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1 Introduction

Let q, k and h be three integers with q ≥ 3 and k 6= h. For any integers m and n, the

two-term exponential sum C(m,n, k, h; q) is defined by

C(m,n, k, h; q) =

q
∑

a=1

e
(mak + nah

q

)

,

where e(y) = e2πiy.

About the properties of C(m,n, k, h; q), some authors had studied it, and obtained many

interesting results. For example, Gauss’s classical work (see [1]) gave an exact computational

formula for C(1, 0, 2, h; q). Han Di [2] studied the asymptotic properties of the hybrid mean

value involving the two-term exponential sums and polynomial character sums, and proved the

following asymptotic formula:
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·
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∣

p−1
∑

a=1

χ(ma+ a)
∣

∣

∣

2

=

{

2p3 +O(|k|p2), if 2 | k,
2p3 +O(|k|p 5

2 ), if 2 ∤ k,

where p is an odd prime, χ denotes any non-principal even Dirichlet character mod p, and a

denotes the multiplicative inverse of a mod p. That is, aa ≡ 1 mod p.

Taking k = −1 in this theorem, one can deduce the asymptotic formula
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Recently, Du Xiaoying [3] studied a similar problem, and proved the following conclusion.

Let p > 3 be a prime with (3, p−1) = 1. Then for any non-principal even character χ mod p,

one has the identity
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m=0
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∣
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e
(mb3 + b
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∣

∣

2

= 2p(p2 − p− 1)− p
(

2 +
(3

p

))

p−1
∑

u=1

χ(u)

p−1
∑

a=1

((a− 1)(a3 − u2)

p

)

,

where
(

∗

p

)

denotes the Legendre symbol mod p.

From this formula Du Xiaoying [3] deduced the following asymptotic formula:
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5

2 ). (1.1)

Some other works related to the two-term exponential sums, Kloosterman sums and poly-

nomial character sums can also be found in [4–13].

Now for any positive integer k, we consider the following hybrid power mean:
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∣

∣
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∣

∣
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. (1.2)

We want to know whether there exists an exact computational formula for (1.2).

About this contents, it seems that none had obtained any conclusion, at least we have not

seen such a result right now. But the problem is interesting, because it can reveal the profound

value distribution properties of the two-term exponential sums and polynomial character sums.

The main purpose of this paper is using the analytic method and the properties of the

trigonometric sums and character sums to study this problem, and prove some interesting

results.

To complete the proofs of our theorems, we need the following five simple lemmas. Here-

inafter, we shall use many properties of the classical Gauss sums, all of them can be found in

[1], so they will not be repeated here.

Lemma 1.1 Let p be an odd prime. Then for any integer n with (n, p) = 1, we have the

identity
p−1
∑

a=0

(a2 + n

p

)

= −1.

Proof Note that
(

∗

p

)

= χ2 = χ2. From the properties of Gauss sums we have

p−1
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a=0

(a2 + n

p

)

=
1

τ(χ2)

p−1
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p−1
∑
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χ2(b)e
(b(a2 + n)

p

)

=
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τ(χ2)
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∑
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(bn

p

)
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e
(ba2

p

)

. (1.3)



Hybrid Power Mean Involving the Two-Term Exponential Sums and Polynomial Character Sums 549

From [8, Theorem 7.5.4] we know that

G(n; p) =

p−1
∑

a=0

e
(na2

p

)

=
(n

p

)

G(1; p) =
(n

p

)

p−1
∑

a=1

χ2(a)e
(a

p

)

. (1.4)

It is clear that χ2
2 = χ0, the principal character mod p. Applying (1.3)–(1.4) and noting the

trigonometric sums

p−1
∑

a=0

e
(ma

p

)

=

{

p, if p | m,
0, if p ∤ m,

(1.5)

we have the identity

p−1
∑

a=0

(a2 + n

p

)

=
1

τ(χ2)

p−1
∑

b=1

χ2(b)e
(bn

p

)

χ2(b)τ(χ2) =

p−1
∑

b=1

e
(bn

p

)

= −1.

This proves Lemma 1.1.

Lemma 1.2 Let p be an odd prime and n be any integer with (n, p) = 1. Then for any

positive integer k with (k, p− 1) = d, we have
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= p2 − dp− 1.

