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Yanbin LIN1 Ying LÜ2 Changping WANG3

Abstract A hypersurface x(M) in Lorentzian space R4
1 is called conformal homogeneous,

if for any two points p, q on M , there exists σ, a conformal transformation of R4
1, such that

σ(x(M)) = x(M), σ(x(p)) = x(q). In this paper, the authors give a complete classifica-
tion for regular time-like conformal homogeneous hypersurfaces in R4

1 with three distinct
principal curvatures.
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1 Introduction

Let {R6
2, 〈·, ·〉} be a Lorentzian space form of dimension 6 and the inner product is defined

as

〈u, v〉 = u1v1 + u2v2 + u3v3 + u4v4 − u5v5 − u6v6.

The conformal space Q4
1 is defined in the light cone by

Q4
1 = {[u] ∈ RP 5 | u ∈ R6

2, 〈u, u〉 = 0},

which is the conformal compactification of Lorentzian space forms R4
1, S

4
1 and H4

1 . The confor-

mal transformation group is therefore isomorphic to O(4, 2)/{±1}. Since the hypersurfaces in

three Lorentzian space forms are conformally equivalent to each other, we choose R4
1 as the am-

bient space to study the conformal properties of hypersurfaces. More details on the conformal

space Qm1 can be found in [3, 6].

Suppose that x : M3 → (R4
1, 〈 , 〉1) is a time-like hypersurface in Lorentzian space form, in

which 〈 , 〉1 is a Lorentzian inner product with signatures (+,+,+,−). If at every point p, {ei}
is a basis of TpM with dual basis {ωi} and n is the space-like unit normal vector, then there is
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a naturally induced Lorentzian metric on M ,

g = 〈dx, dx〉1 =
∑

i,j

gijω
i ⊗ ωj.

The structure equations are in form of

dx =
∑

i

ωiei(x), dei(x) =
∑

j

ωji ej(x) + hijω
jn, dn = −

∑

i,j

Sji ω
iej(x),

in which h =
∑
i,j

hijω
i ⊗ ωj is the second fundamental form and S =

∑
i,j

Sji ω
i ⊗ ej is the shape

operator.

According to the algebraic lemma in [9], we have the following lemma.

Lemma 1.1 There exists a basis {ei} such that the matrices of shape operator and induced

metric are exactly in one of the following forms:

(i) S =



λ1

λ2
λ3


 , g =



−1

1
1


 , λ2 ≤ λ3;

(ii) S =



λ1 ±1

λ1
λ3


 , g =




1
1

1


 ;

(iii) S =



λ1 1

λ1
1 λ1


 , g =




1
1

1


 ;

(iv) S =



a b
−b a

λ3


 , g =



−1

1
1


 , b 6= 0.

All principal curvatures are real in the first three cases. In the last one S has a pair of

conjugate eigenvalues λ1 = λ2 = a+ ib whose eigenvectors are respectively e1+ ie2 and ie1+e2.

Since R4
1 is embedded in Q4

1 via

R4
1 = Q4

1\π, π := {[u] | u ∈ R6
2, u1 + u6 = 0}, v 7→

[(1− 〈v, v〉1
2

, v,
1 + 〈v, v〉1

2

)T]
,

every transformation T ∈ O(4, 2) will induce a conformal transformation σ on R4
1. Therefore,

the hypersurface x(M) will be conformally transformed into another hypersurface σ(x(M)) =

x̃(M). If we define a natural lift as

y :M → R6
2, p 7→

(1− 〈x(p), x(p)〉1
2

, x(p),
1 + 〈x(p), x(p)〉1

2

)T

,

then x relates to x̃ by [T · y] = [ỹ].

It is well known that the principal directions are invariant to the conformal transformations,

i.e., dσ(e) is still a principal direction of x̃ with respect to curvature σ(λ), provided that e is a

principal direction of x with respect to λ. So the type of shape operator will not be changed

by σ, while the values of principal curvatures could. However, no matter the eigenvalues are
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real or complex, Mij,k = λi−λk
λj−λk are conformal invariant functions and

g0 :=
1

2
((λ1 − λ2)

2 + (λ2 − λ3)
2 + (λ1 − λ3)

2)g

is a conformal invariant real 2-form. This means

λi − λk
λj − λk

=
σ(λi)− σ(λk)

σ(λj)− σ(λk)
, σ∗ ◦ (x̃−1)∗ ◦ g̃0 = (x−1)∗ ◦ g0.

It is easy to see that g0 is non-degenerate if and only if x has distinct principal curvatures

in types (i)–(iii) or (λ3 − a)2 6= 3b2 in type (iv). We call the hypersurface is conformal regular

if g0 is non-degenerate.

Definition 1.1 A hypersurface x(M) is called conformal homogeneous, if for any two points

p, q on M , there exists a conformal transformation of R4
1, say σp,q, such that

σp,q(x(M)) = x(M), σp,q(x(p)) = x(q).

Basically, the hypersurface is generated by and thus invariant to the conformal transforma-

tions induced from G, a subgroup of O(4, 2). In other words, there is Tp,q ∈ G such that

[G · y(p)] = [y(M)], [Tp,q · y(p)] = [y(q)].

Following the idea of Wang’s work in [10], many authors studied the conformal structure of

space-like hypersurfaces in Lorentzian space form in [3–6, 8]. As for the conformal homogeneous

hypersurfaces, the cases in Riemannian space form can be found in [1–2, 11]. In Lorentzian

space form, we have already classified space-like conformal homogeneous hypersurfaces in R4
1

(see [7]). So the study of time-like case becomes our main interest. In this paper we assume

that the hypersurfaces have three distinct principal curvatures. This means that types (ii) and

(iii) do not occur. We call it “real case” for type (i) and “complex case” for type (iv). The

main theorem is the following.

