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Abstract Grunsky operators play an important role in classical geometric function theory

and in the study of Teichmüller spaces. The Grunsky map is known to be holomorphic on

the universal Teichmüller space. In this paper the authors deal with the compactness of

a Grunsky differential operator. They will give upper and lower estimates of the essential

norm of a Grunsky differential operator and discuss when a Grunsky differential operator

is a p-Schatten class operator.

Keywords Universal Teichmüller space, Beltrami coefficient, Grunsky operator,

Compact operator, p-Schatten class operator, Essential norm

2000 MR Subject Classification 30C62, 32G15

1 Introduction

The universal Teichmüller space T is a complex Banach manifold and can be regarded as

a bounded domain of the Banach space of holomorphic functions outside the unit disk which

are bounded in the Poincaré metric. Each point in the universal Teichmüller space corresponds

to the Schwarzian derivative of a univalent function outside the unit disk. The univalent

function theory is thus very useful to study the universal Teichmüller space. Actually, Grunsky

inequalities for univalent functions yield a lot of properties of the universal Teichüller space

(see [14–15, 29, 35]). Recently, Grunsky operators play an important role in the study of

subspaces of the universal Teichmüller space (see [23–28, 30-31]). It is known that the Grunsky

map sends holomorphically each point in the universal Teichmüller space to the corresponding

Grunsky operator. This fact was used to deal with the compactness of Grunsky operators by

Takhtajan-Teo [30] and Shen [23], respectively. In this paper, we will continue to discuss the

compactness of the Grunsky differential operators, a topic which was initiated to study in [25]

where we discussed the Kobayashi and Carathéodory metrics on the asymptotic Teichmüller

space. We will estimate the essential norm of a Grunsky differential operator and discuss when

a Grunsky differential operator is a p-Schatten class operator. Main results will be stated in

the next section (see Theorems 2.2 and 2.3 below).

2 Preliminaries and Statement of Main Results

In this section, we recall some basic definitions and results on univalent functions and
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Teichmüller spaces and state the main results of the paper. For primary references, see Gardiner-

Lakic [10], Lehto [16], Nag [18] and Pommenerke [19].

2.1 Universal Teichmüller space

Let M denote the open unit ball of the Banach space L∞(∆) of essentially bounded mea-

surable functions on the unit disk ∆ = {z : |z| < 1} in the complex plane C. For µ ∈M , let fµ

be the quasiconformal mapping on the extended plane Ĉ with complex dilatation equal to µ in

∆, conformal in ∆∗ = Ĉ −∆, normalized by fµ(z) = z + O(|z|−1) as z → ∞. We say that µ

and ν are equivalent if fµ |∆∗= fν | ∆∗. The equivalence class of µ is denoted by [µ]. The set

T of all equivalence classes is called the universal Teichmüller space.

Let Ω be an arbitrary simply connected domain in the extended complex plane Ĉ which

is conformally equivalent to the unit disk. Recall that the hyperbolic metric λΩ in Ω can be

defined by

λΩ(f(z))|f ′(z)| = (1− |z|2)−1, z ∈ ∆, (2.1)

where f : ∆ → Ω is any conformal mapping. Let B(Ω) denote the Banach space of functions φ

holomorphic in Ω with norm

‖φ‖B(Ω) = sup
z∈Ω

|φ(z)|λ−2
Ω (z). (2.2)

It is easy to see that a conformal mapping g : Ω1 → Ω2 induces an isometric isomorphism

φ 7→ (φ ◦ g)(g′)2 from B(Ω2) onto B(Ω1).

Consider the map S : M → B(∆∗) defined as S(µ) = S(fµ|∆∗), where S(f) denotes the

Schwarzian derivative of a locally univalent function f of a domain in the extended plane Ĉ,

defined as (f ′′/f ′)′ − 1
2 (f

′′/f ′)2 . It is known that S is a holomorphic split submersion and the

differential of S at µ has the following expression:

dµS(ν)(z) = − 6

π
(f ′

µ(z))
2

∫∫

∆

ν(ζ)(∂fµ(ζ))
2

(fµ(ζ)− fµ(z))4
dξdη, ν ∈ L∞(∆). (2.3)

Now S descends down to a 1-1 map B : T → B(∆∗), which is known as the Bers embedding.

Via the Bers embedding, T carries a natural complex structure so that the natural projection

Φ : M → T is a holomorphic split submersion, and B is a biholomorphic isomorphism from T

onto its image.

2.2 Grunsky map

For each µ ∈M , its Grunsky coefficients αmn(µ) are determined from the expression

log
fµ(z)− fµ(ζ)

z − ζ
= −

∞∑

m,n=1

αmn(µ)z
−mζ−n, z, ζ ∈ ∆∗, (2.4)

where the branch of logarithm is equal to zero for z = ζ = ∞.