Proof In fact for any integer n with (n, p) = 1, from (1.5) we can deduce that
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∑
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(n(a− b)

p
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p
∑

m=1

e
(m(ak − bk)

p

)
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= p

p−1
∑
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∑

b=1
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≡bk mod p

e
(n(a− b)

p

)

− 1

= p

p−1
∑

a=1
ak

≡1 mod p

p−1
∑

b=1

e
(nb(a− 1)

p

)

− 1

= p(p− 1)− 1− p

p−1
∑

a=2
ak

≡1 mod p

1. (1.6)

Now let (k, p−1) = d. So there exist d−1 integers a with 2 ≤ a ≤ p−1 such that ak ≡ 1 mod p.

From (1.6) we may immediately deduce the identity

p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(mak + na

p

)∣

∣

∣

2

= p(p− 1)− 1− p(d− 1) = p2 − dp− 1.

This proves Lemma 1.2.
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Lemma 1.3 Let p be an odd prime, r be any integer with (r, p) = 1. Then we have the

identity

p−1
∑

m=1

∣

∣

∣

p−1
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e
(mra3 +ma

p

)∣

∣

∣
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= p2 − 2p− 1− 2p
(−r

p

)

− p
(−3

p

)

− p
(−3r

p

)

.

Proof From (1.5), Lemma 1.1 and noting that
(

r
p

)

=
(

r
p

)

we have
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= p

p−1
∑

a=1

p−1
∑

b=1
ra3+a≡rb3+b mod p

1− (p− 1)2

= p
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)
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p
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1
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((−r

p
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p
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∑
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p

)
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p
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+ p
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∑
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∑
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a2
≡−3−4rb

2
mod p

1

= p

p−1
∑

b=1

(

1 +
(−3− 4rb

2

p

))

− p− 1− p
((−r

p

)

+
(−3r

p

))

= p2 − 2p− 1 + p
(−r

p

)

p−1
∑

b=1

(34r + b2

p

)

− p
((−r

p

)

+
(−3r

p

))

= p2 − 2p− 1− p
(−r

p

)(

1 +
(34r

p

))

− p
((−r

p

)

+
(−3r

p

))

= p2 − 2p− 1− 2p
(−r

p

)

− p
(−3

p

)

− p
(−3r

p

)

.

This proves Lemma 1.3.

Lemma 1.4 Let p be an odd prime, χ be any non-principal even character mod p. Then
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for any integer m with (m, p) = 1, if χ3 6= χ0, we have
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;

If χ3 = χ0, we have
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p
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Proof From the properties of Gauss sums we have

∣

∣

∣

p−1
∑

a=1

χ(ma3 + a)
∣

∣

∣

2

=
∣

∣

∣

1

τ(χ)

p−1
∑

a=1

χ(a)

p−1
∑

b=1

χ(b)e
(b(ma2 + 1)

p

)∣

∣

∣

2

=
1

p

∣

∣

∣
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p
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∣

∣
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∑
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p
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p
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p
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p
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∑
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∑
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p
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∑
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p
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∑
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p
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p
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Since χ(−1) = 1, it is easy to prove that
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2(p− 1), if χ3 6= χ0,

p2 − 1

p
, if χ3 = χ0.

(1.8)
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For any integer n with (n, p) = 1, from (1.4) and noting that G2(1; p) =
(

−1
p

)

p we have
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p
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p

)

. (1.9)

p−1
∑

a=1

p−1
∑

b=1
(a2b−1,p)=1

χ(ab)

p−1
∑

d=1

e
(d(b − 1)

p

)

=

p−1
∑

a=1

p−1
∑

b=1

χ(ab)

p−1
∑

d=1

e
(d(b− 1)

p
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χ(ab)

p−1
∑

d=1
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p

)

= (p− 1)

p−1
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χ(a)−
p−1
∑
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p−1
∑

b=2

χ(ab)− (p− 1)

p−1
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a2
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χ(a) +
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b=2
a2b≡1 mod p

χ(ab)

=

{

−(p+ 1), if χ3 = χ0,

−2p, if χ3 6= χ0.
(1.10)

Combining (1.7)–(1.10) we know that if χ3 6= χ0, then

∣

∣

∣

p−1
∑

a=1

χ(ma3 + a)
∣

∣

∣

2

= 2p+
(−m

p

)

p−1
∑

a=1

χ(a)

p−1
∑

b=1

((b3a2 − 1)(b− 1)

p

)

. (1.11)

If χ3 = χ0, then we have

∣

∣

∣

p−1
∑

a=1

χ(ma3 + a)
∣

∣

∣

2

= p+ 1 +
(−m

p

)
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∑
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χ(a)
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( (b3a2 − 1)(b− 1)

p

)

. (1.12)

Now Lemma 1.4 follows immediately from (1.11)–(1.12).