Theorem 1.1 Suppose that x(M) is a time-like hypersurface in R4
1 with three distinct

principal curvatures. If it is conformal regular and homogeneous, then it must be conformally

equivalent to a hypersurfce generated by one of the following subgroup of O(4, 2) :

(1)




coshψ sinhψ
sinhψ coshψ

cos θ − sin θ
sin θ cos θ

coshφ sinhφ
sinhφ coshφ



,

(2)




cosψ − sinψ
cos θ − sin θ

cosφ − sinφ
sinφ cosφ

sin θ cos θ
sinψ cosψ



,
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(3)




eψ θ2

2 e
−ψ θ −ψeψ

e−ψ

θe−ψ 1
1 φeψ

eψ

ψe−ψ φ φ2

2 eψ e−ψ



,

(4)




e−ψ θ2

2 e
ψ θ

eψ

θeψ 1
1 φeAψ

eAψ

φ φ2

2 eAψ e−Aψ



, A 6= 0,±1,

(5)




e−2ψ e2ψ
(
θ2

2 − φ4

6

)
θ φ2 φ3

3 eψ 2φe−ψ

e2ψ

θe2ψ 1
−φ2e2ψ 1 φeψ

−2φe2ψ eψ

−φ3

3 e2ψ φ φ2

2 eψ e−ψ



,

(6)




eψ cosφ −eψ sinφ
e−ψ cosφ −e−ψ sinφ

cos θ − sin θ
sin θ cos θ

e−ψ sinφ e−ψ cosφ
eψ sinφ eψ cosφ



.

We organize this paper as follows. In Section 2 we set up a conformal structure for hyper-

surfaces. The integrable conditions are provided. We prove a theorem that helps us to identify

two hypersurfaces easily in the sense of conformal equivalency. We also prove, with our setup,

the coefficients in structure equations for homogeneous hypersurfaces are constant. In Section

3 we list several examples of homogeneous hypersurfaces. The classification is done in Section

4 by analysing the coefficients and using the theorem to identify them to the examples.

2 The Conformal Frame for Hypersurfaces

In real case the principal curvatures will turn from λi into −λi when we choose −n as a

new normal vector field. So we can always assume λ1 < λ3 and then we obtain a conformal

invariant 2-form

gc = (λ3 − λ1)
2g = 2(M2

23,1 +M2
21,3 + 1)−1g0.

We choose a new tangent frame on M as Ei =
ei

λ1−λ3
so that gc(Ei, Ej) = g(ei, ej) = gij .

As for the complex case, we similarly have the following conformal invariant 2-form provided

that g0 is non-degenerate,

gc = b2g = −1

2
(1 +M2

31,2 +M2
32,1)

−1g0.

We set the following complex-valued tangent frame on M : E1 = e1+ie2√
2b

, E2 = ie1+e2√
2b

, E3 = e3
b
.

So Ei are all principal directions satisfying gc(Ei, Ej) = gij .
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Definition 2.1 Given a regular hypersurface x(M), we define the following terms:

(1) Conformal metric gc;

(2) conformal orthonormal basis {Ei};
(3) canonical lift Y = ρcy, where ρc equals λ1 − λ3 (real case) or b (complex case) so that

gc = 〈dY, dY 〉;

(4) conformal normal vector ξ = λαy + ξn, where

α =

{
1 (real case)
3 (complex case)

, ξn := (−〈x, n〉1, n, 〈x, n〉1)T.

Let Yi = Ei(Y ). Then {Y, Ŷ , ξ, Y1, Y2, Y3} is a moving frame of R6
2 defined on M , where Ŷ

is uniquely determined by 〈Ŷ , Ŷ 〉 = 0, 〈Ŷ , Y 〉 = 1 and orthogonal to the others.

The structure equations with respect to this frame are given below:

dY =
∑

i

θiYi,

dξ = ΩY +
∑

i

ǫiΩ
iYi,

dŶ = −Ωξ −
∑

i

ǫiΘ
iYi,

dYi = ΘiY −Ωiξ − ǫiθ
iŶ +

∑

j

ǫjΩ
ijYj ,

in which θi is the dual basis of Ei, ǫi = gii and

Ω =
∑

i

Ωiθ
i, Ωi =

∑

j

Ωijθ
j , Θi =

∑

j

Θijθ
j , Ωij =

∑

k

Ωijk θ
k = −Ωji.

Due to its definition we have Ei(ξn) = −λiEi(y), then Ei(λiy + ξn) =
Ei(λi)
ρc

Y. Meanwhile,

Ei(λiy + ξn) = Ei

(
ξ +

λi − λα
ρc

Y
)
= Ei(ξ) + Ei

(λi − λα
ρc

)
Y +

λi − λα
ρc

Yi.

From the structure equations, Ei(ξ) = ΩiY +
∑
j

ǫjΩ
j
iYj . Therefore,

Ωi = ǫiciθ
i, ci =

λα − λi
ρc

.

Lemma 2.1 The integrable conditions with respect to {Y, Ŷ , ξ, Y1, Y2, Y3} are

Θij = Θji , dθi =
∑

p,q

ǫiΩ
iq
p θ

p ∧ θq,
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and

∑

p,q

(
Ep(Ωq) +

∑

i

ǫiΩiΩ
iq
p

)
θp ∧ θq =

∑

p,q

cpΘ
p
qθ
p ∧ θq, (2.1)

∑

p

Ep(ǫici)θ
p ∧ θi +

∑

p,q

ciΩ
iq
p θ

p ∧ θq =
∑

p

ǫiΩpθ
p ∧ θi +

∑

p,q

cqΩ
iq
p θ

p ∧ θq, (2.2)

∑

p,q

(
Ep(Ω

ij
q ) +

∑

h

ǫhΩ
ij
h Ω

hq
p

)
θp ∧ θq

=
∑

p

ǫjΘ
i
pθ
p ∧ θj +

∑

p

ǫiΘ
j
pθ
i ∧ θp − ǫiǫjcicjθ

i ∧ θj +
∑

p,q,h

ǫhΩ
ih
p Ωhjq θ

p ∧ θq, (2.3)

∑

p,q

(
Ep(Θ

i
q) +

∑

j

ǫjΘ
i
jΩ

jq
p

)
θp ∧ θq = −

∑

p

ǫiciΩpθ
i ∧ θp +

∑

p,q,h

ǫhΩ
ih
p Θhqθ

p ∧ θq. (2.4)

We define W , the conformal curvature of M , as below:

W =





M23,1 =
λ2 − λ1
λ3 − λ1

(real case),

i(1− 2M32,1) =
λ3 − a

b
(complex case).

Then W is conformal invariant and completely determines Ωi by

c1 = 0, c2 =W, c3 = 1 in real case,

c1 =W − i, c2 = c1, c3 = 0 in complex case.

