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Abstract Comparing to the construction of stringy cohomology ring of equivariant sta-
ble almost complex manifolds and its relation with the Chen-Ruan cohomology ring of
the quotient almost complex orbifolds, the authors construct in this note a Chen-Ruan
cohomology ring for a stable almost complex orbifold. The authors show that for a finite
group G and a G-equivariant stable almost complex manifold X, the G-invariant part of
the stringy cohomology ring of (X,G) is isomorphic to the Chen-Ruan cohomology ring
of the global quotient stable almost complex orbifold [X/G]. Similar result holds when
G is a torus and the action is locally free. Moreover, for a compact presentable stable
almost complex orbifold, they study the stringy orbifold K-theory and its relation with
Chen-Ruan cohomology ring.
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1 Introduction

Since the introduction of Chen-Ruan cohomology ring (see [9]) of almost complex orbifolds

and orbifold Gromov-Witten theory (see [8]) of compact symplectic orbifolds, there are lots

of works on related area. The most simple orbifolds are global quotient orbifolds. Let G

be a finite group and X be a G-equivariant almost complex manifold, the global quotient

orbifold [X/G] is an almost complex orbifold. In 2003, Fantechi-Göttsche [14] constructed

a stringy cohomology ring H ∗(X,G), which they called orbifold cohomology, for the pair

(X,G) by following the construction of Chen-Ruan cohomology ring in [9], and showed that

H ∗(X,G)G, the G-invariant part of H ∗(X,G), is isomorphic to the Chen-Ruan cohomology

ring H∗
CR([X/G]) as Frobenius algebras. Their construction of stringy cohomology ring works

for general G-equivariant stable almost complex manifolds. In 2007, Jarvis-Kaufmann-Kimura

[17] constructed the stringy Chow ring and stringy K-theory for G-varieties when G is finite.
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They also constructed a stringy Chern character which gives rise to an isomorphism between

the stringy Chow ring and stringy K-theory. When the group G is not finite but a torus

T , Goldin-Holm-Knutson [15] constructed a stringy cohomology ring NH∗,⋄
T (Y ) over the T -

equivariant cohomology for a T -equivariant stable almost complex manifold Y . When the

T -action is locally free and the quotient orbifold [Y/T ] is almost complex, they proved that

NH∗,⋄
T (Y ) is isomorphic to H∗

CR([Y/T ]). Recently, when G is a non-abelian Lie group and Y is

a G-equivariant almost complex manifold, Chen and the authors [6] constructed an equivariant

commutative stringy cohomology ring for (Y,G).

The construction of stringy cohomology ring in [14–15] works for generalG-equivariant stable

almost complex manifolds. For both cases the quotient orbifolds are stable almost complex

orbifolds (see Definition 2.1). In [10], Ding-Jiang-Pan constructed Chen-Ruan cohomology ring

for an almost contact orbifold X, by applying Chen-Ruan’s construction in [9] to the almost

complex orbifold X×R. However, there is still a lack of a Chen-Ruan cohomology ring for stable

almost complex orbifolds. In this note we will construct a Chen-Ruan cohomology ring for a

stable almost complex orbifold, and extend the isomorphism between (the invariant part of)

stringy cohomology ring and Chen-Ruan cohomology ring to stable almost complex orbifolds

for both cases of G being finite or abelian. As the almost complex case, for a stable almost

complex orbifold X there is also an associated inertia orbifold IX and the underlying group of

its Chen-Ruan cohomology ring is defined to be the de Rham cohomology group of IX with

a degree shifting. As the almost complex case, we need an obstruction bundle E
[2] over the

2-sector X[2] to define the ring structure. In this note we adapt the K-theoretical definition of

obstruction bundles in [16–17] to define E
[2] (see Definition 3.1). We could prove that E

[2] is

in fact an honest bundle over X[2], not just an element in the K-group of orbifold bundles over

X
[2].