Lemma 1.5 Let p be an odd prime. Then for any quadratic non-residue r mod p, we have

the identities

p−1

2
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(rm2a+ a

p

)∣

∣

∣
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1

2
p2 − 1
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and

p−1

2
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(m2a+ a

p

)
∣

∣

∣

2

=
1

2
(p2 − 2p− 1).

Proof For any integer 1 ≤ m ≤ p − 1, from the properties of the reduced residue system

mod p we have

p−1
∑

a=1

e
(rm2a+ a

p

)

=

p−1
∑

a=1

e
(rma+ma

p

)

. (1.13)

From (1.5) and (1.13) we have
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∣

∣
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∑

a=1

e
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p
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∣

∣

2
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2
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∣

∣

∣
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∑
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e
(mra+ma

p

)∣

∣

∣
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=
1

2

p−1
∑
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∣

∣

∣

p−1
∑

a=1

e
(mra+ma

p

)
∣

∣

∣

2

=
1

2
p

p−1
∑

a=1

p−1
∑

b=1

ra+a≡rb+b mod p

1− 1

2
(p− 1)2

=
1

2
p

p−1
∑

a=1

p−1
∑

b=1

(a−b)(ab−r)≡0 mod p

1− 1

2
(p− 1)2. (1.14)

It is clear that if r is a quadratic non-residue mod p, then the congruence equation a2 − r ≡
0 mod p has no solution. So we have

p−1
∑

a=1

p−1
∑

b=1

(a−b)(ab−r)≡0 mod p

1 = 2(p− 1). (1.15)

Combining (1.14)–(1.15) we may deduce the first identity of Lemma 1.5.

Similarly, we can also deduce the second identity of Lemma 1.5.

2 Several Theorems

Theorem 2.1 Let p be an odd prime with p ≡ 3 mod 4, n be any integer with (n, p) = 1, χ

be any non-principal even character mod p. Then for any even number k 6= 0 and (k, p−1) = d,

we have the identity

p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(mak + na

p

)∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(mb3 + b)
∣

∣

∣

2

=

{

2p(p2 − dp− 1), if χ3 6= χ0,

(p+ 1)(p2 − dp− 1), if χ3 = χ0,

where χ0 denotes the principal character mod p.
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Proof For any odd prime p, it is clear that if r is a quadratic non-residue mod p, then we

have
(

r
p

)

= −1 and
(

rm
p

)

+
(

m
p

)

= 0. If p ≡ 3 mod 4, then
(

−1
p

)

= −1. From these properties

and Lemma 1.4 we have

∣

∣

∣

p−1
∑

a=1

χ(ma3 + a)
∣

∣

∣

2

+
∣

∣

∣

p−1
∑

a=1

χ(−ma3 + a)
∣

∣

∣

2

= 4p+
(−m

p

)

p−1
∑

a=1

χ(a)

p−1
∑

b=1

( (b3a2 − 1)(b− 1)

p

)

+
(m

p

)

p−1
∑

a=1

χ(a)

p−1
∑

b=1

((b3a2 − 1)(b− 1)

p

)

= 4p. (2.1)

Now let k ≥ 2 be an even number with (k, p− 1) = d, χ be any non-principal even character

mod p, and χ3 6= χ0. If m passes through a reduced residue system mod p, then −m also

passes through a reduced residue system mod p. It is clear that

∣

∣

∣

p−1
∑

a=1

e
(mak + na

p

)∣

∣

∣

2

=
∣

∣

∣

p−1
∑

a=1

e
(−mak − na

p

)∣

∣

∣

2

.

Thus, we have

p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(mak + na

p

)∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(mb3 + b)
∣

∣

∣

2

=

p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
((−m)(−a)k + n(−a)

p

)∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ((−m)b3 + b)
∣

∣

∣

2

=

p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(−mak − na

p

)
∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(−mb3 + b)
∣

∣

∣

2

=

p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(mak + na

p

)∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(−mb3 + b)
∣

∣

∣

2

. (2.2)

Applying (2.1)–(2.2) and Lemma 1.2 we have

p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(mak + na

p

)∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(mb3 + b)
∣

∣

∣

2

=
1

2

p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(mak + na

p

)∣

∣

∣

2

·
(∣

∣

∣

p−1
∑

b=1

χ(mb3 + b)
∣

∣

∣

2

+
∣

∣

∣

p−1
∑

b=1

χ(−mb3 + b)
∣

∣

∣

2)