We denote as usual by l2 the Hilbert space of sequences x = (xm) with the inner product

and norm

〈x, y〉 =
∞∑

m=1

xmym, ‖x‖ =
( ∞∑

m=1

|xm|2
) 1

2

. (2.5)
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Then µ determines the so-called Grunsky operator G([µ]) : l2 → l2 by

G([µ]) : (xm) 7→
( ∞∑

n=1

√
mnαmn(µ)xn

)
, (2.6)

so that

〈G([µ])x, x〉 =
∞∑

m,n=1

√
mnαmn(µ)xmxn, (2.7)

‖G([µ])x‖2 =

∞∑

m=1

∣∣∣
∞∑

n=1

√
mnαmn(µ)xn

∣∣∣
2

. (2.8)

Since αmn(µ) = αnm(µ), Schur’s result (see [21]) implies

‖G([µ])‖ .
= sup

x∈S1(l2)

‖G([µ])x‖ = sup
x∈S1(l2)

|〈G([µ])x, x〉|, (2.9)

where S1(l
2) is the unit sphere in l2. A classical result known as the Grunsky inequality says

that ‖G([µ])‖ ≤ ‖µ‖∞, which implies that G([µ]) is a bounded operator with norm strictly

less than one. It is well known that Grunsky operator plays an important role in the study of

univalent function theory (see [19]) and, as remarked above, in the study of Teichmüller spaces

as well (see [14–15, 23–31, 35]).

The Grunsky map G is defined by sending [µ] to G([µ]). We denote by L(l2) the space of all
bounded linear operators of l2 into itself. Then G is a mapping from the universal Teichmüller

space T into the unit ball of L(l2). In [23] we gave a complete proof of the holomorphy of the

Grunsky map, a fact which was asserted and frequently used in the literature (see [14–15]).

Furthermore, setting G̃ = G ◦ Φ, we (see [25]) showed that the derivative dµG̃(ν) at µ ∈ M in

the direction ν ∈ L∞(∆) is

(xm) 7→
( 1

π

∞∑

n=1

xn√
mn

∫∫

fµ(∆)

( ν

1− |µ|2
∂fµ

∂fµ

)
◦ f−1

µ F ′
m(µ)F ′

n(µ)dudv
)
. (2.10)

Here Fn(µ) is the n-th Faber polynomial for µ, which is determined by the following expression:

log
fµ(z)− w

z
= −

∞∑

n=1

1

n
Fn(µ)(w)z

−n, w ∈ C, z → ∞. (2.11)

2.3 Statement of main results

Let L0(∆) be the closed subspace of L∞(∆) which consists of those functions µ such that

µ(z) → 0 as |z| → 1, and B0(∆
∗) be the closed subspace of B(∆∗) which consists of those

functions φ such that φ(z)(|z|2 − 1)2 → 0 as |z| → 1. Set M0 =M ∩L0(∆). Then T0 = Φ(M0)

is a closed sub-manifold of T , and B(T0) = B(T ) ∩ B0(∆
∗) (see [2, 11, 20]). T0 is usually

called the little universal Teichmüller space. It plays an important role in the recent study on

asymptotic Teichmüller spaces (see [6–8, 10–11, 25]).

The points in T0 can be characterized by means of the compactness of the corresponding

Grunsky operators. It was proved respectively by Takhtajan-Teo [30] and Shen [23] that [µ] ∈ T0

if and only if G([µ]) is a compact operator. In the infinitesimal setting, we have proved the

following result.
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Theorem 2.1 (see [25]) For µ ∈ M and ν ∈ L∞(∆), the following conditions are

equivalent:

(1) dµS(ν) ∈ B0(∆
∗);

(2) There exists some ν̃ ∈ L0(∆) with dµS(ν̃) = dµS(ν);
(3) dµG̃(ν) is a compact operator.

Note that (1) ⇔ (2) was first proved by Earle-Gardiner-Lakic [6]. Theorem 2.1 plays an

important role in [25] where we discussed the asymptotic Grunsky operators and the asymptotic

Teichmüller space. Here we will continue to discuss the compactness of the Grunsky differential

operator dµS(ν) by estimating its essential norm ‖dµS(ν)‖e and prove the following result,

from which Theorem 2.1 follows immediately. For simplicity, we fix some notations. C(·),
C1(·), C2(·), · · · will denote constants that depend only on the elements put in the brackets and

might change from one line to another. The notation A ≍ B means that there is a positive

constant C independent of A and B such that A/C ≤ B ≤ CA. The notation A . B (A & B)

means that there is a positive constant C independent of A and B such that A ≤ CB (A ≥ CB).

Theorem 2.2 For µ ∈M and ν ∈ L∞(∆), it holds that

‖dµG̃(ν)‖e ≍ C1(‖µ‖∞) lim sup
|z|→1

|dµS(ν)(z)|(|z|2 − 1)2

≍ C2(‖µ‖∞) inf{‖ν̃|∆−E‖∞ : dµS(ν̃) = dµS(ν), E ⊂ ∆compact}.

