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1 Introduction

The Toda lattice hierarchy (see [1]) as a completely integrable system has many important

applications in mathematics and physics. Toda systems have many kinds of reductions or

extensions, such as the extended Toda hierarchy (ETH for short) (see [2–4]), bigraded Toda

hierarchy (BTH for short) (see [5–9]), extended multi-component Toda hierarchy (see [10]),

extended ZN -Toda hierarchy (see [11]) and so on.

With additional logarithm flows, the Toda lattice hierarchy becomes the extended Toda hi-

erarchy (see [2]) which governs the Gromov-Witten invariant of CP 1. That means the Gromov-

Witten potential τ of CP 1 satisfies the Hirota quadratic equations (see [4]) of the ETH. The

extended bigraded Toda hierarchy (EBTH for short) (see [5]) is an extension of the ETH. The

Hirota bilinear equation of the EBTH was equivalently constructed in [6, 12]. Meanwhile it was

proved to govern Gromov-Witten invariants of the total descendent potential of CN,M orbifolds

(see [12]).

The systematical studies on symmetries on lattice equations can be seen in [13]. As one

kind of symmetries depending on time variables explicitly, the ghost symmetry was discovered

by Oevel [14]. After that, it attracts a lot of research (see [15–22]). Aratyn used the method

of squared eigenfunction potentials to construct the ghost symmetry of the KP hierarchy and

connect this kind of symmetry with constrained KP hierarchy (see [17–19]). One S function
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was used to represent (2 + 1)-dimensional hierarchies of the KP equation, the modified KP

equation and the Dym equation (see [20–21]. Our group gave a good construction of the ghost

symmetry of the discrete KP hierarchy (see [23]) and the BKP hierarchy (see [22]).

Among many analytical methods, the Darboux transformation is one of the efficient methods

to generate the soliton solutions for integrable systems (see [16, 24]). The Darboux transfor-

mation for integrable coupled systems is studied in [25]. In [26], the two Darboux transforms

on band matrices called LU and UL Darboux transformations are constructed, particularly for

the (2m + 1)-band matrix. The LU and UL Darboux transformations inspire us to consider

two different Darboux transformations of the ETH. The determinant representation of multi-

fold Darboux transformations gives a convenient tool to explicitly express new solutions (see

[27–28]). This reminds us to consider the Darboux transformation and its determinant repre-

sentation of the continuous interpolated ETH which will be used to generate new solutions from

known solutions which include soliton solutions and solutions related to the Gromov-Witten

theory of CP 1.

This paper is arranged as follows. In the next section, we will give the Lax equations of the

extended Toda hierarchy. In Section 3, the ghost symmetry of the ETH will be constructed

in two directions. By Sato equations, Hirota bilinear equations of the ETH are recalled with

the tau-function and the generalized vertex operators. Meanwhile we also compare our results

from the reduction of the EBTH (see [6]) and the known results in [4]. In Section 5, multi-fold

Darboux transformations of the ETH will be constructed using determinant techniques in [10–

11, 28]. In another direction, another kind of multi-fold Darboux transformations of the ETH

will be constructed in Section 6. Combining these two Darboux transformations together, we

construct their mixed transformations in Section 7.

2 Extended Toda Hierarchy

Firstly we recall some basic notations of the extended Toda hierarchy. We introduce the

following Lax operator L of the extended Toda hierarchy as in [2] by

L = Λ+ u(x) + v(x)Λ−1

with Λ being defined now as the shift operator

Λ = eε∂x .

The dressing operators PL and PR as in [2],

PL = 1 + w1Λ
−1 + w2Λ

−2 + · · · , (2.1)

PR = w̃0 + w̃1Λ
−1 + w̃2Λ

−2 + · · · (2.2)

can be formally defined by the following identities in the ring of Laurent series in Λ−1 and Λ

respectively:

L = PLΛP
−1
L = PRΛ

−1P−1
R .

The pair is unique up to multiplying PL from the right and PR from the left by operators in

the form respectively 1 + a1Λ
−1 + a2Λ

−2 + · · · and ã0 + ã1Λ + ã2Λ
2 + · · · with coefficients

independent of x.
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To construct an extension of the extended Toda hierarchy, one needs to introduce the fol-

lowing notion of the logarithm of the Lax operator L:

logL :=
1

2
(PLε∂xP

−1
L − PRε∂xP

−1
R ).

Remarkably the above ambiguity in the choice of dressing operators is cancelled after the

definition of the logarithmic operator logL.

Definition 2.1 The extended Toda hierarchy consists of the evolutionary equations which

are represented in the following Lax pair:

∂L

∂tβ,n
= [Bβ,n, L] := Bβ,nL− LBβ,n, β = 1, 2, n ≥ 0. (2.3)

Here the operators Bβ,n are defined by

B1,n =
2

εn!
[Ln(logL− cn)]+, B2,n =

1

ε(n+ 1)!
(Ln+1)+, (2.4)

and for any operator B =
∑
BkΛ

k, the operator B+ is given by
∑
k≥0

BkΛ
k and B− = B −B+.

Here the constants cn are defined as follows:

c0 = 0, cn = 1 +
1

2
+ · · ·+

1

n
. (2.5)

Also we define the operators Aβ,q, Cβ,q by

A1,n =
2

εn!
[Ln(logL− cn)], A2,n =

1

ε(n+ 1)!
(Ln+1), (2.6)

C1,n = −
2

εn!
[Ln(logL− cn)]−, C2,n = −

1

ε(n+ 1)!
(Ln+1)−. (2.7)

Now we give the Sato equations of the extended Toda hierarchy (ETH for short).

Definition 2.2 The extended Toda hierarchy is a hierarchy in which the dressing operators

PL,PR satisfy the following Sato equations:

∂tγ,j
PL = Cγ,jPL, ∂tγ,j

PR = Bγ,jPR. (2.8)

The dressing operators PL,PR which satisfy the above Sato equations are called wave op-

erators (see [4]). “∗” is defined as an antiinvolution acting on the space of Laurent series in

Λ by x∗ = x and Λ∗ = Λ−1. The Lax pair of the ETH can be written as the following linear

equations.

Proposition 2.1 The Lax equation of the ETH can have the following linear system on

Baker-Akhiezer functions ΦBA,ΦBA and adjoint Baker-Akhiezer functions ΨBA,ΨBA as

LΦBA = λΦBA,
∂ΦBA
∂tβ,n

= Bβ,nΦBA;

L∗ΨBA = λΨBA,
∂ΨBA
∂tβ,n

= −B∗
β,nΨBA;

LΦBA = λΦBA,
∂ΦBA
∂tβ,n

= Cβ,nΦBA;

L∗ΨBA = λΨBA,
∂ΨBA
∂tβ,n

= −C∗
β,nΨBA.
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Then we can define the following eigenfunctions φ, φ and adjoint eigenfunctions ψ, ψ as

∂φ

∂tβ,n
= Bβ,nφ,

∂ψ

∂tβ,n
= −B∗

β,nψ,

∂φ

∂tβ,n
= Cβ,nφ,

∂ψ

∂tβ,n
= −C∗

β,nψ.