On the other hand, there are also a lot of works on orbifold K-theory. For example, Adem-

Ruan [2] studied orbifold K-theory and orbifold K-theory twisted by discrete torsion, Lupercio-

Uribe [19] studied orbifold K-theory twisted by general U(1)-gerbes. Moreover, Adem-Ruan-

Zhang [3] defined a stringy product over the twisted orbifold K-theory τKorb(IX), where τ =

θ(ϕ) is in the image of the inverse transgression map and ϕ is a 2-gerbe over X. Moreover, as

noted by Hu-Wang [16], when ϕ is trivial, the stringy product of Adem-Ruan-Zhang induced

a stringy product on the orbifold K-theory K∗
orb(X,C) of X. In [17], Jarvis-Kaufmann-Kimura

also defined a full orbifold K-theory Korb(X), for an orbifold X, and showed that for a global

quotient orbifold X = [X/G] of a G-variety X , the G-invariant part of the stringy K-theory

K (X,G) is a sub-algebra of Korb(X), see also [11–13]. Becerra-Uribe [4] studied the stringy

products of twisted orbifold K-theory for abelian quotient orbifolds. The most impressive result

is that Hu-Wang [16] showed for every compact presentable almost complex orbifold there is

a modified delocalized Chern character which gives rise to a ring isomorphism between the

Chen-Ruan cohomology ring and the orbifold K-theory equipped with the stringy product of

Adem-Ruan-Zhang (twisted by trivial 2-gerbe). This result was extended to twisted Chen-Ruan

cohomology ring and twisted stringy orbifold K-theory by Lin [18] for global quotient orbifolds.

Following the construction in [1], we define an associative stringy product over K∗
orb(X,C)

for a compact presentable stable almost complex orbifold X. We then show that there is a mod-

ified delocalized Chern character which is a ring isomorphism from K∗
orb(X,C) to H∗

CR(X,C).
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Furthermore we could extend the stringy product over twisted orbifold K-theory of almost

complex orbifolds of Adem-Ruan-Zhang [3] to stable almost complex orbifolds.

This note is organized as follows. In Section 2 we give the definition of stable almost complex

orbifolds, and define the Chen-Ruan cohomology group of them. In Section 3 we first construct

the obstruction bundle and define the product, prove the associativity, then we study the

relation between the Chen-Ruan cohomology rings of (global) quotient stable almost complex

orbifolds and the stringy cohomology rings of equivariant stable almost complex manifolds. In

Section 4 we study the stringy product over K∗
orb(X,C) for a compact stable almost complex

orbifold X. For the compactness of this note we put the construction of the stringy product

over twisted orbifold K-theory of stable almost complex orbifolds in the appendix.

2 Stable Almost Complex Orbifolds

In this note we study orbifolds via orbifold groupoids, i.e., proper étale Lie groupoids. We

assume that the readers are familiar with orbifold groupoids. One can see [1, 3] for example and

references therein for basic concepts on orbifolds, orbifold groupoids, coarse space, de Rham

cohomology of orbifolds, morphisms between orbifold groupoids, quasi-suborbifolds, intersection

of quasi-suborbifolds and etc.. We next give the definition of stable almost complex orbifold

groupoids.

We first give the definition of stable complex orbifold bundles. Let X = (X1
⇒ X0) be an

orbifold groupoids, with s, t : X1 → X0 be its source and target maps from the arrow space to

the object space. An orbifold vector bundle E over X consists of a vector bundle π0 : E0 → X0

and a section of σ ∈ Hom(s∗E0, t∗E0) such that for every arrow g ∈ X1,

σ(g) : s∗E0
g = E0

s(g) → t∗E0
g = E0

t(g)

is an isomorphism of vector space, and σ(h) ◦ σ(g) = σ(gh) for any two composable1 arrows in

X1. The σ gives us a left X-action2 on E0 with anchor map given by π0 : E0 → X0 and action

map given by

X1
s×π0 E0 → E0, (g, v) 7→ σ(g)(v).

Then we get an action groupoid E = X⋉ E0 = (E1
⇒ E0) with

E1 := {(v, g, w) ∈ s∗E0 ×X1 × t∗E0 | σ(g)(v) = w}.

It is also an orbifold groupoid. The source and target maps are given by (v, g, w) 7→ v and w

respectively. The projection π1 : E1 → X1, π1(v, g, w) = g gives us a vector bundle, which

together with the bundle map π0 : E0 → X0 gives us an orbifold groupoid morphism π : E → X.

