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1 Introduction

Let T be the unit circle in the complex plane C and the torus Tn be the Cartesian product

of n copies of T. Let dµ be the normalized Haar measure on Tn. The Hardy space H2(Tn)

is the closure of the analytic polynomials in L2(Tn, dµ) (or L2(Tn)). It is well known that

H2(T) + H2(T) ∼= L2(T). However, for n ≥ 2, H2(Tn) + H2(Tn) $ L2(Tn). So we shall

suppose n ≥ 2 to avoid trivialities throughout the paper and define the pluriharmonic Hardy

space h2(Tn) by

h2(Tn) = H2(Tn) +H2(Tn).

See [3] for more information about the pluriharmonic Hardy space h2(Tn). Similarly, let dσ be

the surface area measure on the unit sphere Sn, the pluriharmonic Hardy space h2(Sn) denotes
the closed subspaces of all pluriharmonic functions in L2(Sn, dσ) (or L2(Sn)).

Let Q be the orthogonal projection from L2(Ωn) onto h2(Ωn), where Ωn denotes Tn or Sn.
The Toeplitz operator with symbol f in L∞(Ωn) is defined by Tf(h) = Q(fh) for functions

h ∈ h2(Ωn). It is safe to use the same notation Tf to denote the Toeplitz operators on both

h2(Tn) and h2(Sn), as we will always specify the space on which the operator Tf acts. For two

Toeplitz operators Tf1 and Tf2 on h2(Ωn), we define their commutator and the semi-commutator

by [Tf1 , Tf2 ] = Tf1Tf2 − Tf2Tf1 and (Tf1 , Tf2 ] = Tf1Tf2 − Tf1f2 , respectively.

On the Hardy space H2(T), Brown and Halmos [2] first obtained a complete description

of bounded symbols of (semi-)commuting Toeplitz operators. Later, some related problems
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were studied by many authors (see [7] and references there). However, the function theory

on Ωn is quite different from and much less understood than that on T. For example, the

complete characterization of (semi-)commuting Toeplitz operators on the Hardy space H2(Tn)

were obtained only when n = 2 (see [4, 8]). Zheng [11] characterized commuting Toeplitz

operators with bounded pluriharmonic symbols on H2(Sn).
In the setting of pluriharmonic Hardy spaces, Liu and Ding [9] obtained a characterization

of (semi-)commuting Toeplitz operators with holomorphic symbols on h2(T2). Recently, Ding

and Sang [10] first gave a necessary and sufficient condition for an analytic Toeplitz operator

that commutes with another co-analytic Toeplitz operator on h2(T2), and then characterized

(semi-)commuting Toeplitz operators on h2(T2) with bounded pluriharmonic symbols in [3].

In this paper, we are concerned with the finite rank problem of the commutator and semi-

commutator of two monomial Toeplitz operators (namely, Toeplitz operators with symbol func-

tions of the form zpzq) on both h2(Tn) and h2(Sn). Recall that an operator A on a Hilbert

spaceH is said to have finite rank if the closure of Ran(A) which is the range of the operator has

finite dimension. For a bounded finite rank operator A on H, we define rank(A) = dim Ran(A).

In particular, the problem of determining when the commutator or semi-commutator of two

Toeplitz operators has finite rank on the Hardy space H2(T) was completely solved in [1, 5].

In order to describe our main results, we first recall some standard multi-index notations. For

z = (z1, z2, · · · , zn) ∈ Cn and p = (p1, p2, · · · , pn) ∈ Nn, where N is the set of all non-negative

integers, we write zp = zp1

1 zp2

2 · · · zpn
n . For l = (l1, l2, · · · , ln) and m = (m1,m2, · · · ,mn) in

Nn ∪ (−N)n, we write l � m if li ≥ mi for all i ∈ {1, 2, · · · , n}. If l � m and |l| > |m|, where

|l| = |l1|+ |l2| · · ·+ |ln|, then we write l � m.

The following two theorems completely solve the finite rank problem of the commutator and

semi-commutator of two monomial Toeplitz operators on h2(Tn), respectively.

Theorem 1.1 Let p, q, s, t ∈ Nn. Then the following statements are equivalent:

(a) The commutator [Tzpzq , Tzszt ] has finite rank on h2(Tn).

(b) (pi − qi)(si − ti) ≥ 0 for all i ∈ {1, 2, · · · , n}.

Furthermore, Tzpzq and Tzszt commute on h2(Tn) if and only if one of the following conditions

holds:

(1) p = q, s = t, or p− q = s− t.

(2) There exists an i0 ∈ {1, 2, · · · , n} such that (pi0 − qi0)(si0 − ti0) > 0, and pj − qj =

sj − tj = 0 for any j ∈ {1, 2, · · · , n} with j 6= i0.

(3) Neither p � q, s � t nor p � q, s � t, and (pi − qi)(si − ti) ≥ 0 for all i ∈ {1, 2, · · · , n}.

Theorem 1.2 Let p, q, s, t ∈ Nn. Then the following statements are equivalent:

(a) The semi-commutator (Tzpzq , Tzszt ] has finite rank on h2(Tn).

(b) The semi-commutator (Tzszt , Tzpzq ] has finite rank on h2(Tn).

(c) (pi − qi)(si − ti) ≥ 0 for all i ∈ {1, 2, · · · , n}.

Furthermore, the semi-commutator (Tzpzq , Tzszt ] on h2(Tn) is zero if and only if one of the

following conditions holds:

(1) Either p = q or s = t.

(2) There exists an i0 ∈ {1, 2, · · · , n} such that (pi0 − qi0)(si0 − ti0) > 0, and pj − qj =

sj − tj = 0 for any j ∈ {1, 2, · · · , n} with j 6= i0.

(3) Neither p � q, s � t nor p � q, s � t, and (pi − qi)(si − ti) ≥ 0 for all i ∈ {1, 2, · · · , n}.
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Some interesting higher-dimensional phenomena appear on the torus. For example, as a

direct consequence of Theorems 1.1–1.2, on h2(Tn) we have

(1) TzpTzt = TztTzp if and only if TzpTzt = Tzpzt if and only if p⊥t (i.e., p1t1+· · ·+pntn = 0).

