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Abstract The notion of normal elements for finite fields extension was generalized as
k-normal elements by Huczynska et al. (2013). Several methods to construct k-normal
elements were presented by Alizadah et al. (2016) and Huczynska et al. (2013), and
the criteria on k-normal elements were given by Alizadah et al. (2016) and Antonio et
al. (2018). In the paper by Huczynska, S., Mullen, G., Panario, D. and Thomson, D.
(2013), the number of k-normal elements for a fixed finite field extension was calculated
and estimated. In this paper the authors present a new criterion on k-normal elements
by using idempotents and show some examples. Such criterion was given for usual normal
elements before by Zhang et al. (2015).
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1 Introduction

Let q = pm, where p is a prime number, m ≥ 1, Fq a finite field with q elements, F∗
q =

Fq\{0}. For n ≥ 1 and Q = qn, α ∈ F∗
Q is called a normal element for extension FQ/Fq if

N = {α, αq, αq2 , · · · , αqn−1} is a basis of FQ over Fq ( N is called a normal basis for FQ/Fq).

For a normal element α of FQ/Fq, the minimal polynomial fα(x) ∈ Fq[x] of α is called a normal

polynomial for FQ/Fq, which is a monic irreducible polynomial in Fq[x] with degree n. Normal

bases have many applications including coding theory, cryptography and communication theory

due to the efficiency of exponentiation (see [5–6]). It is proved that α ∈ F∗
Q is a normal element

for FQ/Fq if and only if

gcd(gα(x), x
n − 1) = 1, gα(x) =

n−1
∑

i=0

αqixn−i−1 (1.1)

(see [5, Theorem 2.39]).

The following definition given by Huczynska et al. [3] is a generalization of normal elements.

Definition 1.1 (see [3]) Let q = pm, Q = qn and 0 ≤ k ≤ n − 1. An element α ∈ F∗
Q is

called a k-normal element for FQ/Fq if the degree of gcd(gα(x), x
n − 1) is k.
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With this terminology, a normal element is just 0-normal. As shown in the normal element

case (see [6]), the k-normal elements can be used to reduce the multiplication process in finite

fields. And another motivation for studying k-normal elements is due to the observation that

they implicitly arise during the process of constructing quasi-normal bases of finite fields (see

[7]).

The number of k-normal elements for extension FQ/Fq was calculated and estimated in [3]

and several methods to construct k-normal elements were presented in [1–2]. As the normal

element case, the k-normal elements can be characterized by using q-linearlized polynomial

theory (see [2–3]). Now we briefly introduce such characterization.

A q-linearlized polynomial (q-polynomial in brief) is a polynomial in the following form:

L(x) = a0x+ a1x
q + · · ·+ amxqm , ai ∈ Fq.

Let Fq[x] be the set of all q-polynomials. Then Fq[x] is a ring with respect to the ordinary

addition and the following multiplication ⊗ :

L(x)⊗K(x) = L(K(x)), composition.

One of the basic facts on Fq[x] is that the mapping

ϕ : Fq[x] −→ Fq[x],

m
∑

i=0

aix
i 7→

m
∑

i=0

aix
qi , ai ∈ Fq (1.2)

is an isomorphism of rings. Therefore Fq[x] is a principal ideal domain with identity x. We

use the notation ‖ to express the divisibility in Fq[x]. Namely, for L(x) and M(x) in Fq[x],

L(x) ‖ M(x) means that L(x) 6= 0 and there exists N(x) ∈ Fq[x] such that M(x) = L(x) ⊗
N(x) = N(x)⊗ L(x).

Let n ≥ 1 and α ∈ F∗
Q. The set

Iα = {M(x) ∈ Fq[x] : M(α) = 0}

is a nonzero ideal of Fq[x] because xqn − x ∈ Iα. The monic generator Mα(x) of the ideal Iα is

called the minimal q-polynomial of α. Particularly, Mα(x) is an irreducible polynomial in Fq[x]

and Mα(x) ‖ xqn − x. Moreover for any L(x) ∈ Fq[x], L(α) = 0 if and only if Mα(x) ‖ L(x).

Lemma 1.1 (see [3, Theorem 3.2]) Let q = pm, Q = qn and 0 ≤ k ≤ n− 1. The following

statements for α ∈ F∗
Q are equivalent to each other:

(I) α is a k-normal element for FQ/Fq;

(II) The degree of the minimal q-polynomial Mα(x) ∈ Fq[x] over Fq is qn−k;

(III) The dimension of the Fq-vector subspace Vα of FQ spanned by {α, αq, · · · , αqn−1} is

n− k and {α, αq, · · · , αqn−k−1} is an Fq-basis of Vα.

