the other hand, in

the past fow years there appeared ma.ny papers studying global struo’oure or topologieal
: clasmﬁoa,tlon of. ocontinuous flows on 2-manifolds (see, e. g., [8——15]), in which one
* may have oritical points, but there is no dlﬂ'erentlal equatlon It seems to us that an
investigation of dynamlcal gystems on 2—mamfolds ha,vmg ‘both eritical points and
differential equations is coming up to date.. " '

Tn this paper, para.llel to the S1mplest but-also most fundamental linear autonomous
plane system

dw dy

v aw—(—by, v ——cw+dy,
we study the global structure of the toral dyna,mical' system
'le AsmaH—Bsmy, ﬂ——O'em:zH—Dsmy Q)

ds
in detail.? - : o .
In order that (1) can define a toral dynamical system exactly, we must first take
a certain fundamental square in (w, y) plane, such tha.t on opposite gides of th1s square
(1) will define the same vector ﬁelds And then, if we 1dent1fy eaoh pair af opposite
mdes of the square, we will get a dynamlcal system on the torus.
In § 1 we take ’ A
Si; 0<m<2av, 0<y<2mw
as the fundamental square Since sinz and smry both have perlod 2m, we get an
a.nalytm system on the torus Thls system has 4 elementary crltlcal pomts, but the
global structure of its phase portra.lt is comparatlvely sn:nple -

Manuscript received Jan. 9, 1980.
- 1) In subsequent papers, global structure of smnlar sysixams on borus, Klem Bottle and pro;echve pla.ne
will be g1ven s :
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In § 2 we take
S, O<m<:m O<y<m:
as the fundamental square, and the toral dynamlcal system S0 obtamed is only a C*?
system. It has a unique crifical point Wlth mdex zero, but global strueture of the

phase—portrait is of various kinds.

 §1. Buppose that system (1) has S, as its fundamental square. We assume 4D

—BC'#0, since when 4D—BO=0, (1) is-integrable; and the phase-portrait is very
simple. System (1) has 9 elementary eritical points in 8y, which are divided into two
groups. (0, 0), (0, 2w), (2w, 2w), (w, w), (2w, 0) are in the first group; when
opposite sides of S; were identified, we get from them 2 elementary critical points.of
the same kind"‘on the torus. (0,), (2w, ), (&, 0), (w, 2%) are in the second group, and
they give rise to 2 elomentary critical points of the other kind. If we assume 4D~ BC
>0 (<0), the oritical pomts of the first (secorid) kind will both be’ nodes f001 or
centers, while that of the second (ﬁrs’o) kind will be saddles.

- After a-detailed analysis of all possﬂole cases correspénding to different values of |
4, B, 0, D, together with Theorem 1 at the end of this” seotlon, which asserts that
system (1) can not have periodic orbits of the second kmd we are able to conclude
that possible topologlca.l structures of the phase-portralt of system (1) are of the
following three types:? '

L. Center-Saddle type. This can appear only in 2 cases:

(1) A=-D, B=-0, |Bl>|A| We have at this time Fig. 1.1, and system
(1) has the general integral

(cos%_y_.)D+c=K<cos W‘Q—[I/ )D—O. 1 o . . @

Notice that the 2 saddles are on the same.singular cycls. .
(2) A=D=0, B+ —0. We have Fig. 1-2, and the general mtegral of (1) is

B
Here the 2 saddles are on dlﬂerent smgular oycles

eosy——o—oos s+ K, ' h (8)

II. Node-Saddle type We have Fig. 2, Whmh is drawn under the assumptlon
AD—BO<0 (so that (w, @) is a saddle pomt) in order to show the trend of the 4
separatrixes through (w, ). The case A=—D, B— ~0, |B|<|A]| also belongs to
thls ‘case, of course, its general mtegral is still (2) .