(2) Tz
pi
i
Tz

si
i

= Tz
si
i
Tz

pi
i

= T
z
pi+si
i

for any pi, si ∈ N, but T
z
pj

j

Tz
sk
k

6= Tz
sk
k
T
z
pj

j

for any j 6= k

and positive natural numbers pj , sk.

(3) Tz
pi
i
T
z
sj

j
z
tk
k

= T
z
sj

j
z
tk
k

Tz
pi
i

= T
z
pi
i

z
sj

j
z
tk
k

for any different indexes i, j and k, and any

positive natural numbers pi, sj and tk.

Recently, the second author and Zhu [6] completely characterized finite rank commutator

and semi-commutator of two monomial Toeplitz operators on the pluriharmonic Bergman s-

paces of the unit ball. By the same argument as that in [6], we completely characterize when

the commutator and semi-commutator of two monomial Toeplitz operators have finite rank

on h2(Sn). To simplify the presentation, we say that a tuple (n1, n2,m1,m2) ∈ N4 satisfies

Condition (I) (see [6]) if at least one of the following conditions holds:

(i) n1 = n2 = 0,

(ii) m1 = m2 = 0,

(iii) n1 = m1 = 0,

(iv) n2 = m2 = 0,

(v) n1 = n2 and m1 = m2,

(vi) n1 = m1 and n2 = m2.

Theorem 1.3 Let p, q, s, t ∈ Nn. Then the following statements are equivalent:

(a) The commutator [Tzpzq , Tzszt ] has finite rank on h2(Sn).
(b) (|p|, |q|, |s|, |t|) and (pi, qi, si, ti) satisfy Condition (I) for all i ∈ {1, 2, · · · , n}.

Furthermore, Tzpzq and Tzszt commute on h2(Sn) if and only if one of the following conditions

holds:

(1) Either p = q = 0 or s = t = 0.

(2) Either p � q, s � t or q � p, t � s, (|p|, |q|, |s|, |t|) and (pi, qi, si, ti) satisfy either (v) or

(vi) of Condition (I) for all i ∈ {1, 2, · · · , n}.

(3) Neither p � q, s � t nor q � p, t � s, (|p|, |q|, |s|, |t|) and (pi, qi, si, ti) satisfy Condition

(I) for all i ∈ {1, 2, · · · , n}.

Theorem 1.4 Let p, q, s, t ∈ Nn. Then the following statements are equivalent:

(a) The semi-commutator (Tzpzq , Tzszt ] has finite rank on h2(Sn).
(b) The semi-commutator (Tzszt , Tzpzq ] has finite rank on h2(Sn).
(c) p = q = 0, s = t = 0, p = s = 0, or q = t = 0.

Furthermore, the semi-commutator (Tzpzq , Tzszt ] on h2(Sn) is zero if and only if either p = q = 0

or s = t = 0.

As a natural extension of the classical bilateral shift operator, monomial Toeplitz operators

on pluriharmonic Hardy spaces enjoy some very interesting properties. For example, the sym-

metry property for the commutator [Tzpzq , Tzszt ] (see Corollary 2.1), and the close relationship

between the semi-commutators (Tzpzq , Tzszt ] and (Tzszt , Tzpzq ] (see Corollary 2.2). Also, our

main theorems produce many non-trivial examples of commuting Toeplitz operators on the

pluriharmonic Hardy spaces of the torus or the unit sphere (see Example 6.1). As applications,

we make some interesting comparison of our main results. For example, if Tzpzq and Tzszt com-
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mute on h2(Sn), then Tzpzq and Tzszt also commute on h2(Tn). But the converse is not true.

Indeed, if Tzpzq and Tzszt commute on h2(Tn), then the rank of the commutator [Tzpzq , Tzszt ]

on h2(Sn) may be nonzero or even infinite (see Example 6.2). These results further reveal the

obvious differences in operator theory on the torus and on the unit sphere.

We end this introduction by mentioning that the proofs of our main theorems on the torus

and on the unit sphere are quite different. In fact, the method of characterizing (semi-) com-

muting monomial Toeplitz operators on h2(Sn) relies on explicit formulas for the action of the

operators on the monomial orthonormal basis. This action leads to a holomorphic identity on

a domain in the complex n-space (see [6, Equation (6)] for example). However, without such

identity on h2(Tn), substantial amount of different analysis is required.

2 Basic Results of Monomial Toeplitz Operators on h
2(Tn)

In this section we study some basic properties of monomial Toeplitz operators on the pluri-

harmonic Hardy space h2(Tn). We first begin with the following lemma.

Lemma 2.1 Let p, q ∈ Nn. Then on h2(Tn), for each γ ∈ Nn, we have

Tzpzq (zγ) =















zγ+p−q, γ + p � q,

zq−γ−p, γ + p � q,

0, otherwise

and

Tzpzq (zγ) =















zγ+q−p, γ + q � p,

zp−γ−q, γ + q � p,

0, otherwise.

Proof For each λ ∈ Nn, we have

〈Tzpzq (zγ), zλ〉 = 〈zγ+pzq, zλ〉 = 〈zγ+p, zλ+q〉

and

〈Tzpzq (zγ), zλ〉 = 〈zγ+pzq, zλ〉 = 〈zq, zλ+γ+p〉,

where the notation 〈 , 〉 denotes the inner product in L2(Tn) with respect to the measure dµ.

First we assume γ + p � q. Recall from [3] that

{zα}α∈Nn ∪ {zβ}β∈Nn

is an orthogonal basis of h2(Tn). It follows that Tzpzq (zγ) is orthogonal to every element of the

basis except the holomorphic monomial zγ+p−q, and hence Tzpzq (zγ) = zγ+p−q.

Next, we assume γ+p � q. Just like the previous case, we can show that Tzpzq (zγ) = zq−γ−p.