Let n = ptn′, p ∤ n′. Then xn − 1 is decomposed in Fq[x] as

xn − 1 = (xn′ − 1)p
t

= (p1(x)p2(x) · · · ps(x))p
t

, (1.3)

where pi(x) (1 ≤ i ≤ s) are distinct monic irreducible polynomials in Fq[x]. By the isomorphism

ϕ in (1.2), xqn − x has the following corresponding decomposition in Fq[x] :

xqn − x = (P1(x)⊗ P2(x)⊗ · · · ⊗ Ps(x))
pt

,
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where Pi(x) = ϕ(pi(x)) (1 ≤ i ≤ s) are distinct monic irreducible q-polynomials in Fq[x] and

for L(x) ∈ Fq[x] and l ≥ 1, L(x)l means L(x)⊗ L(x)⊗ · · · ⊗ L(x) (l copies).

For α ∈ F∗
Q, the minimal q-polynomial Mα(x) is a divisor of xqn − x in Fq[x]. Therefore

Mα(x) = ϕ(mα(x)) for a divisor mα(x) of xn − 1 in Fq[x]. From the definition of Mα(x) and

the isomorphism ϕ between Fq[x] and Fq[x] we get the following result.

Lemma 1.2 Let xn−1 be decomposed by formula (1.3) in Fq[x], and m(x) is a monic divisor

of xn − 1 in Fq[x]. Let M(x) = ϕ(m(x)) and Mi(x) = ϕ(m(x)
pi(x)

) if pi(x) | m(x). Then M(x) is

the minimal q-polynomial of α if and only if M(α) = 0 and for each pi(x) | m(x), Mi(α) 6= 0.

Particularly, if gcd(n, p) = 1, then the decomposition (1.3) becomes

xn − 1 = p1(x)p2(x) · · · ps(x). (1.4)

For α ∈ F∗
Q, the minimal q-polynomial Mα(x) has the form

Mα(x) = M∆(x) =
⊗

i∈∆

Pi(x),

where ∆ is a subset of {1, 2, · · · , s}. In this case, Mα(x) can be described by the following way.

Lemma 1.3 Suppose that Q = qn, (n, q) = 1 and xn − 1 has decomposition formula (1.4)

where pi(x) (1 ≤ i ≤ s) are distinct monic irreducible polynomials in Fq[x]. Let

mi(x) =
xn − 1

pi(x)
, Mi(x) = ϕ(mi(x)), 1 ≤ i ≤ s.

For α ∈ F∗
Q, let

∆ = ∆(α) = {i : 1 ≤ i ≤ s, Mi(α) 6= 0}.
Then the minimal q-polynomial Mα(x) of α is M∆(x) =

⊗

i∈∆

Pi(x) and α is a k-normal element

for FQ/Fq where k = n− ∑

i∈∆

deg pi(x).

Proof For each i, 1 ≤ i ≤ s,

Pi(x)‖Mα(x) ⇐⇒ Mα(x) ∦
xqn − x

Pi(x)
= Mi(x) ∈ Fq[x]

(

since xqn − x =

s
⊗

i=1

Pi(x)
)

⇐⇒ Mi(α) 6= 0 ⇐⇒ i ∈ ∆.

Therefore Mα(x) =
∏

i∈∆

Pi(x). Since degMα(x) =
∏

i∈∆

degPi(x) = q

∑

i∈∆

deg pi(x)

, by Lemma 1.1

we know that α is a k-normal element for extension FQ/Fq where k = n − ∑

i∈∆

deg pi(x) =

s
∑

i=1
i/∈∆

deg pi(x).

Lemma 1.3 presents a method to determine the normality k and the minimal q-polynomial of

an element α ∈ F∗
Q provided we know the decomposition formula (1.4) in the case gcd(n, q) = 1.

In this paper we present a new method to determine the normality and the minimal q-polynomial

Mα(x) of α ∈ F∗
Q, essentially by the partition of Zn = Z/nZ into q-classes without using the

explicit form of the irreducible factors pi(x) (1 ≤ i ≤ s) of xn − 1. We explain this idempotent

method in Section 2 and show several examples in Section 3.
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2 Main Result

Let q = pm, Q = qn and gcd(n, p) = 1. A criterion on normal element for extension FQ/Fq

was given in [6] by using idempotents in semisimple Fq-algebra A = Fq[x]/(x
n − 1). In this

section we generalize this method to determine the normality k and Mα(x) of any α ∈ F∗
Q.

By assumption gcd(n, p) = 1, xn − 1 has the decomposition (1.4) in Fq[x] :

xn − 1 = pi(x)p2(x) · · · ps(x),

where pi(x) (1 ≤ i ≤ s) are distinct monic irreducible polynomials in Fq[x]. Let

ni = deg pi(x), li(x) =
xn − 1

pi(x)
, Li(x) = ϕ(li(x)), 1 ≤ i ≤ s.

Then n1+n2+ · · ·+ns = n, degLi(x) = qni (1 ≤ i ≤ s). By the Chinese Remainder Theorem,

A = Fq[x]/(x
n − 1) is a direct sum of finite fields:

A ∼=
s

⊕

i=1

Fq[x]

(pi(x))
∼=

s
⊕

i=1

FQi
, Qi = q

ni
.

