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Time-Like Conformal Homogeneous Hypersurfaces with
Three Distinct Principal Curvatures*
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Abstract A hypersurface z(M) in Lorentzian space Rf is called conformal homogeneous,
if for any two points p, ¢ on M, there exists o, a conformal transformation of R}, such that
o(xz(M)) = (M), o(z(p)) = x(q). In this paper, the authors give a complete classifica-
tion for regular time-like conformal homogeneous hypersurfaces in R} with three distinct
principal curvatures.
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1 Introduction

Let {RS, (-,-)} be a Lorentzian space form of dimension 6 and the inner product is defined
as

(u,v) = urv1 + Ugv2 + UsV3 + ULV4 — UsV5 — UGUG.

The conformal space Q7 is defined in the light cone by
Q1 ={[u] € RP° |u € RS, (u,u) =0},

which is the conformal compactification of Lorentzian space forms R}, S{ and H{. The confor-
mal transformation group is therefore isomorphic to O(4,2)/{%1}. Since the hypersurfaces in
three Lorentzian space forms are conformally equivalent to each other, we choose R} as the am-
bient space to study the conformal properties of hypersurfaces. More details on the conformal
space QT can be found in [3, 6].

Suppose that @ : M? — (R$,(, )1) is a time-like hypersurface in Lorentzian space form, in
which (, ); is a Lorentzian inner product with signatures (4, +, 4+, —). If at every point p, {e;}
is a basis of T, M with dual basis {w'} and n is the space-like unit normal vector, then there is
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a naturally induced Lorentzian metric on M,
g = (dz,dz); = Zgijwi ® wl.
4,

The structure equations are in form of

dz = Zwiei(z), de;(z) = waej(x) + hijwin, dn= — Z Slwie;(x),
i j i

in which » = 3~ hjjw’ ® wi is the second fundamental form and S = 3 87w’ @ e; is the shape
.5 ,J
operator.

According to the algebraic lemma in [9], we have the following lemma.

Lemma 1.1 There exists a basis {e;} such that the matrices of shape operator and induced
metric are exactly in one of the following forms:

A1 -1
(1) S = A? y 9= 1 ) )\2 < )\37
A3 1
A £l [ 1]
(ll) S = )\1 , g = 1 3
A3 | L 1]
[\ 1] 1 ]
(iii) S = A , 9= 11 ;
i T A L 1]
[a b -1
(iv) S=|-b a , g= 1 , b#0.
i A3 1

All principal curvatures are real in the first three cases. In the last one S has a pair of
conjugate eigenvalues \; = Ay = a+ ib whose eigenvectors are respectively e; +ies and ie; + es.
Since R} is embedded in Q7 via

1-— 1 T
R} =Q}\n, m:={[u]|u€ RS, u+us=0} v [( <§’v>1 , U, + <;)’U>l) },
every transformation 7' € O(4,2) will induce a conformal transformation o on R}. Therefore,
the hypersurface x(M) will be conformally transformed into another hypersurface o(z(M)) =
Z(M). If we define a natural lift as

y: M — RS, pe (M,x@),wf’

then x relates to = by [T - y] = [y].

It is well known that the principal directions are invariant to the conformal transformations,
i.e., do(e) is still a principal direction of Z with respect to curvature o()\), provided that e is a
principal direction of x with respect to A. So the type of shape operator will not be changed
by o, while the values of principal curvatures could. However, no matter the eigenvalues are
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real or complex, M;; 1 = i%f\z are conformal invariant functions and
J

9o = (O = 22 + Oz = X + (A = A9))g

is a conformal invariant real 2-form. This means

Ai =M a(N) —oa(M) ¥ vk o —l1s
N o) ol O C@ S ed =)o,

It is easy to see that go is non-degenerate if and only if = has distinct principal curvatures
in types (i)—(iii) or (A3 — a)? # 3b? in type (iv). We call the hypersurface is conformal regular
if go is non-degenerate.

Definition 1.1 A hypersurface x(M) is called conformal homogeneous, if for any two points
p,q on M, there exists a conformal transformation of R}, say o, 4, such that

Up,q(z(M)) =x(M), Up,q(z(p)) = z(q).

Basically, the hypersurface is generated by and thus invariant to the conformal transforma-
tions induced from G, a subgroup of O(4,2). In other words, there is T}, , € G such that

[G-y(p)] = [y(M)], [Tpq-y(P)] = [y(9)]-

Following the idea of Wang’s work in [10], many authors studied the conformal structure of
space-like hypersurfaces in Lorentzian space form in [3-6, 8]. As for the conformal homogeneous
hypersurfaces, the cases in Riemannian space form can be found in [1-2, 11]. In Lorentzian
space form, we have already classified space-like conformal homogeneous hypersurfaces in R}
(see [7]). So the study of time-like case becomes our main interest. In this paper we assume
that the hypersurfaces have three distinct principal curvatures. This means that types (ii) and
(iii) do not occur. We call it “real case” for type (i) and “complex case” for type (iv). The
main theorem is the following.