Now let p ≥ 1 be a fixed number. We denote by Lp(Ω) the Banach space of all essentially

bounded measurable functions µ on Ω with norm

‖µ‖Lp(Ω)
.
= ‖µ‖∞ +

( 1

π

∫∫

Ω

|µ(z)|pλ2Ω(z)dxdy
) 1

p

. (2.12)

Set Mp = M ∩ Lp(∆). Then Tp = Φ(Mp) is called the p-integrable Teichmüller space, T2 is

also called the Weil-Petersson Teichmüller space.

We denote by Bp(Ω) the Banach space of functions φ holomorphic in Ω with norm

‖φ‖Bp(Ω)
.
=

( 1

π

∫∫

Ω

|φ(z)|pλ2−2p
Ω (z)dxdy

) 1
p

. (2.13)

For a conformal mapping g : Ω1 → Ω2, the correspondence φ 7→ (φ ◦ g)(g′)2 again induces an

isometric isomorphism from Bp(Ω2) onto Bp(Ω1). Thus, for 1 ≤ p ≤ q, Bp(Ω) ⊂ Bq(Ω) ⊂ B(Ω),

and the inclusion maps are continuous (see [34]).

Under the Bers embedding B : T → B(∆∗), B(Tp) = B(T ) ∩ Bp(∆
∗) (see [4, 12–13, 30]).

The points in Tp can also be characterized by means of the corresponding Grunsky operators.

It was proved respectively by Takhtajan-Teo [30] and Shen [23] that [µ] ∈ T2 if and only if

G([µ]) is a Hilbert-Schmidt operator. In fact, in [13] we learned recently, Jones asserted that

[µ] ∈ Tp if and only if G([µ]) is a p-Schatten class operator. We will prove an analogous result

in the infinitesimal setting. In [23–25], we have obtained some partial results, which were used

in [25] to prove Theorem 2.1.

Theorem 2.3 Let p ≥ 2. Then for µ ∈ M and ν ∈ L∞(∆), the following conditions are

equivalent:

(1) dµS(ν) ∈ Bp(∆
∗);
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(2) There exists ν̃ ∈ L∞(∆) with dµS(ν̃) = dµS(ν) such that ν̃ ◦ f−1
µ ∈ Lp(fµ(∆));

(3) dµG̃(ν) is a p-Schatten class operator.

3 Bers’ Reproducing Formula Revisited

In this section, we review a reproducing formula of Bers [3], which plays an important role

in Teichmüller theory. It will also be used in the proof of our results.

Let Γ be a closed Jordan curve in the extended complex plane Ĉ, and letD andD∗ denote the

domains interior and exterior to Γ, respectively. Γ is called a quasicircle if it is the image of the

unit circle under some quasiconformal mapping of the whole plane. By an anti-quasiconformal

reflection about Γ we mean an orientation-reversing homeomorphism h of the entended complex

plane such that h|Γ = id, h ◦ h = id, and h is quasiconformal. Then we have the following

well-known result of Ahlfors [1].

Proposition 3.1 (see [1]) Γ is a quasicircle if and only if there exists some anti-quasicon-

formal reflection about Γ. When Γ passes through ∞, there exists an anti-quasiconformal re-

flection about Γ satisfying a uniform Lipschitz condition.

Now we state the reproducing formula of Bers [3].

Proposition 3.2 (see [3]) Let Γ be a quasicircle passing through ∞ with complementary

domains D and D∗. Let h be an anti-quasiconformal reflection about Γ satisfying a uniform

Lipschitz condition. Then for any φ ∈ B(D∗) it holds that

φ(z) = − 3

π

∫∫

D

(ζ − h(ζ))2

(ζ − z)4
∂h(ζ)φ(h(ζ))dξdη, z ∈ D∗. (3.1)

In our situation, we need the formula (3.1) for a bounded quasicircle Γ. This can be achieved

by means of the conformally natural anti-quasiconformal reflection j(D) associated to the inte-

rior domain D introduced by Earle-Nag [9], which is defined by using the conformally natural

extension operator of Douady-Earle [5]. As observed by Earle-Gardiner-Lakic [6], j(D) satisfies

a uniform Lipschitz condition when Γ passes through ∞, which implies that the formula (3.1)

holds when h is replaced by j(D). By the conformal naturality property of the reflection j(D)

(see [9, Theorem 1]), we conclude that the formula (3.1) still holds with h = j(D) even when Γ

is a bounded quasicircle (see [33] for details). We summarize this as following proposition.

