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1 Introduction

The study of hypercontractivity in quantum mechanics dates back to the work of Nelson [1]

who showed that semiboundedness of certain HamiltoniansH associated to a bosonic system can

be obtained from the hypercontractivity of the semigroup e−tL : L2(R
d, µ) → L2(R

d, µ), where

L is the Dirichlet form operator for the Gaussian measure µ on Rd. After some contributions

(see [2–4]), Nelson finally proved in [5] that the previous semigroup is contractive from Lp(R
d, µ)

to Lr(R
d, µ) if and only if e−2t ≤ p−1

r−1 . By that time a new deep connection was shown by Gross

in [6], who established the equivalence between the hypercontractivity of the semigroup e−tL,

where L is the Dirichlet form operator associated to the measure µ, and the logarithmic Sobolev

inequality verified by µ. The extension of Nelson’s theorem to the fermonic case started with

Gross’ papers (see [7–8]). Namely, he adapted the argument in the bosonic case by considering

a suitable Clifford algebra C(Rd) on the fermion Fock space and noncommutative Lp space

on this algebra after Segal [9]. In particular, hypercontractivity makes perfectly sense in this

context by considering the corresponding Ornstein-Uhlenbeck semigroup

U
(−1)
t = e−tN−1

: L2(C(Rd), τ) → L2(C(Rd), τ).

Here N−1 denotes the fermion number operator. After some partial results (see [7, 10–11]),

the optimal time hypercontractivity bound in the fermionic case was finally obtained by Carlen

and Lieb in [12]:

‖U (−1)
t ‖Lp→Lr = 1 if and only if e−2t ≤ p− 1

r − 1
.
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As a by-product, Carlen and Lieb [12] proved that the above hypercontractivity in the fermion

case is equivalent to the following logarithmic Sobolev inequality:

τ(|a|2) log |a|2 − ‖a‖22 log ‖a‖22 ≤ 2 〈a, N−1a〉

for all a ∈ C(Rd).

Biane [13] who extended Carlen and Lieb’s work and obtained optimal time estimates for

the q-Gaussian von Neumann algebras Γq(−1 ≤ q ≤ 1) introduced by Bozèjko and Speicher [14]

(see Section 2 for the construction of the von Neumann algebra Γq and a precise definition of

the q- Ornstein-Uhlenbeck semigroup on Γq). These algebras interpolate between the bosonic

and fermonic frameworks, corresponding to q = ±1. The semigroup for q = 0 acts diagonally on

free semi-circular variables in the context of Voiculescu’s free probability theory (see [15]). As a

consequence, Biane [13] derived from the optimal hypercontractivity inequality for q-Ornstein-

Uhlenbeck semigroup U
(q)
t = Γq(e

−tI) a logarithmic Sobolev inequality (see [13, Corollary 1]):

τq(|a|2 log |a|2)− ‖a‖22 log ‖a‖22 ≤ 2 εq[a]

for all a inD(ε), whereD(ε) is the domain of Dirichlet form εq[a] = τq(a
∗N qa), τq(a) = 〈Ω, aΩ〉q

for all a ∈ Γq(H), is the tracial state on Γq(H), Ω is the vacuum vector.

In addition, under the framework of inductive limit C∗-algebra, Olkiewicz and Zegarlinski

[16] established the relations between hypercontractivity and logarithmic Sobolev inequality on

the basis of suitable regularity condition of corresponding noncommutative Dirichlet form.

We observe that Biane [13] did not characterize the relation between hypercontractivity and

logarithmic Sobolev inequality for q-Ornstein-Uhlenbeck semigroup. Based on the above men-

tioned materials, the main work of this paper is to prove the equivalence of hypercontractivity

and logarithmic Sobolev inequality for q-Ornstein-Uhlenbeck semigroup. This result refines the

work of Biane [13].

This paper is organized as follows. In the first part we describe the q-Ornstein-Uhlenbeck

semigroup which was introduced in [17], and related concepts and conclusions. In the second

part, we state our main result and give the proof.

2 q-Ornstein-Uhlenbeck Semigroup

We begin by briefly reviewing the q-Fock spaces Fq and the von Neumann algebras Γq (which

are related to the creation and annihilation operators on Fq), and the basic concepts and facts

of Markov semigroups and associated noncommutative Dirichlet forms. It is emphasized that

the Hilbert spaces appearing in this paper are all separable.

