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Abstract It is proved in this paper that the union of escaping parameter rays without
endpoints for the cosine family Sκ(z) = eκ(ez + e−z), where κ ∈ C is a parameter, has
Hausdorff dimension 1, which implies that the ray endpoints alone have Hausdorff dimen-
sion 2. This shows that Karpińska’s dimension paradox occurs also in the parameter plane
of the cosine family.
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1 Introduction

The Julia set J(f) of an entire function f is the set of points at which the family of iterates

of the entire function f fails to be a normal family. Equivalently, the Julia set J(f) is the

closure of set of expanding periodic orbits of f . Its complement F (f) is called the Fatou set of

f . These sets are the main objects studied in complex dynamics of entire functions. The Julia

set is often a rather complicated and interesting set (see [1]).

Such as Devaney and Krych [2] showed that for 0 < λ < 1
e , the Julia set of fλ(z) = λez is an

uncountable union of pairwise disjoint curves, which connect finite points, called the endpoints,

with ∞. McMullen [3] showed that the Hausdorff dimension of this set is 2, and Karpińska [4]

proved that the set of curves without endpoints has Hausdorff dimension 1. The results reveal a

“dimension paradox”: From the point of view in topology, one might think that “most” points

in the Julia set are in the union of curves, but nonetheless the entire Hausdorff dimension sits

in the set of endpoints. Such a phenomenon was first observed in exponential dynamic plane

by Karpińska [4], so it is also called the “Karpińska paradox” (see [5]).

The escaping set

I(f) := {z : lim
n→∞

f◦n(z) = ∞}

for an entire function f has a close relationship with the Julia set, where f◦n denotes the

n-th iterate of f . Eremenko [6] proved that J(f) = ∂I(f), while Eremenko and Lyubich [7]

Manuscript received January 21, 2017. Revised November 30, 2017.
1School of Mathematical Science, Fudan University, Shanghai 200433, China; School of Science, Nan-
chang Institute of Technology, Nanchang 330099, Jiangxi, China. E-mail: xjhuang14@fudan.edu.cn

2School of Mathematical Science, Fudan University, Shanghai 200433, China.
E-mail: wyqiu@fudan.edu.cn

∗This work was supported by the National Natural Science Foundation of China (Nos. 11671091,
11731003, 11771090), the Natural Science Foundation of Shanghai (No. 17ZR1402900) and the Science
and Technology Foundation of Jiangxi Education Department (No. GJJ180944).



646 X. J. Huang and W. Y. Qiu

proved that I(f) ⊆ J(f) = I(f) for a large class of functions f including the exponential family

fλ(z) = λez (λ ∈ C\ {0}) and the cosine family ga,b(z) = aez + be−z (a, b ∈ C\ {0}). McMullen

in fact proved that the escaping set of fλ has Hausdorff dimension 2 while the escaping set

of ga,b has infinite planer Lebesgue measure (see [3]). In both cases, it was proved that the

escaping set consists of uncountably many pairwise disjoint curves started at ∞, called dynamic

rays, together with endpoints of certain (but not all) of these rays (see [8–10]). Furthermore,

the dimension paradox of Karpińska for fλ with specific choices of λ was generalized to the

following theorem.

Theorem A (see [8]) (Dimension Paradox in Dynamic Plane for Exponential Functions)

For fλ(z) = λez, where λ ∈ C \ {0}, the union of all dynamic rays has Hausdorff dimension 1,

while the set of endpoints has Hausdorff dimension 2.

Theorem B (see [9–10]) (Dimension Paradox in Dynamic Plane for Cosine Functions) For

ga,b(z) = aez+be−z, where a, b ∈ C\{0}, the union of all dynamic rays has Hausdorff dimension

1, while the set of the endpoints has Hausdorff dimension 2 and even infinite planar Lebesgue

measure.

The orbit behaviour of singularities of an entire function plays a crucial rule in the complex

dynamics. The exponential function λez for every λ ∈ C \ {0} has unique singularity 0, which

is an asymptotic value of λez . Write λ = eκ and denote Eκ(z) = ez+κ with parameter κ ∈ C.

We have an escaping set in the parameter κ-plane

I(Eκ) = {κ ∈ C : lim
n→∞

E◦n
κ (0) = ∞}.

Forster, Rempe and Schleicher studied the set I(Eκ) in detail in [11–12]. They proved

that, similar to the escaping set in the dynamical plane, I(Eκ) consists of uncountably many

pairwise disjoint curves in parameter space, called the parameter rays, together with endpoints

of certain parameter rays. Qiu [13] showed that the Hausdorff dimension of I(Eκ) is equal to

2. Bailesteanu, Balan and Schleicher [14] further proved that the Hausdorff dimension of the

union of parameter rays is 1, which shows the phenomenon of dimension paradox also occurs

in the parameter space of exponential family.