Proposition 3.3 (see [33]) Let Γ be a quasicircle with complementary domains D and D∗,

and let j = j(D) be the conformally natural anti-quasiconformal reflection to D. Then for any

φ ∈ B(D∗) it holds that

φ(z) = − 3

π

∫∫

D

(ζ − j(ζ))2

(ζ − z)4
∂j(ζ)φ(j(ζ))dξdη, z ∈ D∗. (3.2)

Now we use Proposition 3.3 to establish a fundamental lemma, which will be used to prove

Theorems 2.2 and 2.3.

Lemma 3.1 For any µ ∈ M(∆) and ν ∈ L∞(∆), there exists some ν̃ ∈ L∞(∆) with

‖ν̃‖∞ . C(‖µ‖∞)‖dµS(ν)‖B(∆∗) such that dµS(ν̃) = dµS(ν). Furthermore, ν̃ can be chosen so
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that

inf{‖ν̃|∆−E‖∞ : E ⊂ ∆compact} . C(‖µ‖∞) lim sup
|z|→1

|dµS(ν)(z)|(|z|2 − 1)2 (3.3)

and ν̃ ◦ f−1
µ ∈ Lp(fµ(∆)) if dµS(ν) ∈ Bp(∆

∗).

Proof Most part of this lemma was obtained by Zhai in [33]. For completeness, we will give

a detailed proof here. Set f = fµ, g = f−1, D = f(∆), D∗ = f(∆∗), and φ = (dµS(ν) ◦ g)(g′)2.
Then φ ∈ B(D∗), and ‖φ‖B(D∗) = ‖dµS(ν)‖B(∆∗). More precisely, since λD∗(f(z))|f ′(z)| =
(|z|2 − 1)−1, we have

|φ(f(z))|λ−2
D∗(f(z)) = |dµS(ν)(z)|(|z|2 − 1)2, z ∈ ∆∗. (3.4)

Thus, φ satisfies (3.2) with j being the conformally natural anti-quasiconformal reflection to

D. Recall that Earle-Nag [9] showed there exists some positive constant C(‖µ‖∞) such that

1

C(‖µ‖∞)
≤ |j(w) − w|2λD(w)λD∗ (j(w)) ≤ C(‖µ‖∞), w ∈ D, (3.5)

1

C(‖µ‖∞)
≤ |j(w) − w|2λ2D∗(w)|∂j(j(w))| ≤ C(‖µ‖∞), w ∈ D∗. (3.6)

Now we define

ν̃(z) =
1

2
(f(z)− j(f(z)))2∂j(f(z))φ(j(f(z))(1 − |µ(z)|2)∂f(z)

∂f(z)
, z ∈ ∆. (3.7)

It follows from (3.4) and (3.6) that

|ν̃(z)| . C(‖µ‖∞)|φ(j(f(z))|λ−2
D∗ (j(f(z)) = C(‖µ‖∞)|dµS(ν)(ẑ)|(|ẑ|2 − 1)2 (3.8)

for ẑ = g(j(f(z))). Thus, ν̃ ∈ L∞(∆) with ‖ν̃‖∞ . C(‖µ‖∞)‖dµS(ν)‖B(∆∗), and (3.3) holds.

Now we suppose that dµS(ν) ∈ Bp(∆
∗). Then φ ∈ Bp(D

∗), and ‖φ‖Bp(D∗) = ‖dµS(ν)‖Bp(∆∗).

It follows from (3.5), (3.6) and (3.8) that
∫∫

D

|ν̃(g(w))|pλ2D(w)dudv . C1(‖µ‖∞)

∫∫

D

|φ(j(w))|pλ−2p
D∗ (j(w))λ2D(w)dudv

. C2(‖µ‖∞)

∫∫

D

|φ(j(w))|pλ−2p−2
D∗ (j(w))|j(w) − w|−4dudv

. C3(‖µ‖∞)

∫∫

D

|φ(j(w))|pλ2−2p
D∗ (j(w))|∂j(w)|2dudv

. C4(‖µ‖∞)

∫∫

D∗

|φ(w)|pλ2−2p
D∗ (w)dudv.

Therefore, ν̃ ◦ g ∈ Lp(D), that is, ν̃ ◦ f−1
µ ∈ Lp(fµ(∆)).

It remains to prove that dµS(ν̃) = dµS(ν). By (2.3) and (3.2) we have

dµS(ν̃)(z) = − 6

π
(f ′(z))2

∫∫

∆

ν̃(ζ)(∂f(ζ))2

(f(ζ)− f(z))4
dξdη

= − 3

π
(f ′(z))2

∫∫

D

(ζ − j(ζ))2

(ζ − f(z))4
∂j(ζ)φ(j(ζ))dξdη

= φ(f(z))(f ′(z))2

= dµS(ν)(z).

This finishes the proof of Lemma 3.1.
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4 Proof of Theorem 2.2

We first recall a general formula due to Shapiro [22] for the essential norm ‖L‖e of a linear

operator L on a Hilbert space H .

Proposition 4.1 (see [22]) Suppose L is a bounded linear operator on a Hilbert space H.

