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Abstract This paper is concerned with strictly k-convex large solutions to Hessian equa-
tions Sk(D

2u(x)) = b(x)f(u(x)), x ∈ Ω, where Ω is a strictly (k− 1)-convex and bounded
smooth domain in R

n, b ∈ C∞(Ω) is positive in Ω, but may be vanishing on the boundary.
Under a new structure condition on f at infinity, the author studies the refined boundary
behavior of such solutions. The results are obtained in a more general setting than those
in [Huang, Y., Boundary asymptotical behavior of large solutions to Hessian equations,
Pacific J. Math., 244, 2010, 85–98], where f is regularly varying at infinity with index
p > k.
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1 Introduction and the Main Results

For any n× n real symmetric matrix A, we let λ(A) denote the eigenvalues of A and

Sk(A) = Sk(λ1, · · · , λn) =
∑

1≤i1<···<ik≤n

λi1 · · ·λik (1.1)

denote the k-th elementary symmetric function, k = 1, 2, · · · , n.

Define the set Γk which is the connected component of {λ ∈ R
n : Sk(λ) > 0} containing the

positive cone

Γ+ := {λ = (λ1, · · · , λn) ∈ R
n : λi > 0, i = 1, 2, · · · , n}.

It follows from [4] that

Γ+ = Γn ⊂ · · · ⊂ Γk+1 ⊂ Γk ⊂ · · · ⊂ Γ1.

Let D2u(x) =
(
∂2u(x)
∂xi∂xj

)
denote the Hessian of u ∈ C2(Ω). We say that a function u ∈ C2(Ω)

is k-convex (or strictly k-convex) in Ω if Sk(D
2u) ∈ Γk (or Sk(D

2u) ∈ Γk) for all x ∈ Ω and

Sk(D
2u) turns to be elliptic in the class of k-convex functions.

While, for an open bounded subset Ω of Rn with boundary of class C2 and every x ∈ ∂Ω, we

denote κ1(x), · · · , κn−1(x) the principal curvatures of ∂Ω at x. For k ∈ {1, 2, · · · , n−1}, we say

that Ω is k-convex (or strictly k-convex) if (κ1(x), · · · , κn−1(x)) ∈ Γk (or (κ1(x), · · · , κn−1(x)) ∈
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Γk). In this paper, we analyze the boundary behavior of strictly k-convex solutions to the fol-

lowing boundary blow-up problem

Sk(D
2u(x)) = b(x)f(u(x)), x ∈ Ω, u|∂Ω = +∞, (1.2)

where the boundary condition means that u(x) → +∞ as d(x) = dist(x, ∂Ω)→ 0, Ω is a strictly

(k − 1)-convex and bounded smooth domain in R
n with n ≥ 2, f satisfies:

(f1) f ∈ C[0,∞), f(0) = 0 and f(s) is increasing on [0,∞)(or (f01) f ∈ C(R), f(s) > 0, ∀s ∈

R and f is increasing on R);

(f2) the Keller-Osserman type condition (see [16, 29])

Ψk(r) :=

∫ ∞

r

((k + 1)F (τ))−
1

k+1dτ <∞, ∀r > 0, F (τ) :=

∫ τ

0

f(υ)dυ.

b satisfies:

(b1) b ∈ C∞(Ω) is positive in Ω.

And the solution is called ‘a large solution’ or ‘an explosive solution’.

For convenience, we denote ψk the inverse of Ψk, i.e., ψk satisfies

∫ ∞

ψk(t)

((k + 1)F (τ))−
1

k+1dτ = t, ∀ t > 0. (1.3)

While, we introduce two kinds of functions.

Firstly, the regularly varying function is introduced as follows.

Definition 1.1 A positive continuous function f defined on [a,∞), for some a > 0, is

called regularly varying at infinity with index ρ, denoted f ∈ RVρ, if for each ξ > 0 and some

ρ ∈ R,

lim
s→∞

f(ξs)

f(s)
= ξρ. (1.4)

In particular, when ρ = 0, f is called slowly varying at infinity.

Clearly, if f ∈ RVρ, then L(s) := f(s)/sρ is slowly varying at infinity.

Some basic examples of slowly varying functions at infinity are

(i) every continuous function on [a,∞) which has a positive limit at infinity;

(ii) (ln s)q and (ln(ln s))q, q ∈ R;

(iii) exp((ln s)q), 0 < q < 1.