I, Focus Saddle type. We have Flgs 3. -1 and 3 2 the dlﬁ'erence of Whlch his: in
Fig. 3.1, the 4 separatmxes go from saddles into (av, av) Wlthm the dotted lined. square; -
while in Fig. 8-2, there are only 2 such separatnxes, the other 2 W1=ll wmd around the

D Since: system (1) is unchanged under the transformaton w-—m’-i-ar, y-—y’—l—w, te<=1!,..W0 have only to
draw the portrait around the critical point (w, o). ¢
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torus once before going into (w, m). Around (=, ) there may or may not exist limit.
eycle of the first kind, for which see the analysis given la.ter ' .
Now let us examine system (1) in. detail, when it is not of the" Oenter Saddle type
Case I. A+D=— (B+Q) +0, '
Let A= 42D, 5- P20 5o A“;D‘ ,
. 4—7A+s, B-B-5 C—-B-8, D=-4+s, &

‘then

and (1) becomes | » , ‘ L ,
— (Z+5) sino+ (B— a) sing, ?/ _(—B—8)sinz+(—A+d)siny, (5)
It is eas:ly seen that the system () de’oermmes a family of generalized rotated
vector fields as & varies (See [16], § 3). When 8=0, (5) has 2 centers as shown in Flg

1-1, hence (5) will not have closed orbit of the first kind when 8 #0.
Before discussing the other cases, we mention that the 4 dotted lines in Fig. 3 are

all segments witHout contact with respect to system (1). Hence if (1) has any closed -~ -

orbit of the first kind, it will remain in the interior of the dotted lined square The
vertical and horizontal isoclines of system D will in general be located also therein, as
one of the 4 curves shown in Fig. 40 Notloe that the divergence of system (1) vanishes |
on the curve - S o -
- Aoosw+Doosy 0, . : ©(8)
“which, acoordmg to different signs and absolute values of 4 and D, will take any form
of one of the 4 curves shown in Figs. 5-1 and 5-2. In particular, when A= D=é0 (8)
coincides with the 4 sides of the square, and therefore (1) can not have any closed
orbit within this square. Hence we may assume hereafter that A+D. Furthermore,

| wfnhout loss of generality,we may assume also that in System (1) A>0 and B=>0.2
Case IT. OD<0. Assume AD— BO>0, then we must have 0<0, D>0 Take a

Liapounov function

= — s 211/
0s1n 2+Bsm_ L

then V' =V, max(B, —~O’) <Vo<B-C dofine a. family of olosed eurves around the
oritical point (w, ). From (1), we get o
hence system (1) bas no elosed orbit of the ﬁrst kind.

Case II1. O>0 D>O In this time we ta,ke A ' o ’ -

V= Osm2;+Bsm g

1) When [4]= |B| (or 1¢l= ID[) the vertical (or horizontal) 1sochne degenerates mto a pan: of oppos1te
sides of the dotted lined square and their perpendlcular bisector.

2)- Otherwise, we may use the transformation ¢= —%/, or =1/, y=2mw—y's
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and the remaining of the proof is similar to that of Case IL.

Case IV. C<0, D<0 (assume AD—BC>0),

a) A>B>0, A>|D|. Suppose that there exists a olosed orbit I°, then the relative
position of I', the two isoclines and the curve (6) are shown in Fig. 6, where the
shaded regions @; and Q, denote those parts inside I in which

A cosz+Dcosy>0,
It is easily seen that symmetrio parts of @; and @, with respect to the line &y =2 lie
- also in the interior of I". Moreover, for any point P in @; (’b 1, 2) and its symmetrio
point P', we always have
(Acosz+Dcosy) p< — (A cosz+Dcosy)p,
Therefore, we have the inequality ,
j (A cosz+ D cosy)dady<O0,
int, I"
which contradicts a known theorem of Bendixson, hence I" can not exist. It is easily

seen that in this case (m, ) is a stable focus (when A-+D is sm all) or stable node
(whenA+D.is large).

b) A>B>0, A<|D|. From a), (w, o) is stable when A+D>0, it is a stable
fine focus when A-+D=0. Since when A-+D becomes negative (w, ) changes it is
stability, we see from Theorem 3-7 of [16] that limit cycle will appear around (w, )
if 0< — A—D<1. It seems to us that the limit cycle(stable)is unique, but it is difficult
to give a rigorous proof. Notice that system (1) is quite different from those which
have been investigated heretofore.