Let {Kn} be a sequence of compact self-adjoint operators on H, and write Rn = I −Kn with

I being the identity operator. Suppose ‖Rn‖ = 1 for each n, and ‖Rnx‖ → 0 for each x ∈ H.

Then ‖L‖e = lim
n→∞

‖LRn‖.

Now we use Proposition 4.1 to obtain an upper estimate to a bounded operator L on the

Hilbert space l2. For simplicity, we call a sequence (x(j)) in l2 to be degenerating if ‖x(j)‖ ≤ 1,

and (x(j)) converges to zero weakly. Then we have the following basic result.

Proposition 4.2 For any L ∈ L(l2), it holds that

‖L‖e = sup
(x(j))

lim sup
j→∞

‖Lx(j)‖, (4.1)

where the supremum is taken from all degenerating sequences.

Proof We can obtain ‖L‖e ≥ sup
(x(j))

lim sup
j→∞

‖Lx(j)‖ by a standard discussion (see [25,

Lemma 7.3]). We apply Proposition 4.1 to obtain the other direction. To do so, we bor-

row some discussion from Shapiro [22] (see also [32]). For each n ≥ 1, we define Kn by

Knx = (x1, x2, · · · , xn, 0, 0, · · · ) for x = (xm) ∈ l2. Then Kn satisfies the conditions in Propo-

sition 4.1, which implies that ‖L‖e = lim
n→∞

‖LRn‖ with Rn = I −Kn. Then for each n there

exists x(n) ∈ S(l2) such that

‖L‖e ≤ lim sup
n→∞

‖LRnx
(n)‖.

Now it is easy to see that (Rnx
(n)) is a degenerating sequence, which implies that ‖L‖e ≤

sup
(x(j))

lim sup
j→∞

‖Lx(j)‖ as required.

Lemma 4.1 For any µ ∈M(∆) and ν ∈ L∞(∆), we have

‖dµG̃(ν)‖e ≥
1

6
lim sup
|z|→1

|dµS(ν)(z)|(|z|2 − 1)2.

Proof We need some close relation between Schwarzian derivatives, Grunsky coefficients

and Grunsky operators. We use some discussion form [23–25]. Consider a subset of l2 as follows:

For any finite z ∈ ∆∗, set xz = (xm) with xm =
√
m(|z|2 − 1)z−(m+1). Then

‖xz‖2 =
∞∑

m=1

|xm|2 = (|z|2 − 1)2
∞∑

m=1

m|z|−2(m+1) = 1.

Noting that for each fixed m, xm → 0 as |z| → 1, we conclude that (xz) converges to zero

weakly as |z| → 1.

Differentiating both sides of the equation (2.4) partially with respect to z and ζ yields the

relation

f ′
µ(z)f

′
µ(ζ)

[fµ(z)− fµ(ζ)]2
− 1

(z − ζ)2
= −

∞∑

m,n=1

mnαmn(µ)z
−(m+1)ζ−(n+1), z, ζ ∈ ∆∗.
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Letting ζ → z, we get

S(µ)(z) = −6

∞∑

m,n=1

mnαmn(µ)z
−(m+n+2) = −6

〈G̃(µ)xz , xz〉
(|z|2 − 1)2

.

Consequently,

dµS(ν)(z) = −6

∞∑

m,n=1

mndµαmn(ν)z
−(m+n+2) = −6

〈dµG̃(ν)xz , xz〉
(|z|2 − 1)2

. (4.2)

By Proposition 4.2, we conclude by (4.2) that

‖dµG̃(ν)‖e ≥ sup
(x(j))

lim sup
j→∞

|〈dµG̃(ν)x(j), x(j)〉|

≥ lim sup
|z|→1

|〈dµG̃(ν)xz , xz〉|

=
1

6
lim sup
|z|→1

|dµS(ν)(z)|(|z|2 − 1)2.

To obtain an upper estimate of ‖dµG̃(ν)‖e, we use an operator introduced in [24]. Let

µ ∈ M be given with Faber polynomials Fn(µ). It was proved in [24] that
∞∑

n=1

F ′

n
2

n
converges

absolutely and locally uniformly in fµ(∆) and thus represents an analytic function in fµ(∆).

More precisely, it holds that

∞∑

n=1

|F ′
n(µ)(w)|2

n
≤ C(µ)

d2(w, ∂fµ(∆))
≍ C(µ)λ2fµ(∆)(w), w ∈ fµ(∆), (4.3)

where d(w, ∂fµ(∆)) = inf{|ζ − w| : ζ ∈ ∂fµ(∆)}. Consequently, for each fixed x ∈ l2, the

function

Pµx =

∞∑

n=1

xn√
n
F ′
n(µ) (4.4)

converges absolutely and locally uniformly in fµ(∆) and thus represents an analytic function

in fµ(∆). It was proved in [24] that

1

π

∫∫

fµ(∆)

|Pµx(w)|2dudv = ‖x‖2 − ‖G([µ])x‖2. (4.5)

It was also proved there that {Pµx
(j)} converges to zero locally uniformly in fµ(∆) when (x(j))

converges to zero weakly.