It is well known that zeros and degree of Pi(x) can be described by q-classes of Zn = Z/nZ.

Definition 2.1 Let n ≥ 2, q = pm and gcd(n, p) = 1. Two elements a and b in Zn =

Z/nZ = {0, 1, 2, · · · , n − 1} are called q-equivalent if there exists a positive i ∈ Z such that

a ≡ bqi (mod n).

This is an equivalent relation on Zn and Zn is partitioned into q-equivalent classes.

A1 = {a1 = 0}, |A1| = n1 = 1,

A2 = {a2, a2q, · · · , a2qn2−1}, |A2| = n2,

...

As = {as, asq, · · · , asqns−1}, |As| = ns,

where for 1 ≤ i ≤ s, ni is the least positive integer such that aiq
ni ≡ ai (mod n).

Let α be a primitive n-th root of 1 in the algebraic closure of Fq. Then for each i, 1 ≤ i ≤ s,

Si = {αλ : λ ∈ Ai} = {αai , αaiq, · · · , αaiq
ni−1}

is the set of zeros of a monic irreducible polynomial pi(x) in Fq[x] with degree ni. And xn − 1

is decomposed in Fq[x] as (1.4).

Now we introduce the system of orthogonal (minimal) idempotents in ring

A = Fq[x]/(x
n − 1).

Consider the natural isomorphism of rings

π : A −→ Fq[x]

(p1(x))
⊕ Fq[x]

(p2(x))
⊕ · · · ⊕ Fq[x]

(ps(x))
,

Fq[x]

(pi(x))
= FQi

, Qi = qni

f(x) = (f(x) (mod p1(x)), f(x)(mod p2(x)), · · · , f(x)(mod ps(x))).
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Definition 2.2 Let v1 = (1, 0, · · · , 0), v2 = (0, 1, · · · , 0), · · · , vs = (0, 0, · · · , 1) be elements

in
Fq[x]

(p1(x))
⊕ Fq[x]

(p2(x))
⊕ · · · ⊕ Fq[x]

(ps(x))
= FQ1

⊕ FQ2
⊕ · · · ⊕ FQs

.

Let

ei(x) = π−1(vi), 1 ≤ i ≤ s.

Namely, ei(x) (1 ≤ i ≤ s) are determined by

ei(x) ≡ δij (mod pj(x)), 1 ≤ j ≤ s, (2.1)

where δij = 1 for i = j and δij = 0 otherwise. {ei(x) (1 ≤ i ≤ s)} is called the system of

orthogonal (minimal) idempotents of A, because the following relationships hold:

ei(x)ej(x) = δijei(x),
s

∑

i=1

ei(x) = 1, 1 ≤ i, j ≤ s.

Now we present our main result which shows that the minimum q-polynomial and the

normality of α ∈ F∗
Q can be determined by using ei(x) (1 ≤ i ≤ s).

Theorem 2.1 Let q = pm, Q = qn and gcd(n, p) = 1. Let xn − 1 be decomposed as

xn − 1 = pi(x)p2(x) · · · ps(x) in Fq[x] and the idempotents {ei(x) (1 ≤ i ≤ s)} be defined by

congruence equation (2.1). Let Ei(x) = ϕ(ei(x)) and Pi(x) = ϕ(pi(x)) (1 ≤ i ≤ n). For any

α ∈ F∗
Q, let

∆ = ∆(α) = {i : 1 ≤ i ≤ s, Ei(α) 6= 0}.

Then the minimal q-polynomial of α is M∆(x) =
⊗

i∈∆

Pi(x) and α is a k-normal element for

extension FQ/Fq where k (the normality of α) is given by k = n− ∑

i∈∆

deg pi(x).

Proof Let mi(x) =
xn−1
pi(x)

, Mi(x) = ϕ(mi(x)) (1 ≤ i ≤ s). It was proved in the proof of [8,

Theorem 2] that for each α ∈ F∗
Q and 1 ≤ i ≤ s, Mi(α) 6= 0 if and only if Ei(α) 6= 0. Then the

conclusion can be derived directly from Lemma 1.3. The idempotents e1(x), e2(x), · · · , es(x) are
determined by the congruence equations (2.1), but the following method is easier to calculate

ei(x) (1 ≤ i ≤ s) in certain cases.

Theorem 2.2 (see [8,Theorem 3]) Suppose that Q = qn, gcd(n, q) = 1. Let Ai (1 ≤ i ≤ s)

be q-classes of Zn, ei(x) and pi(x) (1 ≤ i ≤ s) be the corresponding idempotents of Fq[x]/(x
n−1)

and monic irreducible factors of xn−1 in Fq[x]. Let ζ be a primitive n-th root of 1 in the algebraic

closure of Fq. For each i (1 ≤ i ≤ s), we take αi to be a zero of pi(x) which means αi = ζai for

some ai ∈ Ai. Let

εi(x) =
∑

a∈Ai

xa, 1 ≤ i ≤ s. (2.2)

And M is an s× s matrix over Fq defined by

M = (εi(αj))1≤i,j≤s.
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Then det(M) 6= 0 and







e1(x)
...

es(x)






= M−1







ε1(x)
...