We claim that the whole system can be derived only from the conformal orthonormal basis

and the conformal curvature.

Theorem 2.1 {W ;E1, E2, E3} is a complete system for M .

Proof From the structure equations we have the Lie brackets of basis

[Ei, Ej ] = ǫiΩ
ji
i Ei − ǫjΩ

ij
j Ej + ǫk(Ω

jk
i − Ωikj )Ek. (2.5)

One can see that

Ωiji = −Ωjii = 〈[Ej , Ei], Ei〉,

Ωikj =
1

2
(〈[Ej , Ei], Ek〉+ 〈[Ek, Ej ], Ei〉+ 〈[Ek, Ei], Ej〉),

which means that Ωij is determined by [Ei, Ej ].

By (2.2) we get ǫiΩj − Ej(ǫici) = (cj − ci)Ω
ij
i . So Ω is determined by W and Ei.

Moreover, both sides of (2.3) acting on Ei ⊗ Ej (i 6= j) yields

ǫjΘ
i
i + ǫiΘ

j
j = Ei(Ω

ij
j )− Ej(Ω

ij
i ) +

∑

h

ǫh(Ω
ih
i Ωjhj +Ωijh Ω

hj
i +Ωhji Ωihj +Ωihj Ωijh ) + ǫiǫjcicj .

Acting on Ek ⊗ Ej (j, k 6= i) yields

ǫjΘ
i
k = Ek(Ω

ij
j )− Ej(Ω

ij
k ) +

∑

h

ǫh(Ω
ij
h Ω

hj
k +Ωihj Ωhjk − Ωijh Ω

hk
j − Ωihk Ωhjj ).



Time-Like Conformally Homogeneous Hypersurfaces with Three Distinct Principal Curvatures 685

Obviously, Θi is also determined by W and Ei.

Suppose that there are two immersed hypersurfaces in R4
1 having same conformal curvature

W and conformal orthonormal basis {Ei} with same Lie brackets, then they must have same

Ω, Ωi, Ωij and Θi. As a consequence, they are equivalent to each other up to a conformal

transformation of R4
1 induced by some T ∈ O(4, 2).

Remark 2.1 The above theorem can help us quickly finding out if two immersed hypersur-

faces are conformally equivalent. All we have to do is calculating the principal curvatures with

corresponding principal directions, then W , Ei and their Lie brackets can be easily obtained

and compared with each other.

Now we suppose that x(M) is a conformal homogeneous hypersurface in R4
1, i.e., for any

two point p and q, there is a conformal transformation σp,q induced from Tp,q ∈ O(4, 2) such

that σp,q(x(p)) = x(q) and σp,q(x(M)) = x(M). We will show that the frame defined in this

section is conformal invariant, as stated in the following lemma.

Lemma 2.2 Tp,q · (Y, Ŷ , ξ, Y1, Y2, Y3)|p = (Y, Ŷ , ξ, Y1, Y2, Y3)|q.

Proof In real case, we assume that γ(t) is a curve on M satisfying γ(0) = p, γ(1) = q.

Since x(M) is generated by transformations induced from G ⊂ O(4, 2), there is a curve T (t) in

G such that T (0) = id, T (1) = Tp,q and [T (t) · Y (p)] = [Y (γ(t))]. So Y (γ(t)) = ρtT (t) · Y (p)

for some non-vanishing function ρt. This is equivalent to saying that T (t) induce a family of

conformal transformations σt such that σt(x(p)) = x(γ(t)). Because gc = 〈dY, dY 〉 is conformal

invariant, for any fixed t we have

〈dY, dY 〉|p = 〈dY, dY 〉|γ(t) = ρ2t 〈d(T (t) · Y (p)), d(T (t) · Y (p))〉 = ρ2t 〈dY, dY 〉|p.

Thus we get ρt = 1 since T (0) = id, i.e.,

T (t) · Y (p) = Y (γ(t)).

Now we define a curve c(s) passing through p such that c(0) = p and c′(0) = Ei. So

Y (c(0)) = Y (p),
∂

∂s
Y (c(s))

∣∣
s=0

= Yi(p) = Ei|p(Y ).

T (t) · Y (c(s)) is obviously a curve passing through T (t) · Y (p) satisfying

∂

∂s
T (t) · Y (c(s))

∣∣
s=0

= T (t) · Yi(p) = Ẽi|γt(Y ), (2.6)

in which Ẽi = dx−1 ◦ dσt ◦ dx(Ei) is the tangent vector at γ(t) determined by the tangent map

of σt acting on Ei. Since conformal transformations will map principal directions to principal

directions, we know that Ẽi is a principal vector at γ(t). Due to

gc(Ẽi, Ẽi)|γt = 〈T (t) · Yi(p), T (t) · Yi(p)〉 = 〈Yi(p), Yi(p)〉 = ǫi = gc(Ei, Ei)|γt ,

we obtain Ẽ1 = ±E1, {Ẽ2, Ẽ3} = {±E2,±E3}. By (2.6) and T (0) = id we have Ẽi = Ei and

thus

T (t) · Yi(p) = Yi(γ(t)).
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Because conformal transformations map curvature spheres to curvature spheres, ξ = λ1y +

ξn, which represents the curvature sphere corresponding to a time-like direction, must be

mapped into a curvature sphere corresponding to a time-like direction, i.e.,

T (t) · ξ(p) = ξ(γ(t)).

At last, Ŷ (γ(t)) is uniquely determined by {Y, ξ, Y1, Y2, Y3}|γ(t) and therefore

T (t) · Ŷ (p) = Ŷ (γ(t)).

The proof of the complex case is similar.

As a result we have the following lemma which is crucial in our classification.

Lemma 2.3 All the coefficients in structure equations are constant with respect to the

conformal invariant frame.

Proof The structure equations around point p are actually a differential system:

d(Y, Ŷ , ξ, Y1, Y2, Y3)|p = (Y, Ŷ , ξ, Y1, Y2, Y3)|p · Λp.

Analogously, around q there is

d(Y, Ŷ , ξ, Y1, Y2, Y3)|q = (Y, Ŷ , ξ, Y1, Y2, Y3)|q · Λq.