Using the operator Pµ, the Grunsky differential operator (2.10) has the following simple

expression

dµG̃(ν)(xm) =
( 1√

mπ

∫∫

fµ(∆)

( ν

1− |µ|2
∂fµ

∂fµ

)
◦ f−1

µ F ′
m(µ)Pµxdudv

)
. (4.6)

Therefore,

〈dµG̃(ν)x, x〉 =
1

π

∫∫

fµ(∆)

( ν

1− |µ|2
∂fµ

∂fµ

)
◦ f−1

µ (Pµx)
2dudv, (4.7)

‖dµG̃(ν)x‖2 =
1

π2

∞∑

m=1

1

m

∣∣∣
∫∫

fµ(∆)

( ν

1− |µ|2
∂fµ

∂fµ

)
◦ f−1

µ F ′
m(µ)Pµxdudv

∣∣∣
2

. (4.8)
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By Schur’s result (see [21]) again, we have

‖dµG̃(ν)‖ = sup
x∈S1(l2)

∣∣∣ 1
π

∫∫

fµ(∆)

( ν

1− |µ|2
∂fµ

∂fµ

)
◦ f−1

µ (Pµx)
2dudv

∣∣∣. (4.9)

Lemma 4.2 For any µ ∈M(∆), ν ∈ L∞(∆), and x ∈ l2, we have

‖dµG̃(ν)x‖2 ≤ 1

π

∫∫

fµ(∆)

∣∣∣ ν

1− |µ|2
∣∣∣
2

◦ f−1
µ |Pµx|2dudv. (4.10)

Proof We first recall the Hilbert transformation H defined by the Cauchy principle value

integral

H(λ)(ζ) =
1

π

∫∫

C

λ(w)

(w − ζ)2
dudv. (4.11)

It is well known that H is an isometric isomorphism on the space of square integral functions

on C.

It follows from (2.11) that

f ′
µ(z)

(fµ(z)− w)2
=

∞∑

m=1

F ′
m(µ)(w)z−m−1, w ∈ fµ(∆), z ∈ fµ(∆

∗). (4.12)

Combining this with (4.8) we obtain

‖dµG̃(ν)x‖2

=
1

π3

∫∫

∆∗

∣∣∣
∞∑

m=1

( ∫∫

fµ(∆)

( ν

1− |µ|2
∂fµ

∂fµ

)
◦ f−1

µ F ′
m(µ)Pµxdudv

)
z−m−1

∣∣∣
2

dxdy

=
1

π3

∫∫

∆∗

∣∣∣
∫∫

fµ(∆)

( ν

1− |µ|2
∂fµ

∂fµ

)
◦ f−1

µ (w)
f ′
µ(z)Pµx(w)

(fµ(z)− w)2
dudv

∣∣∣
2

dxdy

=
1

π3

∫∫

fµ(∆∗)

∣∣∣
∫∫

fµ(∆)

( ν

1− |µ|2
∂fµ

∂fµ

)
◦ f−1

µ (w)
Pµx(w)

(ζ − w)2
dudv

∣∣∣
2

dξdη

=
1

π

∫∫

fµ(∆∗)

∣∣∣H
(( ν

1− |µ|2
∂fµ

∂fµ

)
◦ f−1

µ Pµxχ(fµ(∆))
)
(ζ)

∣∣∣
2

dξdη

≤ 1

π

∫∫

fµ(∆)

∣∣∣ ν

1− |µ|2
∣∣∣
2

◦ f−1
µ (w)|Pµx(w)|2dudv,

by the norm-preserving property of the Hilbert transformation H, where χ(D) denotes the

characteristic function of a set D.

Lemma 4.3 For any µ ∈M(∆) and ν ∈ L∞(∆), we have

‖dµG̃(ν)‖e . C(‖µ‖∞) inf{‖ν|∆−E‖∞ : E ⊂ ∆compact}. (4.13)

Proof For any compact subset E of ∆ and any degenerating sequence (x(j)) in l2, we

obtain from (4.10) that

‖dµG̃(ν)x(j)‖2

≤ 1

π

∫∫

fµ(∆)

∣∣∣ ν

1− |µ|2
∣∣∣
2

◦ f−1
µ |Pµx

(j)|2dudv

. C(‖µ‖∞)
(
‖ν‖2∞

∫∫

fµ(E)

|Pµx
(j)|2dudv + ‖ν|∆−E‖2∞

∫∫

fµ(∆−E)

|Pµx
(j)|2dudv

)
.
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Recalling that {Pµx
(j)} converges to zero locally uniformly in fµ(∆) when j → ∞, we obtain

lim sup
j→∞

‖dµG̃(ν)x(j)‖ ≤ C(‖µ‖∞)‖ν|∆−E‖∞. By the arbitrariness of E and (x(j)), we obtain

(4.13) as desired.