εs(x)






.

By using the idempotents, a criterion on 0-normal elements was given in [8]: α ∈ F∗
Q is a

normal element for extension FQ/Fq (Q = qn, gcd(n, q) = 1) if and only if Ei(α) 6= 0 (1 ≤ i ≤ s).

Now we present such type of criterion on 1-normal elements as an application of Theorem 2.1.

By Theorem 2.1, α ∈ F∗
Q is a 1-normal element for extension FQ/Fq (Q = qn, gcd(n, q) = 1)

if and only if the minimal q-polynomial Mα(x) of α is ϕ
(

xn−1
pi(x)

)

where pi(x) is a factor of xn− 1

in Fq[x] with degree 1 so that pi(x) = x − c for some c ∈ F∗
q , which means that cq−1 = 1.

Moreover, cn = 1 so that cd = 1 where d = gcd(q − 1, n). Let γ be a primitive element of Fq so

that F∗
q = 〈γ〉. Let n = ed and β = γe. Then the zeros of xn − 1 in Fq are βλ (0 ≤ λ ≤ d− 1)

and the decomposition of xn − 1 in Fq[x] is

xn − 1 = p1(x)p2(x) · · · pd(x)pd+1(x) · · · ps(x), (2.3)

where pλ(x) = x− βλ−1 for 1 ≤ λ ≤ d, and deg pλ(x) ≥ 2 for λ ≥ d+ 1.

For 1 ≤ λ ≤ d,

lλ(x) =
xn − 1

x− βλ−1
=

n−1
∑

i=0

β(λ−1)(n−1−i)xi

=

n−1
∑

i=0

β(λ−1)(−1−i)xi (since βn = 1),

and

Lλ(x) = ϕ(lλ(x)) =
n−1
∑

i=0

β(λ−1)(−1−i)xqi.

Therefore

Lλ(α) =

e−1
∑

l=0

d−1
∑

r=0

β(λ−1)(−1−r)αqdl+r

(let i = dl + r)

=

d−1
∑

r=0

β(λ−1)(−1−r)(Trnd (α))
qr,

where Trnd is the trace mapping from FQ = Fqn to Fqd . Particularly, L1(α) =
d−1
∑

r=0
(Trnd (α))

qr =

Trd1(Tr
n
d (α)) = Tr(α) where Tr = Trn1 is the trace mapping from FQ to Fq.

From these discussions we get the following result.

Theorem 2.3 Suppose that Q = qn, gcd(n, q) = 1. Let F∗
q = 〈γ〉, d = gcd(n, q−1), n = ed

and β = γe. Then xn−1 is decomposed in Fq[x] as formula (2.3). For any α ∈ F∗
Q, the following

statements are equivalent to each other:

(I) α is a 1-normal element for extension FQ/Fq;
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(II) The minimum q-polynomial of α is Lλ(x) =
d−1
∑

r=0
β(λ−1)(−1−r)(Trnd (α))

qr for some λ, 1 ≤

λ ≤ d, where Trnd (x) =
e−1
∑

l=0

xqdl ;

(III) There exists just one λ for 1 ≤ λ ≤ d such that
d−1
∑

r=0

β(λ−1)(−1−r)(Trnd (α))
qr = 0 and

Eλ(α) 6= 0 for all d+1 ≤ λ ≤ s, where Ei(x) is the q-polynomial corresponding to the idempotent

ei(x);

(IV) There exists just one λ for 1 ≤ λ ≤ d such that
d−1
∑

r=0
β(λ−1)(−1−r)(Trnd (α))

qr = 0 and

{α, αq, · · · , αqn−2} is Fq-linearly independent.

Proof α is a 1-normal element of FQ/Fq if and only if the degree of the minimum q-

polynomial Mα(x) of α is qn−1. Namely, Mα(x) = Lλ(x) = ϕ(lλ(x)) where lλ(x) = xn−1
pλ(x)

for

some λ, 1 ≤ λ ≤ d. Therefore (I) and (II) are equivalent. The other equivalent relations can

be derived from Theorem 2.1.

Corollary 2.1 Suppose that Q = qn and gcd(n, q(q−1)) = 1. Then xn−1 = p1(x)p2(x) · · ·
ps(x) where p1(x) = x−1 and deg pλ ≥ 2 for 2 ≤ λ ≤ s. The following statements are equivalent

to each other for α ∈ F∗
Q :

(I) α is a 1-normal element for extension FQ/Fq;

(II) The minimum q-polynomial of α is Tr(x) =
n−1
∑

i=0

xqi ;

(III) Tr(α) = 0 and Eλ(α) 6= 0 for all 2 ≤ λ ≤ s;

(IV) Tr(α) = 0 and {α, αq, · · · , αqn−2} is Fq-linearly independent.