2.1 The q-Fock spaces Fq and the von Neumann algebras Γq

Let H be a real Hilbert space with complexification HC . Let Ω be a unit vector in a 1-

dimensional complex Hilbert space (disjoint from HC). We refer to Ω as the vacuum, and by

convention define HC
⊗0 ≡ CΩ. The algebraic Fock space F(H) is defined as

F(H) =

∞
⊕

n=0

H⊗n
C
,
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where the direct sum and tensor product are algebraic. For any q ∈ [−1, 1], we then define a

Hermitian form 〈·, ·〉q to be the conjugate-linear extension of

〈Ω,Ω〉q = 1;

〈f1 ⊗ f2 ⊗ · · · ⊗ fj , g1 ⊗ g2 ⊗ · · · ⊗ gk〉q = δjk
∑

π∈Sk

qi(π)〈f1, gπ(1)〉 · · · 〈fk, gπ(k)〉

for fi, gi ∈ H, where Sk is the symmetric group on k symbols, and i(π) counts the number of

inversions in π, that is

i(π) = ♯{(i, j) : 1 ≤ i < j ≤ k, π(i) > π(j)}.

The form 〈·, ·〉−1 reduces to the standard Hermitian form associated to the Fermion Fock space.

Similarly, the form 〈·, ·〉+1 yields the standard Hermitian form on the Boson Fock space. In each

of these cases the form is degenerate, thus requiring that we take a quotient of F(H) before

completing to form the Fermion or Boson Fock spaces. It is remarkable that, for −1 < q < 1,

the form 〈·, ·〉q is already non-degenerate on F(H) as below.

Proposition 2.1 (see [18]) The Hermitian form 〈·, ·〉q is positive semi-definite on F(H).

Moreover, it is an inner product on F(H) for −1 < q < 1.

For −1 < q < 1, the q-Fock space Fq(H) is defined as the completion of F(H) with respect

to the inner product 〈·, ·〉q . These spaces interpolate between the classical Boson and Fermion

Fock spaces F±(H) which are constructed by first taking the quotient of F(H) by the kernel of

〈·, ·〉± and then completing.

As in the clasical theory, the spaces Fq come equipped with creation and annihilation

operators. For any vector f ∈ H ⊂ HC, define the creation operator cq(f) on Fq(H) to extend

cq(f)Ω = f,

cq(f)f1 ⊗ · · · ⊗ fk = f ⊗ f1 ⊗ · · · ⊗ fk.

The annihilation operator c∗q(f) is its adjoint, which the reader may compute satisfies

c∗q(f)Ω = 0,

c∗q(f)f1 ⊗ · · · ⊗ fk =

k
∑

j=1

qj−1〈fj , f〉f1 ⊗ · · · ⊗ fj−1 ⊗ fj+1 ⊗ · · · ⊗ fk.

Remark 2.1 Since the cases q = ±1 are well known, in the sequel we shall only give proof

of statements for −1 < q < 1.

It can be verified that these operators fulfill the relation

c∗q(g)cq(f)− qcq(f)c
∗
q(g) = 〈f, g〉IFq(H)

for all f, g ∈ HC, where IFq(H) is the identity on Fq(H).

The operators cq, c
∗
q satisfy the above q-commutation relations, which interpolate between

the canonical commutation relations (CCR for short) and canonical anti-commutation relations

(CAR for short) usually associated to the Boson and Fermion Fock spaces. For both Bosons
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and Fermions, the operators cq, c
∗
q also satisfy additional (anti) commutation relation. In the

Boson case, for example, c(f) and c(g) commute for any choices of f and g. However, that if

q 6= ±1 there are no relations between cq(f) and cq(g) if 〈f, g〉 = 0.

When −1 < q < 1, the operators cq(f) and c
∗
q(f) are bounded on Fq(H) with

‖cq(f)‖ = ‖c∗q(f)‖ =

{

‖f‖(1− q)−
1
2 , if 0 ≤ q < 1,

‖f‖, if − 1 < q < 0,

and they are adjoints of each other with respect to our scalar product 〈·, ·〉q.
Now we can define Γq(H) for a real Hilbert spaceH, as the von Neumann algebra of operators

on Fq(H) generated by the selfadjoint q-Gaussian operators

ω(f) = cq(f) + c∗q(f), f ∈ H.

It was proved in [14] that Ω is a cyclic and separating trace vector for Γq(H) and the state

τq(a) = 〈Ω, aΩ〉 for a ∈ Γq(H), is a faithful normal trace on Γq(H).