With above preparations, we will construct the ghost symmetry of the extended Toda hier-

archy in the next section.

3 The Ghost Symmetry of the Extended Toda Hierarchy

In this section, the ghost flows on the Lax operator of the extended Toda hierarchy will be

introduced firstly. Then we will prove that they are symmetries of the extended Toda hierarchy.

After this, we naturally further consider the action of ghost flows on Baker-Akhiezer functions

and eigenfunctions. To define the ghost flows, we define the following two operators:

Λ−1

1− Λ−1
:=

+∞∑

i=1

Λ−i,
1

1− Λ
:=

+∞∑

i=0

Λi.

Inspired by the definition of ghost flows of the KP hierarchy (see [19]), here we define the flows

for the ghost symmetry as

∂ZL =
[
φ

Λ−1

1− Λ−1
ψ,L

]
, ∂ZL =

[
φ

1

1− Λ
ψ,L

]
,

where functions φ, φ, ψ, ψ are the eigenfunctions and adjoint eigenfunctions of the extended

Toda hierarchy.

To prove that the above flows are symmetries of the ETH, we need to prove the following

lemma.

Lemma 3.1 For operators B :=
∞∑
n=0

bnΛ
n, C :=

∞∑
n=1

cnΛ
−n and f(x), g(x) as two arbitrary

functions, the following identities hold:

(
Bf

Λ−1

1− Λ−1
g
)
−
= B(f)

Λ−1

1− Λ−1
g,

(
f

Λ−1

1− Λ−1
gB

)
−
= f

Λ−1

1− Λ−1
B∗(g), (3.1)

(
Cf

1

1− Λ
g
)
+
= C(f)

1

1 − Λ
g,

(
f

1

1− Λ
gC

)
+
= f

1

1− Λ
C∗(g). (3.2)

Proof The proof is similar to that of [29, Lemma 1].

The following theorem will tell you why we call it the ghost symmetry.

Theorem 3.1 The additional flows ∂Z , ∂Z commute with the extended Toda flows ∂tγ,n
,

i.e.,

[∂Z , ∂tγ,n
]L = 0, [∂Z , ∂tγ,n

]L = 0. (3.3)

Proof The commutativity between ghost flows and extended Toda flows is in fact equivalent

to the following Zero-Curvature equation which includes the following detailed proof:

∂ZBγ,n − ∂tγ,n

(
φ

Λ−1

1− Λ−1
ψ
)
+
[
Bγ,n, φ

Λ−1

1− Λ−1
ψ
]
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=
[
φ

Λ−1

1− Λ−1
ψ,Aγ,n

]
+
− φtγ,n

Λ−1

1− Λ−1
ψ − φ

Λ−1

1− Λ−1
ψtn +

[
Bγ,n, φ

Λ−1

1− Λ−1
ψ
]

=
[
φ

Λ−1

1− Λ−1
ψ,Bγ,n

]
+
− P0(Bγ,nφ)

Λ−1

1− Λ−1
ψ + φ

Λ−1

1− Λ−1
P0(B

∗
γ,nψ) +

[
Bγ,n, φ

Λ−1

1− Λ−1
ψ
]

=
(
Bγ,nφ

Λ−1

1− Λ−1
ψ
)
−
−
(
φ

Λ−1

1− Λ−1
ψBγ,n

)
−
− P0(Bγ,nφ)

Λ−1

1− Λ−1
ψ + φ

Λ−1

1− Λ−1
P0(B

∗
γ,nψ)

= 0,

∂ZCγ,n − ∂tγ,n

(
φ

1

1− Λ
ψ
)
+
[
Cγ,n, φ

1

1− Λ
ψ
]

= −
[
φ

1

1− Λ
ψ,Aγ,n

]
−
− φtγ,n

1

1− Λ
ψ − φ

1

1− Λ
ψtn +

[
Cγ,n, φ

1

1− Λ
ψ
]

=
[
φ

1

1− Λ
ψ,Cγ,n

]
−
− P0(Cγ,nφ)

1

1− Λ
ψ + φ

1

1− Λ
P0(C

∗
γ,nψ) +

[
Cγ,n, φ

1

1− Λ
ψ
]

=
(
Cγ,nφ

1

1− Λ
ψ
)
−
−
(
φ

1

1− Λ
ψCγ,n

)
−
− P0(Cγ,nφ)

1

1− Λ
ψ + φ

1

1− Λ
P0(C

∗
γ,nψ)

= 0.

The above proposition tells us that the ghost flows are the symmetries of the extended Toda

hierarchy.

The ghost symmetry on wave operators PL,PR can be got as

∂ZPL = φ
Λ−1

1− Λ−1
ψPL, ∂ZPR = φ

1

1− Λ
ψPR.

The ghost flows acting on the Baker-Akhiezer functions ΦBA(t, z),ΦBA(t, z) and adjoint Baker-

Akhiezer functions ΨBA(t, z),ΨBA(t, z) will be defined as the following equations:

∂ZΦBA(t, z) = φH(ψ,ΦBA(t, z)), H(ψ,ΦBA(t, z)) =
Λ−1

1− Λ−1
(ψΦBA(t, z));

∂ZΨBA(t, z) = −ψS(φ,ΨBA(t, z)), S(φ,ΨBA(t, z)) =
Λ

1− Λ
(φΨBA(t, z));

∂ZΦBA(t, z) = φH(ψ,ΦBA(t, z)), H(ψ,ΦBA(t, z)) =
1

1− Λ
(ψΦBA(t, z));

∂ZΨBA(t, z) = −ψ S(φ,ΨBA(t, z)), S(φ,ΨBA(t, z)) =
1

1− Λ−1
(ψΨBA(t, z));

∂ZΦBA(t, z) = φH(ψ,ΦBA(t, z)), H(ψ,ΦBA(t, z)) =
Λ−1

1− Λ−1
(ψΦBA(t, z));

∂ZΨBA(t, z) = −ψS(φ,ΨBA(t, z)), S(φ,ΨBA(t, z)) =
Λ

1− Λ
(φΨBA(t, z));

∂ZΦBA(t, z) = φH(ψ,ΦBA(t, z)), H(ψ,ΦBA(t, z)) =
1

1− Λ
(ψΦBA(t, z));

∂ZΨBA(t, z) = −ψ S(φ,ΨBA(t, z)), S(φ,ΨBA(t, z)) =
1

1− Λ−1
(φΨBA(t, z)).