Theorem 1.1 Suppose that x(M) is a time-like hypersurface in R$ with three distinct
principal curvatures. If it is conformal reqular and homogeneous, then it must be conformally

equivalent to a hypersurfce generated by one of the following subgroup of O(4,2) :
[cosh) sinhp
sinhvy cosh
(1) cosf) —sind
sinf  cosf
cosh¢ sinh¢
sinh ¢ cosh ¢

[cos 1) —sin]
cosf —sin6
cos¢p —sing
(2) sing cos¢ ’
sin 6 cosf

| sin ¢ cos? |
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o
fe=¥ 1
(3) 1 ¢ew ’
¥
[e=¥ %ew 0
e
fe¥ 1
(4) 1 (beAdz ) A 7é Oa il;
eAv

- 2 4 3 —_
e 2V ew(% — %) 0 ¢ %ew 2pe” Y
e??
fe?¥ 1
(5) — eV 1 ge¥ ;
_9pe2 o
3 2
I — LV ¢ Lev eV
[e¥ cos ¢ —e¥sin ¢
e ¥ coso —e ¥sing
cosf) —sinf
(6) sinf  cosf
e ¥ sin ¢ e~ % cos ¢
| e¥ sing e¥ cos ¢

We organize this paper as follows. In Section 2 we set up a conformal structure for hyper-
surfaces. The integrable conditions are provided. We prove a theorem that helps us to identify
two hypersurfaces easily in the sense of conformal equivalency. We also prove, with our setup,
the coefficients in structure equations for homogeneous hypersurfaces are constant. In Section
3 we list several examples of homogeneous hypersurfaces. The classification is done in Section
4 by analysing the coefficients and using the theorem to identify them to the examples.

2 The Conformal Frame for Hypersurfaces

In real case the principal curvatures will turn from )\; into —\; when we choose —n as a
new normal vector field. So we can always assume A\; < A3 and then we obtain a conformal
invariant 2-form

ge = (A3 — A1)%g = 2(M223,1 + M22173 +1)""g0.

We choose a new tangent frame on M as E; = -~ so that gc(E;, Ej) = g(ei, €;) = gij-
As for the complex case, we similarly have the following conformal invariant 2-form provided

that gg is non-degenerate,

1 _
ge =b%g = —5(1 + M§1,2 + M§271) ' 0.

We set the following complex-valued tangent frame on M: E; = @1\252, Ey = i@j/’%;?, Bz = 3.

So E; are all principal directions satisfying g.(E;, E;) = gi.
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Definition 2.1 Given a regular hypersurface (M), we define the following terms:
(1) Conformal metric ge;

(2) conformal orthonormal basis {E;};

(3) canonical lift 'Y = pey, where p. equals A\ — A3 (real case) or b (complex case) so that
ge = (dY,dY);
(4) conformal normal vector & = Aoy + &, where

oo {1 (real case) . &ni=(—(x,n)1,n, (@,n))T.

3 (complex case)

Let Y; = E;(Y). Then {Y, }7, £,Y1,Y2,Y3} is a moving frame of RS defined on M, where Y
is uniquely determined by <§7, ?) =0, <§7, Y) = 1 and orthogonal to the others.

The structure equations with respect to this frame are given below:
dy = > 0"y,
d¢ = S;Y +) e,
Y = Q¢ ~ Zey

dY; = @'Y — Q¢ — ,0'Y + ) 6,07,
J

in which @’ is the dual basis of E;, ¢; = g;; and

Q=) 0, Q=) e =) e =) lt=-q
i j j k

Due to its definition we have F;(&,) = =\ Ei(y), then E;(\y + &) = %Y. Meanwhile,

My) = E;(€) +Ei()\i ;C’\“)Y+ Ai = A“Yi.

(N n) =E;
Oy +60) = Bi 6+ = >

From the structure equations, F;(€) = Q;Y + 3 ¢;Q7Y;. Therefore,
J

Q= eiciﬁl, C; =

Lemma 2.1 The integrable conditions with respect to {Y, 37,5, Y1,Ys, Y3} are

O =0!, d0'=> &QM0" A 0",

p.q
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and

Z(E +Zem§zq)9PAoq Zc erer A 6",

p.q

Z Bp(eici)0P A0+ e, Q107 A 07 = Z €07 N0+ Q6P N 67,

p,q p,q
Z (Bo@) + Z n Q)07 1 0
p.q
= Z €;0L0" N 07 + Z 600" NP — eiejcici0 N0+ > en Q0P A 07,
p,q;h

5 (109 S0 = St 10+ e o
p,q

P p,q;h

We define W, the conformal curvature of M, as below:

Moy = (real case),

i(1—2Msz,1) = ¢ (complex case).
Then W is conformal invariant and completely determines € by

c1 =0, co=W, c¢3=1 inreal case,

cg =W —1, ¢ =7¢, c¢3=0 in complex case.