= 2p ·
p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(mak + na

p

)∣

∣

∣

2

= 2p(p2 − dp− 1). (2.3)

If χ3 = χ0, then from Lemmas 1.2, 1.4 and the method of proving (2.3) we also have

p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(mak + na

p

)
∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(mb3 + b)
∣

∣

∣

2

= (p+ 1)(p2 − dp− 1). (2.4)

Now Theorem 2.1 follows from (2.3) and (2.4).
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Theorem 2.2 Let p be an odd prime, χ be any non-principal even character mod p. Then

we have the identity

p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(ma3 + a

p

)
∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(mb3 + b)
∣

∣

∣

2

= (p+R(χ)p+ 1−R(χ))
(

p2 − 2p− 1 + 2p
(−1

p

))

− p
(

2
(−1

p

)

+
(−3

p

))
∣

∣

∣

p−1
∑

b=1

χ(b3 + b)
∣

∣

∣

2

,

where R(χ) = 1, if χ3 6= χ0 and R(χ) = 0, if χ3 = χ0. That is, χ is a three order character

mod p.

Proof Let r be a quadratic non-residue mod p. It is clear that 12, 22, · · · ,
(

p−1
2

)2
,

r12, r22, · · · , r
(

p−1
2

)2
pass through a reduced residue system mod p. So if χ3 6= χ0, then

from (2.1) and Lemma 1.3 we have

p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(ma3 + a

p

)
∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(mb3 + b)
∣

∣

∣

2

=

p−1

2
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(m2a3 + a

p

)∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(m2b3 + b)
∣

∣

∣

2

+

p−1

2
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(rm2a3 + a

p

)∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(rm2b3 + b)
∣

∣

∣

2

=
1

2

p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(ma3 +ma

p

)
∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(mb3 +mb)
∣

∣

∣

2

+
1

2

p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(rma3 +ma

p

)
∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(rmb3 +mb)
∣

∣

∣

2

=
1

2

p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(ma3 +ma

p

)∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(b3 + b)
∣

∣

∣

2

+
1

2

p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(rma3 +ma

p

)∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(rb3 + b)
∣

∣

∣

2

=
1

2

[

p2 − 2p− 1− 2p
((−1

p

)

+
(−3

p

))]∣

∣

∣

p−1
∑

b=1

χ(b3 + b)
∣

∣

∣

2

+
1

2

[

p2 − 2p− 1 + 2p
(−1

p

)]∣

∣

∣

p−1
∑

b=1

χ(rb3 + b)
∣

∣

∣

2

=
1

2

[

p2 − 2p− 1 + 2p
(−1

p

)](
∣

∣

∣

p−1
∑

b=1

χ(b3 + b)
∣

∣

∣

2

+
∣

∣

∣

p−1
∑

b=1

χ(rb3 + b)
∣

∣

∣

2)

− p
(

2
(−1

p

)

+
(−3

p

))
∣

∣

∣

p−1
∑

b=1

χ(b3 + b)
∣

∣

∣

2
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= 2p3 − 4p2 − 2p+ 4p2
(−1

p

)

− p
(

2
(−1

p

)

+
(−3

p

))∣

∣

∣

p−1
∑

b=1

χ(b3 + b)
∣

∣

∣

2

. (2.5)

If χ3 = χ0, then from Lemma 1.4 and the method of proving (2.5) we also have

p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(ma3 + a

p

)∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(mb3 + b)
∣

∣

∣

2

= (p+ 1)
(

p2 − 2p− 1 + 2p
(−1

p

))

− p
(

2
(−1

p

)

+
(−3

p

))∣

∣

∣

p−1
∑

b=1

χ(b3 + b)
∣

∣

∣

2

. (2.6)

Combining (2.5)–(2.6) we may immediately deduce Theorem 2.2.

Theorem 2.3 Let p be an odd prime, χ be any non-principal even character mod p. Then

we have the identity

p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(ma+ a

p

)
∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(mb3 + b)
∣

∣

∣

2

=



















2p(p2 − 1)− p

∣

∣

∣

p−1
∑

b=1

χ(b3 + b)
∣

∣

∣

2

, if χ3 6= χ0,

(p+ 1)(p2 − 1)− p

∣

∣

∣

p−1
∑

b=1

χ(b3 + b)
∣

∣

∣

2

, if χ3 = χ0.