By Lemma 2.2,

d(Y, Ŷ , ξ, Y1, Y2, Y3)|q = d(Tp,q · (Y, Ŷ , ξ, Y1, Y2, Y3)|p) = Tp,q · d(Y, Ŷ , ξ, Y1, Y2, Y3)|p
= Tp,q · (Y, Ŷ , ξ, Y1, Y2, Y3)|p · Λp = (Y, Ŷ , ξ, Y1, Y2, Y3)|q · Λp = (Y, Ŷ , ξ, Y1, Y2, Y3)|q · Λq.

So Λp = Λq for any two points.

3 Examples of Conformally Homogeouse Hypersurfaces

A basis {ui} of R6
2 is called orthonormal or pseudo-orthonormal if the matrices of their inner

products are respectively in form of



−1
1

1
1

1
−1




or




−1
−1

1
1

−1
−1



.

In the following we take an orthonormal basis in the first two examples and pseudo-orthonormal

basis in the others.

Example 3.1 For any A ∈ (0, π2 ), we have a conformal homogeneous hypersurface as below:

G(ψ, θ, φ) =




coshψ sinhψ
sinhψ coshψ

cos θ − sin θ
sin θ cos θ

coshφ sinhφ
sinhφ coshφ







1
0

cosA
0

sinA
0




= (coshψ, sinhψ, cosA cos θ, cosA sin θ, sinA coshφ, sinA sinhφ)T.
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If we define a hypersurface of R4
1 by

x = e−ψ(cosA cos θ, cosA sin θ, sinA coshφ, sinA sinhφ)T,

then from

xψ = −x,
xθ = e−ψ cosA(− sin θ, cos θ, 0, 0)T,

xφ = e−ψ sinA(0, 0, sinhφ, coshφ)T,

we know that the induced metric is g = e−2ψ(dψ)2+e−2ψ cos2A(dθ)2−e−2ψ sin2A(dφ)2. The u-

nit normal vector field can be chosen as n = (sinA cos θ, sinA sin θ,− cosA coshφ,− cosA sinhφ)T.

So the principal curvatures of x are λ1 = − cotAeψ, λ2 = 0, λ3 = tanAeψ.

Thus, the conformal curvature is

W = cos2 A ∈ (0, 1)

and the conformal metric is gc = − 1
cos2 A(dφ)

2 + 1
sin2 A cos2 A (dψ)

2 + 1
sin2A

(dθ)2. Obviously, the

conformal orthonormal basis is E1 = cosA ∂
∂φ

, E2 = sinA cosA ∂
∂ψ

, E3 = sinA ∂
∂θ
, satisfying

[Ei, Ej ] = 0.

Example 3.2 For any A ∈ (0,+∞), we have a conformal homogeneous hypersurface

G(ψ, θ, φ) =




cosψ − sinψ
cos θ − sin θ

cosφ − sinφ
sinφ cosφ

sin θ cos θ
sinψ cosψ







coshA
sinhA

1
0
0
0




= (coshA cosψ, sinhA cos θ, cosφ, sinφ, sinhA sin θ, coshA sinψ)T.

The conformal structure about this hypersurface is much easier to check in H4
1 than in R4

1.

Extracting the component cosφ we can define

x = (tanφ, secφ(sinhA cos θ, sinhA sin θ, coshA cosψ, coshA sinψ))T ∈ H4
1 ⊂ R5

2

provided cosφ > 0 (the case cosφ < 0 is actually −x and cosφ = 0 can be similarly studied by

extracting the component sinφ). Then from

xθ = secφ sinhA(0,− sin θ, cos θ, 0, 0)T,

xψ = secφ coshA(0, 0, 0,− sinψ, cosψ)T,

xφ = secφ(secφ, tan φ(sinhA cos θ, sinhA sin θ, coshA cosψ, coshA sinψ))T,

we know the induced metric is g = sec2 φ((dφ)2 + sinh2A(dθ)2 − cosh2A(dψ)2). The unit

normal vector is n = −(0, coshA cos θ, coshA sin θ, sinhA cosψ, sinhA sinψ)T. So the principal

curvatures of x are λ1 = cosφ tanhA, λ2 = 0, λ3 = cosφ cothA.

So it is easy to get the conformal curvature

W = − sinh2A ∈ (−∞, 0)
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and the conformal metric gc = 1
sinh2 A cosh2A

(dφ)2 + 1
cosh2 A

(dθ)2 − 1
sinh2 A

(dψ)2. Therefore,

the conformal orthonormal basis is E1 = sinhA ∂
∂ψ

, E2 = sinhA coshA ∂
∂φ

, E3 = coshA ∂
∂θ
,

satisfying

[Ei, Ej ] = 0.

Example 3.3 We define a homogeneous hypersurfaces as

G(ψ, θ, φ) =




eψ
θ2

2
e−ψ θ −ψeψ

0 e−ψ 0
0 θe−ψ 1

1 φeψ 0
0 eψ 0

ψe−ψ φ
φ2

2
eψ e−ψ







0

1

0

0

1

0




=
(θ2
2
e−ψ − ψeψ, e−ψ, θe−ψ, φeψ , eψ,

φ2

2
eψ + ψe−ψ

)T

.

One can verify that

x(ψ, θ, φ) =
(
θ, φe2ψ , e2ψ,

φ2

2
e2ψ + ψ

)T

is a hypersurface in R4
1 and G(ψ, θ, φ) is equivalent to e−ψ

( 1−〈x,x〉1
2 , x, 1+〈x,x〉1

2

)T
. The induced

metric is g = (dθ)2 +e4ψ(dφ)2 − 4e2ψ(dψ)2. The normal vector is n = eψ
(
0, φ, 1, φ

2

2 − 1
2e

−2ψ
)T
.

It is easy to get that nθ = 0, nφ = e−ψxφ, nψ = 1
2e

−ψxψ. Therefore, λ1 = 1
2e

−ψ, λ2 = 0 and

λ3 = e−ψ. So the conformal curvature is

W = −1.

Hence, the conformal metric is gc = −(dψ)2 + 1
4e

−2ψ(dθ)2 + 1
4e

2ψ(dφ)2 and the conformal

orthonormal basis can be chosen as E1 = − ∂
∂ψ

, E2 = 2eψ ∂
∂θ
, E3 = 2e−ψ ∂

∂φ
. The Lie brackets

of basis are in form of

[E1, E2] = −E2, [E1, E3] = E3, [E2, E3] = 0.