(2.1)

(2.2)

We claim that the whole system can be derived only from the conformal orthonormal basis

and the conformal curvature.
Theorem 2.1 {W; Ey, Es, E5} is a complete system for M.
Proof From the structure equations we have the Lie brackets of basis
[Ei, Ej] = Q0 E; — Q7 E; + e,(QF — QF)E
One can see that
Q7 = Q' = ([E}, E], E;),
0 = §(<[Ej,Ei],Ek> + ([Ew, Ej], Ei) + ([Ex, Ei], Ej)),
which means that 9% is determined by [E;, Fj].

By (2.2) we get ¢, — E;(eic;) = (¢; — ¢;)Q7. So  is determined by W and F;.
Moreover, both sides of (2.3) acting on E; ® E; (i # j) yields

;0! + el-@;: = EZ(Q;J) — E;(Q7) + Z eh(Qithh + QZJQ?J + ijﬁéh + thQZJ) + €i€5¢¢4.

Acting on E, ® E; (j, k # 1) yields

L= E(QF) — B0 + Y en(@7 Q) + Qi) — it - oitald),
h
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Obviously, @' is also determined by W and F;.

Suppose that there are two immersed hypersurfaces in R} having same conformal curvature
W and conformal orthonormal basis {E;} with same Lie brackets, then they must have same
Q, Q) QY and ©'. As a consequence, they are equivalent to each other up to a conformal
transformation of R induced by some T € O(4,2).

Remark 2.1 The above theorem can help us quickly finding out if two immersed hypersur-
faces are conformally equivalent. All we have to do is calculating the principal curvatures with
corresponding principal directions, then W, E; and their Lie brackets can be easily obtained
and compared with each other.

Now we suppose that z(M) is a conformal homogeneous hypersurface in Rf, i.e., for any
two point p and ¢, there is a conformal transformation ¢, ; induced from T}, , € O(4,2) such
that o, 4(z(p)) = x(¢) and oy ¢(x(M)) = x(M). We will show that the frame defined in this
section is conformal invariant, as stated in the following lemma.

Lemma 2'2 Tpﬁq ! (Ya?aé.v}/lv}éanﬂp = (Ki}vgayla}éviffi)b'

Proof In real case, we assume that (t) is a curve on M satisfying v(0) = p, v(1) = ¢.
Since z(M) is generated by transformations induced from G C O(4,2), there is a curve T'(¢) in
G such that T(0) = id, T(1) = T, 4 and [T(¢) - Y(p)] = [Y ((&))]. So Y(1()) = pT(¢) - Y ()
for some non-vanishing function p;. This is equivalent to saying that T'(¢) induce a family of
conformal transformations o; such that o (x(p)) = 2(7(t)). Because g. = (dY,dY") is conformal
invariant, for any fixed ¢ we have

(dY,dY)], = (dY,dY) |,y = pE(d(T() - Y (p), A(T(t) - Y (p))) = pi(dY,dY)],.

Thus we get p; = 1 since T'(0) = id, i.e.,

Now we define a curve ¢(s) passing through p such that ¢(0) = p and ¢/(0) = E;. So

0

Y (e(0)) = Y(p), gY(C(S))L:O =Yi(p) = Eilp(Y).

T(t)-Y(c(s)) is obviously a curve passing through T'(¢) - Y (p) satisfying

%T(t) Y (e(s)],_g = T(1) - Yi(p) = Eil-, (Y), (2.6)

in which E; = dz~! odoy o dz(E;) is the tangent vector at v(t) determined by the tangent map
of o4 acting on E;. Since conformal transformations will map principal directions to principal
directions, we know that FE; is a principal vector at y(t). Due to

9e(Eiy By, = (T(1) - Yi(p), T(¢) - Yi(p)) = (Yi(p), Yi(p)) = € = ge(Ei, Ei)l,,

we obtain By = £ By, {E,, B3} = {+E,, +E5}. By (2.6) and T(0) = id we have E; = E; and
thus



686 Y. B. Lin, Y. Li and C. P. Wang

Because conformal transformations map curvature spheres to curvature spheres, £ = Ay +
&n, which represents the curvature sphere corresponding to a time-like direction, must be
mapped into a curvature sphere corresponding to a time-like direction, i.e.,

T(t) - £(p) = E(v(1))-

At last, Y (v(t)) is uniquely determined by {Y, &, Y, Y, Y3}|y(+) and therefore
T(t)-Y(p) =Y (1))

The proof of the complex case is similar.

As a result we have the following lemma which is crucial in our classification.

Lemma 2.3 All the coefficients in structure equations are constant with respect to the

conformal invariant frame.
Proof The structure equations around point p are actually a differential system:
A, Y, 61,2, Ys)lp = (V.Y €Y1, Y2, Ys)l, - Ay
Analogously, around ¢ there is
AY,Y, 6,0, Y2, Ya)lg = (V.Y €Y1, Y2, Y) g - Ay,
By Lemma 2.2,
A(Y.Y, 6, Ye, Ya)lg = d(Tpq - (V.Y 6 V1, Yo, Ya)lp) = Ty - d(Y.Y €Y1, Y2, V),
=Tpq (VY 6V, Y2, V)l Ay = (VY 6Y1, Y0, Ya)lg - Ay = (V.Y €Y1, Y, Y3) g - Ay

So A, = A, for any two points.