Proof It is clear that for any integer m with (m, p) = 1, from the properties of the reduced

residue system mod p we have

∣

∣

∣

p−1
∑

b=1

χ(m2b3 + b)
∣

∣

∣

2

=
∣

∣

∣

p−1
∑

b=1

χ(mb+mb)
∣

∣

∣

2

=
∣

∣

∣

p−1
∑

b=1

χ(b3 + b)
∣

∣

∣

2

(2.7)

and

∣

∣

∣

p−1
∑

b=1

χ(rm2b3 + b)
∣

∣

∣

2

=
∣

∣

∣

p−1
∑

b=1

χ(rmb3 +mb)
∣

∣

∣

2

=
∣

∣

∣

p−1
∑

b=1

χ(rb3 + b)
∣

∣

∣

2

. (2.8)

If χ3 6= χ0, then from (2.1), (2.7)–(2.8) and Lemma 1.5 we have

p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(ma+ a

p

)
∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(mb3 + b)
∣

∣

∣

2

=

p−1

2
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(m2a+ a

p

)∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(m2b3 + b)
∣

∣

∣

2

+

p−1

2
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(rm2a+ a

p

)∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(rm2b3 + b)
∣

∣

∣

2

=

p−1

2
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(m2a+ a

p

)
∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(b3 + b)
∣

∣

∣

2
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+

p−1

2
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(rm2a+ a

p

)
∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(rb3 + b)
∣

∣

∣

2

=
1

2
(p2 − 2p− 1)

∣

∣

∣

p−1
∑

b=1

χ(b3 + b)
∣

∣

∣

2

+
1

2
(p2 − 1)

∣

∣

∣

p−1
∑

b=1

χ(rb3 + b)
∣

∣

∣

2

=
1

2
(p2 − 1)

(∣

∣

∣

p−1
∑

b=1

χ(b3 + b)
∣

∣

∣

2

+
∣

∣

∣

p−1
∑

b=1

χ(rb3 + b)
∣

∣

∣

2)

− p

∣

∣

∣

p−1
∑

b=1

χ(b3 + b)
∣

∣

∣

2

= 2p(p2 − 1)− p

∣

∣

∣

p−1
∑

b=1

χ(b3 + b)
∣

∣

∣

2

. (2.9)

If χ3 = χ0, then from Lemma 1.4 and the method of proving (2.9) we have

p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(ma+ a

p

)∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(mb3 + b)
∣

∣

∣

2

= (p+ 1)(p2 − 1)− p

∣

∣

∣

p−1
∑

b=1

χ(b3 + b)
∣

∣

∣

2

. (2.10)

From (2.9)–(2.10) we may immediately deduce Theorem 2.3.

3 Two Corollaries

If p is an odd prime with (3, p− 1) = 1, then for any non-principal even character χ mod p,

one has χ3 6= χ0. So from Theorems 2.2–2.3 we can deduce the following corollary.

Corollary 3.1 Let p be an odd prime with (3, p− 1) = 1. Then for any non-principal even

character χ mod p, we have the asymptotic formulae

p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(ma3 + a

p

)
∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(mb3 + b)
∣

∣

∣

2

= 2p3 +O(p2)

and

p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(ma+ a

p

)∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(mb3 + b)
∣

∣

∣

2

= 2p3 +O(p2).

It is clear that the first result in Corollary 3.1 improves the Du Xiaoying’s work. That is,

our result is much better than asymptotic formula (1.1).

If 3 | (p − 1), and χ mod p satisfies χ3 = χ0 and χ 6= χ0, then noting the estimate for

character sums
∣

∣

∣

p−1
∑

b=1

χ(b3 + b)
∣

∣

∣

2

=
∣

∣

∣

p−1
∑

b=1

χ(b2 + 1)
∣

∣

∣

2

= p+O(
√
p),

from Theorems 2.2–2.3 we may immediately deduce the following corollary.

Corollary 3.2 Let p be any odd prime. Then for any three order character χ mod p, we

have the asymptotic formulae

p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(ma3 + a

p

)
∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(mb3 + b)
∣

∣

∣

2

= p2
(

p− 1−
(−3

p

))

+O(p
3

2 )
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and

p−1
∑

m=1

∣

∣

∣

p−1
∑

a=1

e
(ma+ a

p

)∣

∣

∣

2

·
∣

∣

∣

p−1
∑

b=1

χ(mb3 + b)
∣

∣

∣

2

= p3 + O(p
3

2 ).

Note: Our Theorem 2.2 is much better than the corresponding result in [3].

In fact in Theorem 2.1, we only consider the case p ≡ 3 mod 4. Does there exist a similar

formula for the case p ≡ 1 mod 4? This is an open problem.
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