
Chin. Ann. Math. Ser. B

41(4), 2020, 495–510
DOI: 10.1007/s11401-020-0213-x

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2020

Anderson Localization for Jacobi Matrices Associated

with High-Dimensional Skew Shifts∗

Jia SHI1 Xiaoping YUAN1

Abstract In this paper, the authors establish Anderson localization for a class of Jacobi

matrices associated with skew shifts on T
d, d ≥ 3.

Keywords Anderson localization, Jacobi matrices, Skew shifts

2000 MR Subject Classification 39A70, 47B36

1 Introduction and Main Result

Over the past thirty years, there are many papers on the topic of Anderson localization for

lattice Schrödinger operators

H = vnδnn′ +∆, (1.1)

where vn is a quasi-periodic potential, ∆ is the lattice Laplacian on Z,

∆(n, n′) =

{
1, |n− n′| = 1,
0, |n− n′| 6= 1.

Anderson localization means that H has pure point spectrum with exponentially localized

states ϕ = (ϕn)n∈Z,

|ϕn| < e−c|n|, |n| → ∞. (1.2)

We may associate the potential vn to a dynamical system T as follows:

vn = λv(T nx), (1.3)

where v is real analytic on T
d and T is a shift on T

d:

Tx = x+ ω. (1.4)

Fix x = x0. If λ is large and ω outside set of small measure, H will satisfy Anderson localization.

The proof of Anderson localization is based on multi-scale analysis and semi-algebraic set

theory. In this line, Bourgain and Goldstein [6] proved Anderson localization for Schrödinger
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operators (1.1) with the help of fundamental matrix and Lyapounov exponent. By multi-

scale method, Bourgain, Goldstein and Schlag [8] proved Anderson localization for Schrödinger

operators on Z
2,

H(ω1, ω2; θ1, θ2) = λv(θ1 + n1ω1, θ2 + n2ω2) + ∆. (1.5)

Later, Bourgain [5] proved Anderson localization for quasi-periodic lattice Schrödinger operators

on Z
d, d arbitrary. Recently, using more elaborate semi-algebraic arguments, Bourgain and

Kachkovskiy [10] proved Anderson localization for two interacting quasi-periodic particles.

More generally, we can study the long range model

H = v(x+ nω)δnn′ + Sφ (1.6)

with ∆ replaced by a Toeplitz operator

Sφ(n, n
′) = φ̂(n− n′), (1.7)

where φ is real analytic, and φ̂(n) is the Fourier coefficient of φ. Bourgain [4] proved Anderson

localization for the long-range quasi-periodic operators (1.6). Note that in this case, we cannot

use the fundamental matrix formalism as (1.1). Bourgain’s method in [4] also permits us to

establish Anderson localization for band Schrödinger operators (cf. [9]),

H(n,s),(n′,s′)(ω, θ) = λvs(θ + nω)δnn′δss′ +∆, (1.8)

where {vs | 1 ≤ s ≤ b} are real analytic. Recently, this method was used in [13] to prove

Anderson localization for quasi-periodic block operators with long-range interactions.

If the transformation T is a skew shift on T
2:

T (x1, x2) = (x1 + x2, x2 + ω), (1.9)

using transfer matrix and Lyapounov exponent, Bourgain, Goldstein and Schlag [7] proved

Anderson localization for

H = λv(T nx) + ∆. (1.10)

In order to study quantum kicked rotor equation

i
∂Ψ(t, x)

∂t
= a

∂2Ψ(t, x)

∂x2
+ ib

∂Ψ(t, x)

∂x
+ V (t, x)Ψ(t, x), x ∈ T, (1.11)

where

V (t, x) = κ
[∑

n∈Z

δ(t− n)
]
cos(2πx), (1.12)

using multi-scale method, Bourgain [3] proved Anderson localization for the operator

W = φm−n(T
mx), (1.13)

where φk are trigonometric polynomials and T is a skew shift on T
2.

However, there are few results on high-dimensional skew shifts. When d ≥ 3, the skew shift

T : Td → T
d is given by

(Tx)i = xi + xi+1, 1 ≤ i ≤ d− 1, (1.14)
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(Tx)d = xd + ω, x = (x1, · · · , xd). (1.15)

In [14], Krüger proved positivity of Lyapounov exponents for the Schrödinger operator

H = λf((T nx)1)δnn′ +∆, (1.16)

where T is a skew shift on T
d, d is sufficiently large, and f is a real, nonconstant function on T.

In this paper, we generalize Bourgain’s result on skew shifts on T
2 (cf. [3]) to higher

dimensional ones on T
d, d ≥ 3. More precisely, we consider matrices (Amn(x))m,n∈Z, x ∈ T

d

associated with a skew shift T : Td → T
d of the form

Amm(x) = v(Tmx), (1.17)

Amn(x) = φm−n(T
mx) + φn−m(T nx), m 6= n, (1.18)

where

v is a real, nonconstant, trigonometric polynomial, (1.19)

φk is a trigonometric polynomial of degree < |k|C1 , (1.20)

‖φk‖∞ < γe−|k|. (1.21)

We will prove the following result.