3 Examples of Conformally Homogeouse Hypersurfaces

A basis {u;} of RS is called orthonormal or pseudo-orthonormal if the matrices of their inner
products are respectively in form of

-1 -1

or

1 -1
-1 -1

In the following we take an orthonormal basis in the first two examples and pseudo-orthonormal
basis in the others.

Example 3.1 For any A € (0, §), we have a conformal homogeneous hypersurface as below:

cosh) sinh 1
sinhvy cosh 0
cosf) —sinf cos A
G(y,0,0) = sinf)  cosf 0

cosh¢p sinh¢| |sin A
sinh¢ cosh¢ 0

(cosh 1), sinh 1, cos A cos 6, cos Asin #, sin A cosh ¢, sin Asinh ¢)T.
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If we define a hypersurface of R} by
x = e ¥(cos Acos b, cos Asin 6, sin A cosh ¢, sin Asinh ¢) T,
then from

13¢ = —,
zg = e ¥ cos A(—sinf, cos6,0,0)T,

zs = e ¥ sin A(0,0,sinh ¢, cosh )T,

we know that the induced metric is g = e=2¥(dy))? +e~2¥ cos? A(df)? —e~2¥ sin? A(dp)?. The u-
nit normal vector field can be chosen as n = (sin A cos 6, sin A sin @, — cos A cosh ¢, — cos Asinh ¢)T.
So the principal curvatures of x are \; = — cot Ae?, Ay = 0, A3 = tan Ae?.

Thus, the conformal curvature is

W =cos? A € (0,1)

and the conformal metric is g. = — =5+ (d$)? + =5 (d¥)? + =55 (df)?. Obviously, the
conformal orthonormal basis is F; = cos A(%, FEs> = sin A cos A%, FE3 =sin A%, satisfying

[Ei, E;] =0.
Example 3.2 For any A € (0,+c0), we have a conformal homogeneous hypersurface

cos —sinvy | |cosh A
cos —sinf sinh A

cos¢p —sing 1

sing  cos¢ 0

sin 6 cos 6 0

sin vy cos 0

= (cosh A cos 1, sinh A cos , cos ¢, sin ¢, sinh Asin @, cosh Asin)T.

G(,0,0)

The conformal structure about this hypersurface is much easier to check in Hi than in Rf.
Extracting the component cos ¢ we can define

x = (tan ¢, sec B(sinh A cos §, sinh Asin @, cosh A cos v, cosh Asin )T € H} ¢ RS

provided cos ¢ > 0 (the case cos¢ < 0 is actually —z and cos ¢ = 0 can be similarly studied by
extracting the component sin ¢). Then from

xg = sec ¢sinh A(0, —sin 6, cos6,0,0)T,

xy = sec ¢ cosh A(0, 0,0, —sin, cos )T,

T4 = sec ¢(sec ¢, tan G(sinh A cos 0, sinh A sin 0, cosh A cos 1), cosh Asin)))T,
we know the induced metric is g = sec? ¢((d¢)? + sinh? A(df)? — cosh? A(dy)?). The unit
normal vector is n = —(0, cosh A cos 6, cosh A sin 6, sinh A cos 9, sinh Asin)T. So the principal

curvatures of x are \; = cos¢gtanh A, Ao = 0, A3 = cos ¢ coth A.
So it is easy to get the conformal curvature

W = —sinh® A € (—00,0)
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and the conformal metric g0 = ——=2r—75(d¢)? + —377(d0)? — 25 (dy))?. Therefore,
the conformal orthonormal basis is F; = sinh A%, FE> = sinh A cosh A%, E3 = cosh A%,
satisfying

[Ei7 Ej] =

Example 3.3 We define a homogeneous hypersurfaces as

- 2 - =
e? %e_w 0 —pe? 0
1
0 e% 0
0 6fe ¥ 1 0
G(,0,¢) = 1 ¢e? 0
0
0 e¥ 0
1
¢2
vt o e e |
2 2 T
= (%e_w —e?, eV eV, pe?, ¥, %ew + @be_w)

One can verify that

r(1.0.9) = (0002, L2 4 w)T

is a hypersurface in R} and G(¢, 0, ¢) is equivalent to e™? ( 1_<2 ) The induced
metric is g = (d)? +e*¥(d¢)? — 4e?¥(de))2. The normal vector is n = e¢ (0 gb, 1, % - %e_w)T.
It is easy to get that ng = 0, ny = e"Yzy, ny = e ¥xy. Therefore, \; = =%, Ay = 0 and
A3 = e~ Y. So the conformal curvature is