We consider the spectral representation of the eigenfunctions φ(t), φ(t) and adjoint eigen-

functions ψ(t), ψ(t) for the extended Toda hierarchy.

Proposition 3.1 The eigenfunctions φ(t), φ(t) and adjoint eigenfunctions ψ(t), ψ(t) have

the following spectral representation using the Baker-Akhiezer functions ΦBA(t, z),ΦBA(t, z)
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and adjoint Baker-Akhiezer functions ΨBA(t, z),ΨBA(t, z) :

φ(t) =

∫
dzφs(z)(ΦBA(t, z)), φ(t) =

∫
dzφs(z)(ΦBA(t, z)),

ψ(t) =

∫
dzψs(z)ΨBA(t, z), ψ(t) =

∫
dzψs(z)ΨBA(t, z).

The spectral representation will help us to get the ghost flow of eigenfunctions φ(t), φ(t)

and adjoint eigenfunctions ψ(t), ψ(t). Considering the ghost flows acting on the Baker-Akhiezer

functions ΦBA(t, z),ΦBA(t, z), adjoint Baker-Akhiezer functions ΨBA(t, z),ΨBA(t, z) and the

above spectral representation, this will lead to the following proposition which contains the

ghost flows of the eigenfunctions φ(t), φ(t) and adjoint eigenfunctions ψ(t), ψ(t) as the following

proposition.

Proposition 3.2 The eigenfunctions φ(t), φ(t) and adjoint eigenfunctions ψ(t), ψ(t) satisfy

the following equations:

∂Zφ = φH(ψ, φ), ∂Zψ = −ψS(φ, ψ),

∂Zφ = φH(ψ, φ), ∂Zψ = −ψ S(φ, ψ),

∂Zφ = φH(ψ, φ), ∂Zψ = −ψS(φ, ψ),

∂Zφ = φH(ψ, φ), ∂Zψ = −ψ S(φ, ψ).

4 Hirota Quadratic Equations and Tau Function

In this section, we will compare the results of the ETH derived in [4] and our paper [6].

Now we introduce the following free operators W0,W 0 :

W0 := exp
( ∞∑

j=0

t2,j
Λj

εj!
+ t1,j

Λj

εj!
(ε∂ − cj)

)
, (4.1)

W 0 := exp
( ∞∑

j=0

t2,j
Λ−j

εj!
+ t1,j

Λ−j

εj!
(ε∂ − cj)

)
, (4.2)

W 0R := exp
(
−

∞∑

j=0

t2,j
Λj

εj!
− t1,j

Λj

εj!
(ε∂ − cj)

)
. (4.3)

We define the dressing operators W,W,WL,WR as follows:

W :=WL := PL ◦W0, W := PR ◦W 0, WR :=W 0R ◦ P∗
R. (4.4)

For any operator B =
∑
BkΛ

k, the left symbol of the operator is defined by
∑
Bkλ

k. For any

operator B =
∑

ΛkCk, the right symbol of the operator is defined by
∑
Ckλ

k. Then we denote

their corresponding left symbols WL ofWL and right symbols WR of WR. Also we denote their

corresponding left symbols W , W and right symbols W−1, W
−1

.

To show the agreement between the results in [4] and [6], the following proposition can be

proved.

Proposition 4.1 The following several statements are equivalent :

(1) PL and PR are wave operators of the extended Toda hierarchy.
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(2) The following Hirota bilinear equations hold for r ∈ N (see [4]):

WLΛ
rWR =W ∗

RΛ
−rW ∗

L, r ∈ N. (4.5)

(3) The following Hirota bilinear equations hold (see [4]):

Resλ{λ
r+m−1 WL(x, t, ε∂x, λ)WR(x −mε, t′, ε∂x, λ)}

= Resλ{λ
r−m−1W∗

R(x, t, ε∂x, λ) W∗
L(x −mε, t′, ε∂x, λ)}. (4.6)

(4) The following Hirota bilinear equations hold:

WΛrW−1 =WΛ−rW
−1
, r ∈ N. (4.7)

(5) Let t1,0 = t′1,0. For all m ∈ Z, r ∈ N, the following Hirota bilinear identity (HBI for

short) holds:

Resλ{λ
r+m−1 W(x, t, ε∂x, λ)W

−1(x −mε, t′, ε∂x, λ)}

= Resλ{λ
−r+m−1W(x, t, ε∂x, λ) W

−1
(x−mε, t′, ε∂x, λ)}. (4.8)

Proof The equivalences of statements (1), (2) and (3) were proved in [4]. The following

proof is about the equivalences of (1), (4) and (5). Here we only give the proof of the equivalence

between (1), (4) and (5).

(1) ⇒ (4) Set

γ = (γ0, γ1, γ2, · · · ; ), β = (β1, β2, · · · ) (4.9)

to be a multi index and

∂γ : = ∂
γ0
t2,0

∂
γ1
t2,1

∂
γ2
t2,2

· · · , ∂β := ∂
β1

t1,1
∂
β2

t1,2
· · · . (4.10)

Suppose ∂θ = ∂α∂β . Firstly we shall prove that the left statement leads to

W (x, t,Λ)ΛrW−1(x, t′,Λ) =W (x, t,Λ)Λ−rW
−1

(x, t′,Λ) (4.11)

for all integers r ≥ 0. Using the same method as used in [4, 6], by induction on θ, we shall

prove that

W (x, t,Λ)Λr(∂θW−1(x, t,Λ)) =W (x, t,Λ)Λ−r(∂θW
−1

(x, t,Λ)). (4.12)

When θ = 0, it is obviously true according to the definition of wave operators.

Suppose that (4.12) is true in the case of θ 6= 0. Note that

∂pjW :=

{
[(∂t2,jPL)P

−1
L + PLΛ

jP−1
L ]W, pj = t2,j ,

[(∂t1,jPL)P
−1
L + PLΛ

jε∂xP
−1
L ]W, pj = t1,j ,

and

∂pjW :=

{
(∂t2,jPR)P

−1
R W, pj = t2,j ,

[(∂t1,jPR)P
−1
R + PRΛ

−jε∂xP
−1
R ]W, pj = t1,j ,
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which further lead to

∂pjW :=





(A2,j)+W, pj = t2,j ,

[
− (A1,j)− +

Lj

εj!
(log+ L− cj)

]
W, pj = t1,j ,

and

∂pjW :=





(A2,j)+W, pj = t2,j ,

[
(A1,j)+ −

Lj

εj!
(log− L− cj)

]
W, pj = t1,j .