Finally, we assume that γ + p � q and γ + p � q. Then

〈Tzpzq (zγ), zλ〉 = 〈Tzpzq (zγ), zλ〉 = 0, λ ∈ Nn,

which shows that Tzpzq (zγ) = 0.

The computation for Tzpzq (zγ) is similar and we leave the details to the interested reader.

The following remark provides a great convenience for our next content.
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Remark 2.1 To simplify notation, let us write zl = z−l for any l ∈ (−N)n. Then on

h2(Tn), for each l ∈ Nn ∪ (−N)n, it follows from Lemma 2.1 that

Tzpzq (zl) =

{

zl+p−q, l + p− q ∈ Nn ∪ (−N)n,

0, l + p− q /∈ Nn ∪ (−N)n.
(2.1)

The next two propositions will be essential for our arguments in Sections 3 and 4, respec-

tively.

Proposition 2.1 Let p, q, s, t ∈ Nn. Then on h2(Tn), for any l ∈ Nn∪(−N)n, the following

statements are equivalent:

(a) [Tzpzq , Tzszt ](zl) 6= 0.

(b) One of the following conditions holds:

(b1) l + p− q + s− t ∈ Nn ∪ (−N)n, l + p− q ∈ Nn ∪ (−N)n, and l + s− t /∈ Nn ∪ (−N)n.
(b2) l + p− q + s− t ∈ Nn ∪ (−N)n, l + s− t ∈ Nn ∪ (−N)n, and l + p− q /∈ Nn ∪ (−N)n.

Proof We will prove the equivalence of (a) and (b) by a direct calculation of [Tzpzq , Tzszt ](zl)

for any fixed l ∈ Nn ∪ (−N)n.
First we assume l + p− q + s− t /∈ Nn ∪ (−N)n. Then it follows from (2.1) that

TzpzqTzszt(zl) = 0 = TzsztTzpzq (zl),

which implies that [Tzpzq , Tzszt ](zl) = 0.

Next we assume l+p−q+s− t ∈ Nn∪ (−N)n. Then there are three possibilities for l+p−q

and l + s− t.

Case 1 Both l+ p− q and l+ s− t belong to Nn ∪ (−N)n. Then it follows from (2.1) that

[Tzpzq , Tzszt ](zl) = zl+s−t+p−q − zl+p−q+s−t = 0.

Case 2 Only one of l+p−q and l+s− t belongs to Nn∪(−N)n. Without loss of generality,

we may assume that l + s− t ∈ Nn ∪ (−N)n and l + p− q /∈ Nn ∪ (−N)n. By (2.1), we obtain

[Tzpzq , Tzszt ](zl) = zl+p−q+s−t 6= 0.

Case 3 Neither l+ p− q nor l + s− t is in Nn ∪ (−N)n. Then

TzpzqTzszt(zl) = 0 = TzsztTzpzq (zl),

and hence [Tzpzq , Tzszt ](zl) = 0. The proposition is now evident from what we have proved.

Corollary 2.1 Let p, q, s, t ∈ Nn. Then on h2(Tn),

l ∈ Nn ∪ (−N)n and [Tzpzq , Tzszt ](zl) 6= 0,

if and only if −l − p+ q − s+ t ∈ Nn ∪ (−N)n and [Tzpzq , Tzszt ](z−l−(p−q)−(s−t)) 6= 0.

Proof Applying Proposition 2.1 with l replaced by −l − p + q − s + t, we obtain that if

−l − p+ q − s+ t ∈ Nn ∪ (−N)n and [Tzpzq , Tzszt ](z−l−(p−q)−(s−t)) 6= 0, then l ∈ Nn ∪ (−N)n

and only one of l + p − q and l + s − t belongs to Nn ∪ (−N)n. The corollary is now a direct

consequence of Proposition 2.1.
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Moreover, if l = −(p−q)−(s−t)
2 ∈ Nn ∪ (−N)n, then l does not satisfy condition (b) of Propo-

sition 2.1, and hence [Tzpzq , Tzszt ]
(

z
−(p−q)−(s−t)

2

)

= 0. Similar to the case on the pluriharmonic

Bergman space of the unit ball (see [6]), we will call −(p−q)−(s−t)
2 the symmetry multi-index

of the commutator [Tzpzq , Tzszt ] on h2(Tn), and the finite rank commutator [Tzpzq , Tzszt ] on

h2(Tn) can not have an odd rank.

Proposition 2.2 Let p, q, s, t ∈ Nn. Then on h2(Tn), for any l ∈ Nn∪(−N)n, the following
statements are equivalent:

(a) (Tzpzq , Tzszt ](zl) 6= 0.

(b) l+ p− q + s− t ∈ Nn ∪ (−N)n and l+ s− t /∈ Nn ∪ (−N)n.

Proof By a simple calculation, we obtain from (2.1) that

(Tzpzq , Tzszt ](zl) = TzpzqTzszt(zl)− Tzp+szq+t(zl)

=















0, l+ p− q + s− t /∈ Nn ∪ (−N)n,

0, l+ p− q + s− t ∈ Nn ∪ (−N)n and l + s− t ∈ Nn ∪ (−N)n,

−zl+p−q+s−t, l+ p− q + s− t ∈ Nn ∪ (−N)n and l + s− t /∈ Nn ∪ (−N)n.

This easily implies the desired result.

Corollary 2.2 Let p, q, s, t ∈ Nn. Then on h2(Tn),

l ∈ Nn ∪ (−N)n and (Tzpzq , Tzszt ](zl) 6= 0,

if and only if −l − p+ q − s+ t ∈ Nn ∪ (−N)n and (Tzszt , Tzpzq ](z−l−(p−q)−(s−t)) 6= 0.

Proof Applying Proposition 2.2 to the semi-commutator (Tzszt , Tzpzq ], we obtain that if

−l − p+ q − s+ t ∈ Nn ∪ (−N)n and (Tzszt , Tzpzq ](z−l−(p−q)−(s−t)) 6= 0, then l ∈ Nn ∪ (−N)n

and l + s− t /∈ Nn ∪ (−N)n. The corollary is now a direct consequence of Proposition 2.2.