Proof of Theorem 2.2 It follows from Lemmas 3.1, 4.1 and 4.3.

5 Proof of Theorem 2.3

In this section, we will prove Theorem 2.3. Recall that, for p ≥ 2, a compact operator L from

a Hilbert space H into itself is a p-Schatten class operator if and only if
∞∑
j=1

‖Lx(j)‖p < ∞ for

any orthonormal basis (x(j)) of H (see [35]). A 2-Schatten class operator is also called a Hilbert-

Schmidt operator. Now Lemma 3.1 implies that (1) ⇒ (2). We need to prove (2) ⇒ (3) ⇒ (1).

For simplicity, set as before that f = fµ, g = f−1, D = f(∆), D∗ = f(∆∗), and Fm(µ) = Fm,

Pµ = P .

(2) ⇒ (3) Suppose that there exists ν̃ ∈ L∞(∆) with dµS(ν̃) = dµS(ν) such that ν̃ ◦ g ∈
Lp(D). Since dµG̃(ν̃) = dµG̃(ν), we may assume without loss of generality that ν ◦ g ∈ Lp(D).

Let (x(j)) be any orthonormal basic of l2. By (4.10) we have

‖dµG̃(ν)x(j)‖2 . C1(‖µ‖∞)

∫∫

D

|ν|2 ◦ g|Px(j)|2dudv.

The Hölder inequality yields

‖dµG̃(ν)x(j)‖p . C2(‖µ‖∞)

∫∫

D

|ν|p ◦ g|Px(j)|2dudv
( ∫∫

D

|Px(j)|2dudv
) p

2−1

. C2(‖µ‖∞)

∫∫

D

|ν|p ◦ g|Px(j)|2dudv,

which implies that

∞∑

j=1

‖dµG̃(ν)x(j)‖p . C2(‖µ‖∞)

∫∫

D

|ν(g(w))|p
( ∞∑

j=1

|Px(j)(w)|2
)
dudv. (5.1)

Noting that

Px(j)(w) =

∞∑

m=1

x
(j)
m√
m
F ′
m(w) =

〈(F ′
m(w)√
m

)
, x(j)

〉
,

and (x(j)) is an orthonormal basic of l2, we conclude that

∞∑

j=1

|Px(j)(w)|2 =

∞∑

j=1

∣∣∣
〈(F ′

m(w)√
m

)
, x(j)

〉∣∣∣
2

=

∞∑

m=1

|F ′
m(w)|2
m

. (5.2)

It follows from (4.3), (5.1) and (5.2) that

∞∑

j=1

‖dµG̃(ν)x(j)‖p . C3(µ)

∫∫

D

|ν(g(w))|pλ2D(w)dudv <∞.

Thus, dµG̃(ν) is a p-Schatten class operator from l2 into itself.
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(3) ⇒ (1) We will use the atomic decomposition of Bergman functions (see [34]) following

an idea of Jones [13]. Let A2 denote the Bergman space in the usual sense, which is the Hilbert

space of all holomorphic functions φ in ∆∗ with the inner product and norm

〈φ, ψ〉 = 1

π

∫∫

∆∗

φ(w)ψ(w)dudv, ‖φ‖ =
( 1

π

∫∫

∆∗

|φ(w)|2dudv
) 1

2

<∞. (5.3)

For each x ∈ l2, set

P0x(w) =

∞∑

m=1

√
mxmw

−m−1, w ∈ ∆∗. (5.4)

It is easy to see that P0 is an isometric linear isomorphism from l2 onto A2. In particular, for

z ∈ ∆∗, we consider xz as in the proof of Lemma 4.1. Then a direct computation shows that

φz(w)
.
= P0xz(w) =

|z|2 − 1

(1− zw)2
, w ∈ ∆∗. (5.5)

Let ρ denote the hyperbolic distance in ∆∗. Precisely,

ρ(z, ζ) =
1

2
log

1 +
∣∣∣ ζ − z

1− zζ

∣∣∣

1−
∣∣∣ ζ − z

1− zζ

∣∣∣
, z, ζ ∈ ∆∗.

A sequence (zj) in ∆∗ is called an r-lattice if ∆∗ =
∞⋃
j=1

D(zj , r) and ρ(zi, zj) ≥ r
2 whenever

i 6= j, where D(z, r) = {ζ : ρ(z, ζ) < r} is the hyperbolic disk. For each x = (xm) ∈ l2, set

Lx(w) =
∞∑

j=1

xjφzj (w) =
∞∑

j=1

xjP0xzj (w) =
∞∑

j=1

xj
|zj |2 − 1

(1− zjw)2
. (5.6)

The atomic decomposition of Bergman functions says that, when r is small, L is a bounded

operator from l2 onto A2 (see [35]).