Example 3.4 We define a homogeneous hypersurfaces for any constantW ∈ (−1, 0)∪(0, 1),

G(ψ, θ, φ) =




e−ψ
θ2

2
eψ θ

0 eψ 0
0 θeψ 1

1 φeWψ 0
0 eWψ 0

φ
φ2

2
eWψ e−Wψ







−1

1

0

0

1

1




=
(θ2
2
eψ − e−ψ, eψ, θeψ, φeWψ , eWψ ,

φ2

2
eWψ + e−Wψ

)T

.
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First we have

x(ψ, θ, φ) =
(θ2
2
e(1−W )ψ − e−(1+W )ψ, e(1−W )ψ , θe(1−W )ψ, φ

)T

and G(ψ, θ, φ) is equivalent to eWψ
( 1−〈x,x〉1

2 , x, 1+〈x,x〉1
2

)T
. One can see that

xφ = (0, 0, 0, 1)T, xθ = e(1−W )ψ(θ, 0, 1, 0)T,

xψ = (1−W )e(1−W )ψ
(θ2
2

+
1 +W

1−W
e−2ψ, 1, θ, 0

)T

and the induced metric is g = (dφ)2 + e2(1−W )ψ(dθ)2 + 2(W 2 − 1)e−2Wψ(dψ)2. The unit

normal vector is n = −
√

1−W
2(1+W ) e

ψ
(
θ2

2 − 1+W
1−W e−2ψ, 1, θ, 0

)T
, by which we have nφ = 0,

nθ = −
√

1−W
2(1+W ) e

Wψxθ, nψ = 1
W−1

√
1−W

2(1+W )e
Wψxψ. So the principal curvatures are

λ1 =
1

W − 1

√
1−W

2(1 +W )
eWψ , λ2 = −

√
1−W

2(1 +W )
eWψ, λ3 = 0.

Therefore, the conformal curvature is W and the conformal metric obviously is gc =

−(dψ)2 + 1
2(1−W 2)e

2Wψ(dφ)2 + 1
2(1−W 2)e

2ψ(dθ)2. Finally we obtain a conformal orthonormal

basis E1 = ∂
∂ψ

, E2 =
√
2(1−W 2)e−ψ ∂

∂θ
, E3 =

√
2(1−W 2)e−Wψ ∂

∂φ
, whose Lie brackets are

in form of

[E1, E2] = −E2, [E1, E3] = −WE3, [E2, E3] = 0.

Example 3.5 We define a family of homogeneous hypersurfaces for A ∈ (0, π) as below:

G(ψ, θ, φ) =




e−2ψ e2ψ
(
θ2

2 − φ4

6

)
θ φ2 φ3

3 eψ 2φe−ψ

e2ψ

θe2ψ 1
−φ2e2ψ 1 φeψ

−2φe2ψ eψ

−φ3

3 e2ψ φ φ2

2 eψ e−ψ







1
2

1
0
1
0

2 coshA
3




=
(
e2ψ

(θ2
2

− φ4

6

)
+

1

2
e−2ψ + φ2 +

4φ coshA

3
e−ψ, e2ψ, θe2ψ,

1− φ2e2ψ ,−2φe2ψ,−φ
3

3
e2ψ + φ+

2 coshA

3
e−ψ

)T

.

A hypersurface

x(ψ, θ, φ) =
(
θ, (1− φ2)e−2ψ,−2φe−ψ,

(2 coshA
3

+ φ− φ3

3

)
e−3ψ

)T

can be defined such that G(ψ, θ, φ) is equivalent to e2ψ
(

1−〈x,x〉1
2 , x, 1+〈x,x〉1

2

)T

.

One can check that

xθ = (1, 0, 0, 0)T,

xψ = (0,−2e−2ψ, 0,−2φe−2ψ − 2 coshAe−3ψ)T,

xφ = (0,−2φ,−2,−φ2 + e−2ψ)T
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and the induced metric is in form of

g = (dθ)2 + 4e−2ψ(dφ)2 − 8 coshAe−3ψdφdψ + 4e−4ψ(dψ)2.

Taking a unit normal n = − eψ

sinhA

(
0, φ+ coshAe−ψ, 1, φ

2+e−2ψ

2 + φ coshAe−ψ
)T
, we have

nθ = 0, nφ =
e3ψ

2 sinhA
xψ, nψ =

eψ

2 sinhA
xφ.

Therefore, λ1 = − e2ψ

2 sinhA , λ2 = 0, λ3 = e2ψ

2 sinhA . The corresponding principal directions are

respectively e−ψ ∂
∂φ

+ ∂
∂ψ

, ∂
∂θ
, e−ψ ∂

∂φ
− ∂

∂ψ
. So the conformal curvature is

W =
1

2
.

The conformal metric is thus in form of

gc =
e4ψ

sinh2 A
(dθ)2 +

4e2ψ

sinh2A
(dφ)2 − 8 coshAeψ

sinh2A
dψdφ +

4

sinh2A
(dψ)2.

If we set the following conformal orthonormal basis

E1 =
1

2
cosh

A

2

(
e−ψ

∂

∂φ
+

∂

∂ψ

)
,

E2 = sinhAe−2ψ ∂

∂θ
,

E3 =
1

2
sinh

A

2

(
e−ψ

∂

∂φ
− ∂

∂ψ

)
,

then we get

[E1, E2] = − cosh
A

2
E2, [E1, E3] = −1

2
sinh

A

2
E1 −

1

2
cosh

A

2
E3, [E2, E3] = − sinh

A

2
E2.

Example 3.6 A homogeneous hypersurfaces for any A ∈ (−π
2 ,

π
2 ) can be defined by

G =




eψ cosφ −eψ sinφ
e−ψ cosφ −e−ψ sinφ

cos θ − sin θ
sin θ cos θ

e−ψ sinφ e−ψ cosφ
eψ sinφ eψ cosφ







cosA
cosA√
2 cosA
0

sinA
0




= (eψ cosφ cosA, e−ψ cos(φ+A),
√
2 cosA cos θ,

√
2 cosA sin θ, e−ψ sin(φ+A), eψ sinφ cosA)T.