Theorem 1.1 Consider a lattice operator Hω(x) associated to the skew shift T = Tω acting

on T
d, d ≥ 3, of the form (1.17)–(1.21). Assume ω ∈ DC (Diophantine condition),

‖kω‖ > c|k|−2, ∀k ∈ Z \ {0}. (1.22)

Fix x0 ∈ T
d. Then for almost all ω ∈ DC and γ taken sufficiently small in (1.21) (depending

on the initial scale N0), Hω(x0) satisfies Anderson localization.

We summarize the scheme of the proof. As mentioned above, the transfer matrix and

Lyapounov exponent approach is not applicable to the long range case here. We will use the

multi-scale method developed in [3, 7]. Our basic strategy is the same as that in [3], but with

more complicated computations. First, we need Green’s function estimates for G[0,N ](E, x) =

(R[0,N ](H(x) − E)R[0,N ])
−1, where RΛ is the restriction operator to Λ ⊂ Z. We will prove in

Section 3 that

‖G[0,N ](E, x)‖ < eN
1−

, (1.23)

|G[0,N ](E, x)(m,n)| < e−
1

100 |m−n|, 0 ≤ m,n ≤ N, |m− n| >
N

10
(1.24)

for x /∈ ΩN (E), where

mesΩN (E) < e−Nσ

, σ > 0. (1.25)

The main difficulty here is to study the intersection of ΩN (E) and skew shift orbits. We need

to prove

#{n = 1, · · · ,M : T nx ∈ ΩN (E)} < M1−δ, δ > 0, (1.26)
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where

log logM ≪ logN ≪ logM. (1.27)

To obtain (1.26), we study the ergodic property of skew shifts on T
d in Section 2.

Next, in Section 4, we use decomposition of semi-algebraic set to estimate

mes{ω ∈ T : (ω, T j
ωx) ∈ A, ∃ j ∼ M} < M−c, c > 0,

where x ∈ T
d, A ⊂ T

d+1 is a semi-algebraic set of degree B and measure η, satisfying

logB ≪ logM ≪ log
1

η
.

This is a key point to eliminate the energy E in the proof of Anderson localization.

Finally, using Green’s function estimates and semi-algebraic set theory, we prove Anderson

localization of the operator Hω(x) in Section 5 as in [6–7].

We will use the following notations. For positive numbers a, b, a . b means Ca ≤ b for

some constant C > 0. a ≪ b means C is large. a ∼ b means a . b and b . a. N1− means N1−ǫ

with some small ǫ > 0. For x ∈ T, ‖x‖ = inf
m∈Z

|x−m| for x = (x1, · · · , xd) ∈ T
d, ‖x‖ =

d∑
i=1

‖xi‖

.

2 An Ergodic Property of Skew Shifts on T
d

In this section, we prove the following ergodic property of skew shifts on T
d.

Lemma 2.1 Assume that ω ∈ DC, T = Tω is the skew shift on T
d, ǫ > L

− 1

(d+1)2d+1 . Then

#{n = 1, · · · , L : ‖T nx− a‖ < ǫ} < CǫdL, C = C(d).

Proof We assume a = 0. Let χ be the indicator function of the ball B(0, ǫ), R = 1
ǫ , and

FR be the Fejer kernel. Then χ ≤ Cǫd
d∏

j=1

FR(xj).

Let f(x) =
d∏

j=1

FR(xj). Then

L∑

n=1

χ(T nx) ≤ Cǫd
L∑

n=1

f(T nx) ≤ Cǫd
L∑

n=1

∑

0≤|lj |<R

f̂(l1, · · · , ld)e
2πi〈Tnx,l〉

≤ Cǫd
(
L+

∑

0<|k|< 1
ǫ

∣∣∣
L∑

n=1

e2πi〈T
nx,k〉

∣∣∣
)
.

Let

Sk =
∣∣∣

L∑

n=1

e2πi〈T
nx,k〉

∣∣∣, 0 < |k| <
1

ǫ
. (2.1)

We only need to prove
∑

0<|k|< 1
ǫ

Sk ≤ CL. (2.2)
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From the skew shift, we have

(T nx)i = xi + nxi+1 + · · ·+

(
n

d− i

)
xd +

(
n

d− i+ 1

)
ω,

i = 1, · · · , d, x = (x1, · · · , xd).

(2.3)

If k1 = · · · = kd−1 = 0, then

Sk =
∣∣∣

L∑

n=1

e2πinkdω
∣∣∣ ≤ 1

‖kdω‖
≤ C|kd|

2. (2.4)

If k1 = · · · = kd−2 = 0, kd−1 6= 0, then Sk =
∣∣ L∑
n=1

e2πif(n)
∣∣, where f(n) = 1

2n
2kd−1ω + cn, c

is independent of n.

