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1 Introduction

In the past ten years many attentions were attracted by the following models of Kirchhoff

plates subject to a viscoelastic damping

utt − σ∆utt + α∆2u−

∫ t

−∞

µ(t− s)∆2u(s)ds = F , (1.1)

where σ > 0 is the uniform plate thickness, the kernel µ > 0 corresponds to the viscoelastic

flexural rigidity, and F = F(x, t, u, ut, · · · ) represents additional damping and forcing terms.

The unknown function u = u(x, t) represents the transverse displacement of a plate filament

with prescribed history u0(x, t), t ≤ 0. The derivation of the linear mathematical model (1.1)

with F = 0 is given in [1–2], by assuming viscoelastic stress-strain laws on an isotropic material

occupying a region of R3 and constant Poissons ratio.

When σ = µ = 0, i.e., neglecting the influence of viscoelastic term and rotational inertia

term, the model (1.1) was extensively studied by Yang [3–6] and Yang and Jin [7]. More

precisely they proved the global solvability and existence of finite-dimensional global attractors

to a strongly damped system of the form

utt +∆2u− div(|∇u|p−2∇u)−∆ut = h(x, u, ut), (1.2)

in bounded domains of RN with critical and subcritical exponents p. In particular, in a two-

dimensional setting with p = 4 and weak damping, (1.2) corresponds to the so called Kirchhoff-
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Boussinesq model for nonlinear plates

utt +∆2u− div(|∇u|p−2∇u) + kut = α∆(u2)− f(u). (1.3)

Chueshov and Lasiecka [8–9] established the existence of finite-dimensional global attractors to

(1.3) under a weak damping kut instead of −∆ut.

If σ = 0 and F = div(|∇u|p−2∇u)− g(u) + ∆ut + h(x), p ≥ 2, the model (1.1) becomes

utt + α∆2u− div(|∇u|p−2∇u)−

∫ ∞

0

µ(s)∆2u(t− s)ds−∆ut + g(u) = h(x). (1.4)

In [10–11], Jorge Silva and Ma established the well-posedness, exponential stability and long-

time dynamics of (1.4) Narciso [12] discussed the long-time behavior of the following evolution

equation:

utt + α∆2u−

∫ t

−∞

µ(t− s)∆2u(s)ds+ f(u) + g(ut) = h(x).

By considering the nonlinear damping and source terms

g(ut) ≈ |ut|
p−1ut and f(u) ≈ |u|αu− |u|βu

with 1 < p ≤ 3 and 0 ≤ β < α ≤ 2, the author showed the existence of the global attractor.

This work was extended by Conti and Geredeli [13] to a situation where g has any arbitray

polynomial growth instead of cubic at most and f has no growth restriction.

In the presence of the rotational inertia term (σ > 0), the model (1.1) with α = 1 and

u(x, t) = 0, t ≤ 0 was considered by several authors. In [14], Barreto et al. studied the following

viscoelastic equation:

utt − σ∆utt +∆2u−

∫ t

0

µ(t− s)∆2u(s)ds = 0. (1.5)

They established that the energy decays to zero with the same rate of the kernel µ such as

exponential and polynomial decay.

More recently, Jorge Silva et al. [15] investigated the well-posedness and the asymptotic

behavior of energy to the following nonlinear viscoelastic Kirchhoff plate equation:

utt − σ∆utt +∆2u− divf(∇u)−

∫ t

0

µ(t− s)∆2u(s)ds = 0. (1.6)

Motivated by the works above, our goal of this paper is to discuss the long-time behavior

of the following nonlinear viscoelastic Kirchhoff plate equation:

utt − σ∆utt + α∆2u− divf(∇u)−

∫ ∞

0

µ(s)∆2u(t− s)ds−∆ut + g(u) = h(x), (1.7)

with simply supported boundary condition

u = ∆u = 0 on ∂Ω× R (1.8)

and initial conditions

u(x, τ) = u0(x, τ) and ut(x, τ) = ∂tu0(x, τ), (x, τ) ∈ Ω× (−∞, 0], (1.9)
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where Ω is a bounded domain of RN with smooth boundary ∂Ω, u0 : Ω × (−∞, 0] → R is the

prescribed past history of u. Here, α > 0 is a constant, µ is the memory kernel, f : RN → R
N

is a vector field, and g, h are forcing terms. Without loss of generality we can take σ = 1.

Following the framework proposed in [16–17], which uses an argument of [18], we shall add

a new variable ηt to the system which corresponds to the relative displacement history. Let us

define

ηt(x, s) = u(x, t)− u(x, t− s), (x, s) ∈ Ω× R
+, t ≥ 0. (1.10)

Differentiating (1.10) with respect to t we have

ηtt(x, s) = −ηts(x, s) + ut(x, t), (x, s) ∈ Ω× R
+, t ≥ 0

and we can take as initial condition (t = 0)

η0(x, s) = u0(x, 0)− u0(x,−s), (x, s) ∈ Ω× R
+.

Thus, the original memory term can be rewritten as
∫ ∞

0

µ(s)∆2u(t− s)ds =
(

∫ ∞

0

µ(s)ds
)

∆2u(t)−

∫ ∞

0

µ(s)∆2ηt(s)ds.

