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1 Introduction

Synchronization phenomena can be often found in science, nature, engineering and social

life (see [14]). Christiaan Huygens [3] first observed in 1665 the sympathy of two pendulums,

and the synchronization was studied systematically from a mathematical point of view since

Norbert Wiener’s work in 1950s (see [15]). The previous results focused on systems described

by ODEs. Recently the research on the synchronization on systems described by PDEs was

initiated by Li and Rao [5–6]. They obtained the exact boundary synchronization (by groups)

for a coupled system of wave equations with Dirichlet boundary controls in the framework of

weak solutions (see [6–7, 9]), and gave an approach to determine its exactly synchronizable

states (see [6, 8–9]). Moreover, they have also studied the exact boundary synchronization to

this kind of coupled system with various boundary controls for the 1-D case in the framework

of classical solutions (see [2, 11]).

In this paper, we will investigate the generalized exact boundary synchronization which cov-

ers various important types of exact synchronizations, including the anti-phase synchronization

observed by Christiaan Huygens. Referring to the generalized exact boundary synchronization

for the 1-D case in the framework of classical solutions (see [12]), the generalized exact boundary

synchronization for a coupled system of wave equations in the framework of weak solutions, and

the determination of corresponding generalized exactly synchronizable states will be studied in

detail.
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Let Ω ⊂ R
n be a bounded domain with smooth boundary Γ = Γ0∪Γ1 such that Γ̄0∩ Γ̄1 = ∅

and mes(Γ1) > 0. In addition, we assume the following multiplier geometrical condition (see

[13]): There exists x0 ∈ R
n, such that for m = x− x0 we have

(m, ν) > 0, ∀x ∈ Γ1; (m, ν) ≤ 0, ∀x ∈ Γ0,

where ν is the unit outward normal vector and (·, ·) denotes the inner product in R
n.

Let U = (u(1), · · · , u(N))T and H = (h(1), · · · , h(M))T (M ≤ N) be the state variable and

the boundary control, respectively. Consider the following coupled system of wave equations

with Dirichlet boundary controls:






U ′′ −∆U +AU = 0 in (0,+∞)× Ω,

U = 0 on (0,+∞)× Γ0,

U = DH on (0,+∞)× Γ1

(1.1)

with the initial condition

t = 0 : (U,U ′) = (Û0, Û1) in Ω, (1.2)

where A = (aij) ∈ M
N×N (R) is a given coupling matrix with constant elements, and D ∈

M
N×M (R) is a full column-rank matrix with constant elements, called the boundary control

matrix, which can be used to adjust the collocation of boundary controls flexibly.

Let Θp be a given (N − p) × N (0 ≤ p < N) full row-rank matrix, called the generalized

synchronization matrix.

Definition 1.1 System (1.1) is generalized exactly boundary synchronizable with respect to

Θp, if there exists a time T > 0, such that for any given initial data (Û0, Û1) ∈ (L2(Ω))N ×

(H−1(Ω))N , there exists a boundary control H ∈ L2
loc(0,+∞; (L2(Γ1))

M ) with compact sup-

port in [0, T ], such that the corresponding solution U = U(t, x) ∈ C0
loc(0,+∞; (L2(Ω))N ) ∩

C1
loc(0,+∞; (H−1(Ω))N ) to problem (1.1)–(1.2) satisfies the following condition

t ≥ T : ΘpU ≡ 0. (1.3)

Remark 1.1 Note that ΘpU ≡ 0 means U ∈ Ker(Θp). For another full row-rank matrix

Θ̃p, if Ker(Θ̃p) = Ker(Θp), or equivalently, Im(Θ̃T
p ) = Im(ΘT

p ), then the generalized exact

boundary synchronization with respect to Θp is equivalent to that with respect to Θ̃p. Hence

all the generalized synchronization matrices with the same kernel space can be regarded to be

equivalent to each other.

Remark 1.2 Setting

Ker(Θp) = Span{ǫ1, · · · , ǫp}, (1.4)

condition (1.3) can be equivalently written as: There exists a vector function u = (u1, · · · , up)T

of t and x, such that

t ≥ T : U = u1ǫ1 + · · ·+ upǫp = (ǫ1, · · · , ǫp)u, (1.5)

where the vector function u, called the corresponding generalized exactly synchronizable state,

is a priori unknown, and p is called the group number. The selected basis {ǫ1, · · · , ǫp} is

called the synchronization basis. The generalized exact boundary synchronization can then be

described by (1.4)–(1.5) through the synchronization basis {ǫ1, · · · , ǫp}.
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Remark 1.3 When p = 0, the generalized exact boundary synchronization with respect to

Θ0 becomes the exact boundary null controllability, then the corresponding generalized exactly

synchronizable state u = 0, which is the trivial case. Here and hereafter we will focus on the

non-trivial cases 1 < p < N .

Remark 1.4 For system (1.1), the generalized exact boundary synchronization with respect

to Θp includes many significant situations.

In the case p = 1, denoting ǫ = (k1, k2, · · · , kN )T 6= 0, the generalized exact boundary

synchronization (1.5) becomes

t ≥ T : U = ǫu = (k1u, k2u, · · · , kNu)
T. (1.6)

This denotes a kind of phase synchronization admitting different amplitudes. When N = 2 and

ǫ = (1,−1)T, this represents the anti-phase synchronization.

(1) Obviously, the generalized exact boundary synchronization with respect to ǫ = (1, · · · , 1)T

is the usual exact boundary synchronization (see [6]).

(2) The generalized exact boundary synchronization with respect to

ǫ = (0, · · · , 0
︸ ︷︷ ︸

1 to m

, 1, · · · , 1
︸ ︷︷ ︸

(m + 1) to N

)T,

where m ≥ 1, is the exact null controllability and synchronization by 2-groups (see [6, 8]), since

condition (1.5) becomes

t ≥ T : U = ǫu = (0, · · · , 0
︸ ︷︷ ︸

1 to m

, u, · · · , u
︸ ︷︷ ︸

(m + 1) to N

)T. (1.7)

(3) For the generalized exact boundary synchronization with respect to ǫ = (1, 0, · · · , 0)T,

since condition (1.5) becomes

t ≥ T : U = ǫu = (u(1), 0, · · · , 0)T, (1.8)

it is actually the partial null controllability: Only the 2-nd to N -th state variables possess the

exact null controllability.

In the general case p (0 < p < N), let

0 = n0 < n1 < n2 < · · · < np = N, (1.9)

and er (r = 1, · · · , p) be the following column vector in R
N :

(er)i =

{

1, nr−1 + 1 ≤ i ≤ nr,

0, otherwise.
(1.10)

(4) For the generalized exact boundary synchronization with respect to {e1, · · · , ep}, since

condition (1.5) becomes

t ≥ T : U = u1e1 + · · ·+ upep = (u1, · · · , u1
︸ ︷︷ ︸

1 to n1

, · · · , up, · · · , up
︸ ︷︷ ︸

(np−1 + 1) to N

)T, (1.11)
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it is the usual exact boundary synchronization by p-groups, provided that ni − ni−1 > 1

(i = 1, · · · , p) (see [9]).