So

S2
k =

( L∑

n=1

e2πif(n)
)( L∑

n=1

e−2πif(n)
)
. L+

L−1∑

h=1

∣∣∣
L−h∑

n=1

e2πi(f(n+h)−f(n))
∣∣∣

. L+

L−1∑

h=1

min
(
L,

1

‖hkd−1ω‖

)
. L+

|kd−1|L∑

m=1

min
(
L,

1

‖mω‖

)
.

Since ω ∈ DC, we may find an approximant q of ω satisfying

L
1
2 < q < L. (2.5)

Using

#
{
M + 1 ≤ n ≤ M + q : ‖nω − u‖ ≤

1

2q

}
≤ 3, ∀M ∈ Z, u ∈ R,

we get

M+q∑

n=M+1

min
(
L,

1

‖nω‖

)
. L+ q log q. (2.6)

By (2.5)–(2.6), we have

S2
k .

|kd−1|L

q
(L+ q log q) . |kd−1|L

3
2 .

Hence

Sk ≤ C|kd−1|
1
2L

3
4 . (2.7)

If k1 = · · · = kd−3 = 0, kd−2 6= 0, then Sk =
∣∣ L∑
n=1

e2πig(n)
∣∣, where g(n) = 1

6n
3kd−2ω+ bn2 +

cn, b, c is independent of n.

So

S2
k . L+

L−1∑

h1=1

∣∣∣
L−h1∑

n=1

e2πigh1
(n)

∣∣∣, gh1(n) = g(n+ h1)− g(n).
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We have

S4
k . L2 + L

L−1∑

h1=1

∣∣∣
L−h1∑

n=1

e2πigh1
(n)

∣∣∣
2

. L3 + L
L−1∑

h1=1

L−h1−1∑

h2=1

∣∣∣
L−h1−h2∑

n=1

e2πi(gh1
(n+h2)−gh1

(n))
∣∣∣

. L3 + L

L∑

h1=1

L∑

h2=1

min
(
L,

1

‖h1h2kd−2ω‖

)
.

Using

#{(h1, h2) ∈ Z
2 : h1h2 = N} . N0+,

we get

S4
k . L3 + L1+

|kd−2|L
2∑

m=1

min
(
L,

1

‖mω‖

)
. L3 + L1+ |kd−2|L2

q
(L + q log q) . |kd−2|L

7
2+.

Hence

Sk ≤ C|kd−2|
1
4L

7
8+. (2.8)

Repeating the argument above, we get

Sk ≤ C|kd−j |
1

2j L1− 1

2j+1 +, k1 = · · · = kd−j−1 = 0, kd−j 6= 0, 2 ≤ j ≤ d− 1. (2.9)

By (2.4), (2.7) and (2.9), we have

∑

0<|k|< 1
ǫ

Sk .
∑

|kd|<
1
ǫ

|kd|
2 +

1

ǫ

∑

|kd−1|<
1
ǫ

|kd−1|
1
2L

3
4 +

d−1∑

j=2

1

ǫj

( ∑

|kd−j |<
1
ǫ

|kd−j |
1

2j L1− 1

2j+1 +
)

.
(1
ǫ

)3

+
1

ǫ

(1
ǫ

) 3
2

L
3
4 +

d−1∑

j=2

((1
ǫ

) 1

2j
+j+1

L1− 1

2j+1 +
)
. L.

This proves (2.2) and Lemma 2.1.

Remark 2.1 In the proof of Lemma 2.1, we only need to assume

‖kω‖ > c|k|−2, ∀0 < |k| ≤ L. (2.10)

3 Green’s Function Estimates

In this section, we will prove the Green’s function estimates by using multi-scale analysis in

[3].

We need the following lemma.

Lemma 3.1 (cf. [3, Lemma 3.16]) Let A(x) = {Amn(x)}1≤m,n≤N be a matrix valued

function on T
d such that

A(x) is self-adjoint for x ∈ T
d, (3.1)
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Amn(x) is a trigonometric polynomial of degree < NC1 , (3.2)

|Amn(x)| < C2e
−c2|m−n|, (3.3)

where c2, C1, C2 > 0 are constants.

Let 0 < δ < 1 be sufficiently small, M = N δ6 , L0 = N
1

100 δ
2

, 0 < c3 < 1
10 c2.