Then assuming for simplicity that α = 1 +
∫∞

0 µ(s)ds, (1.7) becomes

utt −∆utt − divf(∇u) + ∆2u+

∫ ∞

0

µ(s)∆2ηt(s)ds−∆ut + g(u) = h(x), (1.11)

ηtt(x, s) = −ηts(x, s) + ut(x, s), (1.12)

with boundary condition

u = ∆u = 0 on ∂Ω× R
+, ηt = ∆ηt = 0 on ∂Ω× R

+ (1.13)

and initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), ηt(x, 0) = 0, η0(x, s) = η0(x, s), (1.14)

where










u0(x) = u0(x, 0), x ∈ Ω,

u1(x) = ∂tu0(x, t)|t=0, x ∈ Ω,

η0(x, s) = u0(x, 0)− u0(x,−s), (x, s) ∈ Ω× R
+.

2 Preliminaries

In this section we recall some fundamentals of the theory of infinite-dimensional dynamical

systems which can be founded in classic references such as [19–22]. Below we follow more closely

the book by Chueshov and Lasiecka [23–24].

Theorem 2.1 A dissipative dynamical system (H, S(t)) has a compact global attractor if

and only if it is asymptotically smooth.

The proof of asymptotic smoothness property can be very delicate. Here we use the following

“compensated compactness”result in [23–24] and [25–26] for other applications.
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Theorem 2.2 Suppose that for any bounded positively invariant set B ⊂ H and for any

ε > 0, there exists T = T (ε,B) such that

‖S(T )x− S(T )y‖H ≤ ε+ φT (x, y), ∀ x, y ∈ B,

where φT : B ×B → R satisfies

lim inf
n→∞

lim inf
m→∞

φT (zn, zm) = 0, (2.1)

for any sequence {zn}n∈N in B. Then S(t) is asymptotic smooth in H.

Let X,Y, Z be three reflexive Banach spaces with X compactly embedded in Y and put

H = X × Y × Z. Consider the dynamical system (H, S(t)) given by an evolution operator

S(t)w = (u(t), ut(t), η
t), w = (u0, u1, η0) ∈ H, (2.2)

where the functions u and ηt have regularity

u ∈ C(R+;X) ∩C1(R+;Y ), ηt ∈ C(R+;Z). (2.3)

Then one says that (H, S(t)) is quasi-stable on a set B ⊂ H if there exists a compact seminorm

nX on X and nonnegative scalar functions a(t) and c(t), locally bounded in [0,∞), and b(t) ∈

L1(R+) with lim
t→+∞

b(t) = 0, such that,

‖S(t)w1 − S(t)w2‖
2
H ≤ a(t)‖w1(t)− w2(t)‖

2
H (2.4)

and

‖S(t)w1 − S(t)w2‖
2
H ≤ b(t)‖w1(t)− w2(t)‖

2
H + c(t) sup

0<s<t

[nX(u(s)− v(s))]2, (2.5)

for any w1 = (u, ut, η
t), w2 = (v, vt, ξ

t) ∈ B. The inequality (2.5) is often called stabilizability

inequality.

Theorem 2.3 Let (H, S(t)) be given by (2.2) and satisfying (2.3). If (H, S(t)) possesses

a compact global attractor A and is quasi-stable on A, then the attractor A has finite fractal

dimension.

3 Assumptions and the Main Result

We start this section introducing the following Hilbert spaces

V0 = L2(Ω), V1 = H1
0 (Ω), V2 = H2(Ω) ∩H1

0 (Ω)

and

V3 = {u ∈ H3(Ω)|u = ∆u = 0 on ∂Ω},

equipped with respective inner products and norms,

(u, v)V1 = (∇u,∇v) and ‖u‖V1 = ‖∇u‖2,

(u, v)V2 = (∆u,∆v) and ‖u‖V2 = ‖∆u‖2,

(u, v)V3 = (∇∆u,∇∆v) and ‖u‖V3 = ‖∇∆u‖2.
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As usual, ‖ · ‖p denotes the Lp-norms as well as (·, ·) denotes either the L2-inner product or

else a duality pairing between a Banach space V and its dual V ′. The constants λ0, λ1, λ2 > 0

represent the embedding constants

λ0‖u‖
2
2 ≤ ‖∇u‖22, λ1‖u‖

2
2 ≤ ‖∆u‖22, λ2‖∇u‖22 ≤ ‖∆u‖22 for u ∈ V2. (3.1)

In order to consider the relative displacement ηt as a new variable, one introduces the weighted

L2-spaces

Mi := L2
µ(R

+;Vi) =
{

ξ : R+ → Vi

∣

∣

∣

∫ ∞

0

µ(s)‖ξ(s)‖2Vi
ds < ∞

}

, i = 0, 1, 2, 3,

which are Hilbert spaces endowed with inner products and norms

(ξ1, ξ2)µ,i =

∫ ∞

0

µ(s)(ξ1(s), ξ2(s))Vi
ds

and

‖ξ‖2µ,i =

∫ ∞

0

µ(s)‖ξ(s)‖2Vi
ds, i = 0, 1, 2, 3

respectively.

Now let us introduce the phase spaces

H = V2 × V1 ×M2 and H1 = V3 × V2 ×M3, (3.2)

equipped with norms

‖(u, v, ξ)‖H = ‖∆u‖22 + ‖∇v‖22 + ‖ξ‖2µ,2

and

‖(u, v, ξ)‖H1 = ‖∇∆u‖22 + ‖∆v‖22 + ‖ξ‖2µ,3

respectively.

Next we impose some hypotheses on f, g and µ.