(5) When n1 = 1, condition (1.5) becomes

t ≥ T : U = u1e1 + · · ·+ upep = (u1, u2, · · · , u2
︸ ︷︷ ︸

2 to n2

, · · · , up, · · · , up
︸ ︷︷ ︸

(np−1 + 1) to N

)T, (1.12)

then, the first state variable is free, and the 2-nd to N -th state variables possess the exact

boundary synchronization by (p− 1)-groups.

(6) For the generalized exact boundary synchronization with respect to {e2, · · · , ep}, since

condition (1.5) becomes

t ≥ T : U = u2e2 + · · ·+ upep = (0, · · · , 0
︸ ︷︷ ︸

1 to n1

, u2, · · · , u2
︸ ︷︷ ︸

(n1 + 1) to n2

, · · · , up, · · · , up
︸ ︷︷ ︸

(np−1 + 1) to N

)T, (1.13)

the 1-st to n1-th state variables possess the exact boundary null controllability and the (n1+1)-

th to N -th state variables possess the exact boundary synchronization by (p− 1)-groups, then

it is the exact null controllability and synchronization by p-groups (see [6, 8]).

A natural question is: For any given generalized synchronization matrix Θp, does system

(1.1) possess the generalized exact boundary synchronization with respect to Θp?

Clearly, when the number of boundary controlsM = N , system (1.1) is already exactly null

controllable, so it is always generalized exactly synchronizable with respect to Θp. Therefore,

we are interested in the case that there is a lack of boundary controls, that is, the number of

boundary controls M < N .

In Section 2, we will show that in order to realize the generalized exact boundary syn-

chronization with respect to Θp, the minimal number of boundary controls is M = N − p.

Furthermore, we will show the sufficient and necessary condition satisfied by the coupling ma-

trix A and the boundary control matrix D in this situation. Then we will investigate the

corresponding generalized exactly synchronizable state and its determination in Section 3.

2 Generalized Exact Boundary Synchronization

This section will be devoted to get necessary or sufficient conditions for system (1.1) being

generalized exactly synchronizable with respect to Θp. Before giving the main results, we first

show a preliminary conclusion.

Lemma 2.1 If system (1.1) is generalized exactly synchronizable with respect to Θp, then

either the coupling matrix A satisfies the following condition of Θp-compatibility:

AKer(Θp) ⊆ Ker(Θp), (2.1)

namely, Ker(Θp) is an invariant subspace of A; or there exists a full row-rank extension matrix

of Θp

Θ̃p−1 =

(

Θp

x
T
p

)

(N−p+1)×N

, (2.2)

such that system (1.1) is generalized exactly synchronizable with respect to Θ̃p−1, where xTp
denotes the expanded row.
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Proof Noting the generalized exact boundary synchronization (1.3) and (1.5), by applying

Θp to the coupled equations in (1.1), we have

t ≥ T : ΘpAU =

p
∑

r=1

urΘpAǫr ≡ 0. (2.3)

When ΘpAǫr = 0 (r = 1, · · · , p), we have (2.1), thus we will focus on the case that ΘpAǫr

(r = 1, · · · , p) are not all equal to zero.

Without loss of generality we assume ΘpAǫp 6= 0. Then (2.3) immediately gives up =
p−1
∑

r=1

αrur, where αr (r = 1, · · · , p− 1) are some constants. So (1.5) becomes

t ≥ T : U =

p
∑

r=1

urǫr =

p−1
∑

r=1

ur(ǫr + αrǫp) =

p−1
∑

r=1

ur ǫ̂r, (2.4)

where ǫ̂r = ǫr + αrǫp ∈ Ker(Θp) for r = 1, · · · , p− 1. Since dim(Ker(Θp)) = p, there exists a

non-zero vector xp in Ker(Θp), for example xp = ǫp/|ǫp|2 −

p−1
∑

r=1

αrǫr/|ǫr|
2, such that

xp ⊥ Span{ǫ̂1, · · · , ǫ̂p−1}. (2.5)

Thus, by (2.2), we construct an extension matrix Θ̃p−1 which is full row-rank because of xp ∈

Ker(Θp) = (Im(ΘT
p ))

⊥. Noting (1.3) and (2.4)–(2.5), we have

t ≥ T : Θ̃p−1U ≡ 0, (2.6)

which means system (1.1) is also generalized exactly synchronizable with respect to Θ̃p−1.

Consider the special case that A satisfies the condition of Θp-compatibility (2.1). By [12,

Lemma 3.3], there exists a unique matrix Āp (called the generalized reduced matrix) of order

N − p, such that

ΘpA = ĀpΘp. (2.7)

Set W = ΘpU . Multiplying problem (1.1)–(1.2) by Θp, by (2.7) we get the following self-closed

reduced system:






W ′′ −∆W + ĀpW = 0 in (0,+∞)× Ω,

W = 0 on (0,+∞)× Γ0,

W = ΘpDH on (0,+∞)× Γ1

(2.8)

and

t = 0 : (W,W ′) = Θp(Û0, Û1) in Ω. (2.9)

Lemma 2.2 Under the assumption that A satisfies the condition of Θp-compatibility (2.1),

the following facts are equivalent:

(i) System (1.1) is generalized exactly synchronizable with respect to Θp.

(ii) Reduced system (2.8) is exactly null controllable.

(iii) rank(ΘpD) = N − p.
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Proof By definition, it is easy to see that (i) and (ii) are equivalent. And the equivalence

between (ii) and (iii) follows from the theory of exact boundary controllability given in [6,

Theorem 2.2] and [7, Theorem 2].

The above (iii) indicates that if A satisfies the condition of Θp-compatibility (2.1), in order

to realize the generalized exact boundary synchronization with respect to Θp, the required

number of boundary controls rank(D) ≥ rank(ΘpD) = N − p. Since the set

DN−p = {D ∈ M
N×(N−p)(R) : rank(D) = rank(ΘpD) = N − p} (2.10)

is nonempty, we only need N − p boundary controls to realize the generalized exact boundary

synchronization with respect to Θp in this situation.