This further implies

(∂pjW )Λr(∂θW−1) = (∂pjW )Λ−r(∂θW
−1

)

by considering (4.12) and furthermore we get

WΛr(∂pj∂
θW−1) =WΛ−r(∂pj∂

θW
−1

).

Thus if we increase the power of ∂pj by 1, (4.12) still holds. The induction is completed. By

Taylor expanding both sides of (4.11) about t = t′, one can finish the proof of (4.11).

(4) ⇐ (1) Vice versa, by separating the negative and the positive part of the equation, we

can prove PL, PR are a pair of wave operators.

To prove (4) ⇔ (5), the following symbolics are needed.

If the series have forms

W (x, t,Λ) =
∑

i∈Z

ai(x, t, ∂x)Λ
i, W (x, t,Λ) =

∑

i∈Z

bi(x, t, ∂x)Λ
i,

W−1(x, t,Λ) =
∑

i∈Z

Λia′i(x, t, ∂x), W
−1

(x, t,Λ) =
∑

j∈Z

Λjb′j(x, t, ∂x),

then their corresponding left symbols W , W and right symbols W−1, W
−1

are as follows:

W(x, t, λ) =
∑

i∈Z

ai(x, t, ∂x)λ
i, W−1(x, t, λ) =

∑

i∈Z

a′i(x, t, ∂x)λ
i,

W(x, t, λ) =
∑

i∈Z

bi(x, t, ∂x)λ
i, W

−1
(x, t, t, λ) =

∑

j∈Z

b′j(x, t, ∂x)λ
j .

With the above preparation and defining residue as Resλ
∑
n∈Z

αnλ
n = α−1, the equivalence

(4) ⇔ (5) can be proved using the similar proof as [1, 4, 6].

We denote respectively PL, PR as the left symbols PL, PR and P−1
L , P−1

R as the right

symbols P−1
L , P−1

R . A function τ depending only on the dynamical variables t and ε is called

the tau-function of the ETH if it provides symbols related to wave operators as

PL : =
τ
(
t1,0 + x−

ε

2
, t2,j −

ε(j − 1)!

λj
; ε
)

τ
(
t1,0 + x−

ε

2
, t; ε

) , (4.13)
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P−1
L : =

τ
(
t1,0 + x+

ε

2
, t2,j +

ε(j − 1)!

λj
; ε
)

τ
(
t1,0 + x+

ε

2
, t; ε

) , (4.14)

PR : =
τ
(
t1,0 + x+

ε

2
, t2,j + ε(j − 1)!λj ; ε

)

τ
(
t1,0 + x−

ε

2
, t; ε

) , (4.15)

P−1
R : =

τ
(
t1,0 + x−

ε

2
, t2,j − ε(j − 1)!λj ; ε

)

τ
(
t1,0 + x+

ε

2
, t; ε

) . (4.16)

Then from the Hirota bilinear identity of the EBTH in [6], we can get the HBI of the ETH in

the following proposition by taking N =M = 1 in [6].

Proposition 4.2 Let m ∈ Z, r ∈ N. The HBI (4.8) leads to the following scalar-valued

Hirota bilinear identities:

Resλ

{
λr+m−1

[
(∂2,nPL(x, t, λ))P

−1
L (x −mε, t, λ) +

λn+1

ε(n+ 1)!
PL(x, t, λ)P

−1
L (x −mε, t, λ)

]}

= Resλ{λ
−r+m−1(∂2,nPR(x, t, λ)) P

−1
R (x−mε, t, λ)}, (4.17)

Resλ

{
λr+m−1

[
(∂1,nPL(x, t, λ))P

−1
L (x−mε, t, λ) +

λn

n!
PL(x, t, λ)P

−1
Lx (x−mε, t, λ)

−
λn

εn!
cnPL(x, t, λ)P

−1
L (x−mε, t, λ)

]}

= Resλ

{
λ−r+m−1

[
(∂1,nPR(x, t, λ)) P

−1
R (x−mε, t, λ) +

λ−n

n!
PR(x, t, λ)P

−1
Rx (x−mε, t, λ)

+
λ−n

εn!
cnPR(x, t, λ)P

−1
R (x−mε, t, λ)

]}
, (4.18)

Resλ{λ
r+m−1PL(x, t, λ)P

−1
L (x−mε, t, λ)}

= Resλ{λ
−r+m−1PR(x, t, λ) P

−1
R (x−mε, t, λ)}. (4.19)

Proof The proof can be derived after taking N =M = 1 from the Propositions 3.2–3.3 of

[6].

Moreover, the HBI (4.8) can imply other interesting identities of the ETH such as the

following proposition.

Proposition 4.3 Let r ∈ N and x− x′ = mε, m ∈ Z. The HBI (4.8) leads to the following

scalar-valued Hirota bilinear identities:

Resλ

{
λr−1

[
(∂2,nPL(x, t, λ))P

−1
L (x′, t, λ)λ

x−x′

ε +
λn+1

ε(n+ 1)!
PL(x, t, λ)P

−1
L (x′, t, λ)λ

x−x′

ε

]}

= Resλ

{
λ−r−1(∂2,nPR(x, t, λ)) P

−1
R (x′, t, λ)λ

x−x′

ε

}
, (4.20)

Resλ

{
λr−1

[
(∂1,nPL(x, t, λ))P

−1
L (x′, t, λ)λ

x−x′

ε

+
λn

n!
PL(x, t, λ)P

−1
Lx′ (x

′, t, λ)λ
x−x′

ε −
λn

εn!
cnPL(x, t, λ)P

−1
L (x′, t, λ)λ

x−x′

ε

]}

= Resλ=∞

{
λ−r−1

[
(∂1,nPR(x, t, λ)) P

−1
R (x′, t, λ)λ

x−x′

ε
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+
λ−nM

n!
PR(x, t, λ)P

−1
Rx′ (x

′, t, λ)λ
x−x′

ε +
λ−n

εn!
cnPR(x, t, λ)P

−1
R (x′, t, λ)λ

x−x′

ε

]}
, (4.21)

Resλ{λ
r−1PL(x, t, λ)P

−1
L (x′, t, λ)λ

x−x′

ε }

= Resλ{λ
−r−1PR(x, t, λ) P

−1
R (x′, t, λ)λ

x−x′

ε }. (4.22)

In this section we continue to discuss on the fundamental properties of the tau-function of

the ETH, i.e., the Hirota quadratic equations of the ETH as a reduction of the EBTH in [6].

We will show that the Hirota quadratic equations of the ETH in [4] agree with the HBEs from

the reduction of the EBTH.