Assumption A.1 Concerning the forcing term f : RN → R
N is a C1-vector field given by

f = (f1, · · · , fN ) such that

|∇fj(z)| ≤ kj(1 + |z|
pj−1

2 ), ∀z ∈ R
N , (3.3)

where, for every j = 1, · · · , N , we consider kj > 0 and pj satisfying

pj ≥ 1 if N = 1, 2 and 1 ≤ pj ≤
N + 2

N − 2
if N ≥ 3. (3.4)

Moreover, f is a conservative vector field with f = ∇F , where F : RN → R is a real valued

function satisfying

−β0 −
β

2
|z|2 ≤ F (z) ≤ f(z) · z +

β

2
|z|2, ∀z ∈ R

N , (3.5)

where β0 ≥ 0 and β ∈
[

0, λ2

2

)

.
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Remark 3.1 Observe that the vector field satisfying conditions (3.3) and (3.5) includes not

only usual p-Laplacian operator but also other forms. Then we give examples of vector fields.

Let us consider

F (z) =
1

p
|z|p, z = (z1, · · · , zN) ∈ R

N , p ≥ 2.

We note that f = ∇F . Then we have

f(z) = |z|p−2z.

It is also easy to verify that (3.3) and (3.5) hold true. Therefore, this vector field generates the

following p-Laplacian operator

divf(∇u) = div(|∇u|p−2∇u).

Another case of p-Laplacian operator arises when we consider the vector field f = (f1, · · · , fN )

whose components fj, j = 1, · · · , N are given by

fj(z) = |zj |
p−2zj , ∀ z = (z1, · · · , zN ) ∈ R

N ,

where p ≥ 2. In this case

divf(∇u) =

N
∑

j=1

∂

∂xj

(
∣

∣

∣

∂u

∂xj

∣

∣

∣

p−2 ∂u

∂xj

)

.

To illustrate another vector field, different one of p-Laplacian type, we consider f = ∇F , where

the potential function is given by

F (z) = ln(
√

|z|2 + 1), z = (z1, · · · , zN ) ∈ R
N .

In such case we have

f(z) =
z

|z|2 + 1
, ∀ z ∈ R

N ,

which vanishes when z → ∞. It is easy to check that F and f satisfy (3.3) and (3.5). Thus

div(f(∇u)) = div
( ∇u

|∇u|2 + 1

)

.

Assumption A.2 With respect to g : R → R we assume that

g(0) = 0, |g(u)− g(v)| ≤ σ0(1 + |u|q + |v|q)|u− v|, ∀u, v ∈ R, (3.6)

where σ0 > 0 and

0 < q ≤
4

N − 4
if N ≥ 5 and q > 0 if 1 ≤ N ≤ 4. (3.7)

In addition, we assume that for some σ1 ≥ 0,

−σ1 ≤ G(u) ≤ g(u)u, ∀u ∈ R, (3.8)

where G(z) =
∫ z

0
g(s)ds.
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Assumption A.3 The memory kernel is required to satisfy the following hypotheses

µ ∈ C1(R+) ∩ L1(R+), µ′(s) ≤ 0, µ(s) ≥ 0, (3.9)

and there exist µ0, δ > 0 such that

∫ ∞

0

µ(s)ds = µ0 (3.10)

and

µ′(s) + δµ(s) ≤ 0, ∀s ∈ R
+. (3.11)

Remark 3.2 Applying (3.4) it follows from Sobolev embedding that

V2 →֒ W
1,pj+1
0 (Ω), ∀j = 1, · · · , N.

Thereby, the constants µp1 , · · · , µpN
> 0 represent the embedding constants for

‖∇u‖pj+1 ≤ µpj
‖△u‖22, j = 1, · · · , N. (3.12)

Also, condition (3.7) implies that

V2 →֒ L2(q+1).

In addition, assumptions (3.6) and (3.8) include nonlinear terms of the form

g(u) ≈ |u|qu± |u|θu, 0 < θ < q.

Given initial data (u0, u1, η0) ∈ H and h ∈ V0, a function z = (u, ut, η
t) ∈ C([0, T ],H) is

called a weak solution of the problem (1.11)–(1.14) if it satisfies the initial condition z(0) =

(u0, u1, η0) and

(utt, ω) + (∇utt,∇ω) + (∆u,∆ω) + (∇ut,∇ω) + (f(∇u),∇ω)

+

∫ ∞

0

(∆ηt,∆ω) + (g(u)− h, ω) = 0,

(ηtt + ηts, ξ)µ,2 = (ut(t), ξ)µ,2,

for all ω ∈ V1, ξ ∈ M2 and a.e. t ∈ [0, T ].

The energy corresponding to the system (1.11)–(1.14) is defined as

E(t) =
1

2
‖ut‖

2
2 +

1

2
‖∇ut‖

2
2 +

1

2
‖∆u‖22 +

1

2
‖ηt‖2µ,2

+

∫

Ω

F (∇u)dx+

∫

Ω

(G(u)− hu)dx. (3.13)

Applying Faedo-Galerkin method and combining the arguments of Jorge Silva [15] with

those of Jorge Silva and Ma [10], we can obtain the following result.

Theorem 3.1 Assume that assumptions A.1–A.3 hold and consider h ∈ V0. Then we have

(i) If initial data (u0, u1, η0) ∈ H, then problem (1.11)–(1.14) has a weak solution

(u, ut, η
t) ∈ C([0, T ],H), ∀ T > 0,
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satisfying

u ∈ L∞(0, T ;V2), ut ∈ L∞(0, T ;V1),

(I−∆)utt ∈ L∞
loc(R

+, V ′
2), ηt ∈ L∞(0, T ;M2).