Theorem C (see [14]) (Dimension Paradox in Parameter Plane for Exponential Family)

For Eκ(z) = ez+κ, the union of all parameter rays has Hausdorff dimension 1, while the set of

the endpoints has Hausdorff dimension 2.

Let us consider the cosine family Sκ(z) = eκ(ez + e−z) with one parameter κ ∈ C. The

singularities of Sκ are kπi, k = 0,±1,±2, · · · . Since they have the same orbit, the orbit of 0

plays the key role in the dynamics of Sκ. We again have the escaping set in the parameter

plane of Sκ:

I(Sκ) = {κ ∈ C : lim
n→∞

S◦n
κ (0) = ∞}.

A natural problem arises: what is the structure of I(Sκ) and whether the dimension paradox

occurs in the parameter plane of Sκ? Tian [15] discussed the structure of the set I(Sκ) and

obtained an analogous as the exponential family, that is, I(Sκ) can be divided into the union of

all parameter rays and the set of endpoints of certain parameter rays. However, Tian had not

showed the dimension paradox in the parameter plane for Sκ. In this paper, we will prove that
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the dimension paradox occurs in the parameter plane of the cosine family Sκ. Let IR ⊂ I(Sκ)

be the union of all parameter rays, and IE := I(Sκ) \ IR be the set of endpoints of parameter

rays. Our main result is the following theorem.

Theorem 1.1 (Dimension Paradox in Parameter Plane for Cosine Family) For Sκ(z) =

eκ(ez+e−z), where κ ∈ C, the set of the union of all parameter rays IR has Hausdorff dimension

1, while the set of endpoints IE has Hausdorff dimension 2 and even positive planar Lebesgue-

measure.

As Qiu proved that I(Sκ) has Hausdorff dimension 2 and positive planar Lebesgue measure

(see [13]), it is sufficient for us to show that the set IR has Hausdorff dimension 1. The method

of the proof mainly comes from the works of Karpińska [4] and Bailesteanu, Balan and Schleicher

[14] for the exponential family. However, we need to overcome some technical difficulties since

the appearance of the term e−z in Sκ(z) = eκ(ez + e−z).

2 Lemmas

For κ ∈ C, write Sn(κ) := S
◦(n+1)
κ (0) = S◦n

κ (2eκ) = S◦n
κ (−2eκ) for integers n ≥ 1. Then

every Sn is a transcendental entire function and the parameter escaping set

I(Sκ) = {κ ∈ C : lim
n→∞

Sn(κ) = ∞}.

For simplicity, we denote I = I(Sκ).

If Λ ⊂ C is a domain such that Sn : Λ → V := Sn(Λ) is a conformal isomorphism, then for

every integer k ≥ 0, this defines a holomorphic map Sn,n+k = Sn+k ◦ (Sn)−1 : V → C.

In the following, Q always denotes an open square of side length π
2 with sides parallel to

the axes, Q̃ ⊃ Q denotes the open square of side length π with sides parallel to Q and center

coincident with Q. We call Q a standard square and Q̃ a double square with respect to Q. We

also denote Dr(z) the open disk of radius r around z ∈ C.

Lemma 2.1 Let M > 1 and Λ be a domain in DM (0) such that Sn : Λ → V := Sn(Λ) is

a conformal isomorphism and satisfies:

(1) |(Sn)′(κ)| > 20 for all κ ∈ Λ;

(2) V is convex and V ⊂ Q̃ for some double square Q̃ ⊂ {z ∈ C : |Re z| > ξ}, where ξ is

real with eξ > 8eM .

Then

(1′) Sn+1 : Λ → Sn+1(Λ) is a conformal isomorphism with

|(Sn+1)′(κ)| ≥ e−Meξ

4
|(Sn)′(κ)| > 2|(Sn)′(κ)|

for all κ ∈ Λ;

(2′) Sn,n+1 : V → Sn+1(Λ) is a conformal isomorphism with

|(Sn,n+1)′(z)| ≥ e−Meξ

4

for all z ∈ V .
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Proof Note that Sn+1(κ) = Sκ ◦ S◦n+1
κ (0) = Sκ(S

n(κ)), we can write Sn+1(κ) = Sκ(z) =

eκ(ez + e−z) with z = Sn(κ) ∈ V .

Without lose of generality, we assume Re z > ξ for z ∈ V . The discussion for the case

Re z < −ξ for z ∈ V is completely the same.

In order to show that Sn+1 restricted to Λ is a conformal isomorphism onto its image,

we need only to check that Sn+1 is injective on Λ. Suppose that there are κ1, κ2 ∈ Λ with

Sn+1(κ1) = Sn+1(κ2). Set zj = Sn(κj) ∈ V ⊂ Q̃ for j = 1, 2. Then |z1 − z2| <
√
2π and

eκ1(ez1 + e−z1) = eκ2(ez2 + e−z2).

κ1 − κ2 = z2 − z1 + (ln(1 + e−2z2)− ln(1 + e−2z1)) + 2mπi

= z2 − z1 +

∫ z2

z1

−2e−2zdz

1 + 2e−2z
+ 2mπi

for some integer m, where the integral path is taken to be the line segment [z1, z2] since V is

convex.