Proof By assumption gcd(n, q(q− 1)) = 1, we know that 1 is the only element c in F∗
q such

that cn = 1. Then the conclusion is derived from Theorem 2.3 directly.

3 Examples

In this section we present examples to determine the normality and the minimum q-polynomial

of an element α ∈ F∗
Q by using Lemma 1.3 and Theorem 2.1.

Example 3.1 Let p and n be prime numbers, n 6= p and q = pm. Suppose that the order

of q in Z×
n is ϕ(n) = n− 1. Namely, Z×

n = 〈q〉. Then xn − 1 = p1(x)p2(x) where

p1(x) = x− 1, p2(x) = xn−1 + xn−2 + · · ·+ x+ 1

are irreducible polynomials in Fq[x]. We get

l1(x) =
xn − 1

p1(x)
, l2(x) =

xn − 1

p2(x)
= p1(x),

L1(x) = ϕ(l1(x)) =
n−1
∑

i=0

xqi = Tr(x), L2(x) = ϕ(l2(x)) = xq − x.

From Lemma 1.3 we get the following result.

Theorem 3.1 Let p and n be prime numbers, n 6= p, and q = pm, Q = qn. Suppose that

Z∗
n = 〈q〉. For each α ∈ F∗

Q, let Mα(x) be the minimal q-polynomial of α.
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(I) If α /∈ Fq and Tr(α) 6= 0, then Mα(x) = xqn − x and α is a (0-th) normal element for

FQ/Fq.

(II) If α /∈ Fq and Tr(α) = 0, then Mα(x) = Tr(x) and α is a 1-normal element for FQ/Fq.

(III) If α ∈ F∗
q , then Tr(α) = nα 6= 0 so that Mα(x) = xq − x and α is an (n − 1)-normal

element for FQ/Fq.

Example 3.2 Let p be a prime number, q = pm, n be an odd prime, n 6= p. Suppose that

the order of q in Z×
n is l = ϕ(n)

2 = n−1
2 . Then there exists an integer g such that Z×

n = 〈g〉 and
q = g2 ∈ Z×

n . Then

D = 〈q〉 = {qλ : 0 ≤ λ ≤ l − 1} = {g2λ : 0 ≤ λ ≤ l − 1}

is the subgroup of multiplicative group Z×
n and the other coset is D′ = gD = {g2λ+1 : 0 ≤ λ ≤

l− 1}. We have the decomposition

xn − 1 = p1(x)p2(x)p3(x)

in Fq[x], where

p1(x) = x− 1, p2(x) =
∏

a∈D

(x − ζa), p3(x) =
∏

a∈D′

(x − ζa), (3.1)

where ζ is an n-th primitive root of 1 in the algebraic closure of Fq. It is not easy to get the

polynomials pi(x) ∈ Fq[x], li(x) = xn−1
pi(x)

∈ Fq[x] and Li(x) = ϕ(li(x)) ∈ Fq[x] explicitly for

i = 2 and 3. Now we use the idempotents. With the notations given in Section 2, we have

ε1(x) = 1, ε2(x) =
∑

r∈D

xr, ε3(x) =
∑

r∈D′

xr,

M =







ε1(1) ε1(ζ) ε1(ζ
g)

ε2(1) ε2(ζ) ε2(ζ
g)

ε3(1) ε3(ζ) ε3(ζ
g)






=





1 1 1
l C B
l B C



 ,

where B =
∑

r∈D′

ζr ∈ Fq, C =
∑

r∈D

ζr ∈ Fq. By Theorem 2.2, det(M) = n(B −C) 6= 0. Then we

get

M−1 =
1

n(B − C)





B − C B − C B − C
l(B − C) C − l l −B
l(B − C) l −B C − l





and




e1(x)
e2(x)
e3(x)



 = M−1





ε1(x)
ε2(x)
ε3(x)



 .

Namely, we get

e1(x) =
1

n
(ε1(x) + ε2(x) + ε3(x)) =

1

n

n−1
∑

i=0

xi,

e2(x) =
1

n(B − C)
[l(B − C) + (C − l)ε2(x) + (l −B)ε3(x)], (3.2)

e3(x) =
1

n(B − C)
[l(B − C) + (l −B)ε2(x) + (C − l)ε3(x)].
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Now we compute B and C by using the Legendre symbol

( r

n

)

=

{

1, if r ∈ D,

−1, if r ∈ D′.

We have B + C =
n−1
∑

r=1
ζr = −1, B − C =

n−1
∑

r=1
( r
n )ζ

r ∈ Fq, where B − C is the quadratic Gauss

sum over Fn, but valued in Fq, instead of the complex number field C. We calculated B and C

in [8] as following result.

Case (I) 2 ∤ q. Let n∗ =
(

−1
n

)

n, then

B =
1

2
(−1 + µ

√
n∗), C =

1

2
(−1− µ

√
n∗), µ = 1 or− 1.