0) 0<A<B. In this case, if |O|<<|D|, then the transformation o' =2m—y, ¢’
=2r—= will transform it into case a) or b). If |C|>|D|, then similar to cases a)
and b), we can prove that system (1) has no closed orbit of the first kind when
A>|D|, and will have limit cycle when A< |D| and |A+D| is small.

Let us close this section by proving the following: .

Theorem 1. System (1) can not have periodic orbits of the second kind.

Proof It suffices to examine the case in which cloged orbit of the second kind, if
exists, goes from the left boundary of S to the right boundary.

1) |A|>|B]|. In this case, the vertical isocline of (1) has the form of curve (8)
or (4) in Fig. 4. Any orbit starts from the left boundary of §; will turn back to the
left when it meets the vertical isocline, and thus can not arrive at the right boundary.

2) |4|<|B], |C|=|D]|. Afss\ume AB>0, OD>0, then the two isoclines are
shown in Fig. '7. For r any orbit PQR going from left to right, it is _easy to show ﬁhit
symmetric curve of PQ with respect to # = will lie entirely below QR and hence PQR
can not be a closed orbit of the second kind. Other cases may be treated in a similar
way.
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8) |A|<|B],|C|<|D]. In this case, as the vertical and horizontal isoclines are
both from left to right, the proof of the nonexistence of closed orbits of the second
kind is similar, and hence is omitted. '

§ 2."Now let us take Sgtas the fundamental square. Then the 4 criticétl points O
(0, 0), O (w, 0), 0"(0, w) and O*(w, &) give rise to a single critical point on the
torus with index zero. Notice that A, B, C and D change their signs at the same time
'-under the transformation | |

. v =w—, y=nw—y,
the Vector field and hence the phase- portralt of system (1) will therefore be symmetno

with respect to ( ) As1de from this, we ean use also the followmg transformatlons

272
to sunphfy our d1souss1on _
1) o=y, ¢ == (take symmetry with respect to the line #=y), which mterchandes

A with D, and B with O.
. 2) d=ua, y =w—y, or o' =m—a, y =gy (take symmetry with respect to y——-;z— or
o r= %), whieh changes the signs of O»and D, or signs of 4 and B. |

'8) o'=mw—vy, y'=m—a (take symmetry ‘with respect to @+y=m), gives which
A A'=—D, D'=—A4, B'=—-0, C'=—B,
It is easily seen that, by means of these transformations, we may conﬁne our -
discussion to the case AD—BCO >0 under one of the following econditions:
I ' ~ B>0, C <O
jig | . 4>0, D>0,
of course, several subcases of I and those of II may overlap. ThlS we shall point out in
the sequel. ) ‘ |
Notice that, for analysing ‘the topological structure of the phase-portrait of
system (1), whether O is a focus or a mnode is a matter of indifference, but it is
_important to know in every case the slope of the 2 exceptional directions at O' and 0",
and also at O and 0%, when they are nodes. This determines whether there were
orbits running out from these critical points and going into Sa, or orbits going into
these points from Sz. Let ky=>ks (K1=>£2) be the slopes of the exceptlonal dlrectlons at
O and 0* (0’ and 0"), then lc4 (6=1, 2) satisfies the equatlon -
Bk}4+(A-D)ki—C=0 » ¢
B — (A+D)kK+0=0, | (8)
Analysis of the vertlcal and horizontal isoclines is the same a8 in § 1, but here if
AB>0 (or OD>0), then the vertical (or horizontal) isocline has no locus in 8.