We study this hypersurface in H4
1 to obtain an immersion as

x(ψ, θ, φ) =
(
tan θ,

sec θ√
2
(eψ cosφ, e−ψ

cos(φ+A)

cosA
, e−ψ

sin(φ+A)

cosA
, eψ sinφ)

)T

.

One can check that

xθ = sec θ
(
sec θ,

tan θ√
2

(eψ cosφ, e−ψ
cos(φ +A)

cosA
, e−ψ

sin(φ+A)

cosA
, eψ sinφ)

)T

,

xφ =
(
0,

sec θ√
2
(−eψ sinφ,−e−ψ

sin(φ +A)

cosA
, e−ψ

cos(φ+A)

cosA
, eψ cosφ)

)T

,

xψ =
(
0,

sec θ√
2
(eψ cosφ,−e−ψ

cos(φ+A)

cosA
,−e−ψ

sin(φ +A)

cosA
, eψ sinφ)

)T



Time-Like Conformally Homogeneous Hypersurfaces with Three Distinct Principal Curvatures 691

and the induced metric is g = sec2 θ((dθ)2 − (dφ)2 + 2 tanAdφdψ + (dψ)2).

Set the unit normal vector by n = cos θ(− cosAxφψ + sinAxψψ). We get

nθ = 0, nφ = cos θ(sinAxφ + cosAxψ), nψ = cos θ(− cosAxφ + sinAxψ).

Therefore, λ1 = cos θ(− sinA + i cosA), λ2 = λ1 and λ3 = 0, whose principal directions are

respectively ∂
∂φ

+ i ∂
∂ψ

, ∂
∂ψ

+ i ∂
∂φ

, ∂
∂θ
. Obviously, the conformal curvature is

W = tanA ∈ (−∞,+∞).

The conformal metric is in form of gc = cos2A((dθ)2 − (dφ)2 + 2 tanAdψdφ + (dψ)2). We

choose the following conformal orthonormal basis

E1 = C
( ∂

∂φ
+ i

∂

∂ψ

)
, E2 = iE1, E3 =

1

cosA

∂

∂θ
, C = (2 cosAe−iA)−

1

2 .

Then we have

[Ei, Ej ] = 0.

Example 3.7 A family of homogeneous hypersurfaces can be defined by

G(ψ, θ, φ) =




e−2ψ e2ψ
(θ2
2

− φ4

6

)
θ φ2

φ3

3
eψ 2φe−ψ

e2ψ

θe2ψ 1
−φ2e2ψ 1 φeψ

−2φe2ψ eψ

−φ
3

3
e2ψ φ

φ2

2
eψ e−ψ







1

2

1
0
−1
0

2 sinhA

3




=
(
e2ψ

(θ2
2

− φ4

6

)
+

1

2
e−2ψ − φ2 +

4φ sinhA

3
e−ψ, e2ψ, θe2ψ ,

− 1− φ2e2ψ,−2φe2ψ,−φ
3

3
e2ψ − φ+

2 sinhA

3
e−ψ

)T

.

It is easy to see that G(ψ, θ, φ) is equivalent to e2ψ
( 1−〈x,x〉1

2 , x, 1+〈x,x〉1
2

)T
, in which

x(ψ, θ, φ) =
(
θ,−e−2ψ − φ2,−2φ,−φ

3

3
− φe−2ψ +

2 sinhA

3
e−3ψ

)T

.

From

xφ = (0,−2φ,−2,−φ2 − e−2ψ)T,

xψ = (0, 2e−2ψ, 0, 2φe−2ψ − 2 sinhAe−3ψ)T,

xθ = (1, 0, 0, 0)T,

we know that the induced metric is g = (dθ)2 − 4e−2ψ(dφ)2 − 8 sinhAe−3ψdφdψ+4e−4ψ(dψ)2.

The unit normal is n = eψ

coshA

(
0, φ − sinhAe−ψ, 1, φ

2−e−2ψ

2 − φ sinhAe−ψ
)T
, by which we get

nθ = 0, nφ = e3ψ

2 coshAxψ , nψ = − eψ

2 coshAxφ. So λ1 = i e2ψ

2 coshA , λ2 = −i e2ψ

2 coshA , λ3 = 0, and the

principal directions are respectively ∂
∂φ

+ ieψ ∂
∂ψ

, ∂
∂φ

− ieψ ∂
∂ψ

, ∂
∂θ
. The conformal curvature is

W = 0.
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The conformal metric is in form of

gc =
1

cosh2A

(e4ψ
4

(dθ)2 − e2ψ(dφ)2 − 2 sinhAeψdψdφ+ (dψ)2
)
.

The following conformal orthonormal basis

E1 = C
(
e−ψ

∂

∂φ
+ i

∂

∂ψ

)
, E2 = iE1, E3 = 2 coshAe−2ψ ∂

∂θ
, C = −

(1− i sinhA

2

) 1

2

yield

[E1, E2] = CE1 − iCE2, [E1, E3] = −2iCE3, [E2, E3] = −2CE3.

Remark 3.1 It is obvious that all the hypersurfaces come from the orbits of some 3-

dimensional subgroup of O(4, 2). Thus their universal covering is R3. in Example 3.1, the

hypersurface is topologically R2×S1, equivalent to a cone over a time-like homogenous cylinder

in S3
1 ; in Example 3.2 it is T 3, the only compact case here. Half part of it is equivalent to a

cylinder in H4
1 over a time-like homogenous torus in H3

1 ; in Example 3.6 it is T 2 × R, half of

which is equivalent to a cylinder over a time-like homogenous cylinder in H3
1 .

It should also be noted that Examples 3.5 and 3.7 are essentially generated by the same

group.

4 Classification of Conformally Homogeneous Hypersurfaces

4.1 Real case

Since W = λ2−λ1

λ3−λ1
, one can see that 0 < W < 1 when λ1 < λ2 < λ3 and W < 0 when

λ2 < λ1 < λ3. For the latter case, we may choose −n as normal vector so that −1 ≤W < 0.