Secondly, let Λ denote the set of all positive nondecreasing functions θ in C1(0, δ0) (δ0 > 0)

which satisfy

lim
t→0+

d

dt

(Θ(t)

θ(t)

)
:= Dθ ∈ [0,∞), Θ(t) :=

∫ t

0

θ(υ)dυ. (1.5)

Now let us return to problem (1.2).

Problem (1.2) was widely and deeply researched by many authors and in many contexts,

see for instance [1, 18–19, 23, 27, 33] for k = 1, i.e., Laplace operator; and [6–8, 11, 20, 24–25,

32, 34] for k = n, i.e., Monge-Ampère operator. In particular, Matero [24] established the exis-

tence, uniqueness and asymptotic behavior such as lim
d(x)→0

Ψn(u(x))
d(x) of strictly convex solutions
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under the condition that b ∈ C∞(Ω) is positive on Ω. Then, by using a perturbation method

and Karamata regularly varying theory, and constructing comparison functions, Cı̂rstea and

Trombetti [8] established the existence, uniqueness and refined boundary behavior of solutions

for f ∈ RVp with p > n. Their results were extended to problem (1.2) and k-curvature equation

by Colesanti, Salani and Francini [9], Huang [13], Jian [16], Ji and Bao [15], Jin, Li and Xu [17],

Nakamori and Takimoto [26], Salani [29], Takimoto [30], Zhang and Zhou [35], respectively. In

particular, Huang [13] extended the results of [8] to problem (1.2) for f ∈ RVp with p > k.

For the existence, regularity theory and other properties of solutions for the Hessian equa-

tions, see for instance [2, 4–5, 10, 12, 14, 21–22, 31] and the references therein.

Inspired by the above works, in this paper we investigate the unified boundary behavior of

strictly convex solutions to problem (1.2) under the following structure condition on f :

(f3) there exists Ckf ∈ (0,∞] such that

lim
s→+∞

H ′
k(s)

∫ ∞

s

dτ

Hk(τ)
= Ckf , Hk(s) := ((k + 1)F (s))

1
k+1 , ∀s > 0.

A complete characterization of f in (f3) is provided in Lemma 2.2.

Our main results are summarized as follows.

Theorem 1.1 Let f satisfy (f1)–(f3), and b satisfy

(b1) with the additional condition;

(b2) there exist θ ∈ Λ and positive constants bki (i = 1, 2) such that

bk1 := lim
d(x)→0

inf
b(x)

θk+1(d(x))
≤ bk2 := lim

d(x)→0
sup

b(x)

θk+1(d(x))
.

If

Ckf > 1, (1.6)

or

Ckf = 1, Dθ > 0, (1.7)

then for any strictly k-convex solution u to problem (1.2), there hold

1 ≤ lim
d(x)→0

inf
u(x)

ψk(ξk2Θ(d(x)))
, lim

d(x)→0
sup

u(x)

ψk(ξk1Θ(d(x)))
≤ 1, (1.8)

where ψk is the solution to (1.3),

ξk1 =
( bk1

Mk(1− C−1
kf (1−Dθ))

) 1
k+1

, ξk2 =
( bk2

mk(1− C−1
kf (1 −Dθ))

) 1
k+1

,

and

Mk = max
x∈∂Ω

Sk(κ1(x), · · · , κn−1(x)); mk = min
x∈∂Ω

Sk(κ1(x), · · · , κn−1(x)). (1.9)

In particular,
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(i) when Ckf = 1, u verifies

lim
d(x)→0

u(x)

ψk(Θ(d(x)))
= 1; (1.10)

(ii) when Ω = BR which is a ball of radius R centered at the origin, r = |x|, Ckf ∈ (1,∞)

and bk1 = bk2 = bk0 in (b2), u verifies

lim
r→R

u(x)

ψk(Θ(R− r))
=

( bk0R
k−1

1− C−1
kf (1−Dθ)

) 1−Ckf
k+1

; (1.11)

(iii) when Ω = BR, Ckf = ∞ and bk1 = bk2 = bk0 in (b2), u verifies

lim
r→R

u(x)

ψk(ξk0Θ(R− r))
= 1, where ξk0 = (bk0R

k−1)
1

k+1 . (1.12)

If f further satisfies the condition that

f(s)

sk
increasing on (0,∞), (1.13)

then problem (1.2) has a unique strictly k-convex solution.

Remark 1.1 Lemmas 2.1 and 2.2 ensure that Dθ ∈ [0, 1] and that Ckf ∈ [1,∞]. Hence

(1.6) or (1.7) implies 1− C−1
kf (1−Dθ) > 0.