Basing on the vertex operators of the EBTH in [6], we introduce the following vertex oper-

ators:

Γ±a : = exp
(
±

1

ε

( ∞∑

j=0

t2,j
λj+1

(j + 1)!
+ t1,j

λj

j!
(logλ− cj)

))
× exp

(
∓
ε

2
∂t1,0 ∓ [λ−1]∂

)
,

Γ±b : = exp
(
±

1

ε

( ∞∑

j=0

t2,j
λ−j−1

(j + 1)!
− t1,j

λ−j

j!
(logλ− cj)

))
× exp

(
∓
ε

2
∂t1,0 ∓ [λ]∂

)
,

where

[λ]∂ := ε

∞∑

j=0

j!λj+1∂t2,j .

Because of the logarithm logλ, the vertex operators Γ±a ⊗ Γ∓a and Γ±b ⊗ Γ∓b are multi-

valued functions. There are monodromy factors Ma and M b respectively as following among

different branches around λ = ∞,

Ma = exp
{
±

2πi

ε

∑

j≥0

λj

j!
(t1,j ⊗ 1− 1⊗ t1,j)

}
, (4.23)

M b = exp
(
±

2πi

ε

∑

j≥0

λ−j

j!
(t1,j ⊗ 1− 1⊗ t1,j)

)
. (4.24)

In order to offset the complication, we need to generalize the concept of vertex operators which

leads it to be not scalar-valued any more but takes values in a differential operator algebra as

shown in [4]. So we introduce the following vertex operators

Γa = exp
(
−
∑

j>0

j!λj+1

ε
(ε∂x)t1,j

)
exp(x∂t1,0), (4.25)

Γb = exp
(
−
∑

j>0

j!λ−(j+1)

ε
(ε∂x)t1,j

)
exp(x∂t1,0 ), (4.26)

Γ∗
a = exp(x∂t1,0 ) exp

(∑

j>0

j!λj+1

ε
(ε∂x)t1,j

)
, (4.27)

Γ∗
b = exp(x∂t1,0 ) exp

(∑

j>0

j!λ−(j+1)

ε
(ε∂x)t1,j

)
. (4.28)
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Then

Γ∗
a ⊗ Γa = exp(x∂t1,0) exp

(∑

j>0

j!λj+1

ε
(ε∂x)(t1,j − t′1,j)

)
exp(x∂t′

1,0
), (4.29)

Γ∗
b ⊗ Γb = exp(x∂t1,0 ) exp

(∑

j>0

j!λ−(j+1)

ε
(ε∂x)(t1,j − t′1,j)

)
exp(x∂t′

1,0
). (4.30)

After some computation we get

(Γ∗
a ⊗ Γa)M

a = exp
(
±

2πi

ε

∑

j>0

λj

j!
(t1,j − t′1,j)

)

exp
(
±

2πi

ε

(
(t1,0 + x)−

(
t′1,0 + x+

∑

j>0

λj

j!
(t1,j − t′1,j)

)))
(Γ∗
a ⊗ Γa)

)

= exp
(
±
2πi

ε
(t1,0 − t′1,0)

)
(Γ∗
a ⊗ Γa),

(Γ∗
b ⊗ Γb)M

b = exp
(
±

2πi

ε

∑

j>0

λ−j

j!
(t1,j − t′1,j)

)

exp
(
±

2πi

ε

(
(t1,0 + x)−

(
t′1,0 + x+

∑

j>0

λ−j

j!
(t1,j − t′1,j)

)))
(Γ∗
b ⊗ Γb)

= exp
(
±
2πi

ε
(t1,0 − t′1,0)

)
(Γ∗
b ⊗ Γb).

Thus when t1,0 − t′1,0 ∈ Zε, (Γ∗
a ⊗ Γa)(Γ

a ⊗ Γ−a) and (Γ∗
b ⊗ Γb)(Γ

−b ⊗ Γb) are all single-valued

near λ = ∞.

Now we should note that the above vertex operators take value in a differential operator

algebra.

Theorem 4.1 The invertible function τ(t, ε) is a tau-function of the ETH if and only if it

satisfies the following Hirota quadratic equations of the ETH:

Resλ{λ
r−1(Γ∗

a ⊗ Γa)(Γ
a ⊗ Γ−a)(τ ⊗ τ)} = Resλ{λ

−r−1(Γ∗
b ⊗ Γb)(Γ

−b ⊗ Γb)(τ ⊗ τ)} (4.31)

computed at t1,0 − t′1,0 = mε for each m ∈ Z, r ∈ N.

Proof The proof can be derived after taking N =M = 1 from HBEs of the EBTH in [6].

Taking a transformation on (4.31) by λ→ λ−1, then (4.31) becomes

Resλ{λ
r−1((Γ∗

a ⊗ Γa)(Γ
a ⊗ Γ−a − Γ−a ⊗ Γa))(τ ⊗ τ)} = 0 (4.32)

computed at t1,0 − t′1,0 = mε for each m ∈ Z, r ∈ N. That means

dλ

λ
((Γ∗

a ⊗ Γa)(Γ
a ⊗ Γ−a − Γ−a ⊗ Γa))(τ ⊗ τ) (4.33)

is regular in λ computed at t1,0 − t′1,0 = mε for each m ∈ Z. (4.33) is exactly the Hirota

quadratic equation of the extended Toda hierarchy in [4]. In the next section, two different

Darboux transformations and their mixed transformations of the ETH will be constructed

using kernel determinant techniques as [27–28].



708 C. Z. Li

5 Multi-fold Darboux Transformation of the ETH

In this section, we consider the Darboux transformation of the ETH on the Lax operator

L[1] =WLW−1,

where W is the Darboux transformation operator.

That means after the Darboux transformation, the spectral problem

Lφ = Λφ+ uφ+ vΛ−1φ = λφ

will become

L[1]φ[1] = Λφ[1] + u[1]φ[1] + v[1]Λ−1φ[1] = λφ[1].

To keep the Lax equation of the ETH invariant, i.e.,

∂L

∂tα,n
= [(Aα,n)+, L],

∂L[1]

∂tα,n
= [(A[1]

α,n)+, L
[1]], A[1]

α,n := Aα,n(L
[1]), (5.1)

the dressing operator W should satisfy the following equation:

Wtγ,n
= −W (Aγ,n)+ + (WBγ,nW

−1)+W, γ = 0, 1, n ≥ 0,

where Wtγ,n
means the derivative of W by tγ,n.

Now, we give the following important theorem which will be used to generate new solutions.

Theorem 5.1 If φ is the first wave function of the ETH, the Darboux transformation

operator of the ETH

W (λ) =
(
1−

φ

Λ−1φ
Λ−1

)
= φ ◦ (1− Λ−1) ◦ φ−1

will generate new solutions

u[1] = u+ (Λ− 1)
φ

Λ−1φ
,

v[1] =
φ

Λ−1φ
(Λ−1v)

Λ−2φ

Λ−1φ
.