Therefore, it follows that the semi-commutator (Tzpzq , Tzszt ] has finite rank on h2(Tn) if

and only if the semi-commutator (Tzszt , Tzpzq ] has finite rank on h2(Tn). In this case,

rank((Tzpzq , Tzszt ]) = rank((Tzszt , Tzpzq ]), (2.2)

and the commutator [Tzpzq , Tzszt ] also has finite rank on h2(Tn) with

rank([Tzpzq , Tzszt ]) ≤ 2rank((Tzpzq , Tzszt ]). (2.3)

We would like to point out that the above results hold for more general Toeplitz operates

on the pluriharmonic Hardy space h2(Ωn). More specifically, we consider the trivial complex

conjugation operator C on L2(Ωn) defined by Cf = f . Then CQ(g) = Q(g) = Q(g) for every

g ∈ L2(Ωn). Let f1, f2 and f be bounded functions on Ωn, then it follows that

C(Tf2Tf1 − Tf)
∗C(h) = C(Tf1

Tf2
− Tf )(h) = C[Q(f1Q(f2h))−Q(fh)]

= Q(f1Q(f2h))−Q(fh) = (Tf1Tf2 − Tf)(h)

for any h ∈ h2(Ωn). Then Tf1Tf2 − Tf is called a transpose of Tf2Tf1 − Tf on h2(Ωn), and by

[6, Theorem 12], we have that Tf1Tf2 − Tf has finite rank on h2(Ωn) if and only if Tf2Tf1 − Tf

has finite rank on h2(Ωn). More details can be found in [6].
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3 The Commutator of Monomial Toeplitz Operators on h
2(Tn)

In this section we study the finite rank problem of the commutator of two monomial Toeplitz

operators on the pluriharmonic Hardy space h2(Tn).

According to Proposition 2.1, the commutator [Tzpzq , Tzszt ] has finite rank on h2(Tn) if and

only if there are finite multi-indexes l ∈ Nn ∪ (−N)n satisfying condition (b) of Proposition 2.1.

With the help of this result, we first give a specific necessary condition for the commutator

[Tzpzq , Tzszt ] to be finite rank.

Lemma 3.1 Let p, q, s, t ∈ Nn. If the commutator [Tzpzq , Tzszt ] has finite rank on h2(Tn),

then (pi − qi)(si − ti) ≥ 0 for all i ∈ {1, 2, · · · , n}.

Proof If there exists an i1 ∈ {1, 2, · · · , n} such that (pi1 − qi1)(si1 − ti1) < 0, then we must

show that the rank of [Tzpzq , Tzszt ] is infinite.

If pi1 − qi1 > 0, then si1 − ti1 < 0. So we consider infinitely many multi-indexes l ∈ Nn such

that
{

max{0,−(pi1 − qi1 + si1 − ti1)} ≤ li1 < −(si1 − ti1),

lj > max{0,−(pj − qj),−(sj − tj),−(pj − qj + sj − tj)},

where j ∈ {1, 2, · · · , n} with j 6= i1. It is easy to check that

l + p− q + s− t ∈ Nn, l + p− q ∈ Nn, l+ s− t /∈ Nn ∪ (−N)n.

So all such l satisfy condition (b1) of Proposition 2.1, and hence the rank of [Tzpzq , Tzszt ] is

infinite.

Similarly, if pi1 − qi1 < 0, then consider infinitely many multi-indexes l ∈ (−N)n such that

{

−(si1 − ti1) < li1 ≤ min{0,−(pi1 − qi1 + si1 − ti1)},

lj < min{0,−(pj − qj),−(sj − tj),−(pj − qj + sj − tj)},

where j ∈ {1, 2, · · · , n} and j 6= i1. Then all such l satisfy condition (b1) of Proposition 2.1,

and hence the rank of [Tzpzq , Tzszt ] is infinite. This completes the proof.

Next, we give some sufficient conditions for the commutativity of two monomial Toeplitz

operators on h2(Tn), which simplifies the proof of Theorem 1.1.

Lemma 3.2 Let p, q, s, t ∈ Nn with (pi − qi)(si − ti) ≥ 0 for all i ∈ {1, 2, · · · , n}. Then on

h2(Tn), the following statements hold:

(a) If s− t /∈ Nn ∪ (−N)n, then the rank of commutator [Tzpzq , Tzszt ] is zero.

(b) If p− q /∈ Nn ∪ (−N)n, then the rank of commutator [Tzpzq , Tzszt ] is zero.

Proof We first assume that s− t /∈ Nn ∪ (−N)n. Denote

J = {j ∈ {1, 2, · · · , n} : sj − tj > 0}

and

K = {k ∈ {1, 2, · · · , n} : sk − tk < 0},

both of which are nonempty. Since (pi − qi)(si − ti) ≥ 0 for all i ∈ {1, 2, · · · , n}, it follows that

pj − qj ≥ 0 for all j ∈ J , pk − qk ≤ 0 for all k ∈ K, and sd − td = 0 for all possible indexes

d ∈ {1, 2, · · · , n} with d /∈ J ∪K.
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Suppose that there exists an l ∈ Nn such that [Tzpzq , Tzszt ](zl) 6= 0. Since

lj + pj − qj + sj − tj > 0,

it follows from Proposition 2.1 that l + p− q + s− t ∈ Nn. Note that











lj + pj − qj ≥ 0,

lk + pk − qk > lk + pk − qk + sk − tk ≥ 0,

ld + pd − qd = ld + pd − qd + sd − td ≥ 0

and










lj + sj − tj > 0,

lk + sk − tk ≥ lk + pk − qk + sk − tk ≥ 0,

ld + sd − td = ld ≥ 0.

Thus, both l + p− q and l + s− t belong to Nn, which contradicts Proposition 2.1.