W =-1.
Hence, the conformal metric is g, = —(dw) + Te72Y(df)? + 1e*¥(d¢)? and the conformal
orthonormal basis can be chosen as £y = 8 5 FEy = 2ew%, FE3 = Qe_wa%. The Lie brackets

of basis are in form of
[E1, Es] = —E, |[Ei,Es3]=FEs, [EyFE3)=0

Example 3.4 We define a homogeneous hypersurfaces for any constant W € (—1,0)U(0, 1),

- 2 oo
e ¥ e—ew 0 -1
2 1
0 e 0

0 fe¥ 1 0

0 Vv 0
) 1
& P W W ]
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First we have

0 a-wyw _ —aewye Wy ga-wyw T
2(1,0,6) = (e e WY el WY )

and G(3, 0, ¢) is equivalent to eww(l_%’wh,x, 1+<§’w>1)T. One can see that

2y = (0,0,0,1), 1z =e1""¥(,0,1,0)7,

> 1+W T
= (1= W)l (S 4 e ™,1,0,0)
Ty = ( Je 5 T —we Lo
and the induced metric is g = (d¢)? + e2(1=W)¥(dh)? + 2(W? — 1)e=2W¥(dyy)?. The unit
normal vector is n = — 2(11;‘/“,/‘,)&(% — %e_2w,1,9,0)T, by which we have ng = 0,
ng = — 2(11;‘%) MVxg, ny = 7 /%ewwygw. So the principal curvatures are

1 1-w 1-W
A = Woo do=—|——e" A3 =0.
weoa\zaew)© o 2T g w8

Therefore, the conformal curvature is W and the conformal metric obviously is g. =
—(dwp)? + 2(1_1W2)e2ww(d¢)2 + 2(1_1‘,‘,2)e2¢(d9)2. Finally we obtain a conformal orthonormal

basis Bl = 7%, Eo = \/2(1 = W2)e " &, Ez = \/2(1 = W2)em"? 2 whose Lie brackets are

in form of

[E1, Es) = —E5, |[Ei,Es3]=—-WE3, [Es E3]=0.

Example 3.5 We define a family of homogeneous hypersurfaces for A € (0,7) as below:

[o— 02 ot &? ol 1
e 2% 632111(7 _ ?) 0 ¢2 ?ew 2¢he ¥ L
e2¥ 1
= ¥ 1 0
clto= — eV 1 ge? 1
—2¢e?¥ ot 0
L —%3621/1 ¢ %2€w e—'(/) ] _w_
2 _ oy, 1 4¢ cosh A
- (ew (7 B %) +5e7 e+ d)c%e—w,e%, fe2"
’ S T
1_¢2€2w,—2¢e2¢’_%ew+¢+ 2coshA_ )

A hypersurface

z(¢,0,9) = (97 (1— ¢2)e_2¢, _2¢e_¢’ (2co§hA e %B)e‘?’w)T

T
can be defined such that G(1, 0, ¢) is equivalent to ew(l_@’wh,x, 1+<w’w>1) )
One can check that

] (1707070)T7
(0, —2e72%,0, —2pe 2% — 2 cosh Ae3¥)T,

(07 _2¢a _25 _¢2 + e—Q’LZJ)T

Ly
@

X



690 Y. B. Lin, Y. Li and C. P. Wang
and the induced metric is in form of
= (dA)? + 4e72¥(d¢)? — 8 cosh Ae ¥ dodi) 4 4e~*¥ (dy)?.

Taking a unit normal n = —% (0,6 + cosh Ae™¥ 1, ¢2+§—2w + ¢ cosh Ae_¢)T, we have

e3¢ e¥
— Ty, Ny = ————Tp.
2sinh A ¥ Y~ Osinh A ?

e2¥
2sinh A"

ng =0, ng=

e2¥

Therefore, A\ = 251nh s A2 = 0, A3 = The corresponding principal directions are

respectively e ™2 5+ 2 5 e v > aaqp' So the conformal curvature is
1
W =-.
2
The conformal metric is thus in form of
etV 4e2¥ 8 cosh Ae?
e = ——(d6)? + de)? 7d + d
g sinh? A( ) sinh? A( ¢ - inh? A Ve inh? A ( ¢)
If we set the following conformal orthonormal basis
1 Ar 4 0 0
B jen s )
1 5 cos 5 e 2% % + B
0
By = sinh Ae™%¥
2 sin e 20’
1 A 0 0
E :—‘.h—(_d)———),
3 B Sin 5 (§] 6¢ 6’(/}
then we get
A 1 A 1 A A
[El,EQ] = —cosh —EQ, [El,Eg] = ——sinh—E1 — —COSh—E‘g7 [EQ,Eg] = —sinh—EQ.
2 2 2 2 2 2
Example 3.6 A homogeneous hypersurfaces for any A € (=7, %) can be defined by
e cos ¢ —e¥sin ¢ cos A
e ¥ cos ¢ —e ¥sing cos A
G- cosf —sinb V2cos A
o sinf  cosf 0
e ¥sin¢ e ¥ cos ¢ sin A
e¥ sin ¢ e? cos ¢ 0

= (e¥ cospcos A, e ¥ cos(¢ 4+ A), V2 cos A cos b,
V2cos Asinf,e ¥ sin(¢ + A),e¥ sinpcos A)T.