Proof In the following proof, using Lemma 3.1, a direct computation will lead to the

following:

Wtγ,n
W−1 = (φ ◦ (1− Λ−1) ◦ φ−1)tγ,n

φ ◦ (1− Λ−1)−1 ◦ φ−1

= (((Aγ,n)+φ) ◦ (1− Λ−1) ◦ φ−1)φ ◦ (1− Λ−1)−1 ◦ φ−1

− φ ◦ (1− Λ−1) ◦ ((Aγ,n)+φ)φ
−1 ◦ (1− Λ−1)−1 ◦ φ−1

= ((Aγ,n)+φ)φ
−1 − φ ◦ (1 − Λ−1) ◦ ((Aγ,n)+φ)φ

−1 ◦ (1− Λ−1)−1 ◦ φ−1

= −(φ ◦ [(1− Λ−1) ◦ φ−1(x)((Aγ,n(x))+ ◦ φ(x))] ◦ (1− Λ−1)−1 ◦ φ−1)−

= −(φ ◦ (1− Λ−1) ◦ φ−1(x) ◦ (Aγ,n(x))+ ◦ φ(x) ◦ (1− Λ−1)−1 ◦ φ−1)−

= −φ ◦ (1− Λ−1) ◦ φ−1(x) ◦ (Aγ,n)+(x) ◦ φ(x) ◦ (1− Λ−1)−1 ◦ φ−1

+ (φ ◦ (1− Λ−1) ◦ φ−1(x) ◦ (Aγ,n)+(x) ◦ φ(x) ◦ (1 − Λ−1)−1 ◦ φ−1)+
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= −W (Aγ,n)+W
−1 + (WBγ,nW

−1)+.

Therefore

W = φ ◦ (1− Λ−1) ◦ φ−1

can be a Darboux transformation of the ETH.

Define φi = φ
[0]
i := φ|λ=λi

. Then one can choose the specific one-fold Darboux transforma-

tion of the ETH as

W1(λ1) = 1−
φ1

Λ−1φ1
Λ−1 =

T1

φ1(x− ε)
,

where

T1 =

∣∣∣∣
1 Λ−1

φ1 φ1(x− ε)

∣∣∣∣ .

Meanwhile, we can also get the Darboux transformation on the wave function φ as

φ[1] =
(
1−

φ1

Λ−1φ1
Λ−1

)
φ.

Then using iterations on the Darboux transformation, the j-th Darboux transformation from

the (j − 1)-th solution is

φ[j] =
(
1−

φ
[j−1]
j

Λ−1φ
[j−1]
j

Λ−1
)
φ[j−1],

u[j] = u[j−1] + (Λ− 1)
φ
[j−1]
j

Λ−1φ
[j−1]
j

,

v[j] =
φ
[j−1]
j

Λ−1φ
[j−1]
j

(Λ−1v[j−1])
Λ−2φ

[j−1]
j

Λ−1φ
[j−1]
j

,

where φ
[j−1]
i := φ[j−1]|λ=λi

are wave functions corresponding to different spectrals with the

(j − 1)-th solutions u[j−1], v[j−1]. It can be checked that φ
[j−1]
i = 0, i = 1, 2, · · · , j − 1.

After iteration on Darboux transformations, the following theorem about the two-fold Dar-

boux transformation of the ETH can be derived by direct calculation.

Theorem 5.2 The two-fold Darboux transformation of the ETH is as follows:

W2 = 1 + t
[2]
1 Λ−1 + t

[2]
2 Λ−2 =

T2

∆2
,

where

∆2 =

∣∣∣∣
φ1(x− ε) φ1(x− 2ε)
φ2(x− ε) φ2(x− 2ε)

∣∣∣∣ , T2 =

∣∣∣∣∣∣

1 Λ−1 Λ−2

φ1 φ1(x− ε) φ1(x− 2ε)
φ2 φ2(x− ε) φ2(x− 2ε)

∣∣∣∣∣∣
.

The Darboux transformation leads to new solutions from seed solutions

u[2] = u+ (Λ − 1)t
[2]
1 ,

v[2] = t
[2]
2 (x)(Λ−2v)t

[2]−1
2 (x− ε).
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Similarly, we can generalize the Darboux transformation to the n-fold case which is contained

in the following theorem.

Theorem 5.3 The n-fold Darboux transformation of ETH equation is as follows:

Wn = 1 + t
[n]
1 Λ−1 + t

[n]
2 Λ−2 + · · ·+ t[n]n Λ−n =

1

∆n

Tn,

where

∆n =

∣∣∣∣∣∣∣∣∣∣∣

φ1(x− ε) φ1(x − 2ε) φ1(x− 3ε) · · · φ1(x− nε)
φ2(x− ε) φ2(x − 2ε) φ2(x− 3ε) · · · φ2(x− nε)
φ3(x− ε) φ3(x − 2ε) φ3(x− 3ε) · · · φ3(x− nε)

...
...

...
. . .

...

φn(x− ε) φn(x − 2ε) φn(x− 3ε) · · · φn(x− nε)

∣∣∣∣∣∣∣∣∣∣∣

Tn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Λ−1 Λ−2 Λ−3 · · · Λ−n

φ1(x) φ1(x− ε) φ1(x− 2ε) φ1(x− 3ε) · · · φ1(x− nε)
φ2(x) φ2(x− ε) φ2(x− 2ε) φ2(x− 3ε) · · · φ2(x− nε)
φ3(x) φ3(x− ε) φ3(x− 2ε) φ3(x− 3ε) · · · φ3(x− nε)

...
...

...
...

. . .
...

φn(x) φn(x− ε) φn(x− 2ε) φn(x− 3ε) · · · φn(x− nε)

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The Darboux transformation leads to new solutions from seed solutions

u[n] = u+ (Λ− 1)t
[n]
1 ,

v[n] = t[n]n (x)(Λ−nv)t[n]−1
n (x− ε).

It can be easily checked that Wnφi = 0, i = 1, 2, · · · , n.

Taking seed solution u = 0, v = 1, then using Theorem 5.3, one can get the n-th new solution

of the ETH as

u[n] = (1 − Λ−1)∂t2,0 logWr(φ1, φ2, · · · , φn),

v[n] = e(1−Λ−1)2 logWr(φ1,φ2,··· ,φn),

where Wr(φ1, φ2, · · · , φn) is the discrete Wronskian, i.e., a Casorati determinant

Wr(φ1, φ2, · · · , φn) = det(Λ−j+1φn+1−i)1≤i,j≤n.

Particularly for the ETH, choosing appropriate wave function φ, the n-th new solutions can be

solitary wave solutions, i.e., n-soliton solutions.