Similarly, if there exists an l ∈ (−N)n such that [Tzpzq , Tzszt ](zl) 6= 0, then by

lk + pk − qk + sk − tk < 0,

we deduce from Proposition 2.1 that l + p− q + s− t ∈ (−N)n. However,










lj + pj − qj < lj + pj − qj + sj − tj ≤ 0,

lk + pk − qk ≤ 0,

ld + pd − qd = ld + pd − qd + sd − td ≤ 0

and










lj + sj − tj ≤ lj + pj − qj + sj − tj ≤ 0,

lk + sk − tk < 0,

ld + sd − td = ld ≤ 0.

Thus both l+p− q and l+ s− t belong to (−N)n, which also contradicts Proposition 2.1. Thus

we have derived that [Tzpzq , Tzszt ](zl) = 0 for any l ∈ Nn ∪ (−N)n, and hence condition (a)

holds.

Observe that

[Tzpzq , Tzszt ] = −[Tzszt , Tzpzq ]. (3.1)

Combining this with condition (a), we conclude that condition (b) holds. This completes the

proof.

We are now ready to prove Theorem 1.1 stated in the introduction.

Proof of Theorem 1.1 It is clear from Lemma 3.1 that (a) implies (b). To show that

(b) implies (a), we assume that (pi − qi)(si − ti) ≥ 0 for all i ∈ {1, 2, · · · , n}. If at least one

of p − q and s − t does not belong to Nn ∪ (−N)n, then by Lemma 3.2 we have that the rank

of [Tzpzq , Tzszt ] is 0. To consider the remaining case when both p − q and s − t belong to

Nn ∪ (−N)n, we break the discussion into three cases.

Case a p = q, s = t, or p− q = s − t. Obviously, there is no multi-index l ∈ Nn ∪ (−N)n

satisfying condition (b) of Proposition 2.1. Therefore, the rank of [Tzpzq , Tzszt ] is 0.
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Case b Either p � q, s � t or p � q, s � t. By (3.1), we need only consider the case p � q,

s � t. Recalling that (pi − qi)(si − ti) ≥ 0 for all i ∈ {1, 2, · · · , n}, it follows that

(pi − qi)(si − ti) = 0

for all i ∈ {1, 2, · · · , n}. Denote

J = {j ∈ {1, 2, · · · , n} : pj − qj > 0}

and

K = {k ∈ {1, 2, · · · , n} : sk − tk < 0}.

Since p � q and s � t, both J and K are nonempty. Then sj − tj = 0 for all j ∈ J , pk − qk = 0

for all k ∈ K and sd− td = pd− qd = 0 for all possible indexes d ∈ {1, 2, · · · , n} with d /∈ J ∪K.

We now prove that [Tzpzq , Tzszt ](zl) = 0 for any l ∈ Nn ∪ (−N)n. Using the same argument

as in the proof of Lemma 3.2, we assume the contrary and let [Tzpzq , Tzszt ](zl) 6= 0 for some

l ∈ Nn. Since

lj + pj − qj + sj − tj > 0,

it follows from Proposition 2.1 that l + p− q + s− t ∈ Nn. Then











lj + sj − tj = lj ≥ 0,

lk + sk − tk = lk + pk − qk + sk − tk ≥ 0,

ld + sd − td = ld ≥ 0,

which implies that l+ s− t ∈ Nn. Since p � q and l ∈ Nn, it follows that l+ p− q ∈ Nn, which

leads to a contradiction. Similarly, it can easily be verified that [Tzpzq , Tzszt ](zl) = 0 for any

l ∈ (−N)n. Therefore, the rank of [Tzpzq , Tzszt ] is 0.

Case c Either p � q, s � t or p � q, s � t, and p− q 6= s− t. Since

[Tzpzq , Tzszt ]∗ = −[Tzqzp , Tztzs ],

we may assume, without loss of generality, that p � q and s � t. Then for any l ∈ Nn, it is

obvious that










l + p− q + s− t � 0,

l + p− q � 0,

l + s− t � 0.

Consequently, by condition (b) of Proposition 2.1, we have

[Tzpzq , Tzszt ](zl) = 0, ∀l ∈ Nn.

Since −(p−q)−(s−t)
2 is the symmetry multi-index of the commutator [Tzpzq , Tzszt ] on h2(Tn), we

obtain

[Tzpzq , Tzszt ](zl) = 0, ∀l ∈ (−N)n, l � −(p− q + s− t).

Moreover, Proposition 2.1 implies that

[Tzpzq , Tzszt ](zl) = 0, ∀l ∈ (−N)n, −(p− q + s− t) � l � −(p− q + s− t).
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Thus we arrive at the conclusion that if [Tzpzq , Tzszt ](zl) 6= 0, then

−(p− q + s− t) � l � 0. (3.2)

Obviously, the rank of [Tzpzq , Tzszt ] is finite.

In each of the cases above, we have shown that [Tzpzq , Tzszt ] has finite rank on h2(Tn),

and hence condition (a) holds. In order to characterize when the rank of the commutator

[Tzpzq , Tzszt ] is actually 0, we need consider two possibilities for Case c.

Case c1 Either p− q � s− t � 0 or 0 � p− q � s− t. By (3.1), without loss of generality,

we only consider p− q � s− t � 0.

First, we assume that there is only one i0 ∈ {1, 2, · · · , n} such that pi0 − qi0 > 0. Then for

any l satisfying (3.2), we have

−(pi0 − qi0 + si0 − ti0) ≤ li0 ≤ 0, lj = 0,

where j ∈ {1, 2, · · · , n} with j 6= i0. Consequently, both l+ p− q and l+ s− t belong to (−N)n.
Then by Proposition 2.1, we have that the rank of [Tzpzq , Tzszt ] is 0.