Then by (3.2) we get

nµ
√
n∗e2(x) = lµ

√
n∗ +

n

2
(ε3(x)− ε2(x)) −

µ
√
n∗

2
(ε3(x) + ε2(x)),

nµ
√
n∗e3(x) = lµ

√
n∗ − n

2
(ε3(x)− ε2(x)) −

µ
√
n∗

2
(ε3(x) + ε2(x))

and

nE1(x) = Tr(x),

2n
√
n∗E2(x) = n

√
n∗x− µn

n−1
∑

r=1

( r

n

)

xqr −
√
n∗Tr(x), (3.3)

2n
√
n∗E3(x) = n

√
n∗x+ µn

n−1
∑

r=1

( r

n

)

xqr −
√
n∗Tr(x).

Case (II) 2 | q. Then B + C = B − C = 1 and

{B,C} =

{

{0, 1}, if n ≡ ±1 (mod 8),

{ω, ω + 1}, if n ≡ ±3 (mod 8),

where ω ∈ F4\{0, 1}. Then by (3.2) we get

ne2(x) = l + (l +B)(ε2(x) + ε3(x)) + ε2(x) = l

n−1
∑

r=0

xr +B

n−1
∑

r=1

xr +
∑

r∈D

xr ,

ne3(x) = l
n−1
∑

r=0

xr + C
n−1
∑

r=1

xr +
∑

r∈D

xr,

and

nE1(x) = Tr(x),

nE2(x) = lTr(x) +B(Tr(x) + x) +
∑

r∈D

xqr , (3.4)

nE3(x) = lTr(x) + C(Tr(x) + x) +
∑

r∈D

xqr , C = B + 1.

Now we determine the normality of any element α ∈ F∗
Q.
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Theorem 3.2 Let p and n be distinct prime numbers, n ≥ 3, q = pm, Q = qn. Suppose

that Z×
n = 〈g〉 and q = g2 ∈ Z×

n so that the order of q in the multiplicative group Z×
n is l = n−1

2 .

Let

D = 〈q〉 = {g2λ : 0 ≤ λ ≤ l − 1}.

Then xn − 1 = p1(x)p2(x)p3(x) where pi(x) (1 ≤ i ≤ 3) are the monic irreducible factors of

xn − 1 in Fq[x] defined by (3.1). Let Pi(x) = ϕ(pi(x)) (1 ≤ i ≤ 3). For α ∈ F∗
Q, let Mα(x) be

the minimum q-polynomial of α, and α is a k-normal element for FQ/Fq.

Case (I) 2 ∤ q. Let δ =
n−1
∑

r=0
( r
n )α

qr .

(a) If α ∈ F∗
q , then Mα(x) = xq − x and k = n− 1.

(b) Suppose that α ∈ FQ\Fq and Tr(α) = 0.

If
√
n∗δ /∈ {±nα}, then Mα(x) = Tr(x) =

n−1
∑

i=0

xqi and k = 1. Otherwise Mα(x) = P2(x) or

P3(x) and k = l + 1 = n+1
2 .

(c) Suppose that α ∈ FQ\Fq and Tr(α) 6= 0.

If
√
n∗δ /∈ {±(nα− Tr(α))}, then Mα(x) = xqn − x and k = 0 (α is a normal element for

FQ/Fq). Otherwise Mα(x) = Pi(x
q − x) = Pi(x)

q − Pi(x) for i = 2 or 3 and k = l = n−1
2 .

Case (II) 2 | q. Let ε = ∑

r∈D

αqr, ω ∈ F4\{0, 1} and

B =

{

0, if n ≡ ±1 (mod 8),

ω, if n ≡ ±3 (mod 8).

(a) If α ∈ F∗
q , then Mα(x) = xq − x and k = n− 1.

(b) Suppose that α ∈ FQ\Fq and Tr(α) = 0. If ε /∈ {Bα, (B + 1)α}, then Mα(x) = Tr(x) =
n−1
∑

i=0

xqi and k = 1. Otherwise Mα(x) = P2(x) or P3(x) and k = l + 1 = n+1
2 .

(c) Suppose that α ∈ FQ\Fq and Tr(α) 6= 0. If ε /∈ {lTr(α) + B(Tr(α) + α), lTr(α) + (B +

1)(Tr(α)+α)}, then Mα(x) = xqn −x and k = 0 (α is a normal element for FQ/Fq). Otherwise

Mα(x) = Pi(x)
q + Pi(x) for i = 2 or 3 and k = l = n−1

2 .

Proof (I) For 2 ∤ q, α ∈ F×
Q, formula (3.3) gives

E1(α) = 0 ⇔ Tr(α) = 0,

E2(α) = 0 ⇔ nα− Tr(α)− µ
√
n∗δ = 0,

E3(α) = 0 ⇔ nα− Tr(α) + µ
√
n∗δ = 0, µ = 1 or − 1.