Let Lp(Γq(H), τq) be the non-commutative Lp-spaces with the trace τq, for 1 ≤ p ≤ ∞; i.e.,

Lp(Γq(H), τq) is the completion of Γq(H) = L∞(Γq(H), τq) with respect to the norm

‖a‖pLp = τq[(a
∗a)

p

2 ], 1 ≤ p <∞.

These spaces share all the functional analytic features of the classical Lp-spaces, such as the

uniform convexity for p ∈ (0,∞), duality between Lp(Γq(H), τq) and L
p′

(Γq(H), τq) with p
−1+

p′−1 = 1, and Riesz-Thorin interpolation, Hölder’s and Clarkson’s inequalities.

Among the properties of these spaces, in the sequel we will use in particular the following

one.

Proposition 2.2 (see [19, Lemma 3.1]) If t ∈ R → ϕ(t) ∈ L
p
+, 1 < p < ∞ is differen-

tiable (with respect to the Lp-norm) at t0, and ϕ(t0) 6= 0. Then t ∈ R → τq(ϕ(t))
p ∈ R+ is

differentiable at t0 and

d

dt
τq(ϕ(t)

p)|t=t0 = pτq

(

ϕ(t0)
p−1 d

dt
ϕ(t)

∣

∣

∣

t=t0

)

.

Remark 2.2 Since τq is a faithful trace, the map

Φ : Γq(H) → Fq(H)

defined as Φ(a) = a(Ω) is a continuous imbedding of Γq(H) into Fq(H) which extends to an

unitary isomorphism of L2(Γq(H), τq) with Fq(H).

2.2 Markov semigroups and Dirichlet form on the above noncommutative space
L2(Γq(H), τq)

In this subsection we briefly recall the concepts and Deny-Beurling

correspondence of Markov semigroup and the associated Dirichlet form on L2(Γq(H), τq).

The details can refer to [20–26].

When a ∈ L2
h(Γq(H), τq), the symbol a ∧ 1 will denote the projection of a onto the closed

convex set {x ∈ L2
+(Γq(H), τq) : x ≤ 1}, where 1 is the unit of Γq(H).
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Definition 2.1 A closed, densely defined, nonnegative quadratic form (ε,D(ε)) on L2(Γq(H), τq)

is said to be

(1) real if for a ∈ D(ε) then J(a) ∈ D(ε) and ε[J(a)] = ε[a];

(2) a Dirichlet form if it is real and ε[a ∧ 1] ≤ ε[a], for a ∈ D(ε) ∩ L2
h(Γq(H), τq);

(3) a completely Dirichlet form if the canonical extension (εn, D(εn)) to L2(Γq(H)⊗Mn(C), τ
n
q ) :

εn[[aij ]
n
i,j=1] :=

n
∑

i,j=1

ε[aij ], is a Dirichlet form for all n ≥ 1, where [aij ]
n
i,j=1 ∈ D(εn) :=

D(ε) ⊗Mn(C), and τnq = τq ⊗ trn is the faithful, normal trace on the von Neumann algebra

Mn(Γq(H)) = Γq(H)⊗Mn(C), here trn is a normalized trace on Mn(C).

Proposition 2.3 (see [20, Proposition 4.5 and Proposition 4.10, 25, Lemma 2.3, 26, Propo-

sition 2.12]) Let (ε,D(ε)) be a closed, densely defined, nonnegative real quadratic form, and

1 ∈ D(ε), where 1 is the unit of Γq(H). Then the following statements are equivalent:

(1) (ε,D(ε)) is a Dirichlet form with respect to 1.

(2) For every real-valued Lipschitz function ϕ : R → R, which satifies |ϕ(t) − ϕ(s)| ≤
cϕ|t − s|, ∀t, s ∈ R and ϕ(0) = 0, where cϕ is a positive constant, we have ε[ϕ(x)] ≤ ε[x]

whenever x ∈ D(ε) ∩ L2
h(Γq(H), τq).

(3) ε(1, x) ≥ 0 for all x ∈ D(ε)∩L2
+(Γq(H)), and ε[|x|] ≤ ε[x] for all x ∈ D(ε)∩L2

h(Γq(H)).