For the general case that A may not satisfy the condition of Θp-compatibility, we define a

full row-rank matrix Θ̃p̃ of order (N − p̃)×N (0 ≤ p̃ ≤ p) by

Im(Θ̃T
p̃ ) = Span(ΘT

p , A
TΘT

p , · · · , (A
T)N−1ΘT

p ). (2.11)

According to Cayley-Hamilton theorem, we have

AT Im(Θ̃T
p̃ ) ⊆ Im(Θ̃T

p̃ ), (2.12)

that is, A satisfies the condition of Θ̃p̃-compatibility:

AKer(Θ̃p̃) ⊆ Ker(Θ̃p̃). (2.13)

Since each expansion of Im(ΘT
p ) satisfying (2.12) has to contain the right-hand side of (2.11),

Im(Θ̃T
p̃ ) is the minimal expansion of Im(ΘT

p ), satisfying (2.12), namely, (2.13). Besides, noting

Remark 1.1, without loss of generality we may take

Θ̃p̃ =

(
Θp

(xN−p+1, · · · , xN−p̃)
T

)

. (2.14)

Apparently, A satisfies the condition of Θp-compatibility (2.1) if and only if p̃ = p.

Theorem 2.1 For system (1.1), the generalized exact boundary synchronization with respect

to Θp is equivalent to that with respect to Θ̃p̃, where Θ̃p̃ is given by (2.11).

Proof Noting the generalized exact boundary synchronization (1.3), (2.14) gives immedi-

ately the sufficiency. It remains to prove the necessity. Suppose that system (1.1) is generalized

exactly synchronizable with respect to Θp.

If A satisfies the condition of Θp-compatibility (2.1), then Θ̃p̃ = Θp which leads to the

conclusion directly.

Otherwise, by Lemma 2.1, there exists a full row-rank extension matrix Θ̃p−1 =
(

Θ̃p

xT

p

)

, such

that system (1.1) is generalized exactly synchronizable with respect to Θ̃p−1. If AKer(Θ̃p−1)

6⊆ Ker(Θ̃p−1), by Lemma 2.1 we get a full row-rank extension matrix Θ̃p−2 =
(

Θ̃p−1

xT

p−1

)

, such

that system (1.1) is generalized exactly synchronizable with respect to Θ̃p−2. And so forth,

hence there is an r with 1 ≤ r ≤ p, such that the corresponding full row-rank extension matrix

Θ̃p−r =

(
Θ̃p−r+1

xTp−r+1

)

=

(
Θp

(xp, xp−1, · · · , xp−r+1)
T

)

(2.15)
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satisfies AKer(Θ̃p−r) ⊆ Ker(Θ̃p−r), and then system (1.1) is generalized exactly synchronizable

with respect to Θ̃p−r. Noting that Θ̃p̃ is the minimal extension of Θp, satisfying the condition

of compatibility, we have Im(Θ̃T
p−r) ⊇ Im(Θ̃T

p̃ ). Therefore the generalized exact boundary

synchronization with respect to Θ̃p−r implies that with respect to Θ̃p̃.

Remark 2.1 Note that the condition of Θ̃p̃-compatibility (2.13) always holds by construc-

tion, which allows us to convert the general case into the special case with the condition of

compatibility. In fact, Theorem 2.1 shows the necessity of the condition of compatibility: For

each given generalized synchronization matrix Θp, there exists a generalized synchronization

matrix Θ̃p̃ satisfying the corresponding condition of Θ̃p̃-compatibility (2.13), such that the gen-

eralized exact boundary synchronization with respect to Θ̃p̃ is equivalent to that with respect

to Θp. Therefore, without loss of generality we can always assume that the condition of Θp-

compatibility (2.1) holds when we consider the generalized exact boundary synchronization

with respect to Θp.

Corollary 2.1 System (1.1) is generalized exactly synchronizable with respect to Θp if and

only if the reduced system of W = Θ̃p̃U :







W ′′ −∆W + Āp̃W = 0 in (0,+∞)× Ω,

W = 0 on (0,+∞)× Γ0,

W = Θ̃p̃DH on (0,+∞)× Γ1

(2.16)

is exactly null controllable, where Āp̃ is the generalized reduced matrix given by Θ̃p̃A = Āp̃Θ̃p̃.

Moreover, this fact holds if and only if

rank(Θ̃p̃D) = N − p̃, (2.17)

namely, Ker(DT) ∩ Span(ΘT
p , A

TΘT
p , · · · , (A

T)N−1ΘT
p ) = {0}.

Proof Thanks to Theorem 2.1, system (1.1) is generalized exactly synchronizable with

respect to Θp if and only if system (1.1) is generalized exactly synchronizable with respect to

Θ̃p̃. Noting the condition of Θ̃p̃-compatibility (2.13), the conclusion follows from Lemma 2.2.

Theorem 2.2 If system (1.1) is generalized exactly synchronizable with respect to Θp, then

rank(ΘpD) = N − p, (2.18)

in particular,

rank(D) ≥ N − p. (2.19)

Proof By Corollary 2.1, we have (2.17), namely, Θ̃p̃D is of full rank. Then, noting (2.14),

we get rank(ΘpD) = N − p, and therefore rank(D) ≥ N − p.

Then, in the general case, for the generalized exact boundary synchronization with respect

to Θp, the required number of boundary controls rank(D) should be bigger than or equal to

N − p. Thus, if the number of boundary controls is fewer than N − p, there exists no matrix

Θp such that system (1.1) is generalized exactly synchronizable with respect to Θp.

By (2.17), in the general case the required number of boundary controls

rank(D) ≥ rank(Θ̃p̃D) = N − p̃. (2.20)



518 Y. Y. Wang

In the special situation that A does not satisfy the condition of Θp-compatibility (2.1), i.e., p̃ <

p, we need more boundary controls to realize the generalized exact boundary synchronization

with respect to Θp: rank(D) ≥ N − p̃ > N − p. Thus we can easily obtain the following

corollary.

Corollary 2.2 If system (1.1) is generalized exactly synchronizable with respect to Θp under

the minimal number of boundary controls: rank(D) = N−p, then A should satisfy the condition

of Θp-compatibility (2.1).

Besides, in the following situation, the condition of Θp-compatibility (2.1) is also a neces-

sary and sufficient condition to guarantee the generalized exact boundary synchronization with

respect to Θp.

Corollary 2.3 Assume that the boundary control matrix D ∈ DN−p. System (1.1) is

generalized exactly synchronizable with respect to Θp if and only if A satisfies the condition of

Θp-compatibility (2.1).

Proof Noting that rank(D) = N − p, from Corollary 2.2 the generalized exact boundary

synchronization with respect to Θp leads to the condition of Θp-compatibility (2.1).

Inversely, noting that rank(ΘpD) = N − p, by Lemma 2.2, when A satisfies the condition of

Θp-compatibility (2.1), system (1.1) possesses the generalized exact boundary synchronization

with respect to Θp.