Next, we assume that at least two of i ∈ {1, 2, · · · , n} satisfy pi − qi > 0. We consider two

cases. Suppose that pi1 − qi1 > 0 for some i1 ∈ {1, 2, · · · , n} with si1 − ti1 = 0. Since s− t � 0,

there exists another i2 ∈ {1, 2, · · · , n} such that pi2 − qi2 ≥ si2 − ti2 > 0. Choose l such that











−(pi1 − qi1) < li1 ≤ 0,

−(pi2 − qi2 + si2 − ti2) ≤ li2 < −(pi2 − qi2),

lk = −(pk − qk + sk − tk),

where k ∈ {1, 2, · · · , n} with k 6= i1, i2. Then l ∈ (−N)n and satisfies condition (b2) of

Proposition 2.1. So the rank of [Tzpzq , Tzszt ] is nonzero. We now suppose that pi − qi > 0

implies si− ti > 0 for all i ∈ {1, 2, · · · , n}. Since p− q � s− t, there exists an i1 ∈ {1, 2, · · · , n}

such that pi1 − qi1 > si1 − ti1 , and hence si1 − ti1 > 0. According to assumptions, there exists

another i2 ∈ {1, 2, · · · , n} such that pi2 − qi2 > 0, and hence 0 < si2 − ti2 ≤ pi2 − qi2 . Similarly,

we choose l such that










−(pi1 − qi1) < li1 ≤ −(si1 − ti1),

−(pi2 − qi2 + si2 − ti2) ≤ li2 < −(pi2 − qi2),

lk = −(pk − qk + sk − tk),

where k ∈ {1, 2, · · · , n} with k 6= i1, i2. Then l ∈ (−N)n and satisfies condition (b2) of

Proposition 2.1, and hence the rank of [Tzpzq , Tzszt ] is nonzero.

Case c2 p � q, s � t and (p − q) − (s − t) /∈ Nn ∪ (−N)n. Then there exist some

i1, i2 ∈ {1, 2, · · · , n} such that pi1 − qi1 > si1 − ti1 and pi2 − qi2 < si2 − ti2 , respectively. Choose

l such that










−(pi1 − qi1 + si1 − ti1) ≤ li1 ≤ −(pi1 − qi1),

−(si2 − ti2) < li2 ≤ −(pi2 − qi2 ),

lk = −(pk − qk + sk − tk),

where k ∈ {1, 2, · · · , n} with k 6= i1, i2. Then l ∈ (−N)n and satisfies condition (b1) of

Proposition 2.1, and hence the rank of [Tzpzq , Tzszt ] is nonzero finite.
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In view of the above discussion, we can summarize what we have proved as follows. If both

p− q and s− t belong to Nn ∪ (−N)n, then Tzpzq and Tzszt commute on h2(Tn) if and only if

at least one of the following conditions holds:

(1) p = q, s = t, or p− q = s− t.

(2) There exists an i0 ∈ {1, 2, · · · , n} such that (pi0 − qi0)(si0 − ti0) > 0, and pj − qj =

sj − tj = 0 for any j ∈ {1, 2, · · · , n} with j 6= i0.

(3) Either p � q, s � t or p � q, s � t, and (pi − qi)(si − ti) ≥ 0 for all i ∈ {1, 2, · · · , n}.

This combined with Lemma 3.1 completes the proof.

4 The Semi-commutator of Monomial Toeplitz Operators on h
2(Tn)

In this section we study the finite rank problem of the semi-commutator of two monomial

Toeplitz operators on the pluriharmonic Hardy space h2(Tn).

It follows from Proposition 2.2 that the semi-commutator (Tzpzq , Tzszt ] has finite rank on

h2(Tn) if and only if there are finite multi-indexes l ∈ Nn ∪ (−N)n satisfying condition (b) of

Proposition 2.2. Then we begin with the following two lemmas, which will simplify the proof

of Theorem 1.2.

Lemma 4.1 Let p, q, s, t ∈ Nn. Then the following statements hold:

(a) If the semi-commutator (Tzpzq , Tzszt ] has finite rank on h2(Tn), then (pi−qi)(si−ti) ≥ 0

for all i ∈ {1, 2, · · · , n}.

(b) If the semi-commutator (Tzpzq , Tzszt ] is zero on h2(Tn), then the commutator [Tzpzq , Tzszt ]

is also zero on h2(Tn).

Proof This is a direct consequence of (2.3) and Lemma 3.1.

Lemma 4.2 Let p, q, s, t ∈ Nn with (pi − qi)(si − ti) ≥ 0 for all i ∈ {1, 2, · · · , n}. Then on

h2(Dn), the following statements hold:

(a) If there exists an i1 ∈ {1, 2, · · · , n} such that si1 − ti1 < 0 or pi1 − qi1 < 0, then

(Tzpzq , Tzszt ](zl) = 0 for any l ∈ (−N)n.
(b) If there exists an i1 ∈ {1, 2, · · · , n} such that si1 − ti1 > 0 or pi1 − qi1 > 0, then

(Tzpzq , Tzszt ](zl) = 0 for any l ∈ Nn.

Proof First assume that there exists an i1 ∈ {1, 2, · · · , n} such that si1 − ti1 < 0 or

pi1 − qi1 < 0. Let us assume the contrary, namely, there exists an l ∈ (−N)n such that

(Tzpzq , Tzszt ](zl) 6= 0. Since (pi1 − qi1)(si1 − ti1) ≥ 0, it is easy to check that

li1 + pi1 − qi1 + si1 − ti1 < 0.

Combining this with Proposition 2.2, we see that l + p − q + s − t ∈ (−N)n and l + s − t /∈

Nn ∪ (−N)n. Thus there exists an i2 ∈ {1, 2, · · · , n} such that

li2 + si2 − ti2 > 0,

which implies that si2 − ti2 > 0, and hence pi2 − qi2 ≥ 0. Consequently,

li2 + pi2 − qi2 + si2 − ti2 ≥ li2 + si2 − ti2 > 0,

which leads to a contradiction. This shows that (Tzpzq , Tzszt ](zl) = 0 for any l ∈ (−N)n.
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Condition (b) can be proved in a similar way as shown before.

We are now ready to prove Theorem 1.2 stated in the introduction.