However, sometimes it is more convenience to view an orbifold vector bundle E over X as a vector

bundle π0 : E0 → X0 with a left X-action, and then when we talk about the fiber of E we mean

the fiber of π0 : E0 → X0. The definitions of direct sum and tensor product of orbifold vector

bundles are similar to the manifold case.

We denote by Rm → X or simply by Rm the trivial bundle of rank m over X. Here by

trivial we mean that both Ei = X i × Rm are trivial bundles and the section σ is identity, i.e.,

σ(g) = idRm for every g ∈ X1. Hence the action of X on X0 × Rm is trivial on fibers.

1This means t(g) = s(h), the source of the arrow h is the target of the arrow g.
2See [7, Section 2.2] for example for the definition of groupoid action on manifolds.
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A complex structure J over E → X consists of a pair of complex structures J i over Ei →

X i, i = 0, 1, such that s∗J0 = t∗J0 = J1. Similarly, a hermitian metric over (E, J) is a pair of

hermitian metrics over (Ei, J i) that are compatible with s∗ and t∗.

The tangent bundle of X is

TX := (TX1
⇒ TX0)

with source and target maps being the differentials of s and t of X.

Definition 2.1 Let E → X be an orbifold vector bundle. A stable complex structure over E

consists of a trivial bundle Rm → X and a complex structure J over E⊕ Rm.

A stable almost complex structure over X is a stable complex structure over TX. When X

is equipped with a stable almost complex structure we call it a stable almost complex orbifold

groupoid.

Stable almost complex orbifold groupoids are direct generalizations of stable almost complex

manifolds in [5].

We abbreviate “stable almost complex orbifold groupoid” as “SACOG”.

2.1 k-Sectors

For k ∈ Z≥1, the k-sector X
[k] of X is an action groupoid X

[k] := X ⋉ Sk obtained from a

left X-action on the space

Sk := {(g1, · · · , gk) ∈ (X1)k | s(g1) = t(g1) = · · · = s(gk) = t(gk)},

where the left X-action on Sk has

(i) an anchor map: πk : Sk → X0, (g1, · · · , gk) 7→ s(g1), and

(ii) an action map: ρk : X1
s×πk Sk → Sk, (h, (g1, · · · , gk)) = (h−1g1h, · · · , h

−1gkh).

Then X
[k] = X ⋉ Sk = (X1

s×πk Sk
⇒ Sk); the source map is the projection to the second

factor and the target map is ρk. When k = 1, X[1] is called the inertia groupoid of X and is

denoted by IX.

There are several evaluation morphisms between various k-sectors and X. We list them by

only writing down the maps on object spaces. The maps on arrows are obvious.

(i) For l ≤ k, ei1,··· ,il : X
[k] → X

[l] is given by ei1,··· ,il(g1, · · · , gk) = (gi1 , · · · , gil).

(ii) For k ≥ 1, e1···k : X[k] → X
[1] = IX is given by e1···k(g1, · · · , gk) = (g1 · · · · · gk).

(iii) For k ≥ 2, µi : X[k] → X
[k−1], 1 ≤ i ≤ k − 1 is given by µi(g1, · · · , gk) = (g1, · · · ,

gigi+1, · · · , gk).

(iv) For k ≥ 1, e : X[k] → X is given by e(g1, · · · , gk) = s(g1).

All these evaluation morphisms are quasi-embeddings (see [3, Definition 2.7]).

There is also an involution morphism I : IX → IX, (g) 7→ (g−1).

For each k ≥ 1, according to the decomposition of connected components of the coarse space

|X[k]|, we have a disjoint union decomposition

X
[k] :=

⊔

[~g=(g1,··· ,gk)]∈T k

X[~g],

where T k is the index set of components and the set of equivalence classes of ~g w.r.t conjugations.

Then the above evaluation maps and the involution map also decompose into components.



Chen-Ruan Cohomology for Stable Almost Complex Orbifolds 745

Now suppose that X has a stable almost complex structure, hence is a SACOG. Then there

is a complex bundle V := TX⊕ Rm for some m ∈ Z≥0. For each k ∈ Z≥1, we pull back V via

the morphism e : X[k] → X to X
[k] to get a pull-back bundle

V
[k] := e∗V = e∗TX⊕ Rm.