From structure equations it is easy to see that

ci = ǫi〈Ei(ξ), Ei(Y )〉, Ωi = ǫj(cj − ci)〈EjEj(Y ), Ei(Y )〉,

which means that we may always assume Ωi ≥ 0 by a change of Ei → −Ei if necessary.
For convenience we assume {i, j, k} = {1, 2, 3}. If we setR = (c2−c1)Ω12

3 , then the integrable

conditions (2.1)–(2.4) can be written as

Ωijk =
R

cj − ci
, Ωiji =

ǫiΩj
cj − ci

, (4.1)

Θij = − 2ΩiΩj
(ci − cj)2

+
ǫkRΩk

(ck − ci)(ck − cj)
, (4.2)

ǫiΘ
i
i + ǫjΘ

j
j = ǫi(Ω

ij
j )

2 + ǫj(Ω
ji
i )

2 − Ωkii Ωkjj + 2Ωkij Ωkji + cicj , (4.3)

ǫiciΩj = (ǫjΘ
j
j − ǫiΘ

i
i)Ω

ij
i + 2ǫjΘ

i
jΩ

ji
j + ǫkΘ

i
k(2Ω

ki
j − Ωkji ) + ǫkΘ

k
jΩ

ik
i , (4.4)

(ǫjΘ
j
j − ǫiΘ

i
i)Ω

ji
k − ǫi(Θ

j
iΩ

ik
i +ΘkiΩ

ij
i ) = (ǫjΘ

j
j − ǫkΘ

k
k)Ω

jk
i − ǫk(Θ

j
kΩ

ki
k +ΘikΩ

kj
k ). (4.5)

Note that if we let Fjik denote the left-hand side of (4.5), then (4.5) becomes

Fjik = Fjki. (4.6)
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From the identity [[Ei, Ej ], Ek] + [[Ej , Ek], Ei] + [[Ek, Ei], Ej ] = 0 we also have

( 1

ci − cj
+

1

ci − ck

) −ǫiΩiR
(ci − cj)(ci − ck)

=
( 1

ci − cj
+

1

ci − ck

) ΩjΩk
(ck − cj)2

. (4.7)

It is easy to check that 1
ci−cj +

1
ci−ck = 0 if and only if

(1) i = 1 and W = −1, in which case we have

Ω1Ω3 = −Ω2R

2
, Ω1Ω2 = −Ω3R

2
; (4.8)

(2) i = 2 and W = 1
2 , in which case we have

Ω2Ω3 =
Ω1R

2
, Ω1Ω2 = −Ω3R

2
. (4.9)

Otherwise we always have

−ǫiΩiR
(ci − cj)(ci − ck)

=
ΩjΩk

(ck − cj)2
. (4.10)

Lemma 4.1 If all Ωi vanish, then so does R and it is Example 3.1 or 3.2.

Proof By (4.1)–(4.2), Ωi = 0 immediately yields Ωijj = 0 and Θij = 0. Then it is easy to

see that Fijk is totally symmetric to the indices. By (4.3) we get

Fikj = (ǫiΘ
i
i − ǫkΘ

k
k)Ω

ik
j = −R

(
cj +

2R2(2cj − ci − ck)

(ci − ck)2(cj − ck)(cj − ci)

)
.

Checking F321 = F123 we have R = 0. As a result, Ωijk = 0 and by (2.5),

[Ei, Ej ] = 0.

Using Theorem 2.1 one can see that this is clearly the case of Example 3.1 or 3.2.

Moreover, we will show the following lemma.

Lemma 4.2 Ωijk always vanishes.

Proof It is done by creating contradictions from the assumption R 6= 0.

WhenW 6= 1
2 or −1, by (4.10) we know none of Ωi vanishing and −ΩiΩjΩk

R
=

ǫi(Ωi)
2(cj−ck)2

(ci−cj)(ci−ck) .

When i = 3 one can see that it is positive, so we can define a function f such that

−ΩiΩjΩk
R

= f2(ci − cj)
2(ci − ck)

2(cj − ck)
2.

Then we get

(Ωi)
2 = ǫif

2(ci − cj)
3(ci − ck)

3, R2 = f2(ci − cj)
2(ci − ck)

2(cj − ck)
2.

Applying these expressions in (4.3) we obtain

ǫiΘ
i
i − ǫkΘ

k
k = (ci − ck)(cj + 3f2(ci − cj)(cj − ck)(ci + ck − 2cj)).

At the same time, (4.2) shows Θij = −3
ΩiΩj

(ci−cj)2 . Finally, a straightforward calculation in

(4.4) for (i, j, k) = (3, 2, 1) yields a contradiction 1 + 9f2(W 2 −W + 1) = 0 for W ∈ [−1, 0).
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When W = 1
2 , from (4.9) we know Ω2 6= 0 and Ω1 = Ω3 = 0. Then (4.2) leads to

Θ1
2 = Θ3

2 = 0, Θ1
3 = RΩ2

2 , and (4.3) leads to

Θ1
1 = 2(Ω2)

2 + 4R2 +
1

4
, Θ2

2 = 6(Ω2)
2 + 8R2 +

1

4
, Θ3

3 = −2(Ω2)
2 − 4R2 +

1

4
.

Setting (i, j, k) = (1, 2, 3) in (4.4) we get a contradiction Ω2 = 0.

When W = −1, from (4.8) we get Ω1 6= 0 and Ω2 = Ω3. Then (4.2) yields Θ2
1 = Θ3

1 =

−3Ω1Ω2, Θ
3
2 = RΩ1 − (Ω2)

2

4 . (4.3) becomes

Θ2
2 −Θ1

1 = Θ3
3 −Θ1

1 = R2 − (Ω1)
2 +

3

2
(Ω2)

2, (4.11)

Θ2
2 +Θ3

3 = −2R2 + (Ω1)
2 +

1

2
(Ω2)

2 − 1. (4.12)

Obviously we have Θ2
2 = Θ3

3.

Checking F123 = F132 we get

Θ1
1 +Θ2

2 = (Ω1)
2 +

7

8
(Ω2)

2. (4.13)

Setting (i, j, k) = (3, 1, 2) in (4.4) we get

1 = (Ω1)
2 − 29

8
(Ω2)

2.

Then we use above two expressions in (4.4) for (i, j, k) = (1, 2, 3) to obtain Ω2 = Ω3 = 0,

(Ω1)
2 = 1. From (4.11)–(4.13) we get a contradiction R = 0.

Now we are going to prove a classification.