Let us examine cages I and II in detail.

and ki (4=1, 2) satisfies
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I B>0, C<0. There ars 6 subcases.
- (i) A=D=0. System (1) has at this time the general integral
Becosy—Ccosz=K, - - (9)
“When B= —0 the line #+y = is an orbit, and we have Fig. 8, in which the
torus is filled with closed orbits.” This is a special case of the later Theorem 2.
When B —C, but B and O are commengurable, we can prove that all orbits are
' closed. Let us take the case B= —3C as an example. From (9) we see that the orbit
passing through 0"(0, w) is —8cosy—cosw=2. (Fig. 9) It infersects z=w at P

(:m, cos™* (——%—)) The symmetric point of P (by symmetric points we mean two
points lying on opposite sides of S and having equal abscissa or ordinate, which are

actuaﬂy the same point on the torus) is P (O, cos™t (—— %)) . The orbit passing through
P’ is 8 cos y+cos =0, which intersects s= at Q (m:, cos‘1—13—>; the orbit passing
through @' (O, cos™t —%—) is 8 cos y+cosw=2, which passes thrbﬁgh O' (&, 0). Therefors,

these three orbits make together a blosed orbit on the torus. Since now %y and £, are
imaginary, and only k% is negative, we see that the integral curve passing through the
eritical point O on the torus is unique.?

Slmﬂa,rly, for any point B, on the segment O”O* the 4 orbits R1R2, RzRa, R3R4
and R i make together a closed orbit on the torus. It is easily seen that the rotation

number p of every orbit in Fig. 9 is % »

When B and C are noncommensurable, from (9) and a well known theorem in.
number theory, we see that the torus is filled with ergodic orbits, all ha’\?ing the

rotation number p=-=1 IOI

Now suppose | 4|+ ]D| +0, without loss of generality, we may assume A#O
(ii) 4>0, D<0. As in (i), the integral curve passing through O is unique. If

we have also _ _
O+D=—(A+B) or A+D=-—(B+0), (10)

then @-+y=a is an-orbit of system (1) (see Fig. 10-1). Otherwise, we will have Figs..
~ 10-2 and 10-3.

1) Of course, in § 2, no closed orbits-of the first kind will exist.

2) In this case, as.well as in cases (i) and (iit) , there is no difference between O and an ordinary point of the
system (1), except when orbit enters (or leaves) O we have {—>-oo (—o0). O is called in thess cases

“a removable critical point”. '

8) For the sake of definiteness, by the rotation number o of an closed orbit on torus we mean the ratio of
the number of its longitudinal crossing in S, to the number of its transversal crossing. When the oxbit
is not closed we take the limit of this ratio as the definition of Oy WInch coincides with the classieal
definition of rotation number on torus, - oo
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. Theorem 2 Suppose (10) holds, then 4 f A==D (so that B= —O'), the torus s
ﬁlled with closed orbits; while if A% —D, syste'm, 1) has one and only one closed orbet
x-+y=u, which s the a and w. limit set of dll other orbits, -in_other woq'ds, m+y W %8
the unique limit cycle (semt-stable) of system (1) _ ‘ |

“Proof 1) When. A= —D B —-.—O, ,the vector field in S, is, symmetrlc W1th

respect 10 (2 , -—2-) the line &#+y=u, and the line z=y, From th1s it ig easrly‘ seen.
- that for any po1nt P1 on the left. side of Sy, the orbits Png and P } will make a closed
orbit on the torus. In fact, system (1) bas now the general mtegral (2) _

2)- When. A+D=— (B+0) #0, the same as in § 1 case I, we construct a femily
of generallzed rotated veotor fields (5). Slnce (5) for 8=0 has a famlly of closed orbits
filling- up the torus, it will certalnly have no closed orbit for & %0, except a part of the
stationary set, i. e., z+y=m, Whlch is still a closed orbit of (5). The a and o limit
property of s+y=m with- respect 10 other orblts is tr1V1al R