Now, we consider the generalized exact boundary synchronization from the point of view of

an invertible linear transformation. We will show that under an invertible linear transformation

of the state variable U , the generalized exact boundary synchronization is actually the partial

exact boundary null controllability. More precisely, take the invertible linear transformation

X =

(
Θp

(xN−p+1, · · · , xN )T

)

, (2.21)

where xN−p+1, · · · , xN−p̃ are given by (2.14). Applying X to the problem (1.1)–(1.2), it is easy

to see that Ũ = XU satisfies the system







Ũ ′′ −∆Ũ + ÃŨ = 0 in (0,+∞)× Ω,

Ũ = 0 on (0,+∞)× Γ0,

Ũ = D̃H on (0,+∞)× Γ1

(2.22)

with the initial data

t = 0 : (Ũ , Ũ ′) = X(Û0, Û1) in Ω, (2.23)

where Ã = XAX−1 is a matrix similar to the original coupling matrix A (the transformed

system (2.22) is then called a similar system of the original system (1.1)), and D̃ = XD. Thus

we get the following theorem.

Theorem 2.3 System (1.1) is generalized exactly synchronizable with respect to Θp at the

time t = T if and only if the former N − p state variables of the similar system (2.22) are

exactly null controllable at the time t = T ; or if and only if the former N − p̃ state variables of

the similar system (2.22) are exactly null controllable at the time t = T .
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Proof Noting (2.21), on the one hand, the former N − p state variables of Ũ = XU are

exactly ΘpU , which are required to be zero for time t ≥ T according to the generalized exact

boundary synchronization (1.3), then we get the first part of the result. On the other hand, the

former N − p̃ state variables of Ũ are exactly Θ̃p̃U , then the second part of the result follows

from Corollary 2.1.

Remark 2.2 Theorem 2.3 indicates that: The generalized exact boundary synchronization

with respect to Θp at the time t = T means the exact boundary null controllability of the former

N − p state variables of Ũ , which actually leads to the exact boundary null controllability of

N − p̃ (≥ N − p) state variables. In other words, the exact boundary null controllability of

p− p̃ state variables is hidden here when p̃ < p, namely, A does not satisfy the condition of Θp-

compatibility (2.1). One can see from (3.6) below that this corresponds to the exact boundary

null controllability of p− p̃ elements in the generalized exactly synchronizable state u. This also

explains that in order to ensure the generalized exact boundary synchronization with respect

to Θp, the required minimal number of boundary controls should be N − p̃.

3 Generalized Exactly Synchronizable State

Now we consider the generalized exactly synchronizable state when system (1.1) is gener-

alized exactly synchronizable with respect to Θp. For this purpose, it is necessary to employ

a basis {ǫ1, · · · , ǫp} of Ker(Θp) as the synchronization basis to give the generalized exactly

synchronizable state through (1.5).

Under this synchronization basis {ǫ1, · · · , ǫp}, the condition of Θp-compatibility (2.1) is

equivalent to

A(ǫ1, · · · , ǫp) = (ǫ1, · · · , ǫp)Ãp, (3.1)

where Ãp = (αrs) ∈ M
p×p(R) is called the generalized row-sum matrix of A. In the special case

that {ǫ1, · · · , ǫp} = {e1, · · · , ep}, the condition of compatibility (3.1) indicates that Ãp is the

row-sum matrix of A, namely,

αrs =

ns∑

j=ns−1+1

aij , 1 ≤ r, s ≤ p, nr−1 + 1 ≤ i ≤ nr, (3.2)

where n0, · · · , np and e1, · · · , ep are given by (1.9) and (1.10), respectively.

For the special case that A satisfies the condition of Θp-compatibility (2.1), when system

(1.1) is generalized exactly synchronizable with respect to Θp, we have (1.5). Plugging (1.5)

into system (1.1), and noting Ker(Θp) = Span{ǫ1, · · · , ǫp}, by (3.1) we can obtain that the

generalized exactly synchronizable state u = (u1, · · · , up)T(t, x) satisfies






u′′ −∆u+ Ãpu = 0 in (T,+∞)× Ω,

u = 0 on (T,+∞)× Γ,

t = T : (u, u′) = (uT , u
′

T ) in Ω.

(3.3)

Thereby, the evolution of the generalized exactly synchronizable state u for t ≥ T is entirely

determined by its values (uT , u
′

T ) at the synchronized time t = T .

Theorem 3.1 Suppose that A satisfies the condition of Θp-compatibility (2.1), and that

rank(ΘpD) = N − p. Then the attainable set of the values (uT , u
′

T ) at the time t = T of the
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generalized exactly synchronizable state u is the whole space (L2(Ω))p×(H−1(Ω))p as the initial

data (Û0, Û1) of system (1.1) vary in the space (L2(Ω))N × (H−1(Ω))N .

Proof First of all, as a result of Lemma 2.2, system (1.1) is generalized exactly synchro-

nizable with respect to Θp. Next, we show that the attainable set of the values (uT , u
′

T ) is the

whole space (L2(Ω))p × (H−1(Ω))p.

For any given (uT , u
′

T ) ∈ (L2(Ω))p × (H−1(Ω))p, by solving the backward problem (3.3)

with homogeneous Dirichlet Boundary conditions on the time interval [0, T ], we can get the

initial values of the solution (u, u′)(0) = (u0, u1). From this, we set the initial data of system

(1.1) to be (Û0, Û1) = (ǫ1, · · · , ǫp)(u0, u1), and the boundary control to be H ≡ 0, then,

by the condition of Θp-compatibility (3.1), the solution to the corresponding problem (1.1)–

(1.2) is U = (ǫ1, · · · , ǫp)u, which is actually generalizable exactly synchronized with respect to

Θp. Moreover, its values at the time t = T are (U,U ′)(T ) = (ǫ1, · · · , ǫp)(uT , u′T ). Thus, the

corresponding generalized exactly synchronizable state u satisfies (u, u′)(T ) = (uT , u
′

T ).

Corollary 3.1 A satisfies the condition of Θp-compatibility (2.1) if and only if there exist

an initial data (Û0, Û1) and a boundary control H which realize the generalized exact boundary

synchronization with respect to Θp for system (1.1), such that the p elements of the corresponding

generalized exactly synchronizable state u = (u1, · · · , up)T are linearly independent.

Proof Suppose that A satisfies the condition of Θp-compatibility (2.1). Given uT =

(uT1, · · · , uTp)
T whose p elements are linearly independent, by solving problem (3.3) and the

backward problem (3.3) with homogeneous Dirichlet boundary conditions on the time interval

[0, T ], respectively, we get its solution u = u∗(t, x) for all t ≥ 0.

Then, setting the initial data (Û0, Û1) = (ǫ1, · · · , ǫp)(u∗, u∗
′)(0), and the boundary control

H ≡ 0, by the condition of Θp-compatibility (3.1), the solution to problem (1.1)–(1.2) is U =

(ǫ1, · · · , ǫp)u∗, hence this system is generalized exactly synchronizable with respect to Θp, and

the p elements of its corresponding generalized exactly synchronizable state u∗ are linearly

independent at least at the time t = T .

In turn, if the p elements of the corresponding generalized exactly synchronizable state

u = (u1, · · · , up)T are linearly independent, then by (2.3) we have ΘpAǫr = 0 (r = 1, · · · , p),

which means exactly the condition of Θp-compatibility (2.1).