We study this hypersurface in H{ to obtain an immersion as

x(v,0,¢) = (tan 0, % (e¥ cos g, eV COSC(fS;A) e ¥ Sm((ij;A) e¥ sin (b)) T.
One can check that
Tg = secl ( sec 0, % (e cos g, e COSC(:?S—;A) e ¥ smc(fs—;A) ,e¥ sin ¢)) T,
vy — (0 %( o’ sin o, —e—¥ SiniszA) ot cosé(g)bS;A) o cos (b))T’
Ty = (O7 % (67 cos g, —e™ COSC((?SZA) —e” SméfstlA) ¥ sin (b)) T
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and the induced metric is g = sec? 0((d)? — (d¢)? + 2 tan Adgdy + (de)?).
Set the unit normal vector by n = cos 0(— cos Azgy + sin Azy.). We get

ng =0, ng=cosf(sin Azy + cos Axy), nyg = cosO(— cos Az, + sin Axy).

Therefore, A\ = cosf(—sin A +icosA), Ao = A1 and A3 = 0, whose principal directions are

respectively 8%5 + i%, % + i(%, %. Obviously, the conformal curvature is
W =tan A € (—o0, +00).

The conformal metric is in form of g. = cos? A((df)? — (d¢)? + 2 tan Adyde + (dy)?). We
choose the following conformal orthonormal basis

0 0 — 1 0 . 1
Ey=C(—+i—), Ey=iE,, E3=———, C=(2cosde ) 2.
1 (8¢+18w)’ 2 =10, By =—omog (2cos Ae™) 72
Then we have
[E;, Ej] = 0.
Example 3.7 A family of homogeneous hypersurfaces can be defined by
[ 02 ¢’ 17 L7
-2y Q29 _ T 2 7w - z
e e ( 5 5 ) 0 o 3 eV 2¢e 5
eV 1
22 0
G, 6. d) = Oe 1
(4,6,9) s e o
—2¢e?¥ e? 0
¢ 20 ¢,  _, | |2sinnA
L 3¢ R
62 ¢t 1 4¢sinh A
— (2 - Za=2% _ 42 —p 2 p 20
(e ( 2 6 ) T 26 9"+ 3 e Ve, fe”",
3 .
-1 _¢2ezw _2¢ezw —¢—e2w 6+ 2smhAe_w)T
Y b) 3 3 .

It is easy to see that G(1,0,¢) is equivalent to ew(l_%’zh,x, 1+<§’I>1)T, in which

¢3
#(10,0,0) = (0.~ — 2, 20, - & — o2 4 2MMA

From

xd’ = (07 _2¢7 _27 _¢2 - e_2w)T7
zy = (0,272%,0,2¢e™ 2" — 2sinh Ae 3T,
Ty = (15 07 07 O)T7

we know that the induced metric is g = (d)? — 4e2¥(d¢)? — 8sinh Ae 3V d¢dy) + 4e=4¥ (dy)?.
2 —2
The unit normal is n = %(0, ¢ — sinh Ae=¥,1, £=¢ * _ 4sinh Ae_w)T, by which we get

3 P 2%
_ _ € _ e _ s e _ s e _
ng = O’ Ny = scosn ATy M = “acosnaler So )\1 = l3cosh A0 AQ = “lgeenas Ag - 0’ and the

principal directions are respectively a% + iew%, a% - ie“”%, %. The conformal curvature is

W =0.
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The conformal metric is in form of

B 1 etv 2 %) 2 ; () 2
g = m(TW — e*(dg)? — 2sinh Ae¥dyd¢ + (dv) )

The following conformal orthonormal basis

1-— isinhA)%

ElzC(e_wi—i—ii), E, =iE,, E3:2coshfle_2w%7 C:—( 5

op 0
yield
[E1, By = CEy —iCEs, [E1, B3] = —2iCEs, [Es, E3] = —2CEs3.

Remark 3.1 It is obvious that all the hypersurfaces come from the orbits of some 3-
dimensional subgroup of O(4,2). Thus their universal covering is R3. in Example 3.1, the
hypersurface is topologically R? x S, equivalent to a cone over a time-like homogenous cylinder
in S3; in Example 3.2 it is 73, the only compact case here. Half part of it is equivalent to a
cylinder in H{ over a time-like homogenous torus in H; in Example 3.6 it is 7% x R, half of
which is equivalent to a cylinder over a time-like homogenous cylinder in H;.

It should also be noted that Examples 3.5 and 3.7 are essentially generated by the same

group.

4 Classification of Conformally Homogeneous Hypersurfaces

4.1 Real case

Since W = ig:ii, one can see that 0 < W < 1 when A\; < Ay < A3 and W < 0 when
Ao < A1 < Ag. For the latter case, we may choose —n as normal vector so that —1 < W < 0.