} Remark The ﬁrst pa/rt of the concluswn of Tkeorem 2 holds also for the case A
<0, D>O and the second part holds also foa~ A>D>0. _

Let us examiné now the case when (10) is not satisfied. Suppose C’o—l—D— — (4+B),
and G’aéO’o Under ‘the oondltlon AB>O system (1) represents a famrly of rotated
vector fields when C varies. S1nce ) has a_family of closed orblts with p=1 when
A= —~D C=C,, it will have no closed orbit with p=1 When A= —D, (5} #O’o, and
-since (1) has a Seml-stable limit «eycle with p=1 when A# D C=0C,, it will ha.ve
no cloged orbit with p 1 when € >0, A% —D. In these two cases, the orbits of system
1) will elther be all ergodlc, or (1) will have closed orbit with paél

On the other hand, if A% —D, 0<C,, then 1) will have at Toast two limit cycles

(symmetrlc with respect to ( ) )) of oppOS1te Sb&blhty, which are generated from

the semi-gtable cycle of (1) when A+ —D;. 0=0Cg. : :

‘ (m) A>D>0. Suppose first 0= —D<O0, then the hor1z0ntal 1isoclines- are the
lines =y and o+y= w (see Flg 11) It is eas1ly seen from the contraction mapping
prineiple that the mappmg of- O'P onto MQ induced by ﬂows of system D has at
least a fixed pomt It means that there ex1sts at least a closed 0rb1t Z1~—R18’1 RlR'

lying above the orblt PQ passmg through ( ) By symmetry, there ex1sts at least

272 ,
a closed orbit ZQ—stg—R2R2 below PQ Let us prove that these are the only clcsed '
orbits of system Q). Integratmg (€)) along ly, we'get -

O’smfv+Dsmyd 1 |

s yR‘+ ) Asmm—l—Bsmy

Since s, =Yr,, this implies

1) Integrals which follow are all taken along periodic orbits that we considered.
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*Csing+Dsiny , | 1
L_As’m:v+Bsiny dz=0. (D)

Notice that
(12)

0 {G’sinm+Dsiny>= (AD—BO) sinw cosy
oy \ Asinz+ Bsiny (Asing+Bsiny)* ’

which is non-positive in the region D;: 0<#<w, —725—<y<ac, in which 7, lies. Therefors,
as (11) holds along Iy, it can not hold along any other olosed orbit above P/Q, thus
the unigueness of I, is proved. The uniqueness of 3 in Dy: 0<z <, 0<y<—27li follows

from symmetry.

‘When O increases from —D, the phase-portrait and uniqueness of l; and I, are
similar to Fig. 11. As C—0, l; and I, approach the semi-stable eycle y=0 (i. e., y
=g) from different sides. When O decreases from — D, I; and I, approach each other

in §,, until both of them coincide with a closed orbit I* passing through (%, %)
and (0, —725) = (:n;, —’—5—) when C'=C* (< —D). But as long as I, intersects the line-.y==—"2E

(when C>C"),the proof of uniqueness given above will no longer be valid. Let us give
a new proof by means of a more delicate estimation of integrals. ‘

Assume that apart from the closed orbit I; in the lower part of S, there is another
closed orbit I3 (see Fig. 12). Let y=v;(#) (¢=2, 8) be their equations, and set d(x)
=4a2(w) —ys(2). Then 0(x) satisfies the equation

dd(®) _ & (Csinw+Dsin o+ _ (AD—BO) sinwoosé () |
BO -5 (Gumeihin) oo UDIDmERG) 0, o
in which y;(2) <€ (@) <ya(x). Since 6(0) =42(0) —5(0) =ya(w) —ys(w) =08(w), from
(13) we get : ’