If α ∈ F∗
q , then Tr(α) = nα 6= 0, δ =

n−1
∑

r=0

(

r
n

)

αqr = α
n−1
∑

r=0

(

r
n

)

= 0. Therefore E1(α) 6= 0

and E2(α) = E3(α) = 0. By Theorem 2.1, Mα(x) = P1(x) = xq − x and k = n − 1. If

α ∈ FQ\Fq, then nα − Tr(α) 6= 0
(

otherwise α = 1
nTr(α) ∈ Fq

)

. If E2(α) = E3(α) = 0, then

nα− Tr(α) =
√
n∗δ = −

√
n∗δ which implies that δ = 0 and nα = Tr(α), contradiction.

Therefore at most one of E2(α) and E3(α) is zero. And Ei(α) = 0 for i = 2 or 3 if and

only if
√
n∗δ ∈ {±(nα − Tr(α))}. When Tr(α) = 0, then E1(α) = 0. If

√
n∗δ /∈ {±nα}, then

E2(α) 6= 0 6= E3(α) and Mα(x) = ϕ(p2(x)p3(x)) = ϕ
(

n−1
∑

i=0

xi
)

=
n−1
∑

i=0

xqi , k = n− (n− 1) = 1.

If
√
n∗δ = nα or −nα (namely, δ =

√
n∗α or −

√
n∗α), then Mα(x) = Pi(x) where i = 2 or
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3 and k = n − l = l + 1. When Tr(α) 6= 0, we have E1(α) 6= 0. If
√
n∗δ /∈ {±(nα − Tr(α))},

then E2(α) 6= 0 6= E3(α) and Mα(x) = ϕ(xn − 1) = xqn − x, k = 0. Otherwise Mα(x) =

ϕ(pi(x)p1(x)) = Pi(x) ⊗ (xq − x) = Pi(x
q − x) = Pi(x)

q − Pi(x) for i = 2 or 3. This completes

the proof of Case (I). Similarly we can prove Theorem 3.2 for Case (II) by using Theorem 2.1

and formula (3.4).

Example 3.3 (General Case) Let p and n be distinct prime numbers, n ≥ 3, q = pm, Q =

qn. Let f be the order of q in the multiplicative group Z×
n . Then n − 1 = ef and there exists

g ∈ Z×
n such that Z×

n = 〈g〉 and q = ge ∈ Z×
n . C = 〈q〉 is a subgroup of Z×

n and the cosets of C

in Z×
n are

Cλ = gλC = {gλ+ie : 0 ≤ i ≤ f − 1}, 0 ≤ λ ≤ e − 1.

Let ζ be an n-th primitive root of 1, Fq(ζ) = Fqf . Then

xn − 1 = p∗(x)p0(x) · · · pe−1(x), (3.5)

where p∗(x) = x− 1 and for 0 ≤ λ ≤ e − 1, pλ =
∑

a∈Cλ

(x− ζa) is an irreducible polynomial in

Fq[x]. Therefore

ε∗ = 1, ελ(x) =
∑

a∈Cλ

xa (mod xn − 1), 0 ≤ λ ≤ e− 1. (3.6)

Let ελ = ελ(ζ) =
∑

a∈Cλ

ζa (0 ≤ λ ≤ e − 1). We know that ελ ∈ Fq is the Gauss periods of

order e and for αj = ζg
j

,

ελ(αj) =
∑

a∈Cλ

ζag
j

= ελ+j , λ, j ∈ Ze.

Therefore

M =















1 1 1 · · · 1
f ε0 ε1 · · · εe−1

f ε1 ε2 · · · ε0
...

...
...

...
f εe−1 ε0 · · · εe−2















.

By using the equalities

e−1
∑

λ=0

ελ =

e−1
∑

λ=0

∑

a∈Cλ

ζa =

n−1
∑

a=0

ζa = −1 (3.7)

and

e−1
∑

λ=0

ελελ+j =

e−1
∑

λ=0

∑

a,b∈C

ζag
λ+bgλ+j

=
e−1
∑

λ=0

∑

a∈C

∑

d∈C

ζag
λ(1+dgj) (let d = ba−1)

=

{

n− f, if − 1 ∈ Cj (namely, if j = 0 for even f and j = e
2 for odd f),

−f, otherwise,
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we get

M−1 =
1

n















1 1 1 · · · 1
f εc εc+1 · · · εc−1

f εc+1 εc+2 · · · εc
...

...
...

...
f εc−1 εc · · · εc−2















,

where c ≡ ef
2 (mod e). Namely, c = 0 for even f and c = f

2 for odd f. By Theorem 2.2, we

have for α ∈ F∗
Q (Q = qn),











e∗(x)
e0(x)
...

ee−1(x)











= M−1











1
ε0(x)
...

εe−1(x)











=
1

n























n−1
∑

i=0

xi

f +
e−1
∑

λ=0

ελ(x)ελ+c

...

f +
e−1
∑

λ=0

ελ(x)ελ+c−1























.