Proof of Theorem 1.2 In view of (2.2) and Lemma 4.1, we just need to show that

condition (c) implies (a). So we assume (pi− qi)(si − ti) ≥ 0 for all i ∈ {1, 2, · · · , n}. If at least

one of p − q and s − t does not belong to Nn ∪ (−N)n, then by Lemma 4.2 we have that the

rank of (Tzpzq , Tzszt ] is 0. Therefore, we only need to consider the remaining case when both

p− q and s− t belong to Nn ∪ (−N)n. To this end, we break the discussion into three cases.

Case a Either p = q or s = t. Obviously, it follows from Proposition 2.2 that

(Tzpzq , Tzszt ](zl) = 0

for any l ∈ Nn ∪ (−N)n. Therefore, the rank of (Tzpzq , Tzszt ] is 0.

Case b Either p � q, s � t or p � q, s � t. By (2.2), we need only consider the case that

p � q, s � t. Clearly, there exist i1, i2 ∈ {1, 2, · · · , n} such that

pi1 − qi1 > 0, si2 − ti2 < 0.

Then it follows from Lemma 4.2 that the rank of (Tzpzq , Tzszt ] is zero.

Case c Either p � q, s � t or p � q, s � t. Since

(Tzpzq , Tzszt ]∗ = (Tztzs , Tzqzp ],

we may assume, without loss of generality, that p � q and s � t. Obviously,

l + s− t � 0

for any l ∈ Nn,

l + s− t � l + s− t+ p− q � 0

for any l ∈ (−N)n with l � −(p− q + s− t), and

l + p− q + s− t /∈ Nn ∪ (−N)n

for any l ∈ (−N)n with −(p− q+ s− t) � l � −(p− q+ s− t). Thus it follows from Proposition

2.2 that if there exists an l ∈ Nn ∪ (−N)n such that (Tzpzq , Tzszt ](zl) 6= 0, then

−(p− q + s− t) � l � 0. (4.1)

Therefore, the rank of (Tzpzq , Tzszt ] is finite.

In each of the cases above, we have shown that (Tzpzq , Tzszt ] has finite rank on h2(Tn), and

hence condition (a) holds.

To finish the characterization of when the rank of the commutator (Tzpzq , Tzszt ] is actually

0, it suffices to consider the remaining case p � q and s � t. Recall from condition (b) of

Lemma 4.1 that

(Tzpzq , Tzszt ] 6= 0,

provided that [Tzpzq , Tzszt ] 6= 0. Combining this with the proof of Theorem 1.1, we need only

focus on the following cases:
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Case I There exists only one i0 ∈ {1, 2, · · · , n} such that (pi0 − qi0)(si0 − ti0) > 0, and

pj − qj = sj − tj = 0 for any j ∈ {1, 2, · · · , n} with j 6= i0. If (Tzpzq , Tzszt ](zl) 6= 0 for some

l ∈ Nn ∪ (−N)n, then it follows from (4.1) that

{

−(pi0 − qi0 + si0 − ti0) ≤ li0 ≤ 0,

lj = 0,

which implies that l + s − t ∈ Nn ∪ (−N)n. This contradicts Proposition 2.2. So the rank of

(Tzpzq , Tzszt ] is zero.

Case II p− q = s− t and there exist at least two of i ∈ {1, 2, · · · , n} such that pi − qi > 0.

So pi1 − qi1 = si1 − ti1 > 0 and pi2 − qi2 = si2 − ti2 > 0 for some i1 6= i2 ∈ {1, 2, · · · , n}. Choose

l such that










−2(si1 − ti1) ≤ li1 < −(si1 − ti1),

−(si2 − ti2) < li2 ≤ 0,

lk = −2(sk − tk),

where k ∈ {1, 2, · · · , n} with k 6= i1, i2. Then it follows from Proposition 2.2 that

(Tzpzq , Tzszt ](zl) 6= 0.

Therefore, the rank of (Tzpzq , Tzszt ] is nonzero finite. It is now obvious that the theorem holds.

5 Results about Monomial Toeplitz Operators on h
2(Sn)

In this section we study the problem of when the commutator or the semi-commutator of

two monomial Toeplitz operators has finite rank on the pluriharmonic Hardy space h2(Sn). We

first start with the following lemma.

Lemma 5.1 Let p, q ∈ Nn. Then on h2(Sn), for each γ ∈ Nn, we have

Tzpzq (zγ) =































(n+ |γ|+ |p| − |q| − 1)!(γ + p)!

(n+ |γ|+ |p| − 1)!(γ + p− q)!
zγ+p−q, γ + p � q,

(n− |γ| − |p|+ |q| − 1)!q!

(n+ |q| − 1)!(q − γ − p)!
zq−γ−p, γ + p � q,

0, otherwise

and

Tzpzq (zγ) =































(n+ |γ|+ |q| − |p| − 1)!(γ + q)!

(n+ |γ|+ |q| − 1)!(γ − p+ q)!
zγ+q−p, γ + q � p,

(n− |γ| − |q|+ |p| − 1)!p!

(n+ |p| − 1)!(−γ + p− q)!
zp−γ−q, γ + q � p,

0, otherwise.

Proof First we assume γ + p � q. Then for each λ ∈ Nn, we use formula (1.22) of [12]

twice to obtain

〈Tzpzq (zγ), zλ〉 =
(n+ |γ|+ |p| − |q| − 1)!(γ + p)!

(n+ |γ|+ |p| − 1)!(γ + p− q)!
〈zγ+p−q, zλ〉.
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Moreover, for any nonzero λ ∈ Nn, we have

〈Tzpzq (zγ), zλ〉 = 〈zγ+p−q, zλ〉 = 0

as γ + p � q. Therefore,

Tzpzq (zγ) =
(n+ |γ|+ |p| − |q| − 1)!(γ + p)!

(n+ |γ|+ |p| − 1)!(γ + p− q)!
zγ+p−q.

Next we assume γ + p � q. Just like the previous case, we can show that

〈Tzpzq (zγ), zλ〉 =
(n− |γ| − |p|+ |q| − 1)!q!