Since |z2 − z1| <
√
2π and |(Sn)′(κ)| > 20 for all κ ∈ Λ, we have

|κ2 − κ1| ≤
1

20
|z2 − z1| <

1

10
π.

If m 6= 0, then since ξ > ln 8,

|κ1 − κ2| ≥ 2|m|π −
{
|z2 − z1|+

∣∣∣
∫ z2

z1

−2e−2zdz

1 + 2e−2z

∣∣∣
}

≥ 2|m|π − |z2 − z1|
(
1 + max

z∈V

| − 2e−2z|
1− |2e−2z|

)

≥ 2π −
√
2π

(
1 +

2e−2ξ

1− 2e−2ξ

)
>

1

10
π,

which is a contradiction. So m = 0.

If κ1 6= κ2, then z1 6= z2 since Sn is a conformal isomorphism.

|κ1 − κ2| ≥ |z2 − z1| −
∣∣∣
∫ z2

z1

−2e−2zdz

1 + 2e−2z

∣∣∣ ≥ |z2 − z1|
(
1− 2e−2ξ

1− 2e−2ξ

)
>

1

2
|z2 − z1|,

which is also a contradiction. So κ1 = κ2. This proves the injectivity of Sn+1 on Λ.

Now we estimate the derivative of Sn+1. For κ ∈ Λ, set z = Sn(κ) ∈ V .

|(Sn+1)′(κ)| = |eκ(ez + e−z) + eκ(ez(Sn)′(κ)− e−z(Sn)′(κ))|
≥ |eκ||(Sn)′(κ)|(eRe z − e−Re z)− |eκ|(eRe z + e−Re z)

≥ 1

2
|eκ||(Sn)′(κ)|eRe z − 2|eκ|eRe z =

|eκ|eRe z

2
(|(Sn)′(κ)| − 4)

≥ |eκ|eRe z

2

|(Sn)′(κ)|
2

≥ e−Meξ

4
|(Sn)′(κ)| > 2|(Sn)′(κ)|.

The conformality of Sn,n+1 comes immediately from Sn,n+1 = Sn+1 ◦ (Sn)−1 and the

conformality of Sn and Sn+1. Since

|(Sn+1)′(κ)| = |(Sn,n+1 ◦ (Sn))′(κ)| = |(Sn,n+1)′(z)| · |(Sn)′(κ)| ≥ e−Meξ

4
|(Sn)′(κ)|,
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we get |(Sn,n+1)′(z)| ≥ e−Meξ

4 .

For p > 1 and ξ ≥ 0, define the doubly truncated parabola open set

Pp,ξ := {z = x+ iy ∈ C : |x| > ξ and |y| < |x| 1p }.

For a bounded domain Λ ⊂ C, define the sets

Ip,Λ :=
{
κ ∈ Λ ∩ I : |(Sn)′(κ)| → ∞ as n → ∞ and Sn(κ) ∈ Pp,0 for sufficiently large n

}

and

IN
p,ξ,Λ :=

{
κ ∈ Ip,Λ : Sn(κ) ∈ Pp,ξ for all n ≥ N

}
.

Lemma 2.2 Fix p > 1,M > 1, ξ > 0 such that eξ > 128eM . Let Λ ⊂ DM (0) be a domain.

Then for any κ ∈ Ip,Λ, there exist an integer N ∈ N, a neighbourhood U ⊂ Λ of κ and a

standard square Q ⊂ {κ ∈ C : |Reκ| > ξ+π} with center at SN(κ) and a double square Q̃ with

respect to Q such that

(1) SN : U → Q̃ is a conformal isomorphism;

(2) Sn(κ) ∈ Pp,ξ for all integers n ≥ N ;

(3) |(SN )′(κ)| > 20 for all κ ∈ U.

Proof Let κ ∈ Ip,Λ. Note that Sn(κ) ∈ Pp,0 and Sn(κ) → ∞ imply |ReSn(κ)| → ∞ as

n → ∞. There exists N0 ∈ N such that Sn(κ) ∈ Pp,ξ, |ReSn(κ)| > ξ+2π, and |(Sn)′(κ)| > 20

for all n ≥ N0. Then there exists a neighbourhood U0 ⊂ Λ of κ such that SN0 : U0 →
V0 := SN0(U0) is a conformal isomorphism, and V0 is a disk of radius r0 > 0 with center at

z0 := SN0(κ).

If r0 ≥
√
2π
2 , there is a standard square Q with center at z0 = SN0(κ) such that its double

square Q̃ ⊂ V0. Then (1) follows immediately by taking U be the preimage of Q̃ under the map

SN0 and setting N = N0, and (2), (3) hold obviously by the choice of N0.