Namely, E∗(α) =
n−1
∑

i=0

αqi = Tr(α) and for 0 ≤ i ≤ e − 1,

Ei(α) =
1

n

(

fα+
e−1
∑

λ=0

ελ+c+i

∑

a∈Cλ

αqa
)

. (3.8)

From these computations and Theorem 2.1, we get the following result.

Theorem 3.3 Let p and n be distinct prime numbers, n ≥ 3, q = pm, Q = qn. Let f be

the order of q in the multiplicative group Z×
n , n− 1 = ef. Then there exists g ∈ Z×

n such that

Z×
n = 〈g〉 and q = ge ∈ Z×

n . Let

C = 〈q〉 = {qi : 0 ≤ i ≤ f − 1} = {gie : 0 ≤ i ≤ f − 1}

and Cλ = gλC (0 ≤ λ ≤ e− 1) are the cyclotomic cosets of C in Z×
n . Let ζ be an n-th primitive

root of 1, Fq(ζ) = Fqf . Then xn − 1 is decomposed in Fq[x] by

xn − 1 = p∗(x)p0(x) · · · pe−1(x),

where p∗(x) = x− 1 and for 0 ≤ λ ≤ e− 1, pλ =
∑

a∈Cλ

(x − ζa) is an irreducible polynomial in

Fq[x], and Pλ = ϕ(pλ). Let

ελ =
∑

a∈Cλ

ζa,

c =

{

0, if f is even,
e

2
, if f is odd.

For α ∈ F∗
Q, let

S =
{

i : 0 ≤ i ≤ e− 1,

e−1
∑

λ=0

ελ+i+c

∑

a∈Cλ

αqa 6= −fa
}

, (3.9)
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and let Mα(x) be the minimum q-polynomial of α and α be a k-normal element for FQ/Fq.

(I) When α ∈ F∗
q , then Mα(x) = xq − x and k = n− 1;

(II) When α ∈ FQ/Fq and Tr(α) = 0, then Mα(x) =
⊗

λ∈S

Pλ(x) and k = n − f |S| =

f(e− |S|) + 1;

(III) When α ∈ FQ/Fq and Tr(α) 6= 0, then Mα(x) =
⊗

λ∈S

Pλ(x
q−x) and k = n−1−f |S| =

f(e− |S|).

Proof When α ∈ F∗
q , E∗ = Tr(α) = nα 6= 0 and for 0 ≤ i ≤ e − 1, by (3.8)

Ei(α) =
1

n

(

fα+

e−1
∑

λ=0

ελ+c+i

∑

a∈Cλ

αqa
)

=
1

n

(

fα+ fα

e−1
∑

λ=0

ελ

)

= 0.

Therefore Mα(x) = P1(x) = xq − x and k = n− 1.

When α ∈ FQ/Fq, E∗(α) = Tr(α) and for 1 ≤ i ≤ e− 1, by (3.8)–(3.9),

Ei(α) 6= 0 ⇐⇒ i ∈ S.

Therefore Mα(x) =
⊗

λ∈S

Pλ(x) and k = n − f |S| if Tr(α) = 0 and Mα(x) =
(
⊗

λ∈S

Pλ(x)
)

⊗

P1(x) =
⊗

λ∈S

Pλ(x
q − x), k = n− f |S| − 1 = f(e− |S|) if Tr(α) 6= 0.

Remark 3.1 (1) εi =
∑

a∈C1

ζa (0 ≤ i ≤ e − 1) are Gauss periods of order e over Fn, but

valued in Fq. They can be computed as usual Gauss periods valued in complex number field C

for small e and semiprimitive case. For e = 1 and 2, we get Theorem 3.1 and 3.2 respectively.

(2) For q = 2, (e, n) = (3, 7), (5, 31), (7, 127) or q = 4, e = 3, n = 7, εi ∈ F2 and by (3.8),

e−1
∑

i=0

εiεi+j =

{

1, if j = 0,

0, if 1 ≤ j ≤ e− 1,

which means that the circulant matrix over F2

M =











ε0 ε1 · · · εe−1

ε1 ε2 · · · ε0
...

...
...

εe−1 ε0 · · · εe−2











is orthogonal. Jungnickel et al. [4] obtained a formula on the number of orthogonal circulant

e× 2 matrix over Fq. From this formula we know that for q = 2, (e, n) = (3, 7), (5, 31), (7, 127)

or q = 4, (e, n) = (3, 7), (ε0, ε1, · · · , εe−1) is a cyclic shift of (1, 0, · · · , 0). Let εt = 1, then
e−1
∑

λ=0

ελ+i+c

∑

a∈Cλ

αqa
∑

a∈Cλ′

αqa where λ′ = t+ i+ c. Therefore let

S ′ =
{

λ′ : 0 ≤ λ′ ≤ e− 1,
∑

a∈Cλ′

αqa
}

6= −fa.

Then S ′ = S + t = {s+ t, s ∈ S}, |S| = |S ′|, and Theorem 3.3 can be stated in term of S ′ in

stead of S.
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