Recall that a sub-Markov semigroup {Tt}t≥0 on Γq(H) = L∞(Γq(H), τq) is a semigroup

consisting of positive normal linear operators on Γq(H), such that Tt1 ≤ 1 and the map t →
Tt(a) from [0,∞) to Γq(H) is continuous with respect to the σ-weak topology on Γq(H) for

each a ∈ Γq(H); if {Tt ⊗ In} is sub-Markovian on the von Neumann algebra Γq(H) ⊗Mn(C)

for all n ≥ 1, then {Tt}t≥0 is called to be completely sub-Markov semigroup, where In is the

unit of matrix algebra Mn(C).

For 1 ≤ p <∞, we have the following concepts of sub-Markov semigroup on Lp(Γq(H), τq).

Definition 2.2 A strongly continuous contractive semigroup {Tt = e−tL}t≥0 consisting of

bounded linear operators on Lp(Γq(H), τq), p ∈ [1,∞), is said to be sub-Markov semigroup,

if 0 ≤ x ≤ 1 then 0 ≤ Ttx ≤ 1, for all t ≥ 0, where L is the infinitesimal generator of the

semigroup Tt, 1 is the unit of Γq(H); furthermore, if {Tt ⊗ In}t≥0 on Lp(Γq(H), τq) ⊗Mn(C)

is sub-Markovian for all n ≥ 1, then {Tt}t≥0 is called to be completely sub-Markovian.

Theorem 2.1 (Beurling-Deny Correspondence, see [25, Theorems 2.7–2.8, 26, Theorem

3.3]) Given a strongly continuous symmetric semigroup Tt = e−tL with infinitesimal generator

L, and the associated quadratic form ε[x] = 〈
√
Lx,

√
Lx〉, for x ∈ D(ε) = D(

√
L). Then the

following are equivalent:

(1) The form ε is a (completely) Dirichlet form.

(2) The semigroup Tt = e−tL is (completely) sub-Markovian.

Remark 2.3 (1) From [26, Proposition 3.1] and [27, Theorem 3.3] the (completely) sub-

Markov semigroup on Γq(H) can be extended to (completely) sub-Markov semigroup on

Lp(Γq(H), τq).

(2) Given a Dirichlet form ε(, ), if the unit 1 ∈ D(ε) then it is called a conservative Dirichlet

form; sub-Markov semigroup Tt is Markovian in case Tt(1) = 1. From the above Theorem 2.1

it is easy to check that {Tt} is (completely) Markovian if and only if the associated quadratic
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form is (completely) conservative Dirichlet form.

2.3 q-Ornstein-Uhlenbeck semigroup

Let T : H1 → H2 be a contraction between real Hilbert spaces H1,H2 with complexification

TC, then the linear map defined on elementary tensors by

Fq(T )(f1 ⊗ · · · ⊗ fn) = TCf1 ⊗ · · · ⊗ TCfn

extends to a contraction

Fq(T ) : Fq(H1) → Fq(H2).

Now we define q-Gaussian functor Γq as a map

Γq(T ) : Γq(H1) → Γq(H2)

as follows:

(1) Γq(T )ω(f) = ω(Tf) for f ∈ H;

(2) (Γq(T )(X))Ω = Fq(T )(XΩ).

Proposition 2.4 (see [17, Theorem 2.11]) Let T : H1 → H2 be a contraction between real

Hilbert spaces, then there exists a unique map Γq(T ) : Γq(H1) → Γq(H2) such that

Γq(T )(X)Ω = Fq(T )(XΩ)

for every X ∈ Γq(H1). Moreover, the map Γq(T ) is bounded, normal, unital, completely positive

and the trace preserving.

Γq(T ) is a functor, that is, if T1 : H1 → H2, T2 : H2 → H3 are contractions, then

Γq(T2T1) = Γq(T2)Γq(T3).

Thus, by the above Remark 2.3, Γq(T ) has a completely positive and unital extension on all

Lp(Γq(H), τq)-spaces.

Now we can introduce q-Ornstein-Uhlenbeck semigroup as follows (see [17]).

Definition 2.3 Let H be a real Hilbert space, and Tt = e−tIH, t ≥ 0; the completely positive

maps U
(q)
t = Γq(Tt) on Γq(H) = L∞(Γq(H), τq) form a semigroup, called the q-Ornstein-

Uhlenbeck semigroup.

By the meaning of U
(q)
t we see that it is a completely Markov semigroup on Γq(H). From the

above Remark 2.3 it implies that U
(q)
t can be extended to completely Markov semigroup on all

noncommutative Lp(Γq(H), τq)-spaces and U
(q)
t = e−tNq

, where its generator on L2(Γq(H), τq)

is the number operator given by

N qΩ = 0;

and

N q(f1 ⊗ · · · ⊗ fn) = n(f1 ⊗ · · · ⊗ fn), fj ∈ HC(j = 1, 2, · · · , n).