Assume that for any interval I ⊂ [1, N ] of size L0, except for x in a set of measure at most

e−Lδ3

0 ,

‖(RIA(x)RI )
−1‖ < eL

1−
0 , (3.4)

|(RIA(x)RI)
−1(m,n)| < e−c3|m−n|, m, n ∈ I, |m− n| >

L0

10
. (3.5)

Fix x ∈ T
d.n0 ∈ [1, N ] is called a good site if I0 =

[
n0 −

M
2 , n0 +

M
2

]
⊂ [1, N ],

‖(RI0A(x)RI0 )
−1‖ < eM

1−

, (3.6)

|(RI0A(x)RI0 )
−1(m,n)| < e−c3|m−n|, m, n ∈ I0, |m− n| >

M

10
. (3.7)

Denote Ω(x) ⊂ [1, N ] the set of bad sites. Assume that for any interval J ⊂ [1, N ], |J | >

N
δ
5 , we have |J ∩Ω(x)| < |J |1−δ.

Then

‖A(x)−1‖ < eN
1− δ

C(d)
, (3.8)

|A(x)−1(m,n)| < e−c′3|m−n|, m, n ∈ [1, N ], |m− n| >
N

10
(3.9)

except for x in a set of measure at most e−
Nδ2

C(d) , where C(d) is a constant depending on d, and

c′3 > c3 − (logN)−8.

By Lemmas 2.1 and 3.1, we can prove the Green’s function estimates.

Proposition 3.1 Let T = Tω : Td → T
d be the skew shift with frequency ω satisfying

‖kω‖ > c|k|−2, ∀0 < |k| ≤ N. (3.10)

Amn(x) is the form (1.17)–(1.21), and γ in (1.21) is small.

Then for all N and energy E,

‖G[0,N ](E, x)‖ < eN
1−

, (3.11)

|G[0,N ](E, x)(m,n)| < e−
1

100 |m−n|, 0 ≤ m,n ≤ N, |m− n| >
N

10
(3.12)

for x /∈ ΩN (E), where

mesΩN (E) < e−Nσ

, σ > 0. (3.13)

Proof Since T n(x1, · · · , xd) = (x1 + nx2 + · · · +
(

n
d−1

)
xd +

(
n
d

)
ω, · · · , xd + nω), Amn(x)

is a trigonometric polynomial in x of degree < (|m|+ |n|)C1+d, {Amn(x) − E}0≤m,n≤N satisfy

(3.1)–(3.3) with c2 = 1, C2 = γ.
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First fix any large initial scale N0 and choose γ = γ(N0) small. Using Lojasiewicz’s inequal-

ity (cf. [3, Section 4]), we get

|G[0,N0](E, x)(m,n)| < eN
1
2
0 − 1

2 |m−n|, 0 ≤ m,n ≤ N0 (3.14)

except for x in a set of measure < e−cN
1
2
0 .

Then we estabish inductively on the scale N that

mes{x ∈ T
d : |G[0,N ](E, x)(m,n)| > e

N1−−c3|m−n|χ
|m−n|> N

10 , ∃ 0 ≤ m,n ≤ N}

< e−Nδ3

, (3.15)

where c3 > 1
100 , 0 < δ < 1 is a fixed small number.

(3.14) implies (3.15) for an initial large scale N0.

Assume that (3.15) holds up to scale L0 = N
1

100 δ
2

. Since Am+1,n+1(x) = Amn(Tx), we have

RI(A(x) − E)RI = R[0,N ](A(T
nx)− E)R[0,N ], GI(E, x) = G[0,N ](E, T nx), I = [n, n+N ].

Since T is measure preserving, (3.4)–(3.5) will hold for x outside a set of measure at most e−Lδ3

0 .

Denote Ω(x) ⊂ [0, N ] the set of bad sites with respect to scale M = N δ6 . n0 /∈ Ω(x) means

|G[0,M ](E, T n0−
M
2 x)(m,n)|

=
∣∣∣G[n0−

M
2 ,n0+

M
2 ](E, x)

(
m+ n0 −

M

2
, n+ n0 −

M

2

)∣∣∣

< e
M1−−c3|m−n|χ

|m−n|>M
10 . (3.16)

From the inductive hypothesis, we have

|G[0,M ](E, x)(m,n)|

< e
M1−−c3|m−n|χ

|m−n|>M
10 , 0 ≤ m,n ≤ M, ∀x /∈ Ω, mesΩ < e−Mδ3

. (3.17)

By (3.16)–(3.17) and Lemma 3.1, we only need to show that for any x ∈ T
d, N

δ
5 < L < N ,

#{1 ≤ n ≤ L : T nx ∈ Ω} < L1−δ. (3.18)

Since Amn(x) is a trigonometric polynomial of degree < (|m| + |n|)C , we can express

G[0,M ](E, x)(m,n) as a ratio of determinants to write (3.17) in the form

Pmn(cos x1, sinx1, · · · , cosxd, sinxd) ≤ 0, (3.19)

where Pmn is a polynomial of degree at most MC . Replacing cos, sin by truncated power series,

permits us to replace (3.19) by

Pmn(x1, · · · , xd) ≤ 0, degPmn < MC . (3.20)

So, Ω may be viewed as a semi-algebraic set of degree at most MC . (For properties of semi-

algebraic sets, see Section 4.) When ǫ > e−
1
d
Mδ3

, by Corollary 4.1, Ω may be covered by at

most MC(1ǫ )
d−1ǫ-balls. Choosing ǫ = L

− 1

(d+1)2d+1 > N−1 > e−
1
d
Mδ3

, by (3.10), using Lemma

2.1 and Remark 2.1, we have

#{1 ≤ n ≤ L : T nx ∈ Ω} < MC
(1
ǫ

)d−1

ǫdL < L
Cδ5+1− 1

(d+1)2d+1 < L1−δ,

when δ is small enough.