Now we suppose that dµG̃(ν) is a p-Schatten class operator from l2 into itself. Then dµG̃(ν)◦
P−1
0 ◦L is also a p-Schatten class operator from l2 into itself. Set ej = (xm) ∈ l2 by xj = 1 and

xm = 0 whenever m 6= j. Then e1, e2,· · · , ej , · · · is an orthonormal basic for l2. So we have

∞∑

j=1

‖dµG̃(ν) ◦ P−1
0 ◦ L(ej)‖p <∞.

Noting that P−1
0 ◦ L(ej) = P−1

0 (φzj ) = xzj , we obtain

∞∑

j=1

|〈dµG̃(ν)xzj , xzj 〉|p ≤
∞∑

j=1

‖dµG̃(ν)xzj‖p <∞,

which is by (4.2) equivalent to

∞∑

j=1

|dµS(ν)(zj)|p(|zj |2 − 1)2p <∞. (5.7)
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On the other hand, from [17] we known that for any analytic function φ in ∆∗, it holds that

∫∫

∆∗

|φ(z)|p(|z|2 − 1)2p−2dxdy ≍
∞∑

j=1

|φ(zj)|p(|zj |2 − 1)2p,

which implies by (5.7) that

∫∫

∆∗

|dµS(ν)(z)|p(|z|2 − 1)2p−2dxdy <∞

as desired.

It should be pointed out that (1) ⇔ (2) in Theorem 2.3 was first proved by Zhai [33], even

for 1 ≤ p < 2. Now we show that (2) ⇒ (3) in Theorem 2.3 also holds when 1 ≤ p < 2. We

state this as following proposition.

Proposition 5.1 Let p ≥ 1 be a fixed number. If µ ∈ M and ν ∈ L∞ satisfy ν ◦ f−1
µ ∈

Lp(fµ(∆)), then dµG̃(ν) is a p-Schatten class operator.

Proof Recall that, for p ≥ 1, a compact operator L from a Hilbert space H into itself is a

p-Schatten class operator if and only if
∞∑
j=1

|〈Lx(j), x(j)〉|p <∞ for any orthonormal basis (x(j))

of H (see [35]). Set as above that f = fµ, g = f−1, D = f(∆), D∗ = f(∆∗), Fm(µ) = Fm,

Pµ = P . It follows from (4.6) that for x, y ∈ l2

〈dµG̃(ν)x, y〉 =
1

π

∫∫

D

( ν

1− |µ|2
∂f

∂f

)
◦ gPxPydudv. (5.8)

Let (x(j)) be any orthonormal basic of l2. Then we have from (5.8) that

|〈dµG̃(ν)x(j) , x(j)〉| . C(‖µ‖∞)

∫∫

D

|ν| ◦ g|Px(j)Px(j)|dudv. (5.9)

Then
∞∑

j=1

|〈dµG̃(ν)x(j), x(j)〉| . C(‖µ‖∞)

∫∫

D

|ν| ◦ g
( ∞∑

j=1

|Px(j)Px(j)|
)
dudv.

Noting that

( ∞∑

j=1

|Px(j)(w)Px(j)(w)|
)2

≤
∞∑

j=1

|Px(j)(w)|2
∞∑

j=1

|Px(j)(w)|2 =
( ∞∑

m=1

|F ′
m(w)|2
m

)2

by (5.2), we conclude by (4.3) again that

∞∑

j=1

|Px(j)(w)Px(j)(w)| . C1(µ)λ
2
D(w). (5.10)

Consequently,
∞∑

j=1

|〈dµG̃(ν)x(j), x(j)〉| . C2(µ)

∫∫

D

|ν| ◦ gλ2Ddudv <∞.

This proves the proposition in the case p = 1.
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When p > 1, we obtain from (5.9) that

|〈dµG̃(ν)x(j), x(j)〉|p

. C3(‖µ‖∞)

∫∫

D

|ν|p ◦ g|Px(j)Px(j)|dudv
(∫∫

D

|Px(j)|2dudv
∫∫

D

|Px(j)|2dudv
) p−1

2

. C3(‖µ‖∞)

∫∫

D

|ν|p ◦ g|Px(j)Px(j)|dudv.

Therefore,

∞∑

j=1

|〈dµG̃(ν)x(j) , x(j)〉|p . C3(‖µ‖∞)

∫∫

D

|ν|p ◦ g
( ∞∑

j=1

|Px(j)Px(j)|
)
dudv

. C4(µ)

∫∫

D

|ν|p ◦ gλ2Ddudv <∞,

by (5.10). This completes the proof.

References

[1] Ahlfors, L. V., Quasiconformal reflections, Acta Math., 109, 1963, 291–301.
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