Then by the above Theorem 2.1 the corresponding quadratic form ε[x] = 〈
√
N qx,

√
N qx〉 for

all x ∈ D(
√
N q), is a completely conservative Dirichlet form.

Furthermore, U
(q)
t has the Feller property as below.



The Equivalence of Hypercontractivity and Logarithmic Sobolev Inequality 621

Proposition 2.5 U
(q)
t is a Feller semigroup, that is, U

(q)
t Γq(H) ⊆ Γq(H) and U

(q)
t Γ+

q (H) ⊆
Γ+
q (H).

Proof Indeed, given a fixed orthonormal basis {ei}i∈N inH, for any subset I = {i1, i2, · · · , in}
⊆ N, by [17, Proposition 2.7] we can construct the q-Wick product ψI = ψ(ei1 ⊗ei2⊗· · ·⊗ein) ∈
Γq(H) by induction as below:

ψ(eik) = ω(eik) = cq(eik) + c∗q(eik);

ψ(ei1 ⊗ ei2 ⊗ · · · ⊗ ein) = ω(ei1)ψ(ei2 ⊗ · · · ⊗ ein)

−
n
∑

k=1

qk−1〈ei1 , eik〉ψ(ei1 ⊗ · · · ⊗ ěik ⊗ · · · ⊗ ein).

Then from the construction of the q-Ornstein-Uhlenbeck semigroup U
(q)
t , we have U

(q)
t ψI =

e−tnψI . Therefore, U
(q)
t Γq(H) ⊆ Γq(H) and U

(q)
t Γ+

q (H) ⊆ Γ+
q (H).

Proposition 2.6 The subset of invertible positive operators in D(ε) is dense in every non-

commutative space Lp(Γq(H), τq) with respect to Lp-norm for all p ≥ 1.

Proof Given a fixed orthonormal basis {ei}i∈N in H. For any subset I = {i1, i2, · · · , in} ⊆
N, we can construct the q-Wick product ψI = ψ(ei1 ⊗ ei2 ⊗ · · · ⊗ ein) ∈ Γq(H) (see the above

Proposition 2.5). Then from the construction of the q-Ornstein-Uhlenbeck semigroup U
(q)
t =

e−tNq

, we have N qψI = nψI , from which follows that ψI ∈ D(ε). Denote by Γ̃q(H) the set of

all finite linear combinations of such operators in ψI . It follows that Γ̃q(H) ⊂ D(ε) since D(ε)

is a subspace of L2(Γq(H), τq). Since Γ̃q(H) is dense in Γq(H) with respect to the operator

norm, and Γq(H) is dense in every Lp(Γq(H), τq) with respect to Lp-norm for all p ≥ 1, notice

that the operator norm is stronger than Lp-norm, then Γ̃q(H) is dense in every Lp(Γq(H), τq)

with respect to Lp-norm for all p ≥ 1 also. It follows that the subset of positive operators in

Γ̃q(H) is dense in every Lp(Γq(H), τq) (p ≥ 1). Furthermore, since N q1 = 0, where 1 is the

unit in Γq(H), so that 1 ∈ D(ε). Thus, for any positive operator x ∈ Γ̃q(H), then x + 1
n
1 is

invertible for any natural number n, and x + 1
n
1 converges to x in the operator norm. This

shows that the subset of invertible positive operators in Γ̃q(H), and then the subset of invertible

positive operators in D(ε) is dense in every noncommutative space Lp(Γq(H), τq) with respect

to Lp-norm for all p ≥ 1.

3 The Main Results and Their Proofs

The main theme of this section is to prove the equivalence of hypercontractivity and loga-

rithmic Sobolev inequality for q-Ornstein-Uhlenbeck semigroup {U (q)
t }(−1 ≤ q ≤ 1).

3.1 Hypercontractivity and logarithmic Sobolev inequality

First, recall the concept of hypercontractivity as follows.

Definition 3.1 A Markov semigroup {Tt}t≥0 in the interpolating family Lp(Γq(H), τq) is

called hypercontractivity, if for every 1 < p < r < ∞ there exist a(p, r) ≥ 0 and b(p, r) > 0

such that ∀t > a(p, r) we have ‖Ttx‖r ≤ b(p, r)‖x‖p, for each x ∈ Lp(Γq(H); it is called strictly

hypercontractivity if the constant b(p, r) ≤ 1.
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Remark 3.1 Given a > 0 and b ≥ 0, let p(t) = 1 + (p − 1)e
2t
a . Then the above hypercon-

tractivity in Definition 3.1 is equivalent to the following statement.