Remark 1.2 For the existence of the minimal (strictly) k-convex solution to problem (1.2),

see Theorems 2.1 and 4.1 in [29].

Remark 1.3 Some basic examples of functions which satisfy (f3) are the following:

(I) For Ckf = 1,

(1) f(s) = c0 exp((ln s)
q), q > 1, c0 > 0, s ≥ S0, where S0 > 0 is a large constant;

(2) f(s) = c0 exp(s
q), c0 > 0, q > 0, s ≥ S0. In particular, when F (s) = c0 exp(s), s > S0,

ψk(t) = k ln(k + 1)− (k + 1) ln c0 − (k + 1) ln t for sufficiently small t > 0;

(3) f(s) = c0 exp(s ln s), c0 > 0, s ≥ S0;

(4) f ∈ C1(S0,∞) and lim
s→∞

f ′(s)F (s)
f2(s) = 1 (see Lemma 2.2);

(5) F (s) = c0 exp
( ∫ s

S0

dτ
ζ(τ)

)
, c0 > 0, s > S0, where ζ is a positive C1-function on [S0,∞)

and lim
τ→∞

ζ′(τ) = 0 (see Lemma 2.2).

(II) For Ckf = ∞,

(1) when F (s) = (k + 1)−1ck+1
0 sk+1(ln s)q(k+1), c0 > 0, s ≥ S0 with q > 1, ψk(t) =

exp((c0(q − 1)t)−
1

q−1 ) for sufficiently small t > 0;

(2) F (s) = (k + 1)−1ck+1
0 sk+1 exp((k + 1)sq), c0 > 0, q ∈ (0, 1), s ≥ S0;

(3) when F (s) = (k + 1)−1ck+1
0 sk+1(ln s)k+1(ln(ln s))q(k+1), c0 > 0, q > 1, s ≥ S0, ψk(t) =

exp(exp((c0(q − 1)t)−
1

q−1 )) for sufficiently small t > 0.

(III) For Ckf ∈ (1,∞),

when F (s) = c0s
p+1L(s), c0 > 0, s ≥ S0, where p > k and L is slowly varying at infinity,

Ckf = p+1
p−k

. In particular, when f(s) = c0s
p, s ≥ 0,

ψk(t) =
(p+ 1

k + 1

( k + 1

c0(p− k)

)k+1) 1
p−k

t−
k+1
p−k , ∀t > 0.

The outline of this paper is as follows. In Section 2 we give some preliminary. The proof of

Theorem 1.1 is provided in Section 3.
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2 Preliminaries

Our approach relies on Karamata regular variation theory, which was first introduced and

established by Karamata in 1930 and is a basic tool in stochastic process (see [3, 28]).

In this section, we present some basic facts from the theory and some preparations.

Corresponding to Definition 1.1, we also say that a positive continuous function θ defined

on (0, a) for some a > 0, is regularly varying at zero with index ρ (and denoted by θ ∈ RV Zρ)

if t→ θ
(
1
t

)
belongs to RV−ρ.

Definition 2.1 For some a > 0, a positive continuous function f defined on [a,∞) is called

rapidly varying at infinity if for each ρ > 1,

lim
s→∞

f(s)

sρ
= ∞. (2.1)

Definition 2.2 For some a > 0, a positive continuous function f defined on [a,∞), is

called rapidly varying at infinity if for each ξ > 1,

lim
s→∞

f(ξs)

f(s)
= ∞. (2.2)

Proposition 2.1 (Uniform Convergence Theorem) If f ∈ RVρ, then (1.4) in Definition

1.1 holds uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2.

Proposition 2.2 (Representation Theorem) A function L is slowly varying at infinity if

and only if it may be written as the form

L(s) = z(s) exp
( ∫ s

a1

y(τ)

τ
dτ

)
, s ≥ a1, (2.3)

for some a1 ≥ a, where the functions z and y are continuous and for s → ∞, y(s) → 0 and

z(s) → c0, with c0 > 0.

We say that a function is normalized slowly varying at infinity if it can be written as

L̂(s) = c0 exp
(∫ s

a1

y(τ)

τ
dτ

)
, s ≥ a1, (2.4)

where y, c0, a1 are defined as above and a function is normalized regularly varying at infinity

with index ρ if it can be written as

f(s) = sρL̂(s), s ≥ a1, (2.5)

which is denoted by f ∈ NRVρ.