(ii) If initial data (u0, u1, η0) ∈ H1, then problem (1.11)–(1.14) has a stronger solution

satisfying

u ∈ L∞(0, T ;V3), ut ∈ L∞(0, T ;V2),

(I−∆)utt ∈ L∞
loc(R

+, V ′
1), ηt ∈ L∞(0, T ;M3).

(iii) Let z1(t) = (u, ut, η
t), z2(t) = (v, vt, ξ

t) be weak solutions of problem (1.11)–(1.14)

corresponding to initial data z1(0) = (u0, u1, η0), z2(0) = (v0, v1, ξ0). Then one has

‖z1(t)− z2(t)‖
2
H ≤ CT ‖z1(0)− z2(0)‖

2
H, t ≥ 0,

for some constant CT = C(‖z1(0)‖H, ‖z2(0)‖H, T ) > 0. In particular, problem (1.11)–(1.14)

has a unique weak solution.

Remark 3.3 The well-posedness of problem (1.11)–(1.14) given by Theorem 3.1 implies

that the one-parameter family of operators S(t) : H → H defined by

S(t)(u0, u1, η0) = (u(t), ut(t), η
t(t)), t ≥ 0, (3.14)

where (u(t), ut(t), η
t(t)) is the unique weak solution of the system (1.11)–(1.14), satisfies the

semigroup properties

S(0) = I and S(t+ s) = S(t) ◦ S(s), t, s ≥ 0,

and defines a nonlinear C0-semigroup. Then problem (1.11)–(1.14) can be viewed as a nonlinear

infinite dynamical system (H, S(t)).

Our main result in this present paper is the following.

Theorem 3.2 Assume that assumptions A.1–A.3 hold and consider h ∈ V0. Then we have

(i) The dynamical system (H, S(t)) corresponding to the system (1.11)–(1.14) has a compact

global attractor A ⊂ H.

(ii) If in (3.4) and (3.7) we assume subcritical conditions

1 ≤ pj <
N + 2

N − 2
if N ≥ 3 and 0 < q <

4

N − 4
if N ≥ 5, (3.15)

then the corresponding global attractor A has finite fractal dimension.

4 Proof of the Main Result

In this section we will apply the abstract results presented in Section 2 to prove Theorem

3.2. The proof is divided three steps. The first step is to show that the dynamical system

(H, S(t)) is dissipative. The second step is to verify the asymptotic smoothness. Then the

existence of a compact global attractor is guaranteed by Theorem 2.1. The final step is to

prove the quasi-stability property which implies that the fractal dimension of the attractor is

finite, as stated in Theorem 2.3.
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4.1 Existence of an absorbing set

Lemma 4.1 (Absorbing Set) Under assumptions of Theorem 3.2, the semigroup S(t) de-

fined by (3.14) has a bounded absorbing set B ∈ H.

Proof Multiplying (1.11) by ut and (1.12) by ηt and integrating over Ω, we obtain

d

dt
E(t) = −‖∇ut‖

2
2 − (ηt, ηts)µ,2. (4.1)

From (3.9), we see that

(ηt, ηts)µ,2 =
1

2

∫ ∞

0

µ(s)
d

dt
‖∆ηt(s)‖22ds

=
[1

2
µ(s)‖∆ηt(s)‖22

]∞

0
−

1

2

∫ ∞

0

µ′(s)‖∆ηt(s)‖22ds.

Using (3.11) we arrive at

µ(s) ≤ µ(0)e−δs, ∀s ∈ R
+.

And this implies

lim
s→∞

µ(s) = 0.

According to (1.10), namely, the definition of ηt(x, s), one can easily see that

ηt(x, 0) = u(x, t)− u(x, t− 0) = 0,

which implies that

‖∆ηt(0)‖22 = 0.

Thus

(ηt, ηts)µ,2 = −
1

2

∫ ∞

0

µ′(s)‖∆ηt(s)‖22ds,

which together with (3.11) gives

(ηt, ηts)µ,2 ≥
δ

2
‖ηt‖2µ,2. (4.2)

This proves that (4.1) can be written as

d

dt
E(t) ≤ −‖∇ut‖

2
2 −

δ

2
‖ηt‖2µ,2. (4.3)

Next let us consider the perturbed energy

Eε(t) = E(t) + εΨ(t), ε > 0,

with

Ψ(t) =

∫

Ω

ut(t)u(t)dx−

∫

Ω

△ut(t)u(t)dx. (4.4)
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Let us show that there exists a constant C1 > 0 such that

|Eε(t)− E(t)| ≤ εC1(E(t) + ‖h‖22 + |Ω|), ∀t ≥ 0, ∀ε > 0. (4.5)

Indeed, from (3.8), (3.1) and Young inequality, we get

∫

Ω

(G(u)− hu)dx ≥ −
1

4
‖∆u‖22 − σ1|Ω| −

1

λ1
‖h‖22. (4.6)

Combining (3.5) with (3.1), we can see that

∫

Ω

F (∇u)dx ≥ −β0|Ω| −
β

2
‖∇u‖22 ≥ −β0|Ω| −

β

2λ2
‖∆u‖22. (4.7)

Then using (3.13)–(4.7) we obtain

E(t) +
1

λ1
‖h‖22 + (β0 + σ1)|Ω| ≥

1

2
‖∇ut‖

2
2 +

1

2
‖ηt‖22 +

(1

4
−

β

2λ2

)

‖∆u‖22

≥
1

2
C2‖(u(t), ut(t), η

t)‖2H, (4.8)

where C2 = min{1, 12 − β
λ1
}.