For all p ∈ (0,∞) one has

‖Ttx‖p(t) ≤ eb(
1
p
− 1

p(t)
)‖x‖p

for ∀t ≥ 0 and each x ∈ Lp(Γq(H), τq).

In the commutative case, it is equivalent to ‖Ttx‖4 ≤ c‖x‖2, ∀t ≥ 0, here c is a positive

constant (see [28, Chapter 3, Theorem 3.2.2]).

Let Ent(x) = τq(x log x)−‖x‖L2 log ‖x‖L2 denote the relative entropy of a positive element

x. Now we can state the main result of this paper.

Theorem 3.1 Given constants a > 0 and b ≥ 0. For p > 1, let p(t) = 1+ (p− 1)e
2t
a , b(t) =

b
(

1
p
− 1

p(t)

)

. Then the following statements are equivalent:

(1) ‖U (q)
t x‖p(t) ≤ eb(t)‖x‖p for all x ∈ Γq(H), ∀p > 1, ∀t ≥ 0;

(2) Ent(|x|2) ≤ 2aε[x] + b‖x‖22 for all x ∈ D(ε).

We need the following lemma which plays a crucial role for proving the above Theorem 3.1.

It was proved by Biane in [13] (see [13, Lemma 3]), its special case in the Clifford algebra setting

had been proved by Gross in [8] (see [8, Lemma 1.1]). Here we use spectral decomposition to

give a new proof that is different from Biane’s. This lemma is also very interesting itself.

Lemma 3.1 For all invertible positive x ∈ D(ε), and 1 < p <∞, one has

ε[x
p

2 ] ≤ p2

4(p− 1)
ε(x, xp−1).

That is

〈x p

2 , N qx
p

2 〉 ≤ p2

4(p− 1)
〈x,N qxp−1〉.

Proof First, notice that x is invertible and positive, then there exists a constant c > 0 such

that Spec(x) ⊆ [c, ‖x‖]. Hence, by the above Proposition 2.3 item (2) combining the function

calculus of x it is easy to check that x
p

2 and xp−1 are in D(ε). By the definition and spectrum

decomposition of N q,

〈x p

2 , N qx
p

2 〉 = lim
t→0

1

t
τq[(x

p

2 − U
(q)
t x

p

2 )x
p

2 ];

〈x,N qxp−1〉 = 〈N qx, xp−1〉 = lim
t→0

1

t
τq[(x− U

(q)
t x)xp−1].

So, it suffices to prove

τq[(x
p

2 − U
(q)
t x

p

2 )x
p

2 ] ≤ p2

4(p− 1)
τq[(x− U

(q)
t x)xp−1]. (3.1)

For any fixed t > 0. Since U
(q)
t is symmetric and Markovian, then for ϕ and ψ positive and

continuous functions on R, τq[ϕ(x)U
(q)
t (ψ(x))] is positive and linear in ϕ and ψ. Moreover for ϕ

and ψ such that ϕ(α) ≤ c|α| and ψ(α) ≤ c′|α|, where c, c′ are constants. As a general property

for normal traces on von Neumann algebras (see [25–26]), there exists a positive measure µx on

R\{0}×R\{0} with support contained in Spec(x)×Spec(x) such that µx(α, β) = µx(β, α) and

τq[ϕ(x)U
(q)
t (ψ(x))] =

∫ ∫

ϕ(α)ψ(β)dµx(α, β).
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Consider now the quadratic form τq[x(1 − U
(q)
t )x]. Notice that U

(q)
t (1) = 1, we then have

τq[ϕ(x)(1 − U
(q)
t )ϕ(x)] = τq[ϕ(x)

2(1− U
(q)
t (1))] + τq[ϕ(x)

2U
(q)
t (1)− ϕ(x)U

(q)
t (ϕ(x))]

= τq[ϕ(x)
2U

(q)
t (1)− ϕ(x)U

(q)
t (ϕ(x))] = τq[ϕ(x)

2 − ϕ(x)U
(q)
t (ϕ(x))].