This proves (3.18) and Proposition 3.1.
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4 Semi-algebraic Sets

We recall some basic facts of semi-algebraic sets. Let P = {P1, · · · , Ps} ⊂ R[X1, · · · , Xn]

be a family of real polynomials whose degrees are bounded by d. A semi-algebraic set is given

by

S =
⋃

j

⋂

l∈Lj

{Rn : Plsjl0}, (4.1)

where Lj ⊂ {1, · · · , s}, sjl ∈ {≤,≥,=} are arbitrary. We say that S has degree at most sd and

its degree is the inf of sd over all representations as in (4.1).

The projection of a semi-algebraic set of Rn onto R
m is semi-algebraic.

Proposition 4.1 (cf. [2]) Let S ⊂ R
n be a semi-algebraic set of degree B. Then any

projection of S has degree at most BC , C = C(n).

We need the following bound on the number of connected components.

Proposition 4.2 (cf. [1]) Let S ⊂ R
n be a semi-algebraic set of degree B. Then the

number of connected components of S is bounded by BC , C = C(n).

A more advanced part of the theory of semi-algebraic sets is the following triangulation

theorem.

Theorem 4.1 (cf. [11]) For any positive integers r, n, there exists a constant C = C(n, r)

with the following property : Any semi-algebraic set S ⊂ [0, 1]n can be triangulated into N .

(degS +1)C simplices, where for every closed k-simplex ∆ ⊂ S, there exists a homeomorphism

h∆ of the regular simplex ∆k ⊂ R
k with unit edge length onto ∆ such that ‖Drh∆‖ ≤ 1.

Corollary 4.1 (cf. [4, Corollary 9.6]) Let S ⊂ [0, 1]n be semi-algebraic of degree B. Let

ǫ > 0, mesn S < ǫn. Then S may be covered by at most BC
(
1
ǫ

)n−1
ǫ-balls.

Finally, we will make essential use of the following transversality property.

Lemma 4.1 (cf. [5, (1.5)]) Let S ⊂ [0, 1]n=n1+n2 be a semi-algebraic set of degree B and

mesn S < η, logB ≪ log
1

η
, ǫ > η

1
n . (4.2)

Denote (x, y) ∈ [0, 1]n1 × [0, 1]n2 the product variable.

Then there is a decomposition S = S1 ∪ S2, with S1 satisfying

mesn1(Projx S1) < BCǫ (4.3)

and S2 satisfying the transversality property

mesn2(S2 ∩ L) < BCǫ−1η
1
n (4.4)

for any n2-dimensional hyperplane L such that max
1≤j≤n1

|ProjL(ej)| <
ǫ

100 , where {ej | 1 ≤ j ≤

n1} are x-coordinate vectors.

Now we can prove the following lemma.
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Lemma 4.2 Let S ⊂ [0, 1]d+1 be a semi-algebraic set of degree B such that

mesS < e−Bσ

, σ > 0. (4.5)

Let M satisfy

log logM ≪ logB ≪ logM. (4.6)

Then for all x ∈ T
d,

mes{ω ∈ T : (ω, T j
ωx) ∈ S, ∃ j ∼ M} < M−c, c > 0. (4.7)

Proof For x0 = (x0
1, · · · , x

0
d) ∈ T

d, we study the intersection of S ⊂ [0, 1]d+1 and sets

{(ω, x1, · · · , xd) : ω ∈ [0, 1]}, (4.8)

where xi = (T j
ωx

0)i = x0
i + jx0

i+1 + · · ·+
(

j
d−i

)
x0
d +

(
j

d−i+1

)
ω, 1 ≤ i ≤ d are considered (mod 1).

By (4.5)–(4.6), we have

mesd+1 S < η = e−Bσ

, logB ≪ logM ≪ log
1

η
. (4.9)

Take ǫ = M−1+ and apply Lemma 4.1, then S = S1 ∪ S2. Since mes1(Projω S1) <

BCM−1+ = M−1+, restriction of ω permits us to replace S by S2 satisfying

mesd(S2 ∩ L) < BCǫ−1η
1

d+1 < η
1

d+2 , (4.10)

whenever L is a d-dimensional hyperplane satisfying |ProjL(e0)| < ǫ
100 , where e0 is the ω-

coordinate vector.