Now consider the general case that A may not satisfy the condition of Θp-compatibility

(2.1). When system (1.1) is generalized exactly synchronizable with respect to Θp, by Theorem

2.1 it is also generalized exactly synchronizable with respect to Θ̃p̃, where Θ̃p̃ is given by (2.11).

Let {ǫ̃1, · · · , ǫ̃p̃} be a basis of Ker(Θ̃p̃). The corresponding generalized exactly synchronizable

state ũ = (ũ1, · · · , ũp̃)T with respect to Θ̃p̃ can be given by

t ≥ T : U = ũ1ǫ̃1 + · · ·+ ũp̃ǫ̃p̃ = (ǫ̃1, · · · , ǫ̃p̃)ũ. (3.4)

Noting (2.11), we have Im(Θ̃T
p̃ ) ⊇ Im(ΘT

p ), so

Ker(Θ̃p̃) = Span{ǫ̃1, · · · , ǫ̃p̃} ⊆ Ker(Θp) = Span{ǫ1, · · · , ǫp}.

Therefore, there exists a unique full column-rank matrix Q of order p× p̃, such that

(ǫ̃1, · · · , ǫ̃p̃) = (ǫ1, · · · , ǫp)Q. (3.5)
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Then it follows from (3.4) and (1.5) that the corresponding generalized exactly synchronizable

state u with respect to Θp can be linearly expressed by the generalized exactly synchronizable

state ũ with respect to Θ̃p̃ as follows:

u = Qũ. (3.6)

Thus, by the condition of Θ̃p̃-compatibility (2.13), the properties of the generalized exactly

synchronizable state ũ with respect to Θ̃p̃ can be obtained from the results acquired in the

former case with the condition of compatibility, and finally the properties of the generalized

exactly synchronizable state u with respect to Θp come by (3.6).

Remark 3.1 When A does not possess the condition of Θp-compatibility (2.1), by (3.6)

the generalized exactly synchronizable state u with respect to Θp has only p̃ (< p) linearly

independent components. This is indeed a generalized exact boundary synchronization by fewer

groups (the generalized exact boundary synchronization with respect to Θ̃p̃), consequently, more

boundary controls are demanded.

Remark 3.2 In particular, if system (1.1) is generalized exactly synchronizable with respect

to Θp, and p̃ = 0 in (2.11), then the corresponding generalized exactly synchronizable state

u ≡ 0, which means system (1.1) is actually exactly null controllable.

4 Estimation of Generalized Exactly Synchronizable

States

Now we will give an estimate on generalized exactly synchronizable states when system (1.1)

is generalized exactly synchronizable under the minimal number of boundary controls, namely,

D ∈ DN−p. For this purpose, we firstly give the following proposition.

Proposition 4.1 D ∈ DN−p if and only if Ker(DT) = (Im(D))⊥ and Ker(Θp) are bi-

orthonormal.

Proof When D ∈ DN−p, we prove that (Im(D))⊥ and Ker(Θp) are bi-orthonormal. Noting

(Im(D))⊥ and Ker(Θp) have the same dimension, it suffices to prove

Im(D) ∩Ker(Θp) = {0}. (4.1)

In fact, for each x (6= 0) ∈ Im(D), there exists y 6= 0, such that x = Dy. Noting that D ∈ DN−p

claims that ΘpD is invertible, it follows from y 6= 0 that Θpx 6= 0, then x /∈ Ker(Θp).

Inversely, when Ker(DT) and Ker(Θp) are bi-orthonormal, we have rank(D) = rank(Θp) =

N − p, so it suffices to verify rank(ΘpD) = N − p. Suppose that rank(ΘpD) < N − p, then

there exists a vector y = (y1, · · · , yN−p)
T 6= 0, such that ΘpDy = 0. Since rank(D) = N − p,

the N − p columns d1, · · · , dN−p of D = (d1, · · · , dN−p) are linearly independent, hence

Dy = y1d1 + · · ·+ yN−pdN−p 6= 0. (4.2)

Taking x = Dy, we have Θpx = ΘpDy = 0, then there exists x (6= 0) ∈ Im(D)∩Ker(Θp). This

contradicts with (4.1) which is an equivalent form of the bi-orthonormality between (Im(D))⊥

and Ker(Θp). Thus we get D ∈ DN−p.

Then similarly to [8, Theorem 4.1] in the case of exact boundary synchronization, we obtain

the following theorem.
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Theorem 4.1 Assume that A satisfies the condition of Θp-compatibility (2.1), then for any

given D ∈ DN−p, system (1.1) is generalized exactly synchronizable with respect to Θp, and

each generalized exactly synchronizable state u satisfies the following estimate:

‖(u, u′)− (ϕ, ϕ′)‖(T )(H1

0
(Ω))p×(L2(Ω))p ≤ cT ‖Θp(Û0, Û1)‖(L2(Ω))N−p×(H−1(Ω))N−p , (4.3)

where cT is a positive constant only depending on the synchronization time T , but independent

of the initial data; function ϕ is a solution to the following problem with homogeneous boundary

condition: 





ϕ′′ −∆ϕ+ Ãpϕ = 0 in (0,+∞)× Ω,

ϕ = 0 on (0,+∞)× Γ,

t = 0 : (ϕ, ϕ′) = (y1, · · · , yp)T(Û0, Û1) in Ω,

(4.4)

where Ãp is given by (3.1), and {y1, · · · , yp} constitutes a basis of Ker(DT), which is bi-

orthonormal to the synchronization basis {ǫ1, · · · , ǫp}.

Proof By Proposition 4.1, it follows from D ∈ DN−p that Ker(DT) is bi-orthonormal

to Ker(Θp), then Ker(DT) has a basis {y1, · · · , yp}, which is bi-orthonormal to the basis

{ǫ1, · · · , ǫp} of Ker(Θp).

Let ψ = (y1, · · · , yp)TU . Noting (1.5), we have

t ≥ T : ψ = (y1, · · · , yp)
T(ǫ1, · · · , ǫp)u = u. (4.5)

Since (y1, · · · , yp)TD = 0, multiplying problem (1.1)–(1.2) by (y1, · · · , yp)T, we get







ψ′′ −∆ψ + Ãpψ = f in (0,+∞)× Ω,

ψ = 0 on (0,+∞)× Γ,

t = 0 : (ψ, ψ′) = (y1, · · · , yp)
T(Û0, Û1) in Ω,

(4.6)

where f = Ãpψ − (y1, · · · , yp)TAU = −FU with F = (y1, · · · , yp)TA− Ãp(y1, · · · , yp)T.