Using Young inequality, (3.1) and (4.8), we have

|Ψ(t)| ≤
1

2
‖ut‖

2
2 +

1

2
‖u‖22 +

1

2
‖∇ut‖

2
2 +

1

2
‖∇u‖22

≤
1

2

( 1

λ0
+ 1

)

‖∇ut‖
2
2 +

1

2

( 1

λ1
+

1

λ2

)

‖∆u‖22

≤
C3C4

C2
(E(t) + ‖h‖22 + |Ω|), (4.9)

where

C3 = max
{

λ0 + 1,
1

λ1
+

1

λ2

}

, C4 = max
{

1,
1

λ1
, β0 + σ1

}

.

Then taking C1 = C3C4

C2
the inequality (4.5) follows.

Next let us prove that there exist constants C5, C6 > 0 such that

Ψ′(t) ≤ −E(t) + C5‖∇ut(t)‖
2
2 + C6‖η

t‖2µ,2. (4.10)

From definition of Ψ(t), we see that

Ψ′(t) =

∫

Ω

(utt −∆utt)udx+ ‖ut‖
2
2 + ‖∇ut‖

2
2. (4.11)

Using (1.11) we obtain

∫

Ω

(utt −∆utt)udx = −‖∆u‖22 −

∫

Ω

f(∇u) · ∇udx−

∫ ∞

0

µ(s)(∆ηt(s),∆u(t))ds

−

∫

Ω

∇ut · ∇udx−

∫

Ω

(g(u)u− hu)dx. (4.12)

Combining (4.11)–(4.12) with (3.13), we get

Ψ′(t) = −E(t) +
3

2
‖ut‖

2
2 +

3

2
‖∇ut‖

2
2 −

1

2
‖∆u‖22 +

1

2
‖ηt‖2µ,2
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+ I1 + I2 + I3 + I4, (4.13)

where

I1 =

∫

Ω

[G(u)− g(u)u]dx,

I2 =

∫

Ω

[F (∇u)− f(∇u) · ∇u]dx,

I3 = −

∫ ∞

0

µ(s)(∆ηt(s),∆u(t))ds,

I4 = −

∫

Ω

∇ut · ∇udx.

Now let us estimate Ii(i = 1, 2, 3, 4). From (3.8), we have I1 ≤ 0 promptly.

Combining (3.5) with (3.1), we see that

I2 ≤

∫

Ω

β

2
|∇u|2dx ≤

β

2λ2
‖∆u‖22. (4.14)

By Young inequality, given ν > 0, we get

|I3| ≤

∫ ∞

0

µ(s)
( 1

4ν
‖∆ηt‖22 + ν‖∆u‖22

)

ds

= ν
(

∫ ∞

0

µ(s)ds
)

‖∆u‖22 +
1

4ν

∫ ∞

0

µ(s)‖∆ηt‖22ds

= νµ0‖∆u‖22 +
1

4ν
‖ηt‖2µ,2. (4.15)

Using Young inequality and (3.1), we obtain

|I4| ≤ ν‖∇u‖22 +
1

4ν
‖∇ut‖

2
2 ≤

ν

λ2
‖∆u‖22 +

1

4ν
‖∇ut‖

2
2. (4.16)

Then from (4.13)–(4.16) we obtain

Ψ′(t) ≤ −E(t) +
( 3

2λ0
+

3

2
+

1

4ν

)

‖∇ut‖
2
2 +

(1

2
+

1

4ν

)

‖ηt‖2µ,2

−
[1

2

(

1−
β

λ2

)

− ν
( 1

λ2
+ µ0

)]

‖∆u‖22. (4.17)

Choose ν small enough such that

1

2

(

1−
β

λ2

)

− ν
( 1

λ2
+ µ0

)

> 0.

Therefore, we get (4.10) with C5 = 3
2λ0

+ 3
2 + 1

4ν and C6 = 1
2 + 1

4ν .

Let us choose ε1 = min{ 1
C5

, δ
2C6

}, which is positive since we have assumed δ > 0. Then

combining (4.3) with (4.17), we infer that

E′
ε(t) = E′(t) + εΨ′(t)

≤ −εE(t)− (1− εC5)‖∇ut‖
2
2 −

(δ

2
− εC6

)

‖ηt‖2µ,2

≤ −εE(t), ε ∈ (0, ε1]. (4.18)



638 X. M. Peng, Y. D. Shang and H. F. Di

Let us take ε2 = min{ 1
2C1

, ε1}. Then for all ε ≤ ε2, it follows from (4.5) that

1

2
E(t)−

1

2
(‖h‖22 + |Ω|) ≤ Eε(t) ≤

3

2
E(t) +

1

2
(‖h‖22 + |Ω|). (4.19)

Using (4.19) we see that

E′
ε(t) ≤ −

2ε

3
Eε(t) +

ε

3
(‖h‖22 + |Ω|),

which implies that

Eε(t) ≤ Eε(0)e
− 2ε

3 t +
1

2
(1− e−

2ε
3 t)(‖h‖22 + |Ω|)

=
[

Eε(0)−
1

2
(‖h‖22 + |Ω|)

]

e−
2ε
3 t +

1

2
(‖h‖22 + |Ω|).