Equivalently, a function f ∈ NRVρ if and only if

f ∈ C1[a1,∞) for some a1 > 0 and lim
s→∞

sf ′(s)

f(s)
= ρ. (2.6)

Similarly, θ is called normalized regularly varying at zero with index ρ, denoted by θ ∈ NRV Zρ

if t→ θ
(
1
t

)
belongs to NRV−ρ.
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Proposition 2.3 If functions L,L1 are slowly varying at infinity, then

(i) Lρ (for every ρ ∈ R), c1L + c2L1 (c1 ≥ 0, c2 ≥ 0 with c1 + c2 > 0), L · L1, L ◦ L1 (if

L1(s) → ∞ as s→ ∞) are also slowly varying at infinity;

(ii) for every ε > 0 and s→ ∞, sεL(s) → ∞ and s−εL(s) → 0;

(iii) for ρ ∈ R and s→ ∞,
ln(L(s))

ln s → 0 and
ln(sρL(s))

ln s → ρ.

Proposition 2.4 Let f ∈ RVρ with ρ 6= 0. If f is strictly monotonous, then the inverse of

f belongs to RV 1
ρ
.

Proposition 2.5 (Asymptotic Behaviour) If a function L is slowly varying at infinity,

then for a ≥ 0 and t→ ∞,

(i)
∫ t
a
sρL(s)ds ∼= (ρ+ 1)−1t1+ρL(t) for ρ > −1;

(ii)
∫∞

t
sρL(s)ds ∼= (−ρ− 1)−1t1+ρL(t) for ρ < −1.

Proposition 2.6 (Asymptotic Behaviour) (see [3, Karamata’s Theorem]) If a function

z ∈ RV−1 and
∫∞

s
z(τ)dτ < ∞, s > 0, then

∫∞

s
z(τ)dτ is slowly varying at infinity and

lim
s→∞

sz(s)∫
∞

s
z(τ)dτ

= 0.

Lemma 2.1 (see [33, Lemma 2.1]) Let θ ∈ Λ. We have

(i) lim
t→0+

Θ(t)
θ(t) = 0;

(ii) lim
t→0+

Θ(t)θ′(t)
θ2(t) = 1− lim

t→0+

d
dt

(Θ(t)
θ(t)

)
= 1−Dθ and Dθ ∈ [0, 1];

(iii) when Dθ ∈ (0, 1], θ ∈ NRV Z 1−Dθ
Dθ

and Θ ∈ NRV ZD−1
θ
;

(iv) when Dθ = 0, θ is rapidly varying to zero at zero.

Recall that

Ψk(s) =

∫ ∞

s

dτ

Hk(τ)
, ∀s > 0, where Hk(τ) = ((k + 1)F (τ))

1
k+1 . (2.7)

Our results in the section are summarized as follows.

Lemma 2.2 Let f satisfy (f1)–(f2). We have

(i1) if f satisfies (f3), then Ckf ≥ 1;

(i2) f satisfies (f3) with Ckf ∈ (1,∞) if and only if F ∈ NRVp(k+1) with p =
Ckf

Ckf−1 > 1;

(i3) if f satisfies (f3) with Ckf = 1, then F is rapidly varying at infinity ;

(i4) if

lim
s→∞

f ′(s)F (s)

f2(s)
= 1, (2.8)

then f satisfies (f3) with Ckf = 1;

(i5) if F ∈ NRVk+1, then f satisfies (f3) with Ckf = ∞;

(i6) lim
s→∞

((k+1)F (s))
k

k+1

f(s)Ψk(s)
= C−1

kf .

Proof (i1) Let Ckf ∈ (0,∞] and

Ik(s) = H ′
k(s)

∫ ∞

s

dτ

Hk(τ)
, ∀s > 0.
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Integrating Ik(υ) from a (a > 0) to s and integration by parts, we obtain
∫ s

a

Ik(υ)dυ = Hk(s)

∫ ∞

s

dτ

Hk(τ)
−Hk(a)

∫ ∞

a

dτ

Hk(τ)
+ s− a, ∀s > a.

It follows from the l’Hospital’s rule that

0 ≤ lim
s→∞

Hk(s)
∫∞

s
dτ

Hk(τ)

s
= lim

s→∞

∫ s
a
Ik(υ)dυ

s
− 1 = lim

s→∞
Ik(s)− 1 = Ckf − 1, (2.9)

i.e., Ckf ≥ 1.