By (3.1), FT ∈ (Span{ǫ1, · · · , ǫp})⊥ = (Ker(Θp))
⊥ = Im(ΘT

p ), so there exists Y ∈ M
(N−p)×p(R),

such that FT = ΘT
p Y , namely, F = Y TΘp. Therefore

f = −Y TΘpU. (4.7)

Observe that problem (4.6) and problem (4.4) share the same initial data and the same

boundary condition, by the well-posedness, noting (4.5) and (4.7), there exists a positive con-

stant c1 such that

‖(u, u′)− (ϕ, ϕ′)‖2(T )(H1

0
(Ω))p×(L2(Ω))p ≤ c1

∫ T

0

‖ΘpU(τ)‖2(L2(Ω))N−pdτ.

Finally, denote W = ΘpU , then by the null controllability of reduced system (2.8), there

exists a positive constant c2 such that

∫ T

0

‖ΘpU(τ)‖2(L2(Ω))N−pdτ ≤ c2‖Θp(Û0, Û1)‖
2
(L2(Ω))N−p×(H−1(Ω))N−p .

Thus we complete the proof.
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Remark 4.1 Inequality (4.3) says that, when the initial data (Û0, Û1) are in a neighbour-

hood of Ker(Θp), the corresponding generalized synchronizable state u can be approximately

estimated by the solution ϕ to problem (4.4).

Remark 4.2 By Theorem 4.1, when A possesses the condition of Θp-compatibility (2.1),

as long as D ∈ DN−p, namely, using the minimal number of boundary controls to realize

the generalized exact boundary synchronization with respect to Θp for system (1.1), we can

construct a solution ϕ to problem (4.4) such that for all admissible applied boundary controls,

the corresponding generalized synchronizable state u satisfies the estimate (4.3). While, when

A does not satisfy the condition of Θp-compatibility (2.1), Theorem 4.1 can be applied to the

enlarged matrix Θ̃p̃ given by (2.11), thus, as long as D satisfies

rank(D) = rank(Θ̃p̃D) = N − p̃,

system (1.1) still possesses the generalized exact boundary synchronization with respect to Θp,

and the corresponding generalized synchronizable state u satisfies an estimate like (4.3):

‖(u, u′)−Q(ϕ̃, ϕ̃′)‖(T )(H1

0
(Ω))p×(L2(Ω))p ≤ c‖Θ̃p̃(Û0, Û1)‖(L2(Ω))N−p̃×(H−1(Ω))N−p̃ , (4.8)

where, c is a positive constant only depending on T , but independent of the initial data; the

matrix Q is given by (3.5), provided that {ǫ̃1, · · · , ǫ̃p̃} is a basis of Ker(Θ̃p̃), and ϕ̃ satisfies the

following problem with homogeneous boundary condition:







ϕ̃′′ −∆ϕ̃+ Ãp̃ϕ̃ = 0 in (0,+∞)× Ω,

ϕ̃ = 0 on (0,+∞)× Γ,

t = 0 : (ϕ̃, ϕ̃′) = (ỹ1, · · · , ỹp̃)T(Û0, Û1) in Ω,

(4.9)

where Ãp̃ is given by

A(ǫ̃1, · · · , ǫ̃p̃) = (ǫ̃1, · · · , ǫ̃p̃)Ãp̃,

and {ỹ1, · · · , ỹp̃} as a basis of Ker(DT) is bi-orthonormal to {ǫ̃1, · · · , ǫ̃p̃}.

5 Determination of Generalized Exactly Synchronizable States

Assume that system (1.1) is generalized exactly synchronizable with respect to Θp. In

general, generalized exactly synchronizable states u depend not only on the initial data (Û0, Û1)

but also on applied boundary controls H . In what follows, we are interested in under what

conditions the generalized synchronizable states u will be determined only by the initial data

but independent of applied boundary controls H .

We will first give an extension of Ker(Θp), and then define a synchronization decomposition

of system (1.1) by separating it into the controllable part and the synchronizable part. In this

way, by studying the synchronizable part, we will give the condition under which the generalized

exactly synchronizable state is independent of applied boundary controls.
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5.1 An extension of Ker(Θp)

Proposition 5.1 There exists a minimal extension Span{ǫ1, · · · , ǫp, · · · , ǫq} (p ≤ q ≤ N) of

Ker(Θp) = Span{ǫ1, · · · , ǫp}, which is an invariant subspace of A, and admits a bi-orthonormal

space Span{η1, · · · , ηq}, being invariant for AT, namely,

ASpan{ǫ1, · · · , ǫq} ⊆ Span{ǫ1, · · · , ǫq}, (5.1)

AT Span{η1, · · · , ηq} ⊆ Span{η1, · · · , ηq} (5.2)

and

(η1, · · · , ηq)
T(ǫ1, · · · , ǫq) = Iq. (5.3)

Here and hereafter, Iq stands for the identity matrix of order q (instead, I denotes the identity

matrix of order N).

Proposition 5.2 Conditions (5.1)–(5.3) are equivalent to that Span{ǫ1, · · · , ǫq} is an in-

variant subspace of A and admits a supplement Span{xq+1, · · · , xN} which is also invariant for

A.

From Propositions 5.1–5.2, we have the following proposition.

Proposition 5.3 The coupling matrix A satisfies the condition of Θp-strong compatibility:







Ker(Θp) = Span{ǫ1, · · · , ǫp} is an invariant subspace of A,

AT admits an invariant subspace Span{η1, · · · , ηp}

which is bi-orthonormal to Span{ǫ1, · · · , ǫp},

(5.4)

in other words, Ker(Θp) is an invariant subspace of A and admits a supplement also invariant

for A, if and only if q = p in Proposition 5.1 or equivalently in Proposition 5.2.

The proof of Propositions 5.2–5.1 will be given in what follows, respectively.

Proof of Proposition 5.2 By (5.3), taking a basis xq+1, · · · , xN in (Span{η1, · · · , ηq})⊥,

the matrix

X = (ǫ1, · · · , ǫq, xq+1, · · · , xN ) (5.5)

is invertible, furthermore, the former q rows of X−1 are exactly (η1, · · · , ηq)T. let X−T =

(X−1)T = (η1, · · · , ηq, yq+1, · · · , yN). According to (5.1), we have

AX = X

(
Ãq l

0 ÃN−q

)

, (5.6)

where Ãq and ÃN−q are square matrices of order q and N − q, respectively, and l is a matrix

of order q × (N − q). By taking the transpose of the above formula and then multiplying both

sides by X−T, we have

ATX−T = X−T

(
ÃT

q 0

lT ÃT
N−q

)

, (5.7)

whose former q columns say that AT(η1, · · · , ηq) = (η1, · · · , ηq)ÃT
q + (yq+1, · · · , yN )lT. Then

we have (yq+1, · · · , yN )lT = 0 from (5.2), therefore

l = 0. (5.8)
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Inserting this into (5.6) and taking the last N − q columns, we get

A(xq+1, · · · , xN ) = (xq+1, · · · , xN )ÃN−q, (5.9)

which declares that the supplement Span{xq+1, · · · , xN} of Span{ǫ1, · · · , ǫq} is also an invariant

subspace of A.