Therefore we have

τq[ϕ(x)(1 − U
(q)
t )ϕ(x)] =

1

2

∫ ∫

[ϕ(α)− ϕ(β)]2dµx(α, β). (3.2)

In the following let ϕ(α) = α
p
2 , α ∈ Spec(x). Take ϕ(x) = x

p
2 in the above equation (3.2), we

obtain

τq[(x
p

2 − U
(q)
t x

p

2 )x
p

2 ] =
1

2

∫ ∫

(α
p

2 − β
p

2 )2dµx(α, β).

Similarly,

τq[x
p−1(x− U

(q)
t x)] =

1

2

∫ ∫

(α− β)(αp−1 − βp−1)dµx(α, β).

Then (3.1) holds true from the above two formulas combining the following fact

(a
p

2 − b
p

2 )2 ≤ p2

4(p− 1)
(a− b)(ap−1 − bp−1), a, b ≥ 0, p > 1.

The Proof of Theorem 3.1 First, from [12, Theorem 3] and [13, Lemma 4] we see that

the norm of U
(q)
t from L

p
h(Γq(H), τq) to Lr

h(Γq(H), τq) (p, r > 1) is achieved on the positive

cone Lp
+(Γq(H), τq). So it is sufficient to consider hypercontractivity on positive cones. Given

an invertible positive x ∈ D(ε), put ϕ(t) = e−b(t)‖U (q)
t x‖p(t). By [29, Lemma 2] and the above

Proposition 2.2, a straightforward calculus shows that

d

dt
logϕ(t) =

d

dt
(−b(t) + log ‖U (q)

t x‖p(t))

= −b′(t) + 1

‖U (q)
t x‖p(t)

d‖U (q)
t x‖p(t)
dt

= −b′(t) + 1

‖U (q)
t x‖p(t)

d

dt
[τq(U

(q)
t x)p(t)]

1
p(t) . (I)

Since

d

dt
[τq(U

(q)
t x)p(t)]

1
p(t) = ‖U (q)

t x‖p(t)
d

dt

[ 1

p(t)
log τq(U

(q)
t x)p(t)

]

= ‖U (q)
t x‖p(t)

[

− p′(t)

p2(t)
log ‖U (q)

t x‖p(t)
p(t) +

1

p(t)

1

‖U (q)
t x‖p(t)

p(t)

d‖U (q)
t x‖p(t)

p(t)

dt

]

,

and since

d‖U (q)
t x‖p(t)

p(t)

dt
=

d

dt
τq[(U

(q)
t x)p(t)]

= τq

[

(U
(q)
t x)p(t)

(

p′(t) logU
(q)
t x+ p(t)(U

(q)
t x)−1 dU

(q)
t x

dt

)]

,
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then take the above equation to formula (I), we have

d

dt
logϕ(t) = −b′(t)− p′(t)

p2(t)
log ‖U (q)

t x‖p(t)
p(t)

+
1

p(t)‖U (q)
t x‖p(t)

p(t)

τq

[

(U
(q)
t x)p(t)

(

p′(t) logU
(q)
t x+ p(t)(U

(q)
t x)−1 dU

(q)
t x

dt

)]

= −b′(t)− p′(t)

p2(t)
log ‖U (q)

t x‖p(t)
p(t) +

1

p(t)‖U (q)
t x‖p(t)

p(t)

τq[p
′(t)(U

(q)
t x)p(t) logU

(q)
t x]

+ τq

[

p(t)(U
(q)
t x)p(t)−1 dU

(q)
t x

dt

]

. (II)

Notice that
dU

(q)
t x

dt = −N q(U
(q)
t x), so that

τq

[

(U
(q)
t x)p(t)−1 dU

(q)
t x

dt

]

= −ε((U (q)
t x)p(t)−1, U

(q)
t x).

On the other hand,

Ent((U
(q)
t x)p(t)) = τq[(U

(q)
t x)p(t) log(U

(q)
t x)p(t)]− τq[(U

(q)
t x)p(t) log τq[(U

(q)
t x)p(t)]]

= τq[(U
(q)
t x)p(t) log(U

(q)
t x)p(t)]− ‖U (q)

t x‖p(t)
p(t) log ‖U

(q)
t x‖p(t)

p(t).