* ginweosé (x)d(x) _
Js @sino+ Beng(@)® 20 (14)
We shall prove that the equality (14) can not exist. Let the portion of I, lying
above y=% correspond to #€ (21, @), for which £(¢) may be greater than %, and

cos € (2) may be negative. Let the equation of ﬁz be y=y(x), then y(w—x) éas—g] (@).
‘Since
¢ (@) <ga(@) <y(2), { w—a)<pa(m—2) <y(@—2) =w—y(2),
hence if () >Z  then |
0>cosé () >cosy(z), cosé(mw—a) >cosy(mw—z) = —cosg}(;z:) >0, | (15)
Let § (@) = 2 +n(s), §() =% +7(a), thon |

2(®)>n@), {@-2)<y@—o)=F (@), (26)

and we have
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smf(w)>smy(a;) cosn(a:) sin (~2—-q7(a;)>>sm§(av 2. A
Now divide the mtegral in (15) into ﬁve parts ._
- j +j j s “-_"+f - _11+12+13+14+I5,  as)

in which only I, may be negative in value. In the notations of Fig. 12, it iy easily
geen. that 6;>9(0), 82<62<61<6(m:) If 8,9, then I,>0, which proves the nonexis-
tence of (14). If 3, <81, we can prove that I 2+I4>0 In fact

Ig+I4—I[ ]dm+J T ]da;

-
and from (16), (17) and §;>>8,, we see that the value of the mtegrand in I, at w—=
is greater than the.absolute Value of the integrand in I; at =, hence I+ I =0, and
(14) can not exist, t00. ' |
Fma]ly, lot us say a little more about the rotation number p of the orb1ts of system
(1) when O varies from 0 to —oco. We.have already seen, when CE [0*, 0], p=0. If
O decreases from C", both of the separatrixes O’ 'B and O'N in Fig. 11 turn clockwise,
and they coincide with #+y=m when C= —D— A—B. At thig tlme, the semi-stable
limit oyole -y =ar, as well as all orbity approaching it, have rotation number p=1.
If C decreases furthermore and ultimately approachs —oo, then the limit of system

@D is _d_a:_=0 i. e., all orbits have their limiting position w=cdnst , consequently,
dy y

p—>oo, Since the right hand side of (1) varies monotonlcally and contmuously with
C, and p Varles monotonically and contmuously with the right hand side of (1) (see
[71), we see that p must take all values in (O +oo) as O varies from 0 to —oo. When
p takes an irrational value, obviously every orbit will be ergodic; but if p takes a
rational value other than 0 and 1, two possibilities of the phase-portrait of system (1) -
may happen: a) there isa family of olosed orbits, b) only one or two orbits are closed,
while all'other orbits are open. Evidently,in case b) p will correspond to a closed interval
of values of C, say [C’i, C,] , and system (1) will have a semi-stable limit cycle when
O =0, or Oy, but two limit eyeles when O € (Cy, Cs). We hope that the actual state W111
be case b) but-we are sfill unable to give a rigorous proof.

(1v) D>A4>0. Now if (D—A)?+4BC<0, then (7) has imaginary roots, and the
phase-portrait is similar to case (iii). If (D—A)2+4B0>0, then k>0 (i=1, 2), and
there will ba at least two orbits passing through the critical point O. In this time,
apart from limit eyeles like I; and 7,, there will appear a region filled with singular
oycles (with p=0) all passmg through O (see Fig. 18). Moreover, accordmg as the %

coordinate of S is equal to —2— or not, this latter reglon will reduce to a singular-cyole,

or on the contrary, may fill up the whole torus, a8 is easﬂy seen for A=B= —C=1,
D=3 (see Fig. 14), o
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- (v) 4<0, D<O. This case can-be transformed into cases (iii) and (iv) by the

transformation &' =w—y, ¢y =w—a. | |

(vi) A<0, D=0. In this case k; and k, are both imaginary or both positive, k<<
0< ki, and all kinds of topological- structures of the phase-portrait deseribed in (i)—
(v) may happen. ; .