Fixing j, (4.8) can be considered as a subset of [0, 1]d+1 lying in the union of the parallel

d-dimensional hyperplanes

Q(j)
m1

=
[
ω =

xd

j

]
−

m1 + x0
d

j
e0, |m1| < M. (4.11)

By (4.10), we have

mesd(S ∩Qm1) < η
1

d+2 . (4.12)

Fixing m1, consider the semi-algebraic set S ∩ Qm1 and its intersection with the parallel

(d− 1)-dimensional hyperplanes

Q(j)
m1,m2

= Qm1

⋂[
xd =

2

j − 1
xd−1 −

2

j − 1

(
x0
d−1 +

j + 1

2
x0
d +m2

)]
, |m2| < M. (4.13)

Take ǫ = M−1+ and apply Lemma 4.1 in Qm1 , then S ∩Qm1 = S1
m1

∪ S2
m1

, where

Projxd
S1
m1

is a union of at most BC intervals of measure at most BCM−1+, (4.14)

and by (4.12), we have

mesd−1(S
2
m1

∩Qm1,m2) < BCMη
1

d(d+2) < η
1

(d+2)2 . (4.15)
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Fixingm2, consider the semi-algebraic set S2
m1

∩Qm1,m2 and its intersection with the parallel

(d− 2)-dimensional hyperplanes

Q(j)
m1,m2,m3

= Qm1,m2

⋂[
xd−1 =

3

j − 2
xd−2 −

3

j − 2

(
x0
d−2 + · · ·+

j(j + 1)

6
x0
d +m3

)]
,

where |m3| < M .

Take ǫ = M−1+ and apply Lemma 4.1 in Qm1,m2 , then S2
m1

∩Qm1,m2 = S1
m1,m2

∪ S2
m1,m2

,

where

Projxd−1
S1
m1,m2

is a union of at most BC intervals of measure at most BCM−1+,

and by (4.15), we have

mesd−2(S
2
m1,m2

⋂
Qm1,m2,m3) < η

1
(d+2)3 .

Repeat the argument above. Fixing mi, 2 ≤ i ≤ d − 1, consider the semi-algebraic set

S2
m1,··· ,mi−1

∩Qm1,··· ,mi
and its intersection with the parallel (d− i)-dimensional hyperplanes

Q
(j)
m1,··· ,mi+1

= Qm1,··· ,mi

⋂[
xd−i+1 =

i+ 1

j − i
xd−i −

i+ 1

j − i

(
x0
d−i + · · ·+

1

i+ 1

(
j + 1

i

)
x0
d +mi+1

)]
, (4.16)

where |mi+1| < M .

Take ǫ = M−1+ and apply Lemma 4.1 in Qm1,··· ,mi
, then S2

m1,··· ,mi−1
∩ Qm1,··· ,mi

=

S1
m1,··· ,mi

∪ S2
m1,··· ,mi

, where

Projxd−i+1
S1
m1,··· ,mi

is a union of at most BC intervals of measure at most BCM−1+, (4.17)

and

mesd−i(S
2
m1,··· ,mi

∩Qm1,··· ,mi+1) < η
1

(d+2)i+1 . (4.18)

Finally, fixing md−1, consider the semi-algebraic set S2
m1,··· ,md−2

∩ Qm1,··· ,md−1
and its in-

tersection with the parallel lines

Q
(j)
m1,··· ,md

= Qm1,··· ,md−1

⋂[
x2 =

d

j − d+ 1
x1 −

d

j − d+ 1

(
x0
1 + · · ·+

1

d

(
j + 1

d− 1

)
x0
d +md

)]
, (4.19)

where |md| < M .

Take ǫ = M−1+ and apply Lemma 4.1 in Qm1,··· ,md−1
, then S2

m1,··· ,md−2
∩ Qm1,··· ,md−1

=

S1
m1,··· ,md−1

∪ S2
m1,··· ,md−1

, where

Projx2
S1
m1,··· ,md−1

is a union of at most BC intervals of measure at most BCM−1+, (4.20)

and

mes1(S
2
m1,··· ,md−1

∩Qm1,··· ,md
) < η

1

(d+2)d . (4.21)

Summing (4.21) over j,m1, · · · ,md, the collected contribution in the ω-parameter is less

than M−dMd+1BCMη
1

(d+2)d < η
1

(d+2)d+1 . So, we only need to consider the contribution of
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S1
m1,··· ,mi

in (4.17). We just deal with S1
m1,··· ,md−1

below, since for other sets, the method is

similar.