The complex structure over V pulls back to a complex structure over each V
[k]. Denote by V

[k]
[~g]

the restriction of the bundle V[k] over a component X[~g]. Choose a hermitian metric on V. Then

all V[k] have induced hermitian metrics.

Take a point ~g = (g1, · · · , gk) ∈ Sk with s(g1) = x ∈ X0. Then the fiber of V[k] over ~g is

V
[k]
~g = Vx = TxX

0 ⊕ Rm.

It has a natural Z〈~g〉-action, where 〈~g〉 is the subgroup of Gx generated by ~g, Z〈~g〉 is its center

and Gx is the local (or isotropy) group of x in X. Since we have chosen a hermitian metric, V
[k]
~g

is a unitary representation of Z〈~g〉, we could decompose it into irreducible Z〈~g〉-representations

V
[k]
~g =

⊕

λ∈Ẑ〈~g〉

V
[k]
~g,λ.

Then one can see that the decomposition of fibers forms a decomposition of the bundle V
[k]
[~g] ,

V
[k]
[~g] =

⊕

λ∈Ẑ〈~g〉

V
[k]
[~g],λ. (2.1)

On the other hand, note that each gi in ~g acts on V
[k]
~g , and also on each irreducible represen-

tation V
[k]
~g,λ of Z〈~g〉. Since ord(gi) is finite, the gi-action on V

[k]
~g,λ is by multiplying exp2π

√
−1mλ,i

for some

mi,λ ∈ Q ∩ [0, 1).

These numbers are constant over each component X[~g]. When k = 1, we omit the i, and write

them as mλ.

Note that the tangent space of Sk at ~g is just the fixed part of TxX
0 under the action of

〈~g〉. Therefore the irreducible representation V
[k]
~g,λ with zero weight mi,λ = 0 for all i = 1, · · · , n

corresponds to the tangent space of Sk and the fiber of the trivial bundle Rm. So we see that

over each component X[~g],

⊕

mλ,i=0,∀i=1,··· ,k
V
[k]
[~g],λ = TX

[k] ⊕ Rm. (2.2)

This is a complex bundle over X[k], since each V
[k]
[~g],λ is complex. Therefore we have proved the

following result.

Proposition 2.1 When X is a SACOG, for every k ≥ 1, every component X
[k]
[~g] of X

[k] is a

SACOG with stable almost complex structures inherited from X via (2.2).

On the other hand,

⊕

mλ,1+···+mλ,k>0

V
[k]
[~g],λ (2.3)
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is the normal bundle N
[k]
[~g] of the evaluation morphism e : X[k] → X over the component X[~g]. It

is a complex orbifold vector bundle. We denote the disjoint union of these N
[k]
[~g] by N

[k].

Remark 2.1 From the analysis above, we see that if the stable almost complex structure

is given by the complex orbifold bundle V = TX⊕Rm, then for each k-sector X[k], we have the

decomposition of the complex bundle V
[k] = e∗V:

V
[k] = (TX[k] ⊕ Rm)⊕ N

[k]

with N
[k] and TX

[k] ⊕ Rm being two complex sub-bundles. And the stable almost complex

structure associated to X
[k] is given by the complex bundle TX

[k] ⊕ Rm.

Remark 2.2 We also need the normal bundle Ne12 for the evaluation morphism e12 : X[2] →

X
[1] in the following. It is a complex sub-bundle of V[2], moreover, a sub-bundle of N[2]. Consider

a component X[g1,g2] of X
[2]. Denote the component of Ne12 over X[g1,g2] by N

e12
[g1,g2]

. Then the

fiber of Ne12
[g1,g2]

over a point (g1, g2) with s(g1) = x is the subspace of Vx over which the action

is trivial for g1g2 and nontrivial for g1 or g2.

Consider the diagram

X
[2] e12 //

e
""
❉
❉
❉
❉
❉
❉
❉
❉
❉

X
[1]

e

��

X.

Then we have

N
[2] = N

e12 ⊕ e∗12N
[1]. (2.4)

2.2 Chen-Ruan cohomology of SACOGs

As for almost complex orbifolds, the Chen-Ruan cohomology group of a SACOG X is also

defined as the de Rham cohomology group of its inertia groupoid IX with a degree shifting. We

first define the degree shifting. Note that, every complex orbifold bundle over X[1] = IX has a

canonical finite order automorphism, given by the action of g ∈ S1 on the fiber over g.