From structure equations it is easy to see that
ci = &(Ei(€), Ei(Y)), Qi =c¢j(c; — ) (E;E;(Y), Ei(Y)),

which means that we may always assume €2; > 0 by a change of F; — —F); if necessary.
For convenience we assume {i, j, k} = {1,2,3}. If we set R = (co—c1)Q3?, then the integrable
conditions (2.1)—(2.4) can be written as

oi = L gu o 9 (4.1)
Cj — C; Cj — C;
, 20, Q
T - Gl (4.2)
(ci —¢j)?  (ex —ci)er —¢5)
€01+ 601 = (@) + ()7 — QFON 12080 1 cic;, (4.3)
€iciQ) = (6,0) — ;017 + 26,0107 + €,0,(20% — Q) + 05k, (4.4)

(€07 — @) — e:(O]" + OLQY) = (0] — exO)Q]" — e (OO + OL0)).
Note that if we let F}j;, denote the left-hand side of (4.5), then (4.5) becomes

Fiil = Fgi. (4.6)



Time-Like Conformally Homogeneous Hypersurfaces with Three Distinct Principal Curvatures 693

From the identity [[E;, E;], Ex] + [[E}, Ex], Ei] + [[Ek, Ei], Ej] = 0 we also have

( 1 n 1 )(C -4 R :( 1 n 1 )(Qjﬂk ' (@7)

ci—c¢j  ci—cp/(ci—cj)e—ck) ci—c¢j  c—cp/ (e —cj)?
It is easy to check that ciicj + cii% = 0 if and only if
(1) i =1 and W = —1, in which case we have
Q Q3R
9193 = —LR, 9192 = —L; (48)
2 2
(2) i =2 and W = %, in which case we have
Q Q
00y = B g, - R (4.9)
2 2
Otherwise we always have
—EiQiR QJQk

(ci —¢j)(ci —cr) - (ck — )2 (4.10)

Lemma 4.1 If all ©; vanish, then so does R and it is Example 3.1 or 3.2.

Proof By (4.1)-(4.2), Q; = 0 immediately yields Q7 = 0 and ©% = 0. Then it is easy to
see that Fj;;, is totally symmetric to the indices. By (4.3) we get

2R?(2¢; — ¢; — cx) )

% k\Oik
Firj = (6,0; — exOp)Y" = _R(Cj e CECED)

Checking F327 = Fi23 we have R = 0. As a result, fo =0 and by (2.5),
[Eiv EJ] =0.

Using Theorem 2.1 one can see that this is clearly the case of Example 3.1 or 3.2.
Moreover, we will show the following lemma.

Lemma 4.2 sz always vanishes.

Proof It is done by creating contradictions from the assumption R # 0.
i i € )2 cj—cC 2
When W # £ or —1, by (4.10) we know none of €2; vanishing and — Ql%m = (1§&Zj)((éi_c’€k)) .

When i = 3 one can see that it is positive, so we can define a function f such that

0,0,
R

= f2(ei —¢j)*(ei —er)* (¢ — en)?.
Then we get

() = eif*(ci — ¢j)*(ci —e)®,  R* = f*(ci — ¢j)*(ci — er)(¢j — ex)™.
Applying these expressions in (4.3) we obtain

60! — exOF = (¢c; — cx)(cj +3f%(ci — ¢;)(c; — cx)(ci + cx — 2¢5)).

At the same time, (4.2) shows @; = —3(c?i(clj)2. Finally, a straightforward calculation in

(4.4) for (i,7,k) = (3,2,1) yields a contradiction 1 + 9f2(W?2 — W +1) =0 for W € [-1,0).
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When W = 3, from (4.9) we know Qs # 0 and €; = Q3 = 0. Then (4.2) leads to
03 =03 =0, 0} = 2 and (4.3) leads to

1 1 1
01 =2(Q)? +4R? + T 02 = 6(Q)? + 8R? + T 03 = —2(0)? —4R? + T

Setting (i, 7, k) = (1,2,3) in (4.4) we get a contradiction Qs = 0.
When W = —1, from (4.8) we get Q1 # 0 and Qp = Q3. Then (4.2) yields 0 = 03 =
2
—301Qy, O3 = ROy — %. (4.3) becomes

3
02-0l=03-0l=RrR>— () + 5(92)2, (4.11)
034+ 03 = —2R? +(01)? + %(92)2 —1. (4.12)

Obviously we have ©% = ©3.
Checking Fo3 = Fi30 we get

el+e2—(0)+ 2(92)2. (4.13)
Setting (i,7,k) = (3,1,2) in (4.4) we get

1=()° (€22)°.

29

8
Then we use above two expressions in (4.4) for (i,7,k) = (1,2,3) to obtain Qs = Q3 = 0,
(1)? = 1. From (4.11)—(4.13) we get a contradiction R = 0.

Now we are going to prove a classification.

Proposition 4.1 A time-like conformal homogeneous hypersurface in R$, if admitting three
distinct real principal curvatures, must be conformally equivalent to one of hypersurfaces from
FEzamples 3.1-3.5.