If r0 <
√
2π
2 , we restrict r0 if necessary so that V0 is contained in a double square Q̃ in

{κ ∈ C : |Reκ| > ξ}. By Lemma 2.1, the maps SN0+1 : U0 → SN0+1(U0) and SN0,N0+1 :

SN0(U0) → SN0+1(U0) are conformal isomorphisms, and we have

|(SN0,N0+1)′(SN0(κ))| ≥ e−Meξ

4
> 32.

By the Koebe 1
4 -theorem, there is a neighbourhood U1 ⊂ U0 of κ0 so that SN0+1(U1) is a disk

of radius r1 ≥ 32r0
4 = 8r0. Repeating this argument finitely many times, we obtain an index

N ∈ N and a neighborhood U of κ such that SN : U → Q̃ is a conformal isomorphism, where

Q̃ is a double square. So (1) follows. Again (2), (3) hold obviously by the choice of N0 and

Lemma 2.1 (1).

Now, we turn to estimate the Hausdorff dimension of IN
p,ξ,Λ.

Lemma 2.3 Fix p > 1 and an integer N ≥ 0. Suppose Q ⊂ C is a standard square with

double square Q̃ and Λ̃ ⊂ C is a domain such that SN : Λ̃ → Q̃ is a conformal isomorphism. Set

Λ := (SN )−1(Q) ∩ Λ̃, and let M > 1 such that Λ̃ ⊂ DM (0). Suppose also that |(SN )′(κ)| > 20

on Λ̃. Then the Hausdorff dimension dimH(IN
p,ξ,Λ) ≤ 1 + 1

p
provided ξ is sufficiently large

depending only on p and M .
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Proof Let ξ0 > 0 such that |Re z| ∈
(
ξ0, ξ0 +

π
2

)
for all z ∈ Q. We can assume IN

p,ξ,Λ 6= ∅,

otherwise dimH(IN
p,ξ,Λ) ≤ 1 + 1

p
is obvious.

For any κ ∈ IN
p,ξ,Λ such that SN (κ) ∈ Q, we have ξ < |ReSN (κ)| < ξ0+

π
2 , then ξ0 ≥ ξ− π

2 .

By Lemma 2.1, when eξ−
π
2 > 8eM , SN,N+1 : Q → SN,N+1(Q) is a conformal isomorphism.

We can write SN,N+1(z) = eκ(ez + e−z) for z ∈ Q with κ = (SN )−1(z) ∈ Λ. Note that

the set exp(Q) is contained in an annulus between radii eξ0 and e
π
2 eξ0 , and SN,N+1(z) =

eκ(ez + e−z) ≈ eκez or eκe−z when ξ is sufficiently large. We have that SN,N+1(Q) ∩ Pp,ξ (is

not empty, for κ ∈ IN
p,ξ,Λ, S

n(κ) ∈ Pp,ξ as n ≥ N) has the absolute values of real parts between
e−Meξ0

2 and 2eMe
π
2 eξ0 (provided ξ is sufficiently large). Consequently the imaginary parts in

SN,N+1(Q) ∩ Pp,ξ have absolute values at most (2eMe
π
2 eξ0)

1
p (again for sufficiently large ξ).

Let N(ξ0) be the smallest number of standard squares such that SN,N+1(Q) ∩ Pp,ξ is covered

by these squares. Then

N(ξ0) ≤
2 ·

(
2eMe

π
2 eξ0 − e−Meξ0

2

)
· 2(2eMe

π
2 eξ0)

1
p

(
π
2

)2 ≤ Ceξ0(1+
1
p
),

where C > 0 is a constant depending only on p and M . Denote these N(ξ0) standard squares

by Q1,i for i = 1, 2, · · · , N(ξ0).

Let Q̃1,i be the double squares with respect to Q1,i. Note that |(SN,N+1)′(z)| is large

on Q̃ by Lemma 2.1 (2), then we have SN,N+1(Q̃) ⊃
N(ξ0)⋃
i=1

Q̃1,i. We can thus pull back the

squares Q1,i, i = 1, 2, · · · , N(ξ0), under S
N,N+1 and obtain a covering {U1,i} of the set Q̂1 :=

Q ∩ (SN,N+1)−1(Pp,ξ) with N(ξ0) open sets U1,i =: W1,i, i = 1, 2, · · · , N(ξ0), such that each

U1,i has a neighbourhood Ũ1,i for which the restriction SN,N+1 : Ũ1,i → Q̃1,i is a conformal

isomorphism. By the Koebe distortion theorem, the restrictions SN,N+1 : U1,i → Q1,i have

uniformly bounded distortions. By Lemma 2.1 (2), the derivatives of SN,N+1 on U1,i are at

least e−Meξ0

4K where K > 0 is a universal constant which measures the distortion. We have for

any d,
N(ξ0)∑

i=1

(diamU1,i)
d ≤ N(ξ0)