Definition 2.2 (see [16]) Let E be any complex orbifold vector bundle with an automorphism

Φ of finite order over an orbifold groupoid X. Choose a hermitian metric on E preserved by Φ.

Then E has an eigen-bundle decomposition

E =
⊕

mj∈Q∩[0,1)

E(mj),

where Φ acts on E(mj) as multiplication by exp2π
√
−1mj for mj ∈ Q ∩ [0, 1). We define

EΦ =
⊕

mj∈Q∩(0,1)

mjE(mj), EΦ−1 =
⊕

mj∈Q∩(0,1)

(1−mj)E(mj)

as a linear combination of vector bundles with rational coefficients or as an element in K0
orb(X)⊗

Q.



Chen-Ruan Cohomology for Stable Almost Complex Orbifolds 747

One immediately sees that

EΦ ⊕ EΦ−1 =
⊕

mj∈Q∩(0,1)

E(mj) (2.5)

is the sub-bundle over which the Φ-action is nontrivial.

Suppose that the stable almost complex structure over X is given by V = TX ⊕ Rm. Now

consider the complex bundle V
[1] = e∗TX ⊕ Rm → IX. It has a canonical automorphism Φ of

finite order given by the action of g ∈ S1 on the fiber over g. Then by taking a Φ-invariant

hermitian metric, we could decompose it into eigen-bundles

V
[1] =

⊕

mj∈Q∩[0,1)

V
[1](mj).

This decomposition varies over different connected component X[g] of IX. So we write

V
[1]
[g] := V

[1]|X[g]
=

⊕

mj,[g]∈Q∩[0,1)

V
[1]
[g](mj,[g]). (2.6)

Definition 2.3 For each [g] ∈ T 1, we define the degree shifting number of X[g] to be

ι(X[g]) = ι([g]) =
∑

mj,[g]

mj,[g] · rankCV
1
[g](mj,[g]).

Note that every hermitian metric over V[1] is Φ-invariant. So we could use the same metric

for the decomposition (2.6) of V[1] and the decomposition (2.1) with k = 1. Then the summands

in the irreducible decomposition (2.1) of V
[k]
[~g] with k = 1 combine into the summands of the

decomposition (2.6). So we also have

ι([g]) =
∑

λ∈Ẑ〈~g〉

mλ · rankCV
1
[g],λ.

Moreover, the analysis above shows that (comparing (2.6) with (2.1)–(2.3) for k = 1)

N
[1]
Φ = V

[1]
Φ , N

[1]

Φ−1 = V
[1]

Φ−1 . (2.7)

Definition 2.4 For a SACOG X, we define the Chen-Ruan cohomology group of X as

H∗
CR(X,C) := H

∗−2ι(IX)
dR (IX,C) =

⊕

[g]∈T 1

H
∗−2ι([g])
dR (X[g],C),

and the Chen-Ruan cohomology group with compact support of X as

H∗
CR,c(X,C) := H

∗−2ι(IX)
c,dR (IX,C) =

⊕

[g]∈T 1

H
∗−2ι([g])
c,dR (X[g],C).

Since the de Rham cohomology (with compact support) of an orbifold is canonically iso-

morphic to the singular cohomology (with compact support) of its coarse space (see [1, Section

2.1]), in the following we will omit the subscript “dR”.

For an oriented orbifold X, the orbifold Poincaré pairing

∫ orb

X

: Hk(|X|,C)×HdimX−k
c (|X|,C) → C
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is nondegenerate. A SACOG X is natural orientated. So is its inertia orbifold IX. The involution

map I : IX → IX and the paring above induce a nondegenerate pairing

〈·, ·〉X : H∗
CR(X,C)×H∗

CR,c(X,C) → C, 〈α, β〉X :=

∫ orb

IX

α ∪ I∗β.

3 Chen-Ruan Product for SACOGs

3.1 Obstruction bundle and Chen-Ruan product

Let X be a SACOG. We next define an obstruction bundle over X[2]. Recall that we have

ei : X
[2] → IX, i = 1, 2, and e12 : X[2] → IX. Recall also that V

[1] has a canonical finite order

automorphism Φ.