(i2) The necessity is as follows. For Ckf ∈ (1,∞), we see that

lim
s→∞

Hk(s)

sH ′
k(s)

= lim
s→∞

Hk(s)

∫ ∞

s

dτ

Hk(τ)

sH ′
k(s)

∫ ∞

s

dτ

Hk(τ)

=
1

Ckf
lim
s→∞

Hk(s)

∫ ∞

s

dτ

Hk(τ)

s
=
Ckf − 1

Ckf
,

i.e., Hk ∈ NRV Ckf
Ckf−1

and F ∈ NRVCkf (k+1)

Ckf−1

.

For the sufficiency, if F ∈ NRVp(k+1) with p > 1, we have Hk ∈ NRVp and

lim
s→∞

sH ′
k(s)

Hk(s)
= p.

By the representation theorem, Hk(s) can be written as

Hk(s) = spL̂(s), ∀s ≥ S0 for sufficiently large S0,

where L̂ is normalized slowly varying at infinity.

It follows from Propositions 2.3 (i) and 2.5 (ii) that

lim
s→∞

H ′
k(s)

∫ ∞

s

dτ

Hk(τ)

= lim
s→∞

sH ′
k(s)

Hk(s)
lim
s→∞

Hk(s)

s

∫ ∞

s

dτ

Hk(τ)

= p lim
s→∞

sp−1L̂(s)

∫ ∞

s

τ−p(L̂(τ))−1dτ =
p

p− 1
= Ckf .

(i3) When Ckf = 1, we see by the proof of (i2) that

lim
s→∞

sH ′
k(s)

Hk(s)
= +∞. (2.10)

Consequently, for an arbitrary ρ > 1, there exists S0 > 0 such that

H ′
k(s)

Hk(s)
>
ρ+ 1

s
, ∀s ≥ S0.

Integrating the above inequality from S0 to s, we obtain

ln(Hk(s)) − ln(Hk(S0)) > (ρ+ 1)(ln s− lnS0), ∀s > S0,

i.e.,
Hk(s)

sρ
>
Hk(S0)s

Sρ+1
0

, ∀s > S0.
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Letting s→ ∞, we see by Definition 2.1 that Hk is rapidly varying at infinity. So does F .

There is another proof. Let

H ′
k(s)

Hk(s)
=
yk(s)

s
, ∀s > 0.

Integrating the above inequality from s0 > 0 to s, we obtain

Hk(s) = ck exp
(∫ s

s0

yk(τ)

τ
dτ

)
, s > S0,

where ck = Hk(S0).

Since lim
s→+∞

yk(s) = ∞, we see that for each ξ > 1,

Hk(ξs)

Hk(s)
= exp

(∫ ξs

s

yk(τ)

τ
dτ

)
= exp

( ∫ ξ

1

yk(sυ)

υ
dυ

)
→ +∞ as s→ ∞.

So Hk is rapidly varying at infinity by Definition 2.2. So does F .

(i4) By (2.8) and the generalized l’Hospital’s rule, we see that

lim
s→∞

F (s)

sf(s)
= lim
s→∞

F (s)

f(s)

s
= lim

s→∞

d

ds

(F (s)
f(s)

)
= 1− lim

s→∞

F (s)f ′(s)

f2(s)
= 0. (2.11)

Consequently, for an arbitrary p > k, there exists Sp > 0 such that

f(s)

F (s)
>
p+ 2

s
, s ≥ Sp.

Integrating from Sp to s, we obtain

F (s) ≥
F (Sp)

Sp+2
p

sp+2, s > Sp.

So

f(s) ≥
(p+ 2)F (Sp)

Sp+2
p

sp+1, s > Sp,

which implies

lim
s→∞

f(s)

sp
= ∞.

Next, since

F (s) =

∫ s

0

f(τ)dτ ≤ sf(s), s > 0,

we have that

0 <
(F (s))

k
k+1

f(s)
≤

( sk

f(s)

) 1
k+1

, s > 0.

So

lim
s→∞

(F (s))
k

k+1

f(s)
= 0.
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By Hk(s) = ((k + 1)F (s))
1

k+1 and (f2), we see that

H ′
k(s) =

f(s)

((k + 1)F (s))
k

k+1

,

f(s)Ψk(s)

((k + 1)F (s))
k

k+1

= H ′
k(s)

∫ ∞

s

dτ

Hk(τ)
, ∀s > 0. (2.12)

It follows by the l’Hospital’s rule and (2.8) that

lim
s→∞

Ψk(s)

((k + 1)F (s))
k

k+1

f(s)

= lim
s→∞

f2(s)

(k + 1)F (s)f ′(s)− kf2(s)

= lim
s→∞

1

(k + 1)
F (s)f ′(s)

f2(s)
− k

= 1.