( 4K

e−Meξ0

)d(√2π

2

)d

≤ C1e
ξ0(1+

1
p−d

)
(√2π

2

)d

,

where C1 > 0 is a constant depending only on p and M . If d > 1 + 1
p
is fixed, then when ξ is

sufficiently large, we have C1e
ξ0(1+

1
p−d

) ≤ 1
K2d , so that

N(ξ0)∑

i=1

(diamU1,i)
d ≤ 1

K2d
(diamQ)d. (2.1)

This argument can be repeated: each standard square Q1,i has the absolute values of real

parts at least ξ1,i, where 2eMe
π
2 eξ0 ≥ ξ1,i := O(eξ0) ≥ e−Meξ0

2 ≫ ξ0 ≥ ξ − π
2 , so we can

obtain a covering {W2,ji} of the set Q1,i ∩ (SN+1,N+2)−1(Pp,ξ) with N(ξ1,i) open sets W2,ji ,

ji = 1, 2, · · · , N(ξ1,i), such that for each W2,ji , SN+1,N+2 : W2,ji → Q2,ji is a conformal

isomorphism, where Q2,ji is a standard square which has the absolute values of real parts at

least ξ2,ji := O(eξ1,i) ≫ ξ1,i, and so on. The union

N(ξ0)⋃

i=1

Q1,i ∩ (SN+1,N+2)−1(Pp,ξ)
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can be covered by
N(ξ0)⋃
i=1

{W2,ji} which contains N(ξ1) :=
N(ξ0)∑
i=1

N(ξ1,i) open sets. We rewrite

these open sets by W2,i, i = 1, 2, · · · , N(ξ1), where ξ1 := O(eξ0). The covering {W2,i} can be

pulled back under SN,N+1 and yield a covering {U2,i} of the set

Q̂2 := {z ∈ Q : SN,N+1(z) ∈ Pp,ξ and SN,N+2(z) ∈ Pp,ξ}.

The conformal isomorphism SN,N+2 : U2,i → Q2,i for each i can be extended to be a conformal

isomorphism Ũ2,i → Q̃2,i, where Q̃2,i is the double square with respect to Q2,i.

Inductively, we obtain a family of coverings {Un,i} for every n ≥ 1, each of them covers the

set

Q̂n := {z ∈ Q : SN,N+k(z) ∈ Pp,ξ for all 1 ≤ k ≤ n}.

Each Un,i ⊂ Q̃ is an open set such that SN,N+n : Un,i → Qn,i is a conformal isomorphism, where

Qn,i is a standard square which has absolute values of real parts at least ξn := O(eξn−1) ≫
ξn−1 ≫ ξ0, and {Un,i} contains at most N(ξn−1) elements. The map SN,N+n : Un,i → Qn,i

can be extended to be a conformal isomorphism Ũn,i → Q̃n,i, where Q̃n,i is the double square

with respect to Qn,i.

Set

Q̂ =
⋂

n≥1

Q̂n = {z ∈ Q : SN,N+n(z) ∈ Pp,ξ for all n ≥ 1}.

Then {Un,i} is a covering of Q̂ for every n ≥ 1.

Then dimH(Q̂) ≤ 1 + 1
p
. Indeed, for d > 1 + 1

p
and n is large enough (so ξn is su-

fficiently large), like the proof of (1), note that the sets Wn+1,ji := SN,N+n(Un+1,ji) cover

Qn,i

⋂
(SN+n,N+n+1(z))−1(Pp,ξ) and the maps SN+n,N+n+1 : Wn+1,ji → Qn+1,ji are conformal

isomorphisms with uniformly bounded distortions, it follows that

∑

ji

(diamWn+1,ji)
d ≤ 1

K2d
(diamQn,i)

d.

Since SN,N+n : Un,i → Qn,i are conformal isomorphisms with uniformly bounded dis-

tortions, then diamQn,i ≤ K(SN,N+n)′(κ0) diamUn,i and 1
K
(SN,N+n)′(κ0) diamUn+1,ji ≤

diamWn+1,ji for some fixed κ0 in Un,i, and so

∑

ji

(diamUn+1,ji)
d ≤ (diamUn,i)

d.

Then

∑

i,ji

(diamUn+1,ji)
d ≤

∑

i

(diamUn,i)
d.

Rewrite
∑
i,ji

to
∑
i′
.

∑

i′

(diamUn+1,i′)
d ≤

∑

i

(diamUn,i)
d ≤ · · · ≤ 1

K2d
(diamQ)d < ∞. (2.2)

Since SN,N+n : Un,i → Qn,i are conformal isomorphisms with bounded distortions and

derivatives tending to ∞ as n → ∞ (by (SN,N+n)′ = (SN,N+1)′ · · · (SN+n−1,N+n)′ and Lemma
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2.1 (2)), it follows that sup
i

diamUn,i → 0 as n → ∞. Hence, (2.2) shows that dimH(Q̂) ≤ d.

Since d > 1 + 1
p
is arbitrary, we get dimH(Q̂) ≤ 1 + 1

p
. Finally, SN : Λ → Q is a conformal

isomorphism with SN (IN
p,ξ,Λ) ⊂ Q̂. Therefore, dimH(IN

p,ξ,Λ) ≤ 1 + 1
p
as well.