Definition 3.1 We define the obstruction bundle over X
[2] to be

E
[2] : = e∗1V

[1]
Φ ⊕ e∗2V

[1]
Φ ⊕ e∗12V

[1]
Φ−1 ⊖ N

[2] (3.1)

as an element in K0
orb(X

[2])⊗Q. The N
[2] is given by (2.3).

Remark 3.1 By (2.7) we have

E
[2] : = e∗1N

[1]
Φ ⊕ e∗2N

[1]
Φ ⊕ e∗12N

[1]
Φ−1 ⊖ N

[2]. (3.2)

Remark 3.2 We could also define this obstruction bundle via the original construction of

Chen-Ruan in [9] by taking the invariant part H0,1(Σ, TxX
0 ⊕ Rm)〈g1,g2〉 as the fiber of E[2]

over the point (g1, g2) ∈ S2, where x = s(g1) and we have replaced the tangent space TxX
0 by

the complex linear space TxX
0 ⊕ Rm. By the proof of [16, Theorem 3.2], we could show that

this construction will also give rise to the definition formula (3.1) of E[2]. On the other hand,

by similar computation as (3.5) in the proof of Lemma 3.1 below we can show that over each

component of X[2], E[2] is a direct sum of certain bundles. Hence E
[2] is not just an element in

K0
orb(X

[2])⊗Q, but an honest bundle over X[2]. So we can take the Euler class of E[2].

Definition 3.2 We define a 3-point function for α, β ∈ H∗
CR(X,C) and γ ∈ H∗

CR,c(X,C)

by

〈α, β, γ〉 :=

∫ orb

X[2]

e∗1α ∪ e∗2β ∪ (I ◦ e12)
∗γ ∪ e(E[2]).

The product is defined as follows.

Definition 3.3 Given α, β ∈ H∗
CR(X,C), the product α ∪CR β is defined by requiring that

for every γ ∈ H∗
c (X,C), the following equality

〈α ∪CR β, γ〉X = 〈α, β, γ〉

holds. Equivalently, this product is also given by

α ∪CR β = e12,∗(e
∗
1α ∧ e∗2β ∧ e(E[2])).

Theorem 3.1 The product “ ∪CR” over H∗
CR(X,C) is associative.
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Proof To prove the associativity we need to show that for any α, β, γ ∈ H∗
CR(X,C), the

following equality

e12,∗(e
∗
1(e12,∗(e

∗
1α ∧ e∗2β ∧ e(E[2]))) ∧ e∗2γ ∧ e(E[2]))

= e12,∗(e
∗
1α ∧ e∗2(e12,∗(e

∗
1β ∧ e∗2γ ∧ e(E[2]))) ∧ e(E[2])) (3.3)

holds. For simplicity, we could assume α ∈ H∗(X[g1],C), β ∈ H∗(X[g2 ],C), γ ∈ H∗(X[g3 ],C).

Then we see that both left and right sides support in a neighborhood of the intersection of

quasi-suborbifolds3 of IX,

X[g1,g2] ∩ X[g1g2,g3] =
⊔

[h1,h2,h3],[hi]=[gi]

X[h1,h2,h3] = X[g1,g2g3] ∩ X[g2,g3]

in IX. Set ~h = (h1, h2, h3). We could assume that the neighborhoods of all different X[~h] above

in IX do not intersect with each other, since their images in IX are closed and do not intersect

with each other.

For a fixed X[~h] we have the following commutative diagram:

X[h1]

X[h2] X[h1,h2]
e2oo

e1

OO

e12 // X[h12]

X[h3] X[h2,h3]
e2oo

e1

OO

e12

��

X[~h]

e123

%%❑
❑
❑❑

❑❑
❑❑

❑
❑

e2,3
oo

e1,2

OO

µ1
//

µ2

��

X[h12,h3]

e1

OO

e2 //

e12

��

X[h3] ,

X[h23] X[h1,h23]
e2oo

e1

��

e12 // X[h123]

X[h1]

where h12 = h1h2, h23 = h2h3 and h123 = h1h2h3.