Combing with the above formula (II) one can obtain

d

dt
logϕ(t) = −b′(t) + p′(t)

p(t)2
1

‖U (q)
t x‖p(t)

p(t)

Ent((U
(q)
t x)p(t))

− 1

‖U (q)
t x‖p(t)

p(t)

ε((U
(q)
t x)p(t)−1, U

(q)
t x). (III)

Assume (1). Since b(0) = 0 and p(0) = p, it follows that ϕ(0) = ‖x‖p, then by the hypercon-

tractivity of (U
(q)
t ) implies that ϕ′(0) ≤ 0, which gives, via the above formula (III),

Ent((U
(q)
t x)p(t)) ≤

p2(t)‖U (q)
t x‖p(t)

p(t)

p′(t)

[

b′(t) +
1

‖U (q)
t x‖p(t)

p(t)

ε((U
(q)
t x)p(t)−1, U

(q)
t x)

]

.

Let t = 0 and p = 2, from which follows that p(0) = 2, p′(0) = 2
a
, b′(0) = 1

2a . Therefore, from

the above inequality it implies that

Ent(x2) ≤ 2aε[x] + b‖x‖22.

Now, given any positive element y ∈ D(ε). For any fixed natural number n, then y + 1
n
x is

invertible positive in D(ε). By the above proof we have

Ent
((

y +
1

n
x
)2)

≤ 2aε
[

y +
1

n
x
]

+ b
∥

∥

∥
y +

1

n
x
∥

∥

∥

2

2
.

Notice that

ε
[

y +
1

n
x
]

=
〈

y +
1

n
x,N q

(

y +
1

n
x
)〉

= ε[y] +
1

n2
ε[x] +

2

n
ε(x, y).
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Let n→ ∞, and combining the continuity of norm we obtain

Ent(y2) ≤ 2aε[y] + b‖y‖22.

Finally, for general z ∈ D(ε), from the above proof we have

Ent(|z|2) ≤ 2aε[|z|] + b‖z‖22.

Since ε[|z|] ≤ ε[z] (see the above Proposition 2.3), then combining the above inequality implies

that

Ent(|z|2) ≤ 2aε[z] + b‖z‖2L2.

Conversely, assume (2). For a given invertible positive x ∈ D(ε), we have

Ent(x2) ≤ 2aε[x] + b‖x‖22.

Replace x with x
p

2 , one can get

Ent(xp) ≤ 2aε[x
p

2 ] + b‖x p

2 ‖22.

By Lemma 3.1 it implies that

Ent(xp) ≤ ap2

2(p− 1)
ε(xp−1, x) + b‖x‖pp.

Set x be U
(q)
t x and p be p(t) in the above formula, we have

Ent((U
(q)
t x)p(t)) ≤ ap(t)2

2(p(t)− 1)
ε((U

(q)
t x)p−1, U

(q)
t x) + b‖U (q)

t x‖p(t)
p(t). (IV)

Notice that the above formula (III),

d

dt
logϕ(t) =

p′(t)

p2(t)‖U (q)
t x‖p(t)

p(t)

[

Ent((U
(q)
t x)p(t))

− p(t)2

p′(t)
ε((U

(q)
t x)p(t)−1, U

(q)
t x)− b′(t)p(t)2

p′(t)
‖U (q)

t x‖p(t)
p(t)

]

. (V)

Since b(t) = b
(

1
p
− 1

p(t)

)

, p(t) = 1+(p−1)e
2t
a , then b′(t) = p′(t)

p(t)2 , p
′(t) = 2

a
(p−1)e

2t
a . From which

follows that p(t)2

p′(t) = ap(t)2

2(p(t)−1) , and
b′(t)p(t)2

p′(t) = b. Compare (IV) and (V), then d
dt logϕ(t) ≤ 0,

thus, d
dtϕ(t) ≤ 0. Therefore, ϕ(t) ≤ ϕ(0) = ‖x‖p. Since the subset of invertible positive elements

in D(ε) is dense in all Lp(Γq(H), τq) for all p > 1 (see the above Proposition 2.6), and since

ϕ(t) is continuous in the operator norm, which in turn yields the hypercontractivity of {U (q)
t }.

Biane (see [13, Corollary 1]) derived a logarithmic Sobolev inequality from strictly hyper-

contractivity. In fact, if a = 1 and b(t) = 0 in the above Theorem 3.1, the following direct

consequence shows that strictly hypercontractivity and the logarithmic Sobolev inequality in

[13, Corollary 1] is equivalent.

Corollary 3.1 The conditions are the same as in the above Theorem 3.1. Then the following

statements are equivalent:

(1) ‖U (q)
t x‖p(t) ≤ ‖x‖p for all x ∈ Γq(H), ∀p > 1, ∀t ≥ 0;

(2) Ent(|x|2) ≤ 2 ε[x] for all x ∈ D(ε).
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