3 Proof of Theorem

To prove the main theorem, we need some results given in [9, 15]. So we turn to review

them roughly.

Define the index sets

ZL := {· · · ,−2L,−1L, 0L, 1L, 2L, · · · },
ZR := {· · · ,−2R,−1R, 0R, 1R, 2R, · · · }.

Let v1 = 2eκ, v2 = −2eκ be critical values of Sκ(z) = eκ(ez + e−z). Without lose of generality,

we can assume that Im(v1) ≥ Im(v2). Let

A := {z ∈ C : z = λv1 + (1− λ)v2;λ ∈ [0, 1]} ∪ {z ∈ C : Re(z) = Re(v1), Im(z) ≥ Im(v1)},

and set C
′ := C \ A. Then define the strips Rj as connected components of S−1

κ (C′), so that

Sκ : Rj → C′ is a conformal isomorphism for all j ∈ ZL

⋃
ZR. The index of Rj is taken as

follows: if j = jR ∈ ZR, Rj is located in the right half plane; if j = jL ∈ ZL, Rj is located in

the left half plane. {Rj} gives an appropriate partition of the complex plane. Set

S := (ZL ∪ ZR)
N = {(s1s2s3 · · · ) : sk ∈ ZL ∪ ZR}.

Let σ : S → S, (s1s2s3s4 · · · ) 7→ (s2s3s4 · · · ) be the shift map on S. Denote F (t) := et − 1. A

sequence s = (s1s2s3 · · · ) ∈ S is called exponentially bounded if there is an x ∈ R+ such that

|sk| ≤ F ◦(k−1)(x) for all k. For every exponentially bounded sequence s = (s1s2s3 · · · ) ∈ S,

define

ts := inf
{
t > 0 : lim

k→∞

|sk|
F ◦k(t)

= 0
}
.

It is proved in [9] that every path component of the dynamical escaping set I(Sκ) is a

curve starting at infinity, which is called dynamic ray, possibly together with the escaping

endpoint of the ray. Every dynamical ray is associated with an exponentially bounded sequence

s = (s1s2s3 · · · ) ∈ S. Denote the inverse mapping of Sκ : Rj → C′ by Lj : C
′ → Rj . According

to [9], the dynamic ray associated with the exponentially bounded sequence s = (s1s2s3 · · · ) is
obtained by constructing a family of maps

gnκ,s : R
+ → C for n ∈ N,

gnκ,s(t) = Ls1 ◦ Ls2 ◦ · · · ◦ Lsn(±F ◦n(t) + 2πisn+1)

(the sign ± depends on sn+1: it is + if sn+1 ∈ ZR and − if sn+1 ∈ ZL) with the following

properties:

(a) There exists a positive number T , such that gnκ,s(t) is well defined for all t ≥ T indepen-

dent of s and n, and converges uniformly to a function gκ,s(t) which is the tail of dynamic ray.

The convergence is locally uniform for κ. Moreover, Sκ(gκ,s(t)) = gκ,σ(s)(F (t)).
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(b) There exists a positive number B, such that for every s and n, |Re(gnκ,s(t))| > t − B

when t > T .

If no critical orbit escapes, by using the relation Sκ(gκ,s(t)) = gκ,σ(s)(F (t)), the ray tail can

be extended to a dynamic ray gκ,s : (ts,∞) 7→ I(Sκ) with the following properties:

(c) Sκ(gκ,s(t)) = gκ,σ(s)(F (t)) for all t > ts.

(d) S◦n
κ (gκ,s(t)) = ±F ◦n(t)∓ κ+ 2πisn+1 + o(1) as n → ∞, with sign + if sn+1 ∈ ZR and

− if sn+1 ∈ ZL, respectively. In particular, for every real p > 1,

|Im(S◦n
κ (gκ,s(t)))|p

|Re(S◦n
κ (gκ,s(t)))|

→ 0 as n → ∞.

In [15], Tian proved the differentiability of dynamic rays:

(e) For every κ, the dynamic ray gκ,s(t) is continuously differentiable with respect to t and

satisfies

g′κ,s(t) = ε1

∞∏

m=1

F ◦m(t) + 1

εm+1gκ,σm(s)(F ◦m(t))
6= 0, (3.1)

where εm = 1 or εm = −1 according to sm ∈ ZR or sm ∈ ZL, respectively. Moreover, on ray

tails, |g′κ,s(t)± 1| < e−
1
2 t with sign + if s1 ∈ ZR and − if s1 ∈ ZL, respectively.

In addition, it was shown in [15] that every path component of the parameter escaping set

I = I(Sκ) is a curve, which is called parameter ray, possibly together with its unique endpoint.

The parameter ray associated with the exponentially bounded sequence s = (s1s2s3 · · · ) ∈ S is

defined by κ = Gs(t) which is the unique solution of gκ,s(t) = 2eκ.