(i5) When F ∈ NRVk+1, we see that Hk ∈ NRV1, (Hk)
−1 ∈ NRV−1 and

lim
s→∞

sH ′
k(s)

Hk(s)
= 1.

It follows from (f2) and Proposition 2.6 that

lim
s→∞

s

Hk(s)

∫ ∞

s

dτ

Hk(τ)

= 0.

Thus

lim
s→∞

H ′
k(s)

∫ ∞

s

dτ

Hk(τ)
= lim
s→∞

sH ′
k(s)

Hk(s)
lim
s→∞

Hk(s)

∫ ∞

s

dτ

Hk(τ)

s
= ∞.

(i6) Follows from (f3) and (2.12).

Recall that ψk satisfies

∫ ∞

ψk(t)

dτ

Hk(τ)
= t, ∀t > 0, where Hk(τ) = ((k + 1)F (τ))

1
k+1 .

Lemma 2.3 Let f satisfy (f1)–(f3). We have

(i1) −ψ′
k(t) = Hk(ψk(t)) = ((k + 1)F (ψk(t)))

1
k+1 , t > 0, ψ′′

k (t) = f(ψk(t))

((k+1)F (ψk(t)))
k−1
k+1

and

ψk(t) > 0, t > 0, ψk(0) : = lim
t→0+

ψk(t) = +∞;

(i2) lim
t→0

ψ′

k(t)
tψ′′

k
(t) = −C−1

kf ;

(i3) when Ckf ∈ [1,∞), ψ ∈ NRV Z1−Ckf
and −ψ′

k ∈ NRV Z−Ckf
;

(i4) when Ckf = ∞, ψk is rapidly varying to infinity at zero.

Proof (i1) It is easy to be obtained.
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(i2) and (i3) For Ckf ∈ [1,∞), let s = ψk(t). It follows from (2.9) and (f3) that

lim
t→0

tψ′
k(t)

ψk(t)
= − lim

t→0

tHk(ψk(t))

ψk(t)
= − lim

s→∞

Hk(s)

s

∫ ∞

s

dτ

Hk(τ)
= −(Ckf − 1), (2.13)

lim
t→0

tψ′′
k (t)

ψ′
k(t)

= − lim
t→0

tH ′
k(ψk(t)) = − lim

s→∞
H ′
k(s)

∫ ∞

s

dτ

Hk(τ)
= −Ckf , (2.14)

i.e., ψk ∈ NRV Z1−Ckf
and −ψ′

k ∈ NRV Z−Ckf
.

(i4) When Ckf = ∞, we see by using the l’Hospital’s rule that

lim
s→∞

Hk(s)

∫ ∞

s

dτ

Hk(τ)

s
= lim
s→∞

H ′
k(s)

∫ ∞

s

dτ

Hk(τ)
− 1 = +∞,

i.e., lim
t→0+

tψ′

k(t)
ψk(t)

= −∞.

Similarly as the proof to (i3) in Lemma 2.2, we can show that ψk is rapidly varying to

infinity at zero.

3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1.

For any δ > 0, we let

Ωδ = {x ∈ Ω : 0 < d(x) < δ}.

When Ω is Cm-smooth for m ≥ 2, choose δ1 > 0 such that (see [10, Lemmas 14.16 and 14.17])

d ∈ Cm(Ωδ1) and |∇d(x)| = 1, ∀x ∈ Ωδ1 . (3.1)

Let x be the projection of the point x ∈ Ωδ1 to ∂Ω, and κ1(x), κ2(x), · · · , κn−1(x) are the

principal curvatures of ∂Ω at x. Then

D2(d(x)) = diag
[ −κ1(x)

1− d(x)κ1(x)
, · · ·,

−κn−1(x)

1− d(x)κn−1(x)
, 0

]
.

Lemma 3.1 (see [13, Corollary 2.3]) Let h be a C2-function on (0, δ1). Then, we have

Sk(D
2h(d(x)))

= (−h′(d(x)))kSk

( κ1(x)

1− d(x)κ1(x)
, · · · ,

κn−1(x)

1− d(x)κn−1(x)

)

+ (−h′(d(x)))k−1h′′(d(x))Sk−1

( κ1(x)

1− d(x)κ1(x)
, · · · ,

κn−1(x)

1− d(x)κn−1(x)

)
.