II A>0, D>0. In view of case I, it suffices to consider the following seven
subcases: . | |

(i) B=0=0. System (1) hasa ﬁrst 1ntegra1

(e §)'-x (1 5)"

The four sides of S, are all orbits; and the torus is filled with smgular cycles all passing
through O (see Fig. 15). '

(ii) 0=0, B>0. Now y=0 and y=am are orbits, and there are 4 different kinds
of phase-portrait as shown in Figs. 16-1—16-4. In Fig. 16-1, O is a removable eritical
point?, and y=0 (y=w) is a semi-stable limit oycle; In Figs. 16-2—16-4, Oisatrue
critical point, through whioch there are infinitely many orbrts There are two different
possible structures in Fig. 16-2: a) The two separatrixes OM and NO* become ultima-
tely the same orbit on torus when continued in different directions. Suppose it has the

roi;ation number-;% (p=>2), then all other orbits, except y=0, have rotation number

p + 1 b) OM and N 0* are different orbits on forus, then together with y=0, they

divide the torus into two reglons, one is. ﬁlled with smgular cyoles havmg rotation

number —% and the other is filled with smgular cycles having rotation number p—lf- i
Figs. 16-8 and 16-4 correspond to eases a) and b) of Fig. 16-2 respectively with
p=1. It is easily seen that if in Fig. 16-2 B>D>A, then p may be very large.

(iii) 0=0, B<0. Here are three different kinds of phase-portrait as shown in
Figs. 17-1—17.8. The situation is similar to that of Figs. 16-2—16-4, i. e., there are
two different possible structures in F1g 17-1, Whlle 17-2 and- 17 8 correspond fo these
two cases respectively with p=0. '

(iv) B=0, O+0. This case may be transformed into (11) and (111) by the trans-
formation z=y', y=a'.

(v) 0<0, B<O. There are 8 different kmds of phase-portralt as shown in Figs.
18.1—18-8. In Fig. 18-1 three separatrixes 00’ 0'0" and 0"0* divide the torus into
two regions, orbits in-one region all have rotation number = 0 and in the other
region p=oco. In Fig. 18.2, four separatrlxes OO’ OO’ OO and. 00 divide the forus
into three reglons filled wlth orblts _i_havmg rotation numbers 0, 1and oo respectively.

1) See footnote 1) of case I ().
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In Flg 18-3, there are two posmblhtles, one similar to Fig. 18.1, the other similar to
Flg 18.2, just as we have dlsoussed in cases (11) and (111) 7 '
(vi) 0>0, B<O.
(vii) C>0, B>0.

These two subcases can be transformed mto subcases of case I by one of the four
transformations used before. ' ' .

Summary The different kmds of topologloal structures of phase portrait of
system (1) in § 2 are the following: - ' '

1) Ergodio type: The.torus is filled with ergodio orbits. ThlS occury when - A=D

=0 B and O are noncommensurable; and also in case I (iii), when p is irrational.
2) PeI'IOle motion type: The torus is filled with a family of periodic orb1ts Thls
oocurs when A= —D, B=—C; or A=D=0, and B, 0 are commensurable

3) Limit cyole type: (i) There are two simple limit cyoles, one is stable, the other
is unstable; they’ are the & and « limit sets of all other orbits regpectively. (ii) ’I‘he
- two simple 11m1t cyecles commde, beoommg a semi-stable limit oyole.

In all the abové types, the pomt O is a removable cntmal point. o
4 Smgular oyole type: The torus is filled with smgular oycles all passing through
the critical point O. According to different values of 4, B, C a,nd D, these: singular
oyoles (except the separatrixes) may form a single simply connected region (Figs. 15,
16-3 and 17-2), two simply connected regions (Figs. 16-4, 17-3 and 18-1), or three\
simply connected 1eg10ns (Flg 18-2). Gyoles in each reglon all have the same rotation
number. ' : .

5) Mixed type or Intermedmte type There are both limit oycles : and aotual oritical
point, through the latter we have singular cycles and also orbits approaching limit
oycles. ‘
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