(f) Every parameter ray is a C1-curve Gs : (ts,∞) → I with G′
s(t) 6= 0 for all t > ts. All

the parameter rays are injective and disjoint curves. For κ0 = Gs(t) there is a neighbourhood

Λ of κ0 in parameter space such that gκ,s(t) is defined for all κ ∈ Λ.

Proposition 3.1 The parameter ray κ = Gs(t) for s = (s1s2s3 · · · ) ∈ S satisfies

d

dt
Sn(Gs(t)) → ∞ and

d

dκ
Sn(κ) → ∞

as n → ∞.

Proof For the parameter ray κ = Gs(t), i.e., gκ,s(t) = 2eκ,

Sn(Gs(t)) = Sn(κ) = S◦n
κ (2eκ) = S◦n

κ (gκ,s(t)).

By (c), the dynamic ray satisfies S◦n
κ (gκ,s(t)) = gκ,σn(s)(F

◦n(t)), where σn denotes the n-th

iterate of the shift map σ on S. Thus, with κ = Gs(t),

d

dt
Sn(Gs(t)) =

d

dt
S◦n
κ (gκ,s(t)) =

d

dt
gκ,σn(s)(F

◦n(t))

= g′κ,σn(s)(F
◦n(t)) · dF

◦n(t)

dt
+

∂

∂κ
gκ,σn(s)(F

◦n(t)) ·G′
s(t).

It is clearly that dF◦n(t)
dt → ∞ as n → ∞. We need only to show the following claims (i)

and (ii).

(i) |g′
κ,σn(s)(F

◦n(t))| → 1 as n → ∞.
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By (e), we have for t > ts,

|g′κ,σn(s)(F
◦n(t))| =

∣∣∣
∞∏

m=1

F ◦(m+n)(t) + 1

gκ,σ(m+n)(s)(F
◦(m+n)(t))

∣∣∣ =
∣∣∣

∞∏

m=n+1

F ◦(m)(t) + 1

gκ,σ(m)(s)(F
◦(m)(t))

∣∣∣.

The claim |g′κ,σn(s)(F
◦n(t))| → 1 follows directly from convergence of (3.1) (see (e)).

(ii)
∣∣ ∂
∂κ

gκ,σn(s)(F
◦n(t))

∣∣ is bounded.
From the construction of dynamic rays, we have g0κ,s(t) := t and

gm+1
κ,s (t) := Ls1(g

m
κ,σ(s)(F (t))) (3.2)

for everym ≥ 0, where Ls : C
′ → Rs is an inverse branch of Sκ(z) = eκ(ez+e−z) for s ∈ ZL∪ZR.

The function Ls(z) can be explicitly expressed as

Ls(z) = log(ze−κ ± (z2e−2κ − 4)
1
2 )− log 2 + 2πis,

where the sign + or − is taken according to s ∈ ZR or s ∈ ZL, respectively. The branch of log is

taken the principal value and the branch of (z2e−2κ−4)
1
2 is taken such that (z2)

1
2 = z. Then the

argument of (z2e−2κ−4)
1
2 and ze−κ are close to each other as |z| → ∞. We can reform Ls(z) =

log(ze−κ − (z2e−2κ − 4)
1
2 )− log 2+ 2πis to Ls(z) = − log(ze−κ + (z2e−2κ − 4)

1
2 ) + log 2+ 2πis.

Then we have

Ls(z) = ± log(ze−κ + (z2e−2κ − 4)
1
2 )∓ log 2 + 2πis.

It is known from (a) that gmκ,s(t) converges uniformly to a limiting curve gκ,s(t) for t > T

(the tail of dynamic ray), and the convergence is locally uniform for κ. So gκ,s(t) depends

holomorphically on κ for fixed t > T , and

∂

∂κ
gκ,s(t) = lim

m→∞

∂

∂κ
gmκ,s(t).

This construction is extended to entire dynamic rays: for all t > ts, a point z is on a dynamic

ray if S◦n
κ (z) is on a ray tail for sufficiently large n ≥ 1. Since we are interested in the limit

∂
∂κ

gκ,σn(s)(F
◦n(t)) as n → ∞, we may restrict to sufficiently large n such that F ◦n(t) are always

on ray tails. We thereby need to prove

lim
n→∞

∣∣∣ ∂
∂κ

gκ,σn(s)(F
◦n(t))

∣∣∣ = lim
n→∞

∣∣∣ lim
m→∞

∂

∂κ
gmκ,σn(s)(F

◦n(t))
∣∣∣ (3.3)

is bounded.

Denote

Am
n := gmκ,σn(s)(F

◦n(t)).