In the next section, it is time to introduce another Darboux transformation of the ETH

basing on another linear equation.

6 The Second Darboux Transformation of the ETH

In fact the ETH system can also be equivalently rewritten in form of the following linear

differential system:




Lψ = λψ,

∂ψ

∂tα,n
= −(Aα,n)−ψ, α = 1, 2, n ≥ 0.
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We call the function ψ in (6.1) the second wave function of the ETH.

In this section, we will consider the Darboux transformation of the ETH on the Lax operator

L[1] =WLW
−1
,

where W is a Darboux transformation operator.

That means after Darboux transformation, the spectral problem

Lψ = Λψ + uψ + vΛ−1ψ = λψ

will become

L[1]ψ[1] = Λψ[1] + u[1]ψ[1] + v[1]Λ−1ψ[1] = λψ[1].

To keep the Lax pair of the ETH invariant, i.e.,

∂L

∂tα,n
= [−(Aα,n)−, L],

∂L[1]

∂tα,n
= [−(A[1]

α,n)−, L
[1]], A[1]

α,n := Aα,n(L
[1]), (6.1)

the dressing operator W should satisfy the following dressing equation:

W tγ,n
=W (Aγ,n)− − (WCγ,nW

−1
)−W, γ = 1, 2, n ≥ 0.

Theorem 6.1 If ψ is the second wave function of the ETH, the second Darboux transfor-

mation operator of the ETH

W (λ) =
(Λψ
ψ

− Λ
)
= ψ(x+ ε) ◦ (1− Λ) ◦ ψ−1(x)

will generate new solutions

u[1] = Λu+ (Λ− 1)
Λψ

ψ
,

v[1] =
Λψ

ψ
v
Λ−1ψ

ψ
.

Proof A direct computation yields

W tγ,n
W

−1
= (ψ(x+ ε) ◦ (1− Λ) ◦ ψ−1)tγ,n

ψ ◦ (1 − Λ)−1 ◦ ψ−1(x+ ε)

= −(((Aγ,n)−ψ(x + ε)) ◦ (1 − Λ) ◦ ψ−1)ψ ◦ (1− Λ)−1 ◦ ψ−1(x+ ε)

+ ψ(x+ ε) ◦ (1 − Λ) ◦ ((Aγ,n)−ψ)ψ
−1 ◦ (1− Λ)−1 ◦ ψ−1(x + ε)

= −((Aγ,n)−ψ(x+ ε))ψ−1(x+ ε)

+ ψ(x+ ε) ◦ (1 − Λ) ◦ ((Aγ,n)−ψ)ψ
−1 ◦ (1− Λ)−1 ◦ ψ−1(x + ε)

= −ψ(x+ ε) ◦ [(Λ − 1) ◦ (((Aγ,n)−ψ)ψ
−1)]Λ ◦ (1− Λ)−1 ◦ ψ−1(x+ ε)

= −(ψ(x+ ε) ◦ [(Λ− 1) ◦ (ψ−1(Aγ,n)− ◦ ψ)]Λ ◦ (1− Λ)−1 ◦ ψ−1(x+ ε))+

= ψ(x+ ε) ◦ (1− Λ) ◦ ψ−1(x) ◦ (Aγ,n)−(x) ◦ ψ(x) ◦ (1− Λ)−1 ◦ ψ−1(x+ ε)

− (ψ(x+ ε) ◦ (1− Λ) ◦ ψ−1(x) ◦Aγ,n(x) ◦ ψ(x) ◦ (1− Λ)−1 ◦ ψ−1(x + ε))−

=W (Aγ,n)−W
−1

− (WCγ,nW
−1

)−.
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Therefore

W = ψ(x+ ε) ◦ (1 − Λ) ◦ ψ−1

can be as another Darboux transformation of the ETH. The new solutions can be got easily

using the second dressing form (6.1).

Define ψi = ψ
[0]
i := ψ|λ=λi

. Then one can choose the specific one-fold Darboux transforma-

tion of the ETH equations as the following:

W 1(λ1) =
ψ1(x+ ε)

ψ1(x)
− Λ =

T1

ψ1(x)
,

where

T1 =

∣∣∣∣
1 Λ
ψ1 ψ1(x+ ε)

∣∣∣∣ .

Meanwhile, we can also get the second Darboux transformation on the wave function ψ as

ψ[1] =
(Λψ1

ψ1
− Λ

)
ψ.

Then using iterations on the second Darboux transformation, the j-th Darboux transformation

from the (j − 1)-th solution is

ψ[j] =
(Λψ[j−1]

ψ[j−1]
− Λ

)
ψ[j−1],

u[j] = Λu[j−1] + (Λ − 1)
Λψ[j−1]

ψ[j−1]
,

v[j] =
Λψ[j−1]

ψ[j−1]
v[j−1]Λ

−1ψ[j−1]

ψ[j−1]
,

where ψ
[j−1]
i := ψ[j−1]|λ=λi

are wave functions corresponding to different spectrals with the

(j − 1)-th solutions u[j−1], v[j−1]. It can be checked that ψ
[j−1]
i = 0, i = 1, 2, · · · , j − 1.

Theorem 6.2 The second two-fold Darboux transformation of the ETH is as follows:

W 2 = t
[2]
0 + t

[2]
1 Λ + Λ2 =

T2

∆2
,

where

∆2 =

∣∣∣∣
ψ1(x) ψ1(x+ ε)
ψ2(x) ψ2(x+ ε)

∣∣∣∣ , T2 =

∣∣∣∣∣∣

1 Λ Λ2

ψ1 ψ1(x+ ε) ψ1(x+ 2ε)
ψ2 ψ2(x+ ε) ψ2(x+ 2ε)

∣∣∣∣∣∣
.

The Darboux transformation leads to new solutions from seed solutions

u[2] = Λ2u− (Λ− 1)t
[2]
1 ,

v[2] = t
[2]
0 (x)vt

[2]−1
0 (x− ε).

Similarly, we can generalize the Darboux transformation to n-fold case which is contained

in the following theorem.
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Theorem 6.3 The second n-fold Darboux transformation of the ETH is as follows:

Wn = t
[n]
0 + t

[n]
1 Λ + t

[n]
2 Λ2 + · · ·+ (−1)nΛn =

1

∆n

Tn,

where

∆n =

∣∣∣∣∣∣∣∣∣∣∣

ψ1(x) ψ1(x+ ε) ψ1(x + 2ε) · · · ψ1(x+ (n− 1)ε)
ψ2(x) ψ2(x+ ε) ψ2(x + 3ε) · · · ψ2(x+ (n− 1)ε)
ψ3(x) ψ3(x+ ε) ψ3(x + 3ε) · · · ψ3(x+ (n− 1)ε)

...
...