Proof of Theorem 1.1 For an arbitrary ε ∈ (0,min
{

1
2 ,

bk1

2

}
), let

ξ+ε =
( (bk2 + ε)(1 + ε) + ε

mk(1− C−1
kf (1−Dθ))

) 1
k+1

and ξ−ε =
( (bk1 − ε)(1− ε)− ε

Mk(1− C−1
kf (1 −Dθ))

) 1
k+1

,

where mk, Mk are given as in (1.9), bk1 and bk2 are given as in (b2).
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Using Lemmas 2.1–2.3 and

Θ ∈ C2(0, δ0) ∩ C([0, δ0)), Θ(0) = 0,

Θ(d(x)) =

∫ ∞

ψk(Θ(d(x)))

((k + 1)F (τ))−
1

k+1dτ, (3.2)

we see that

lim
d(x)→0

Θ(d(x))

θ(d(x))
·

κk(x)

1− d(x)κk(x)
= 0; (3.3)

lim
d(x)→0

Θ(d(x))θ′(d(x))

θ2(d(x))
= 1−Dθ; (3.4)

lim
d(x)→0

((k + 1)F (ψk(Θ(d(x)))))
k

k+1

Θ(d(x))f(ψk(Θ(d(x))))
= C−1

kf ;

lim
d(x)→0

k−1∏

i=1

(1− d(x)κi(x)) = 1;

mkξ
k+1
+ε ((1 − C−1

kf (1 −Dθ))− (bk2 + ε)(1 + ε) = ε;

Mkξ
k+1
−ε (1− C−1

kf (1−Dθ))− (bk1 − ε)(1− ε) = −ε.

It follows from (b2) that there is a sufficiently small δε ∈ (0,min
{
1, δ12

}
) corresponding to ε,

such that for σ ∈ (0, δε),

(bk1 − ε)θk+1(d(x) − σ) ≤ (bk1 − ε)θk+1(d(x)) < b(x), x ∈ D−
σ = Ω2δε/Ωσ; (3.5)

b(x) < (bk2 + ε)θk+1(d(x)) ≤ (bk2 + ε)θk+1(d(x) + σ), x ∈ D+
σ = Ω2δε−σ; (3.6)

1− ε <

k−1∏

i=1

(1 − d(x)κi(x)) < 1 + ε, x ∈ Ω2δε . (3.7)

Furthermore, there hold for x ∈ Ω2δε ,

Mk

(
ξk+1
−ε

Θ(d(x))

θ(d(x))
·

κk(x)

1− d(x)κk(x)
·
((k + 1)F (ψk(ξ−εΘ(d(x)))))

k
k+1

ξ−εΘ(d(x))f(ψk(ξ−εΘ(d(x))))

+ ξk+1
−ε − ξk+1

−ε

Θ(d(x))θ′(d(x))

θ2(d(x))
·
((k + 1)F (ψk(ξ−εΘ(d(x)))))

k
k+1

ξ−εΘ(d(x))f(ψk(ξ−εΘ(d(x))))

)

− (bk1 − ε)(1− ε) < 0;

mk

(
ξk+1
+ε ·

Θ(d(x))

θ(d(x))

κk(x)

1− d(x)κk(x)

((k + 1)F (ψk(ξ+εΘ(d(x)))))
k

k+1

ξ+εΘ(d(x))f(ψk(ξ+εΘ(d(x))))

+ ξk+1
+ε − ξk+1

+ε

Θ(d(x))θ′(d(x))

θ2(d(x))
·
((k + 1)F (ψk(ξ+εΘ(d(x)))))

k
k+1

ξ+εΘ(d(x))f(ψk(ξ+εΘ(d(x))))

)

− (bk2 + ε)(1 + ε) > 0.

Let

d1(x) = d(x) − σ; d2(x) = d(x) + σ; (3.8)

uε = ψk(ξ−εΘ(d1(x))), x ∈ D−
σ ; uε = ψk(ξ+εΘ(d2(x))), x ∈ D+

σ . (3.9)
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By Lemma 3.1, where we let h = ψk(ξ−εΘ(t)) and a direct computation, we see that for x ∈ D−
σ ,

Sk(D
2uε(x)) − (bk1 − ε)θk+1(d1(x))f(ψk(ξ−εΘ(d1(x))))

= (−ξ−εθ(d1(x))ψ
′
k(ξ−εΘ(d1(x))))

kSk

( κ1(x)