Using again (4.19) we obtain

E(t) ≤ 3E(0)e−
2ε
3 t + 2(‖h‖22 + |Ω|).

Therefore from (4.8) we conclude that

‖(u(t), ut(t), η
t)‖2H ≤ CE(0)e−

2ε
3 t + C(‖h‖22 + |Ω|), (4.20)

where C = 2
C2

max{3, (2 + C4)}.

Hence, taking the closed ball B = BH(0, R) with R =
√

2C(‖h‖22 + |Ω|) we infer from (4.20)

that B is a bounded absorbing set for S(t). The proof is complete.

As a straight consequence of Lemma 4.1, we have that the solutions of problem (1.11)–(1.14)

are globally bounded provided initial data lying in bounded sets B ⊂ H. Namely, let (u, ut, η
t)

be a solution of (1.11)–(1.14) with initial data (u0, u1, η0) in a bounded set B. Then one has

‖(u(t), ut(t), η
t)‖H ≤ CB , ∀t ≥ 0, (4.21)

where CB is a constant depending on B. Lemma 4.1 also ensures the existence of bounded

positively invariant sets.

4.2 Stability inequality

Lemma 4.2 (see [15]) Let f : RN → R
N be a C1-vector field given by f = (f1, · · · , fN )

and satisfy (3.3). Then, there exists a constant K = K(kj , pj, N) > 0, j = 1, · · · , N , such that

|f(x)− f(y)| ≤ K

N
∑

j=1

(1 + |x|
pj−1

2 + |y|
pj−1

2 )|x− y|, ∀x, y ∈ R
N . (4.22)

Lemma 4.3 Under the hypotheses of Theorem 3.2, given a bounded set B ⊂ B, let z1 =

(u, ut, η
t) and z2 = (v, vt, ξ) be two weak solutions of problem (1.11)–(1.14) such that z10 =

(u0, u1, η0) and z20 = (v0, v1, ξ0) are in B. Then

‖z1(t)− z2(t)‖
2
H

≤ κe−γt‖z10 − z20‖
2
H

+KB

t
∫

0

e−γ(t−s)
(

N
∑

j=1

‖∇(u(s)− v(s))‖2pj+1 + ‖u(s)− v(s)‖22(q+1)

)

ds, t ≥ 0, (4.23)

where κ, γ > 0 and KB > 0 are constants.
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Proof Let us fix a bounded set B ⊂ H. Put w = u − v and ζ = ηt − ξt. Then (w, ζt)

satisfies

wtt −∆wtt +∆2w − div(f(∇u)− f(∇v)) +

∫ ∞

0

µ(s)∆2ζt(s)ds

−∆wt + g(u)− g(v) = 0, (4.24)

ζt = −ζts + wt, (4.25)

with initial condition

w(0) = u0 − v0, wt(0) = u1 − v1, ζ0 = η0 − ξ0.

Now we consider the functional

H(t) = ‖∆w(t)‖22 + ‖∇wt(t)‖
2
2 + ‖wt(t)‖

2
2 + ‖ζt‖2µ,2 (4.26)

and its perturbation

Hε(t) = H(t) + εΦ(t),

where

Φ(t) =

∫

Ω

wt(t)w(t)dx −

∫

Ω

△wt(t)w(t)dx. (4.27)

Owing to (3.1), we get

‖z1(t)− z2(t)‖
2
H ≤ H(t) ≤

(

1 +
1

λ0

)

‖z1(t)− z2(t)‖
2
H. (4.28)

Multiplying (4.24) by wt in V0 and (4.25) by ζt in M2, and integrating over Ω, we deduce

that

1

2

d

dt
H(t) + ‖∇wt(t)‖

2
2

= (div(f(∇u)− f(∇v)), wt(t))− (g(u)− g(v), wt(t)) − (ζt, ζts)µ,2. (4.29)

Let us estimate the right side of the above identity. Hereafter, CB will denote several positive

constants.

Using generalized Höld inequality with
pj−1

2(pj+1) +
1

pj+1 + 1
2 = 1 and (4.22), we have

|(div(f(∇u)− f(∇v)), wt)|

= |(f(∇u)− f(∇v),∇wt)|

≤

∫

Ω

|f(∇u)− f(∇v)||∇wt(t)|dx

≤ K

N
∑

j=1

∫

Ω

(1 + |∇u|
pj−1

2 + |∇v|
pj−1

2 )|∇w||∇wt|dx

≤ K

N
∑

j=1

(|Ω|
pj−1

2(pj+1) + ‖∇u‖
pj−1

2
pj+1 + ‖∇v‖

pj−1

2
pj+1)‖∇w‖pj+1‖∇wt‖2.
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From (3.12) and (4.21) we obtain

K(|Ω|
pj−1

2(pj+1) + ‖∇u‖
pj−1

2
pj+1 + ‖∇v‖

pj−1

2
pj+1 ) ≤ CB < ∞, j = 1, · · · , N.

Making use of Young inequality, there exists a constant CB > 0 such that

|(div(f(∇u)− f(∇v)), wt)| ≤ CB

N
∑

j=1

‖∇w‖pj+1‖∇wt‖2

≤
CB

2

N
∑

j=1

‖∇w‖2pj+1 +
1

4
‖∇wt‖

2
2. (4.30)

Further, since q
2(q+1) +

1
2(q+1) +

1
2 = 1, again by generalized Höld inequality, (3.6)–(3.7), (4.21),

and (3.1), it follows that

|(g(u)− g(v), wt)|

≤ σ0

∫

Ω

(1 + |u|q + |v|q)|w||wt|dx

≤ σ0(|Ω|
q

2(q+1) + ‖u‖q2(q+1) + ‖v‖q2(q+1))‖w‖2(q+1)‖wt‖2

≤ CB‖w‖2(q+1)‖∇wt‖2.