If (4.7) fails, we have

∑

j∼M,|m1|,··· ,|md|<M

mes[ProjωProjx2
(S1

m1,··· ,md−1
∩Q

(j)
m1,··· ,md

)] > M0−,

∑

j∼M,|m1|,··· ,|md|<M

mes[Projx2
(S1

m1,··· ,md−1
∩Q

(j)
m1,··· ,md

)] > Md−1−.
(4.22)

So, there is a set J ⊂ Z ∩ [j ∼ M ], |J | > M1− such that for each j ∈ J , there are at least

Md−1− values of (m1, · · · ,md−1) satisfying
∑

|md|<M

mes[Projx2
(S1

m1,··· ,md−1
∩Q

(j)
m1,··· ,md

)] > M−1. (4.23)

By (4.20), S1
m1,··· ,md−1

∩Q
(j)
m1,··· ,md

6= ∅ for at most M0+ values of md. Hence

max
md

mes1(S ∩Q
(j)
m1,··· ,md

) > M0−. (4.24)

For fixed j,

Q
(j)
m1,··· ,md

//ξj//
(
1,

(
j

d

)
, · · · , j

)T

, ‖ξj‖ = 1. (4.25)

Denote Sx the intersection of S and the d-dimensional hyperplane [x′ = x]. From (4.24), to

each (m1, · · · ,md−1) we can associate some md, such that

∫ 1

0

#{|m1|, · · · , |md−1| < M | Sx ∩Qm1,··· ,md
6= ∅}dx > Md−1−. (4.26)

If mesd Sx < η
1
2 , then Sx ∩Qm1,··· ,md

6= ∅ implies dist(Qm1,··· ,md
, ∂Sx) < η

1
2d , where ∂Sx is

a union of at most BC connected (d− 1)-dimensional algebraic set of degree at most BC . From

(4.26), it follows that there is a fixed (d−1)-dimensional algebraic set Γ = Γ(j) of degree at most

BC such that for x ∈ [0, 1] in a set of measure > M0−, there are at least Md−1− 1
M -separated

points that are η
1
2d -close to both ∂Sx and Γ + xξj . Hence (Γ + xξj) ∩ Sη1 (η1-neighborhood of

S, η1 = 2η
1
2d ) contains at leastMd−1− 1

M -separated points. So, mesd−1((Γ+xξj)∩Sη1) > M0−.

The hypercylinder C(j) = tξj + Γ(j) satisfies

mesd(C
(j) ∩ Sη1) > M0−. (4.27)

By Corollary 4.1, we have

mesd+1 Sη1 < BCη1. (4.28)

Since (4.27) holds for all j ∈ J , by (4.27)–(4.28), we have

∑

j1,··· ,jd+1∈J

mesd+1

[ ⋂

1≤i≤d+1

C(ji)
η1

]
> η1M

d+1−.

So, there are distinct j1, · · · , jd+1 ∼ M such that

mesd+1

[ ⋂

1≤i≤d+1

C(ji)
η1

]
> η1M

0−. (4.29)



High-Dimensional Skew Shifts 507

By (4.25), using Vandermonde determinant, we have

det[ξj1 , · · · , ξjd+1
] 6= 0 (4.30)

for distinct j1, · · · , jd+1. So, the vectors ξj1 , · · · , ξjd+1
are not in any d-dimensional hyperplane.

Since logM ≪ log 1
η1
, this leads to a contradiction to (4.29).

This proves Lemma 4.2.

5 Proof of Anderson Localization

In this section, we give the proof of Anderson localization as in [6].

By application of the resolvent identity, we have the following lemma.

Lemma 5.1 (cf. [4, Lemma 10.33]) Let I ⊂ Z be an interval of size N and {Iα} be

subintervals of size M ≪ N . Assume that

(i) if k ∈ I, then there is some α such that
[
k − M

4 , k + M
4

]
∩ I ⊂ Iα.

(ii) For all α,

‖GIα‖ < eM
1−

, |GIα(n1, n2)| < e−c0|n1−n2|, n1, n2 ∈ Iα, |n1 − n2| >
M

10
.

Then

|GI(n1, n2)| < e−(c0−)|n1−n2|, n1, n2 ∈ I, |n1 − n2| >
N

10
.

Let T = Tω be the skew shift on T
d with frequency ω satisfying

‖kω‖ > c|k|−2, ∀k ∈ Z \ {0}. (5.1)

Fix x0 ∈ T
d,

H(x0)(m,m) = v(Tmx0), (5.2)

H(x0)(m,n) = φm−n(T
mx0) + φn−m(T nx0), m 6= n (5.3)

with v and φk satisfying (1.19)–(1.21) and γ taken small enough. Then we have the following

theorem.

Theorem 5.1 For almost all ω satisfying (5.1), the lattice operator Hω(x0) satisfies An-

derson localization.