(n+ |q| − 1)!(q − γ − p)!
〈zq−γ−p, zλ〉

and

〈Tzpzq (zγ), zλ〉 = 〈zq−γ−p, zλ〉 = 0

for any nonzero λ ∈ Nn. Thus

Tzpzq (zγ) =
(n− |γ| − |p|+ |q| − 1)!q!

(n+ |q| − 1)!(q − γ − p)!
zq−γ−p.

Finally, we assume that γ + p 6� q and γ + p 6� q. Then γj + pj < qj and γi + pi > qi

for some i, j ∈ {1, 2, · · · , n}, which implies γ + p − λ 6= q and γ + p + λ 6= q for any λ ∈ Nn.

Consequently,

〈Tzpzq (zγ), zλ〉 = 〈Tzpzqϕ(z
γ), zλ〉 = 0, λ ∈ Nn,

which shows that Tzpzq (zγ) = 0.

The computation for Tzpzq (zγ) is similar and we leave the details to the interested reader.

Comparing Lemma 5.1 with [6, Lemma 8], we obtain that the formulas for Tzpzq (zγ) and

Tzpzq (zγ) on h2(Sn) are exactly the same as those on the pluriharmonic Bergman space of the

unit ball with the parameter α = −1. So we omit the details of the proof of Theorem 1.3 and

Theorem 1.4, which can be easily obtained by the same argument of [6, Theorem 15] and [6,

Theorem 22].

Moreover, we can obtain the following corollaries, which provides convenience for the next

section.

Corollary 5.1 Let p, q, s, t ∈ Nn. Then the commutator [Tzpzq , Tzszt ] has nonzero finite

rank on h2(Sn) if and only if one of the following conditions holds:

(1) p = s = 0, q 6= 0, t 6= 0, and q 6= t.

(2) q = t = 0, p 6= 0, s 6= 0, and p 6= s.

(3) Either p � q, s � t or q � p, t � s, |p| = |s|, |q| = |t|, (pi, qi, si, ti) satisfies Condition

(I) for all i ∈ {1, 2, · · · , n} but not both of (v) and (vi) in Condition (I).

Corollary 5.2 Let p, q, s, t ∈ Nn. Then the semi-commutator (Tzpzq , Tzszt ] has nonzero

finite rank on h2(Sn) if and only if one of the following conditions holds:

(i) p = s = 0, q 6= 0, and t 6= 0.

(ii) q = t = 0, p 6= 0, and s 6= 0.
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6 Examples and Comparison

In this section we will give some interesting examples and make comparison of the operator

theory on the torus and on the unit sphere. First, we have the following proposition.

Proposition 6.1 For p, q, s, t ∈ Nn, the following statements hold:

(1) If the commutator [Tzpzq , Tzszt ] has finite rank on h2(Sn), then it also has finite rank on

h2(Tn).

(2) If the operators Tzpzq and Tzszt commute on h2(Sn), then they also commute on h2(Tn).

Proof Note that if (pi, qi, si, ti) satisfies Condition (I), then

(pi − qi)(si − ti) ≥ 0,

and if (pi, qi, si, ti) satisfies either (v) or (vi) of Condition (I) for any i ∈ {1, 2, · · · , n}, then

p− q = s− t.

So the proposition is now a direct consequence of Theorem 1.1 and Theorem 1.3.

As a consequence of Theorem 1.3 and Proposition 6.1, we present two classes of examples,

which correspond to cases (v) and (vi) in Condition (I) for the tuple (|p|, |q|, |s|, |t|), of non-

trivial monomial Toeplitz operators that commute on both h2(Sn) and h2(Tn).

Example 6.1 Fix a, b, c, d, e, f ∈ N and let

p = (0, d, 0, e, a, c),

q = (0, c, e, 0, a, d),

s = (d, 0, 0, f, b, c),

t = (f, 0, c, 0, b, d),

or

p = (0, e, 0, b, a, c),

q = (0, b, f, 0, a, d),

s = (e, 0, 0, a, b, c),

t = (f, 0, a, 0, b, d).

Then in each case Tzpzq and Tzszt commute on both h2(S6) and h2(T6).

We would like to mention that the converse of Proposition 6.1 is false. For any positive

natural numbers a and b with a 6= b, it is easy to check that Tza
1
and Tzb

1
commute on h2(Tn),

but Corollary 5.1 shows that the commutator [Tza
1
, Tzb

1
] has nonzero finite rank on h2(Sn).

Moreover, the following example shows that the commutator [Tzpzq , Tzszt ] does not have finite

rank on h2(Sn), even if Tzpzq and Tzszt commute on h2(Tn).

Example 6.2 Suppose p = (a, 0, · · · , 0), q = (0, b, 0, · · · , 0), s = (0, · · · , 0) and t =

(0, c, 0, · · · , 0) for some positive natural numbers a, b, and c. Then p− q /∈ Nn ∪ (−N)n and

(pi − qi)(si − ti) ≥ 0
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for all i ∈ {1, 2, · · · , n}. So it follows from Theorem 1.1 that Tza
1 z

b
2
and Tzc2

commute on h2(Tn).

However, (|p|, |q|, |s|, |t|) does not satisfy Condition (I). Thus from Theorem 1.3 we see that the

rank of [Tza
1 z

b
2
, Tzc

2
] on h2(Sn) is infinite.

Similarly, we have the following result for the semi-commutator of two monomial Toeplitz

operators.

Example 6.3 Let p, q, s, t ∈ Nn. If the semi-commutator (Tzpzq , Tzszt ] has finite rank on

h2(Sn), then it also has finite rank on h2(Tn). Moreover, if the rank of the semi-commutator

(Tzpzq , Tzszt ] is zero on h2(Sn), then on h2(Tn) it is also zero. On h2(Tn), it follows that

rank((Tza
1
, Tzb

1
]) = rank((Tz1z2

, Tz1 ]) = 0

for any positive natural numbers a and b, but on h2(Sn) the semi-commutator (Tza
1
, Tzb1

] has

nonzero finite rank, and the semi-commutator (Tz1z2 , Tz1] does not have finite rank.
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