Using again Young inequality, there exists a constant CB > 0 such that

|(g(u)− g(v), wt)| ≤
CB

2
‖w‖22(q+1) +

1

4
‖∇wt‖

2
2. (4.31)

As in (4.2), we conclude that

−(ζt, ζts)µ,2 ≤ −
δ

2
‖ζt‖2µ,2. (4.32)

Thus combining (4.29) with (4.30)–(4.32) it follows that

d

dt
H(t) ≤ −‖∇wt(t)‖

2
2 − δ‖ζt‖2µ,2 + CB

(

N
∑

j=1

‖∇w‖2pj+1 + ‖w‖22(q+1)

)

. (4.33)

It follows promptly from the definition of H(t) and Φ(t) that there exists a constant C7 > 0

such that

|Hε(t)−H(t)| ≤ εC7H(t), ∀ t ≥ 0, ∀ ε > 0. (4.34)

As in the proof of Lemma 4.1, we claim that there exist constants ε3 > 0, and CB > 0 such

that

H ′
ε(t) ≤ −

ε

2
H(t) + CB

(

N
∑

j=1

‖∇w‖2pj+1 + ‖w‖22(q+1)

)

, ∀ t ≥ 0, ∀ ε ∈ (0, ε3]. (4.35)

To prove this it suffices to prove that there exist constants C8, C9 > 0 and CB > 0 such that

Φ′(t) ≤ −
1

2
H(t) + C8‖∇wt(t)‖

2
2 + C9‖ζ

t‖2µ,2
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+ CB

(

N
∑

j=1

‖∇w‖2pj+1 + ‖w‖22(q+1)

)

. (4.36)

In fact, combining (4.33) with (4.36) and choosing ε3 = min
{

1
C8

, δ
C9

, 1
}

, the inequality (4.35)

holds for every ε ∈ (0, ε1].

In what follows, we prove that (4.36) holds. By differentiating (4.27), using (4.24) and

(4.26), we get

Φ′(t) = −
1

2
H(t)−

1

2
‖∆w(t)‖22 +

3

2
‖wt(t)‖

2
2 +

3

2
‖∇wt(t)‖

2
2 +

1

2
‖ζt‖2µ,2 +

4
∑

i=1

Li, (4.37)

where

L1 = −

∫ ∞

0

µ(s)(∆ζt(s),∆w(t))ds,

L2 = −

∫

Ω

∇wt(t) · ∇w(t)dx,

L3 = (div(f(∇u(t))− f(∇v(t))), w(t)),

L4 = −(g(u(t))− g(v(t)), w(t)).

Now we estimate the terms L1, L2, L3, and L4.

|L1| ≤ νµ0‖∆w(t)‖22 +
1

4ν
‖ζt‖2µ,2

and

|L2| ≤
ν

λ2
‖∆w(t)‖22 +

1

4ν
‖∇wt(t)‖

2
2,

where ν > 0 is a small constant which will be chosen later.

|L3| ≤ CB

N
∑

j=1

‖∇w(t)‖2pj+1

and

|L4| ≤ CB‖w(t)‖
2
2(q+1).

Going back to (4.37) and inserting these four last estimates we arrive at

Φ′(t) ≤ −
1

2
H(t) +

( 3

2λ0
+

3

2
+

1

4ν

)

‖∇wt(t)‖
2
2 +

(1

2
+

1

4ν

)

‖ζt‖2µ,2

+ CB

(

N
∑

j=1

‖∇w(t)‖2pj+1 + ‖w(t)‖22(q+1)

)

−
(1

2
− ν

(

µ0 +
1

λ2

))

‖△w(t)‖22.

Therefore, taking ν > 0 small enough the inequality (4.36) follows and consequently (4.35)

holds.

Now we take ε4 = min
{

1
2C7

, ε3
}

and choose ε ≤ ε4. Then (4.34) implies that

1

2
H(t) ≤ Hε(t) ≤

3

2
H(t), t ≥ 0. (4.38)
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It follows from (4.35) and (4.38) that

H(t) ≤ 3e−γtH(0) +KB

∫ t

0

e−γ(t−s)
(

N
∑

j=1

‖∇w(s)‖2pj+1 + ‖w(s)‖22(q+1)

)

ds, t ≥ 0,

where γ = ε
3 > 0 is a small positive constant and KB is a constant depending on bounded set

B. From the above inequality and (4.28), we conclude that (4.23) holds. The proof is complete.

Lemma 4.4 (Asymptotic Smoothness) Under the hypotheses of Theorem 3.2, the dyna-

mical system (H, S(t)) is asymptotic smooth.

Proof We apply Lemma 4.3. Let B be a bounded subset of H positively invariant with

respect to S(t). Let S(t)z10 = (u, ut, η
t) and S(t)z20 = (v, vt, ξ

t) be two solutions for problem

(1.11)–(1.14) corresponding to initial data z10 , z
2
0 ∈ B. Given ε > 0, from inequality (4.23), we

can choose T > 0 such that

‖S(T )z10 − S(T )z20‖H

≤ ε+ CB

{

∫ T

0

(

N
∑

j=1

‖∇(u(s)− v(s))‖2pj+1 + ‖u(s)− v(s)‖22(q+1)

)

ds
}

1
2

, (4.39)

where CB > 0 is a constant which depends only on the size of B.