On the other hand, since Span{ǫ1, · · · , ǫq} and its supplement Span{xq+1, · · · , xN} are

invariant subspaces of A, X = (ǫ1, · · · , ǫq, xq+1, · · · , xN ) is invertible, and A can be diagonalized

by blocs as

AX = X

(
Ãq 0

0 ÃN−q

)

, (5.10)

where Ãq and ÃN−q are square matrices of order q and N − q, respectively. By taking the

transpose of the above formula and then multiplying both sides by X−T, we get

ATX−T = X−T

(
ÃT

q 0

0 ÃT
N−q

)

. (5.11)

Denoting the former q columns of X−T as (η1, · · · , ηq), we have

AT(η1, · · · , ηq) = (η1, · · · , ηq)Ã
T
q , (5.12)

which means that Span{η1, · · · , ηq} is an invariant subspace of AT. Besides, by X−1X = I,

the bi-orthonormality (5.3) holds.

Proof of Proposition 5.1 Firstly, there exists a basis {ξ1, · · · , ξq, · · · , ξN} of RN , such

that A can be transformed to its real Jordan form (see [1]) by

A(ξ1, · · · , ξq, ξq+1, · · · , ξN ) = (ξ1, · · · , ξq, ξq+1, · · · , ξN )

(
Jq 0
0 JN−q

)

(5.13)

and

Span{ξ1, · · · , ξq} ⊇ Span{ǫ1, · · · , ǫp}. (5.14)

Obviously q ≥ p, and when q = N , (5.13)–(5.14) hold. Therefore there exists a minimum of q,

denoted still by q, satisfying both (5.13) and (5.14). Then the corresponding Span{ξ1, · · · , ξq}

is a minimal extension of Span{ǫ1, · · · , ǫp}, such that it and its supplement Span{ξq+1, · · · , ξN}

are all invariant for A. By Proposition 5.2, Span{ξ1, · · · , ξq} is a minimal extension satisfying

(5.1)–(5.3).

5.2 A synchronization decomposition

For the bi-orthonormal systems {ǫ1, · · · , ǫq} and {η1, · · · , ηq} given by Proposition 5.1, we

may define a projection operator

P =

q
∑

i=1

ǫi ⊗ ηi, (5.15)

where (ǫ⊗ η)U = (U, η)ǫ = ηTUǫ, ∀U ∈ R
N .
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Proposition 5.4 The projection operator P has the following properties:

Pǫk = ǫk, ηTk P = ηTk , 1 ≤ k ≤ q, (5.16)

Ker(P ) = (Span{η1, · · · , ηq})
⊥, Im(P ) = Span{ǫ1, · · · , ǫq} (5.17)

and

AP = PA. (5.18)

Proof (5.16)–(5.17) follow directly from definition (5.15). Noting

PU =

q
∑

i=1

ǫi (η
T
i U) = (ǫ1, · · · , ǫq)(η1, · · · , ηq)

TU, ∀U ∈ R
N ,

P can also be written as a matrix:

P = (ǫ1, · · · , ǫq)(η1, · · · , ηq)
T. (5.19)

In view of (5.1)–(5.3) satisfied by the bi-orthonormal systems {ǫ1, · · · , ǫq} and {η1, · · · , ηq},

there exists a square matrix Ãq of order q, such that

A(ǫ1, · · · , ǫq) = (ǫ1, · · · , ǫq)Ãq, A
T(η1, · · · , ηq) = (η1, · · · , ηq)Ã

T
q ,

which leads to (5.18) by (5.19).

The solution U = U(t, x) to problem (1.1)–(1.2) can be divided into two parts: U = Uc+Us,

where

Uc = (I − P )U, Us = PU (5.20)

satisfying the following problems deduced by multiplying problem (1.1)–(1.2) by (I − P ) and

P , respectively,







U ′′
c −∆Uc +AUc = 0 in (0,+∞)× Ω,

Uc = 0 on (0,+∞)× Γ0,

Uc = (I − P )DH on (0,+∞)× Γ1,

t = 0 : (Uc, U
′
c) = (I − P )(Û0, Û1) in Ω

(5.21)

and






U ′′
s −∆Us +AUs = 0 in (0,+∞)× Ω,

Us = 0 on (0,+∞)× Γ0,

Us = PDH on (0,+∞)× Γ1,

t = 0 : (Us, U
′
s) = P (Û0, Û1) in Ω.

(5.22)

Noting (5.16), the generalized exact boundary synchronization (1.5) becomes

t ≥ T : Uc = 0, Us = U = (ǫ1, · · · , ǫp)u, (5.23)

hence, Uc should be exactly null controllable (called the controllable part of U), while, Us

generalized exactly synchronizable with respect to Θp (called the synchronizable part of U).
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5.3 Determination of generalized exactly synchronizable states

If the synchronizable part Us is independent of applied boundary controls, by (5.23) the

generalized exactly synchronizable state u is independent of applied boundary controls, hence

can be determined only by the initial data.

Similarly to the situation on the exact boundary synchronization (see [8, Theorem 3.1]),

without the condition of Θp-compatibility (2.1), we have the following theorem.

Theorem 5.1 (i) If system (1.1) possesses the generalized exact boundary synchronization

with respect to Θp, and its synchronizable part Us is independent of applied boundary controls

H, then A satisfies the condition of Θp-strong compatibility (5.4), moreover, D ∈ DN−p satisfies

PD = 0.

(ii) If A satisfies the condition of Θp-strong compatibility (5.4), then there exists a boundary

control matrix D ∈ DN−p, satisfying PD = 0, such that system (1.1) is generalized exactly

synchronizable with respect to Θp, and its synchronizable part Us and then its generalized exactly

synchronizable state u are independent of applied boundary controls H.

Proof (i) Let H1 and H2 be two admissible boundary controls to realize the generalized

exact boundary synchronization with respect to Θp for system (1.1). By Corollary 2.1, it is

equivalent to say that both H1 and H2 realize the exact boundary null controllability of the

reduced system (2.16). Then, applying [8, Theorem 2.2], there exists an ε > 0 small enough,

such that the values of H1 −H2 on (T − ε, T )× Γ1 can be arbitrarily chosen.

If the synchronizable part Us is independent of applied boundary controls H1 and H2, then

we have PD(H1 −H2) = 0 on (0, T )× Γ1, thus we get

PD = 0, (5.24)

namely, Im(D) ⊆ Ker(P ). Recalling (2.19), the dimension of Im(D) is equal to rank(D) ≥ N−p,

and the dimension of Ker(P ) is equal to N − q, so N − p ≤ N − q, then q = p, and

rank(D) = N − p. (5.25)

Besides, by Theorem 2.2 we have rank(ΘpD) = N − p. Noting that D is assumed to be full

rank, so D ∈ DN−p.