1− d(x)κ1(x)
, · · · ,

κn−1(x)

1− d(x)κn−1(x)

)

+ (−ξ−εθ(d1(x))ψ
′
k(ξ−εΘ(d1(x))))

k−1(ξ2−εθ
2(d1(x))ψ

′′
k (ξ−εΘ(d1(x)))

+ ξ−εθ
′(d1(x))ψ

′
k(ξ−εΘ(d1(x)))Sk−1

( κ1(x)

1− d(x)κ1(x)
, · · · ,

κn−1(x)

1− d(x)κn−1(x)

)

− (bk1 − ε)θk+1(d1(x))f(ψk(ξ−εΘ(d1(x))))

≤ (1− ε)−1θk+1(d1(x))f(ψk(ξ−εΘ(d1(x))))
(
Mk

(
ξk+1
−ε

Θ(d1(x))

θ(d1(x))
·

κk(x)

1− d(x)κk(x)

((k + 1)F (ψk(ξ−εΘ(d1(x)))))
k

k+1

ξ−εΘ(d1(x))f(ψk(ξ−εΘ(d1(x))))
+ ξk+1

−ε − ξk+1
−ε

Θ(d1(x))θ
′(d1(x))

θ2(d1(x))
·

((k + 1)F (ψk(ξ−εΘ(d1(x)))))
k

k+1

ξ−εΘ(d1(x))f(ψk(ξ−εΘ(d1(x))))

)
− (bk1 − ε)(1 − ε)

)

≤ 0,

which means that uε is a supersolution to equation (1.2) in D−
σ .

In a similar way, we can show that uε = ψk(ξ+εΘ(d2(x))) is a subsolution to equation (1.2)

in D+
σ .

Now let u ∈ C2(Ω) be an arbitrary strictly k-convex solution to problem (1.2) and letM > 0

be a sufficiently large constant such that

u ≤ uε +M on d(x) = 2δε, uε ≤ u+M, on d(x) = 2δε − σ. (3.10)

We observe that uε(x) → ∞ as d(x) → σ, and u|∂Ω = +∞ > uε|∂Ω. It follows from the

comparison principle for k-Hessians (see [16, Lemma 2.1]) that

u ≤ uε +M in D−
σ , uε ≤ u+M in D+

σ , (3.11)

i.e.,

1−
M

ψk(ξ+εΘ(d2(x)))
≤

u(x)

ψk(ξ+εΘ(d2(x)))
, x ∈ D+

σ ,

and
u(x)

ψk(ξ−εΘ(d1(x)))
≤ 1 +

M

ψk(ξ−εΘ(d1(x)))
, x ∈ D−

σ .

Hence, for x ∈ D−
σ ∩D+

σ , by letting σ → 0, we have

1−
M

ψk(ξ+εΘ(d(x)))
≤

u(x)

ψk(ξ+εΘ(d(x)))
,

u(x)

ψk(ξ−εΘ(d(x)))
≤ 1 +

M

ψk(ξ−εΘ(d(x)))
.

Then

1 ≤ lim
d(x)→0

inf
u(x)

ψk(ξ+εΘ(d(x)))
, lim

d(x)→0
sup

u(x)

ψk(ξ−εΘ(d(x)))
≤ 1. (3.12)

Thus letting ε→ 0 in (3.12), we obtain (1.8).
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Moreover, one can see by Lemma 2.3 that for Ckf ∈ [1,∞),

lim
d(x)→0

ψk(ξΘ(d(x)))

ψk(Θ(d(x)))
= ξ1−Ckf ,

holds uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2.

Finally we prove the uniqueness of solutions.

For arbitrary fixed ε ∈ (0, 1), let u1, u2 be two arbitrary strictly k-convex solutions satisfying

problem (1.2). It suffices to show that u1 ≤ u2 in Ω.

Since lim
d(x)→0

u1(x)
u2(x)

= 1, we see that there is a sufficiently small constant δε > 0 corresponding

to ε, such that

u1(x) < (1 + ε)u2(x), x ∈ Ωδε .

By f(s)
sk

is increasing on (0,∞), we deduce that

Sk(D
2((1 + ε)u2(x))) = (1 + ε)kb(x)f(u2(x)) ≤ b(x)f((1 + ε)u2(x)), x ∈ Ω.

It follows by the comparison principle for k-Hessian equations that u1 ≤ (1+ε)u2 in Ω. Letting

ε→ 0, we obtain u1 ≤ u2 in Ω. This completes the proof of Theorem 1.1.
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