Proof By Shnol’s theorem (cf. [12]), to establish Anderson localization, it suffices to show

that if ξ = (ξn)n∈Z, E ∈ R satisfy

ξ0 = 1, |ξn| < C|n|, |n| → ∞, (5.4)

H(x0)ξ = Eξ, (5.5)

then

|ξn| < e−c|n|, |n| → ∞. (5.6)

Let M = NC0 , L = MC . Denote Ω ⊂ T
d the set of x such that

|G[−M,M ](E, x)(m,n)| < e
M1−− 1

100 |m−n|χ
|m−n|>M

10
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fails for some |m|, |n| ≤ M . It was shown in Section 3 that

#{1 ≤ |n| ≤ L : T nx0 ∈ Ω} < L1−δ.

So, we may find an interval I ⊂ [0, L] of size M , such that

T n0x0 /∈ Ω, ∀n0 ∈ I ∪ (−I).

Hence

|G[n0−M,n0+M ](E, x0)(m,n)| < e
M1−− 1

100 |m−n|χ
|m−n|>M

10 , m, n ∈ [n0 −M,n0 +M ]. (5.7)

By (5.4)–(5.5) and (5.7), we have

|ξn0 | ≤
∑

n′∈[n0−M,n0+M ],n′′ /∈[n0−M,n0+M ]

e
M1−− 1

100 |n0−n′|χ
|n0−n′|>M

10 e−|n′−n′′||ξn′′ |

< e−
M
200 . (5.8)

Denoting j0 the center of I, we have

1 = |ξ0| ≤ ‖G[−j0,j0](x0, E)‖‖R[−j0,j0]H(x0)RZ\[−j0,j0]ξ‖. (5.9)

By (5.4) and (5.8), we have for |n| ≤ j0,

|(H(x0)RZ\[−j0,j0]ξ)n| ≤
∑

|n′|>j0

e−|n−n′||ξn′ | < e−
M
400 +

∑

|n′|>j0+
M
2

e−|n−n′||ξn′ | < e−
M
500 . (5.10)

By (5.9)–(5.10), we have

‖G[−j0,j0](x0, E)‖ > eN . (5.11)

So there is some j0, |j0| < N1 = NC1 (C1 is a sufficiently large constant), such that by

(5.11)

dist(E, specH[−j0,j0](x0)) < e−N . (5.12)

Denote Ω(E) ⊂ T
d the set of x such that

|G[−N,N ](E, x)(m,n)| < e
N1−− 1

100 |m−n|χ
|m−n|> N

10

fails for some |m|, |n| ≤ N . Let Eω =
⋃

|j|≤N1

specH[−j,j](x0). It follows from (5.12) that if

x /∈
⋃

E′∈Eω

Ω(E′), then

|G[−N,N ](E, x)(m,n)| < e
N1−− 1

100 |m−n|χ
|m−n|> N

10 , |m|, |n| ≤ N. (5.13)

Consider the set S = SN ⊂ T
d+1 × R of (ω, x,E′), where

‖kω‖ > c|k|−2, ∀0 < |k| ≤ N, (5.14)

x ∈ Ω(E′), (5.15)

E′ ∈ Eω. (5.16)
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By (5.14)–(5.16),

Proj
Td+1 S is a semi-algebraic set of degree < NC , (5.17)

and by Proposition 3.1,

mes(Proj
Td+1 S) < e−

1
2N

σ

. (5.18)

Let N2 = e(logN)2 ,

BN = {ω ∈ T : (ω, T jx0) ∈ Proj
Td+1 SN , ∃ |j| ∼ N2}. (5.19)

By (5.17)–(5.19), using Lemma 4.2, mesBN < N−c
2 , c > 0. Let

B =
⋂

N0

⋃

N>N0

BN . (5.20)

Then by Borel-Cantelli theorem, mesB = 0. We restrict ω /∈ B.

If ω /∈ BN , we have for all |j| ∼ N2, (ω, T jx0) /∈ Proj
Td+1 SN , by (5.13),

|G[j−N,j+N ](E, x0)(m,n)| < e
N1−− 1

100 |m−n|χ
|m−n|> N

10 . (5.21)

Let Λ =
⋃

1
4N2<j<2N2

[j −N, j +N ] ⊃
[
1
4N2, 2N2

]
. By Lemma 5.1, we deduce from (5.21) that

|GΛ(E, x0)(m,n)| < e−
1

200 |m−n|, |m− n| >
N2

10
, (5.22)

and therefore

|ξj | < e−
1

1000 |j|,
1

2
N2 ≤ j ≤ N2. (5.23)

Since ω /∈ B, by (5.20), there is some N0 > 0, such that for all N ≥ N0, ω /∈ BN . So

(5.23) holds for j ∈
⋃

N≥N0

[
1
2e

(logN)2 , e(logN)2
]
=

[
1
2e

(logN0)
2

,∞
)
. This proves (5.6) for j > 0,

similarly for j < 0. Hence Theorem 5.1 follows.

Acknowledgement The authors are very grateful to Dr. Y. Shi for the valuable sugges-

tions.
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