(ii) Let D ∈ M
N×(N−p)(R) be defined by

Im(D) = Span{η1, · · · , ηp}
⊥. (5.26)

We will show thatD is the desired boundary control matrix. Obviously, we have that rank(D) =

N − p, and (η1, · · · , ηp)TD = 0. Thanks to the condition of Θp-strong compatibility (5.4), we

get

PD =

p
∑

i=1

(ηTi D)ǫi = 0. (5.27)

If rank(ΘpD) = N − p, then by Lemma 2.2 we get the generalized exact boundary synchro-

nization of system (1.1) with respect to Θp, and by (5.27) we get the independence of the

synchronizable part Us and then of the generalized exactly synchronizable state u with respect

to applied boundary controls H .
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It remains to verify rank(ΘpD) = N − p. For any given x ∈ Ker(ΘpD), Dx ∈ Ker(Θp) =

Span{ǫ1, · · · , ǫp}, which declares that Dx =
p∑

i=1

kiǫi, in which ki = ηTi Dx = 0 (i = 1, · · · , p),

hence Dx = 0, namely, x ∈ Ker(D). Thus we get Ker(ΘpD) ⊆ Ker(D), then

Ker(ΘpD) = Ker(D). (5.28)

Therefore, we have rank(ΘpD) = rank(D) = N − p.

Remark 5.1 Theorem 5.1 offers the following necessary and sufficient condition:

{

A satisfies the condition of Θp-strong compatibility (5.4),

D ∈ DN−p satisfies PD = 0
(5.29)

for the generalized exact boundary synchronization of system (1.1) with respect to Θp, and

the independence of the synchronizable part Us with respect to applied boundary controls H .

However, this is only sufficient for the independence of the corresponding generalized exactly

synchronizable state u with respect to applied boundary controls H , but not necessary. In

fact, the failure of its necessity can be deduced by Remark 3.2 where the generalized exactly

synchronizable state u ≡ 0 independent of applied boundary controls H , but A does not satisfy

the condition of Θp-strong compatibility (5.4).

If A satisfies the condition of Θp-strong compatibility (5.4), then the evolution of the gen-

eralized exactly synchronizable state u with respect to t can be easily obtained, provided that

the boundary control matrix D is suitably given.

Corollary 5.1 If A satisfies the condition of Θp-strong compatibility (5.4), and D ∈ DN−p

satisfies PD = 0, then system (1.1) is generalized exactly synchronizable with respect to Θp,

and the corresponding generalized exactly synchronizable state u is determined by

u = φ (t ≥ T ), (5.30)

where φ = (η1, · · · , ηp)TU is the solution of







φ′′ −∆φ + Ãpφ = 0 in (0,+∞)× Ω,

φ = 0 on (0,+∞)× Γ,

t = 0 : (φ, φ′) = (η1, · · · , ηp)T(Û0, Û1) in Ω,

(5.31)

in which Ãp is defined by (3.1).

Proof Multiplying (1.1)–(1.2) by (η1, · · · , ηp)T, the conclusion can be easily obtained.

Theorem 5.2 Suppose that A satisfies the condition of Θp-strong compatibility (5.4), and

that system (1.1) is generalized exactly synchronizable with respect to Θp. If the boundary control

matrix D is modified as

D̃ = D − (ǫ1, · · · , ǫp)(η1, · · · , ηp)
TD, (5.32)

then the corresponding system is still generalized exactly synchronizable with respect to Θp,

moreover, the corresponding generalized exactly synchronizable state u still satisfies (5.30) and

is independent of applied boundary controls H.
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Proof Since Span{η1, · · · , ηp} and Span{ǫ1, · · · , ǫp} = Ker(Θp) are bi-orthonormal, the

matrix

X =

(
Θp

(η1, · · · , ηp)
T

)

(5.33)

is invertible. D̃ defined by (5.32) satisfies

ΘpD̃ = ΘpD, (η1, · · · , ηp)
TD̃ = 0, (5.34)

then

XD̃ =

(

ΘpD̃
0

)

=

(
ΘpD
0

)

. (5.35)

Thus

rank(D̃) = rank(XD̃) = rank(ΘpD̃) = rank(ΘpD). (5.36)

Since the condition of Θp-strong compatibility (5.4) implies the condition of Θp-compatibility

(2.1), by Lemma 2.2 the generalized exact boundary synchronization of system (1.1) induces

rank(ΘpD̃) = rank(ΘpD) = N − p, (5.37)

then we still have the generalized exact boundary synchronization of system (1.1) with boundary

control matrix D̃. Thus we get the conclusion by employing Corollary 5.1.

Now for practical convenience, we give the following results on condition (5.29). Firstly, we

give a sufficient condition to the condition of Θp-strong compatibility (5.4).

Remark 5.2 By Proposition 5.3, we have the following sufficient condition to the condition

of Θp-strong compatibility (5.4): Both Ker(Θp) = Span{ǫ1, · · · , ǫp} and its supplement Im(ΘT
p )

are invariant for A, in other words, A can be diagonalized by blocs in the following way:

A(ǫ1, · · · , ǫp,Θ
T
p ) = (ǫ1, · · · , ǫp,Θ

T
p )

(
Ãp 0

0 Â

)

, (5.38)

where Â = (ΘpΘ
T
p )

−1ΘpAΘ
T
p , or equivalently, Ker(Θp) is an invariant subspace of both A and

AT. Particularly, when A is symmetric or antisymmetric, the condition of Θp-compatibility

(2.1) induces the corresponding condition of Θp-strong compatibility (5.4).

Proposition 5.5 If A satisfies the condition of Θp-strong compatibility (5.4), then

(i) PD = 0 is equivalent to (η1, · · · , ηp)TD = 0;

(ii) if D ∈ DN−p, then PD = 0 is equivalent to

Ker(DT) = Span{η1, · · · , ηp}. (5.39)

Proof (i) According to Proposition 5.1, the condition of Θp-strong compatibility (5.4)

implies q = p, then by (5.19), PD = 0 is just (ǫ1, · · · , ǫp)(η1, · · · , ηp)TD = 0, which is equivalent

to (η1, · · · , ηp)TD = 0 by the linear independence of ǫ1, · · · , ǫp.

(ii) By (i), we have that PD = 0 is equivalent to

Span{η1, · · · , ηp} ⊆ Ker(DT). (5.40)

Since D ∈ DN−p, we have rank(D) = N − p, which means dim(Ker(DT)) = p, hence (5.40)

becomes (5.39).
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Remark 5.3 Condition (5.29) is equivalent to that

{

A satisfies the condition of Θp-compatibility (2.1),

Ker(DT) is invariant for AT and bi-orthonormal to Ker(Θp).
(5.41)

Remark 5.4 The main results in this paper still hold for a coupled system of wave equations

with Neumann boundary controls (see [4, 10]).
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