...
. . .

...

ψn(x) ψn(x+ ε) ψn(x + 3ε) · · · ψn(x+ (n− 1)ε)

∣∣∣∣∣∣∣∣∣∣∣

,

Tn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Λ Λ2 Λ3 · · · Λn

ψ1(x) ψ1(x+ ε) ψ1(x + 2ε) ψ1(x + 3ε) · · · ψ1(x+ nε)
ψ2(x) ψ2(x+ ε) ψ2(x + 2ε) ψ2(x + 3ε) · · · ψ2(x+ nε)
ψ3(x) ψ3(x+ ε) ψ3(x + 2ε) ψ3(x + 3ε) · · · ψ3(x+ nε)

...
...

...
...

. . .
...

ψn(x) ψn(x+ ε) ψn(x + 2ε) ψn(x + 3ε) · · · ψn(x+ nε)

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The second n-fold Darboux transformation leads to new solutions from seed solutions

u[n] = Λnu+ (−1)n(1 − Λ)t
[n]
n−1,

v[n] = t
[n]
0 (x)vt

[n]−1
0 (x − ε).

It can be easily checked that Wnψi = 0, i = 1, 2, · · · , n.

Taking seed solution u = 0, v = 1, then using Theorem 6.3, one can get the n-th new solution

of the ETH as

u[n] = (−1)n(1− Λ)∂t2,0 logWr(ψ1, ψ2, · · · , ψn),

v[n] = e(Λ−1)(1−Λ−1) logWr(ψ1,ψ2,··· ,ψn),

where Wr(ψ1, ψ2, · · · , ψn) is the Casorati determinant

Wr(ψ1, ψ2, · · · , ψn) = det(Λj−1ψn+1−i)1≤i,j≤n.

7 Mixed Darboux Transformation of the ETH

In this section, we consider the mixed Darboux transformation of the ETH on the Lax

operator

L[1] = TbLT
−1
b ,

where Tb is a mixed Darboux transformation operator as

Tb =W (ψ[1]) ◦W (φ),

where ψ[1] satisfies

L[1]ψ[1] = λψ[1],
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∂ψ[1]

∂tα,n
= −(A[1]

α,n)−ψ
[1], A[1]

α,n := Aα,n(L
[1]), (7.1)

L[1] = Λ+ u+ (Λ − 1)
φ

Λ−1φ
+

φ

Λ−1φ
(Λ−1v)

Λ−2φ

Λ−1φ
Λ−1.

To keep the Lax pair invariant, the following equations hold:

∂L

∂tα,n
= [−(Aα,n)−,L],

∂L[1]

∂tα,n
= [−(A[1]

α,n)−, L
[1]], A[1]

α,n := Aα,n(L
[1]). (7.2)

Theorem 7.1 The ETH has the following mixed Darboux transformation:

Tb(λ) =
(Λψ[1]

ψ[1]
− Λ

)(
1−

φ

Λ−1φ
Λ−1

)
= ψ[1](x+ ε) ◦ (1− Λ) ◦ ψ[1]−1(x)φ ◦ (1− Λ−1) ◦ φ−1,

which generaters new solutions from seed solutions u, v.

We can also generalize the above one-fold mixed Darboux transformation to the following

n-fold mixed Darboux transformation

T
[2n]
b = [W (ψ[2n]) ◦W (φ[2n−1])] ◦ · · · ◦ [W (ψ[3]) ◦W (φ[2])] ◦ [W (ψ[1]) ◦W (φ[0])],

where ψ[2i−1] satisfies

L[2i−1]ψ[2i−1] = λψ[2i−1],

∂ψ[2i−1]

∂tα,n
= −

(
A[2i−1]
α,n

)
−
ψ[2i−1], A[2i−1]

α,n := Aα,n(L
[2i−1]), (7.3)

L[2i−1] = Λ+ u[2i−2] + (Λ− 1)
φ[2i−2]

Λ−1φ[2i−2]
+

φ[2i−2]

Λ−1φ[2i−2]
(Λ−1v[2i−2])

Λ−2φ[2i−2]

Λ−1φ[2i−2]
Λ−1,

and φ[2i] satisfies

L[2i]φ[2i] = λφ[2i],

∂φ[2i]

∂tα,n
= (A[2i]

α,n)+φ
[2i], A[2i]

α,n := Aα,n(L
[2i]), (7.4)

L[2i] = Λ + Λu[2i−1] + (Λ − 1)
Λψ[2i−1]

ψ[2i−1]
+

Λψ[2i−1]

ψ[2i−1]
v[2i−1]Λ

−1ψ[2i−1]

ψ[2i−1]
Λ−1.

This n-fold mixed Darboux transformation will generate new solutions under the following

iterate Darboux transformation:

u[2i−1] = u[2i−2] + (Λ − 1)
φ[2i−2]

Λ−1φ[2i−2]
,

v[2i−1] =
φ[2i−2]

Λ−1φ[2i−2]
(Λ−1v[2i−2])

Λ−2φ[2i−2]

Λ−1φ[2i−2]
,

u[2i] = Λu[2i−1] + (Λ − 1)
Λψ[2i−1]

ψ[2i−1]
,

v[2i] =
Λψ[2i−1]

ψ[2i−1]
v[2i−1]Λ

−1ψ[2i−1]

ψ[2i−1]
.
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ψ[2i−1] and φ[2i] satisfy

ψ[2i−1] = [W (φ[2i−1])] ◦ · · · ◦ [W (ψ[3]) ◦W (φ[2])] ◦ [W (ψ[1]) ◦W (φ[0])]φ[2i−2],

φ[2i] = [W (ψ[2i]) ◦W (φ[2i−1])] ◦ · · · ◦ [W (ψ[3]) ◦W (φ[2])] ◦ [W (ψ[1]) ◦W (φ[0])]ψ[2i−1].

In the specific computation, the n-fold mixed Darboux transformation will be chosen as

T
[2n]
b = [W (ψ

[2n]
2n+1) ◦W (φ

[2n−1]
2n )] ◦ · · · ◦ [W (ψ

[3]
4 ) ◦W (φ

[2]
3 )] ◦ [W (ψ

[1]
2 ) ◦W (φ

[0]
1 )].

Of course, we can also construct the mixed Darboux transformations in all kinds of orders

of the first and the second Darboux transformations. These Darboux transformations can help

us to get different solutions from different seed solutions.

Very recently, lump solutions [30–32] and interaction solutions [33–34] are presented for

many integrable continuous equations. It would be interesting to see if there exist similar

solution situations for integrable Toda type lattice equations.

Acknowledgement Thanks to the referees for their valuable suggestions.
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