From (3.2), we have

Am+1
n = Lsn+1(A

m
n+1)

= ± log(e−κAm
n+1 + ((e−κAm

n+1)
2 − 4)

1
2 )∓ log 2 + 2πisn+1.
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We obtain the recursive relation

∂Am+1
n

∂κ
= ±

(
e−κ ∂Am

n+1

∂κ
− e−κAm

n+1

)
+

e−2κAm
n+1

∂Am
n+1
∂κ

−(e−κAm
n+1)

2

((e−κAm
n+1)

2−4)
1
2

e−κAm
n+1 + ((e−κAm

n+1)
2 − 4)

1
2

= ±
e−κ ∂Am

n+1

∂κ

(
1 +

e−κAm
n+1

((e−κAm
n+1)

2−4)
1
2

)
− e−κAm

n+1

(
1 +

e−κAm
n+1

((e−κAm
n+1)

2−4)
1
2

)

e−κAm
n+1 + ((e−κAm

n+1)
2 − 4)

1
2

starting with

∂A0
n+m+1

∂κ
=

∂g0
κ,σn+m+1(s)

∂κ
(F ◦(n+m+1)(t)) = 0 < 4. (3.4)

By (b), there is a constant B > 0 so that
∣∣Re gm′

κ,s′(t
′)
∣∣ > t′ − B for all m′, s′, κ from a

bounded domain, and t′ > T . Choosing n sufficiently large, we can be sure that

ReAm
n+1 = Re gmκ,σn+1(s)(F

◦(n+1)(t)) > C

for a given C > 12 and all m. Note that the argument of ((e−κAm
n+1)

2 − 4)
1
2 and e−κAm

n+1 are

close to each other, lim
n→∞

((Am
n+1)

2e−2κ−4)
1
2

Am
n+1e

−κ = 1, we get

∣∣∣∂A
m+1
n

∂κ

∣∣∣ ≤ 3

∣∣e−κ ∂Am
n+1

∂κ

∣∣+ |e−κAm
n+1|

|e−κAm
n+1|

=
3
∣∣∂Am

n+1

∂κ

∣∣
|Am

n+1|+ 3

≤ 1

4

∣∣∣
∂Am

n+1

∂κ

∣∣∣ + 3.

By induction, from (3.4) we have

∣∣∣
∂gm+1

κ,σn(s)

∂κ
(F ◦(n)(t))

∣∣∣ =
∣∣∣∂A

m+1
n

∂κ

∣∣∣ ≤ 1

4
· 4 + 3 = 4

for all m. Thus the limit as m → ∞ and then the lim as n → ∞ in (3.3) is bounded as claimed.

Since G′
s(t) is independent of n, we have proved that d

dtS
n(Gs(t)) → ∞ as n → ∞, which

is the first part of the lemma.

Since κ = Gs(t), the second part of the lemma comes immediately from

d

dκ
Sn(κ) =

d

dt
Sn(Gs(t)) ·

1

G′
s(t)

and the fact G′
s(t) 6= 0 (see (f)).

Now we turn to prove Theorem 1.1.

Proof of Theorem 1.1 It can be asserted that dimH(Ip,Λ) ≤ 1 + 1
p
. Choose ξ > 0

depending on Λ and p as in Lemma 2.2. Pick any κ ∈ Ip,Λ. By Lemma 2.2, there exist an

integerN ∈ N, a neighbourhood U ⊂ Λ of κ and a standard squareQ ⊂ {κ ∈ C : |Reκ| > ξ+π}
with center at SN (κ) and a double square Q̃ with respect to Q such that SN : U → Q̃ is a
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conformal isomorphism with |(SN )′(κ)| > 20 and Sn(κ) ∈ Pp,ξ for all n ≥ N . This implies that

κ ∈ IN
p,ξ,U and by Lemma 2.3, dimH(IN

p,ξ,U ) ≤ 1 + 1
p
.

Since Λ has countable topology and N ∈ N given in Lemma 2.2 forms a countable set, Ip,Λ
is contained in the countable union of sets of dimension at most 1 + 1

p
. So, for every p > 1 and

every bounded open Λ ⊂ C, we have dimH(Ip,Λ) ≤ 1 + 1
p
.

We now need to prove that for every open and bounded Λ ⊂ C, we have IR ∩ Λ ⊂ Ip,Λ for

every p > 1. ∀ κ ∈ IR ∩ Λ, by (d),

| Im(S
◦(n+1)
κ (0))|p

Re(S
◦(n+1)
κ (0))

=
| Im(S◦n(κ))|p
Re(S◦n(κ))

→ 0 as n → ∞,

then Sn(κ) ∈ Pp,0 for sufficiently large n.

By Proposition 3.1, |(Sn(κ))′| → ∞ as n → ∞. So κ ∈ Ip,Λ and IR ∩ Λ ⊂ Ip,Λ for every

p > 1.

As dimH(Ip,Λ) ≤ 1 + 1
p
, then dimH(IR ∩ Λ) ≤ 1 + 1

p
. Because this holds for all p > 1,

dimH(IR) ≤ 1. On the other hand, since IR contains curves, it could be concluded that

dimH(IR) = 1. And because I = IR
⋃
IE and I has positive planar Lebesgue measure, IE has

positive planar Lebesgue measure.
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