Proof Since R =0, by (4.8)—(4.10) we know at least one of €; vanishing.
(i) If all ; are zeroes then it corresponds to Examples 3.1 and 3.2.
(i) If only one is not zero, say Q;, then every ©) vanishes and all ;) = 0 except Q =

CEJ]TQCL (i # 7). By (4.4) we get
€0 — €,0F = (¢; — c1)ck.

Meanwhile, (4.3) yields
Ck — Cy

w0k~ 0 = e o)

61'(91')2 — (Ci - Ck)Cj.

Comparing these two expressions we get
Q? = —Gi(Ci — Cj)2(ci — C].C)2.
Thus it has to be Q; = |W/|. So we have

w
[E1, Eo] = _|W—|E2’ [Eh, B3] = —|W|E3, [Es, E3] = 0.
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When W < 0, we can change the direction of F4 so that there always have
[En, Ba] = —Es,  [Ey, B3] = —-WE;, [Es, Es] =0.

This leads to Examples 3.3 and 3.4.
(iii) If only one is zero, say {2, then (4.10) cannot hold true. By (4.2) we have O} = 07 =0,

@j» =— (629_7?])2 Given the following equations from (4.4),

i iy G 4(92,)?
c; = (6161 — 6365)01 py - (Cj — Ci)?”

j i € 4(91')2
j i i~ Cj

we get
€i(Q)® +€(2)* = ol
So either i = 1 or j = 1. Anyway, we have Q; # 0. By (4.8)—(4.9) we know Qy = 0 and

therefore the above expression implies that there is constant A such that

1 A 1 A
le§cosh§, Qg=§sinh§.

Finally, we obtain Example 3.5 as we have the following Lie brackets:
A 1 A 1 A A
[El,EQ] = —cosh EEQ, [El,Eg] = —5 sinh EEl — §COSh §E3, [EQ,Eg] = —sinh §E2

4.2 Complex case

First, one can see that, with respect to the conformal invariant frame, the structure equa-
tions and integrable conditions (4.1)—(4.5) are still valid. However, some coefficients may take
complex values:

cg=C=W-—-1i, c3=0; E:—R; ngiﬁl, 53293.
Similarly we can prove the following lemma.

Lemma 4.3 IfQ); =0, then R =0 and it is Fxample 3.6.

When W # 0, we also have (4.10) valid for any 4, j, k. So there is (¢; — ¢;)(¢; — ¢x)(ck —
Ci)QinQk = EjR(Qi)2(Cj — C].C)B, which yields

R(2)*c3 = —R(Q2)?c} = —R(23)*(c1 — 2)*.

From R(Qs)%c? = R(Q1)2c3, R(Q23)%(c1 — c2)® = R(Q3)%(c1 — c2)3, we know that the quantity
in above expression is both real and imaginary. Thus, R(£2;)? = 0 and then by Lemma 4.3 there
must have R = 0. By (4.10) again we know that at least two of €; are zero and obviously they
have to be Q1 = Qy = 0. It is easy to see that ©} = 0 by (4.2), and O] + 03 = %(93)2
is purely imaginary by (4.3). In the mean time, comparing ¢;€3 and 23 in (4.4) we get
(O + 02 +2 - 2W?)Q3 = 0. So Q3 = 0 and it must be equivalent to Example 3.6.

Now we assume W = 0, in which case from (4.7) we have

ROy = 20503, RO = —20,0Qs. (4.14)
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By (4.2) we get

00
0L =3005, ©2 =300, ©l= 12 2+ RQs.
By (4.3) we get

3 1 1 1

1_ 2 2 _ - 2 _ - 2 p2_ -

01 = —2 ()" — o (@2)" = 5 ()" - B" — 5,

3 1 1

02 =—Z(0)? - g(92)2 + 5(93)2 +R?+ 3

5 5 3 1

03 = 5(91)2 - 5(92)2 - 5(93)2 — 2R’ — 3

If Q; = iQy = 0, then the calculation about ¢123 in (4.4) shows Q3(3R? 4 2(03)% + 2) = 0.
While in (4.5) with i = 3, j = 2 we get R(3R* + (23)? + 1) = 0. These two equations imply
that Q3 has to be zero and hence by Lemma 4.3 we get Example 3.6 again.

If Q = iQy # 0, then the calculation about ;€2 in (4.4) shows that

() — (22)% =4 —92(023)2 (4.15)

Since |Q| = |Qa| # 0, by (4.14) we get R = 2iQ3. Taking (4,7,k) = (1,2,3) and (1,3,2)
respectively in (4.5) we find that R = €23 = 0. Thus, from (4.15) there is a constant A such
that Q) = (2 — 2isinh A)2, Qy = i(2 + 2isinh A)2. This is exactly equivalent to Example 3.7.
As a conclusion we have the following proposition.

Proposition 4.2 If a regular conformal homogeneous hypersurface in R} has complex prin-
cipal curvatures, then it must be conformally equivalent to Examples 3.6 or 3.7.

Combining these two propositions we obtain the main theorem.
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