Proposition 4.1 A time-like conformal homogeneous hypersurface in R4
1, if admitting three

distinct real principal curvatures, must be conformally equivalent to one of hypersurfaces from

Examples 3.1–3.5.

Proof Since R = 0, by (4.8)–(4.10) we know at least one of Ωi vanishing.

(i) If all Ωi are zeroes then it corresponds to Examples 3.1 and 3.2.

(ii) If only one is not zero, say Ωi, then every Θij vanishes and all Ωijk = 0 except Ωijj =
ǫjΩi
cj−ci (i 6= j). By (4.4) we get

ǫiΘ
i
i − ǫkΘ

k
k = (ci − ck)ck.

Meanwhile, (4.3) yields

ǫkΘ
k
k − ǫiΘ

i
i =

ck − cj
(ci − cj)2(ci − ck)

ǫi(Ωi)
2 − (ci − ck)cj .

Comparing these two expressions we get

Ω2
i = −ǫi(ci − cj)

2(ci − ck)
2.

Thus it has to be Ω1 = |W |. So we have

[E1, E2] = −|W |
W

E2, [E1, E3] = −|W |E3, [E2, E3] = 0.
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When W < 0, we can change the direction of E1 so that there always have

[E1, E2] = −E2, [E1, E3] = −WE3, [E2, E3] = 0.

This leads to Examples 3.3 and 3.4.

(iii) If only one is zero, say Ωk, then (4.10) cannot hold true. By (4.2) we have Θik = Θjk = 0,

Θij = − 2ΩiΩj
(ci−cj)2 . Given the following equations from (4.4),

ci = (ǫjΘ
j
j − ǫiΘ

i
i)

ǫi
cj − ci

− 4(Ωi)
2

(ci − cj)3
, cj = (ǫiΘ

i
i − ǫjΘ

j
j)

ǫj
ci − cj

− 4(Ωj)
2

(cj − ci)3
,

we get

ǫi(Ωi)
2 + ǫj(Ωj)

2 = − (ci − cj)
4

4
.

So either i = 1 or j = 1. Anyway, we have Ω1 6= 0. By (4.8)–(4.9) we know Ω2 = 0 and

therefore the above expression implies that there is constant A such that

Ω1 =
1

2
cosh

A

2
, Ω3 =

1

2
sinh

A

2
.

Finally, we obtain Example 3.5 as we have the following Lie brackets:

[E1, E2] = − cosh
A

2
E2, [E1, E3] = −1

2
sinh

A

2
E1 −

1

2
cosh

A

2
E3, [E2, E3] = − sinh

A

2
E2.

4.2 Complex case

First, one can see that, with respect to the conformal invariant frame, the structure equa-

tions and integrable conditions (4.1)–(4.5) are still valid. However, some coefficients may take

complex values:

c1 = c2 =W − i, c3 = 0; R = −R; Ω2 = iΩ1, Ω3 = Ω3.

Similarly we can prove the following lemma.

Lemma 4.3 If Ωi = 0, then R = 0 and it is Example 3.6.

When W 6= 0, we also have (4.10) valid for any i, j, k. So there is (ci − cj)(cj − ck)(ck −
ci)ΩiΩjΩk = ǫjR(Ωi)

2(cj − ck)
3, which yields

R(Ω1)
2c32 = −R(Ω2)

2c31 = −R(Ω3)
2(c1 − c2)

3.

From R(Ω2)
2c31 = R(Ω1)2c32, R(Ω3)

2(c1 − c2)
3 = R(Ω3)2(c1 − c2)3, we know that the quantity

in above expression is both real and imaginary. Thus, R(Ωi)
2 = 0 and then by Lemma 4.3 there

must have R = 0. By (4.10) again we know that at least two of Ωi are zero and obviously they

have to be Ω1 = Ω2 = 0. It is easy to see that Θij = 0 by (4.2), and Θ1
1 + Θ2

2 = −4W i

(W 2+1)2 (Ω3)
2

is purely imaginary by (4.3). In the mean time, comparing c1Ω3 and c2Ω3 in (4.4) we get

(Θ1
1 +Θ2

2 + 2− 2W 2)Ω3 = 0. So Ω3 = 0 and it must be equivalent to Example 3.6.

Now we assume W = 0, in which case from (4.7) we have

RΩ1 = 2Ω2Ω3, RΩ2 = −2Ω1Ω3. (4.14)
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By (4.2) we get

Θ1
3 = 3Ω1Ω3, Θ2

3 = 3Ω2Ω3, Θ1
2 =

Ω1Ω2

2
+RΩ3.

By (4.3) we get

Θ1
1 = −3

8
(Ω1)

2 − 1

8
(Ω2)

2 − 1

2
(Ω3)

2 −R2 − 1

2
,

Θ2
2 = −1

8
(Ω1)

2 − 3

8
(Ω2)

2 +
1

2
(Ω3)

2 +R2 +
1

2
,

Θ3
3 =

5

8
(Ω1)

2 − 5

8
(Ω2)

2 − 3

2
(Ω3)

2 − 2R2 − 1

2
.

If Ω1 = iΩ2 = 0, then the calculation about c1Ω3 in (4.4) shows Ω3(3R
2 + 2(Ω3)

2 + 2) = 0.

While in (4.5) with i = 3, j = 2 we get R(3R2 + (Ω3)
2 + 1) = 0. These two equations imply

that Ω3 has to be zero and hence by Lemma 4.3 we get Example 3.6 again.

If Ω1 = iΩ2 6= 0, then the calculation about c1Ω2 in (4.4) shows that

(Ω1)
2 − (Ω2)

2 = 4− 92(Ω3)
2. (4.15)

Since |Ω1| = |Ω2| 6= 0, by (4.14) we get R = 2iΩ3. Taking (i, j, k) = (1, 2, 3) and (1, 3, 2)

respectively in (4.5) we find that R = Ω3 = 0. Thus, from (4.15) there is a constant A such

that Ω1 = (2 − 2i sinhA)
1

2 , Ω2 = i(2 + 2i sinhA)
1

2 . This is exactly equivalent to Example 3.7.

As a conclusion we have the following proposition.

Proposition 4.2 If a regular conformal homogeneous hypersurface in R4
1 has complex prin-

cipal curvatures, then it must be conformally equivalent to Examples 3.6 or 3.7.

Combining these two propositions we obtain the main theorem.
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