Let us estimate the right side of (4.39). Taking θj = 1
2 + N

4 (1 − 2
pj+1 ), j = 1, · · · , N , for

N ≥ 1, then (3.4) implies that 1
2 ≤ θj ≤ 1 and N

pj+1 − 1 = θj(
N
2 − 2)+ N

2 (1− θj), j = 1, · · · , N.

Using Gagliardo-Nirenberg interpolation theorem we get

‖∇(u(t)− v(t))‖pj+1 ≤ Cθj‖∆(u(t)− v(t))‖
θj
2 ‖u(t)− v(t)‖

1−θj
2

≤ CB‖u(t)− v(t)‖
1−θj
2 .

We observe that (3.7) implies that 2 < 2(q + 1) < ∞ if 1 ≤ N ≤ 4 and 2 < 2(q + 1) ≤ 2N
N−4 if

N ≥ 5. Taking λ = N
4 (1−

1
q+1 ) it follows from Gagliardo-Nirenberg interpolation theorem that

‖(u(t)− v(t))‖pj+1 ≤ Cλ‖∆(u(t)− v(t))‖λ2‖u(t)− v(t)‖1−λ
2

≤ CB‖u(t)− v(t)‖1−λ
2 .

Combining these two last estimates with (4.39), we conclude that there exists CB > 0 such that

‖S(T )z10 − S(T )z20‖H ≤ ε+ φT (z
1
0 , z

2
0),

where

φT (z
1
0 , z

2
0) = CB

{

∫ T

0

(

N
∑

j=1

‖u(s)− v(s)‖
2(1−θj)
2 + ‖u(s)− v(s)‖

2(1−λ)
2

)

ds
}

1
2

.

To conclude the proof of asymptotic smoothness, it remains to prove that the functional φT

satisfies (2.1). Indeed, given a sequence of initial data zn0 = (un
0 , u

n
1 , η

n
0 ) ∈ B, let us write

S(t)zn0 = (un(t), un
t (t), η

n,t). Since B is positively invariant with respect to S(t), it follows that

(un(t), un
t (t), η

n,t) is uniformly bounded in H. In particular

(un(t), un
t (t)) is bounded in C([0, T ], V2 × V1), T > 0.
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Then by compact embedding V2 →֒ V0, passing to a subsequence if necessary, we have

(un) converges strongly in C([0, T ], V0).

Therefore one obtains

lim
n→∞

lim
m→∞

∫ T

0

(

N
∑

j=1

‖un(s)− um(s)‖
2(1−θj)
2 + ‖un(s)− um(s)‖

2(1−λ)
2

)

ds = 0,

which implies (2.1) holds. Then asymptotic smoothness follows from Theorem 2.2.

Proof of Theorem 3.2 part (i) We first note that Lemmas 4.1 and 4.4 imply that

(H, S(t)) is a dissipative dynamical system which is asymptotic smooth. Then the existence

of a compact global attractor A to problem (1.11)–(1.14) in the phase space H follows from

Theorem 2.1.

4.3 Finite-Dimensional attractor

Lemma 4.5 (Quasi-stability) Suppose the assumptions of Theorem 3.2 (ii) hold. Then

(H, S(t)) is quasi-stable on any bounded positively invariant set B ⊂ H.

Proof Since (H, S(t)) is defined as the solution operator of (1.11)–(1.14), it follows from

Theorem 3.1 (i) that (2.2) and (2.3) hold with X = V2, Y = V1 and Z = M2. Also from

Theorem 3.1 (iii) we see that condition (2.4) holds true. Then we only need to verify stability

inequality (2.5).

Let B ⊂ H be a bounded set positively invariant with respect to S(t). For z10 , z
2
0 ∈ B we

write S(t)zi0 = (ui(t), ui
t(t), η

i,t), i = 1, 2. Let us define the seminorm

nX(u) =

N
∑

j=1

‖∇u‖pj+1 + ‖u‖2(q+1).

From assumption (3.15), we know that embeddings

V2 →֒ W
1,pj+1
0 (Ω) and V2 →֒ L2(q+1)(Ω)

are compact. Then we conclude that nX(·) is a compact seminorm on X = V2. Hence from

(4.23) we can see that

‖z1(t)− z2(t)‖
2
H ≤ b(t)‖z10 − z20‖

2
H + c(t) sup

0<s<t

[nX(u1(s)− u2(s))]2,

where

b(t) = κe−γt and c(t) = KB

∫ t

0

e−γ(t−s)ds, t ≥ 0.

Now we note that b ∈ L1(R+) and lim
t→∞

b(t) = 0. Also, since B is bounded it follows that c(t)

is locally bounded on [0,∞). Hence, the assumptions of quasi-stability on bounded positively

invariant sets are fulfilled.

Proof of Theorem 3.2 part (ii) From the proof of Theorem 3.2 part (i) we know that

(H, S(t)) has a compact global attractor A, which is a bounded positively invariant set of H.

Then it follows from Lemma 4.4 that (H, S(t)) is quasi-stable on A. Based on Theorem 2.3, we

conclude that the attractor A has finite fractal dimension.
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Remark 4.1 In particular, the Hausdorff dimension of A is also finite since it is bounded

by the fractal dimension.
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