Fix a small neighborhood U[~h] of X[~h] in IX. By the clean intersection formula in [3, Lemma

7.2], the restriction of the LHS of (3.3) in the neighborhood U[~h] of X[~h] is

e12,∗(e
∗
1(e12,∗(e

∗
1α ∧ e∗2β ∧ e(E[2]))) ∧ e∗2γ ∧ e(E[2]))|U

[~h]

= e123,∗(e
∗
1α ∧ e∗2β ∧ e∗3γ ∧ E

[2]
[h1,h2]

|X
[~h]

∧ E
[2]
[h1h2,h3]

|X
[~h]

∧ e(E(X[h1h2],X[h1,h2],X[h1h2,h3]))),

and the restriction of the RHS of (3.3) in the neighborhood U[~h] of X[~h] is

e12,∗(e
∗
1α ∧ e∗2(e12,∗(e

∗
1β ∧ e∗2γ ∧ e(E[2]))) ∧ e(E[2]))|U

[~h]

= e123,∗(e
∗
1α ∧ e∗2β ∧ e∗3γ ∧ E

[2]
[h1,h2h3]

|X
[~h]

∧ E
[2]
[h2,h3]

|X
[~h]

∧ e(E(X[h2h3],X[h1,h2h3],X[h2,h3]))),

where E(X[h1h2],X[h1,h2],X[h1h2,h3]) and E(X[h2h3],X[h1,h2h3],X[h2,h3]) are the excess bundles for

the non-transversal clean intersections of quasi-suborbifolds. Then the theorem follows from

the following Lemma 3.1.

3See [3, Definition 2.12, Example 2.14].
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Remark 3.3 One can see [3, 17, 20] for the concept of excess bundle. For example, consider

the intersection of quasi-suborbifolds X[h1,h2],X[h1h2,h3] in X[h1h2]. Suppose that this intersection

has a component X[~h] with
~h = (h1, h2, h3). We draw them as

X[~h]
� � e1,2

//

� _

µ1

��

X[h1,h2]� _

e12

��

X[h1h2,h3]
� � e1 // X[h1h2].

Then the excess bundle over the component X[~h] for this intersection is

E(X[h1h2],X[h1,h2],X[h1h2,h3]) = e∗1,2NX[h1,h2]|X[h1h2]
⊖ NX

[~h]
|X[h1h2,h3]

,

where NX[h1,h2]|X[h1h2]
is the normal bundle of the quasi-embedding e12 : X[h1,h2] → X[h1h2] and

NX[~h]|X[h1h2,h3]
is the normal bundle of the quasi-embedding µ1 : X[~h] → X[h1h2,h3].

Lemma 3.1 Over X[~h] we have

E
[2]
[h1,h2]

|X
[~h]

⊕ E
[2]
[h1h2,h3]

|X
[~h]

⊕ E(X[h1h2],X[h1,h2],X[h1h2,h3])

= E
[2]
[h1,h2h3]

|X
[~h]

⊕ E
[2]
[h2,h3]

|X
[~h]

⊕ E(X[h2h3],X[h1,h2h3],X[h2,h3]). (3.4)

Proof This follows from the definition of E[2]. We first compute the LHS. Recall that from

(2.1), over each component X[~h] of X
[3], V[3] has a decomposition

V
[3]

[~h]
=

⊕

λ∈̂
Z〈~h〉

V
[3]

[~h],λ
,

and the action weight of each hi ∈ ~h on V
[3]

[~h],λ
does not change over the component X[~h]. We

denote them by

mi,λ ∈ Q ∩ [0, 1), i = 1, 2, 3,

i.e., hi acts on the fiber of V
[3]

[~h],λ
over ~h by multiplying exp2π

√
−1mi,λ . On the other hand h12,

h23 and h123 also act on the fiber of each V
[3]

[~h],λ
. We denote the corresponding action weights

by

m12,λ, m23,λ, m123,λ ∈ Q ∩ [0, 1).

Then since h1h2h
−1
12 = h12h3h

−1
123 = 1 and h1h2h3h

−1
123 = 1, we have

m1,λ +m2,λ + {1−m12,λ}
m12,λ +m3,λ + {1−m123,λ}

}
= 0, or 1, or 2,

and

m1,λ +m2,λ +m3,λ + {1−m123,λ} = 0, or 1, or 2, or 3,

where {·} means the fractional part of a real number.

Then by the definition of E[2] we have

E
[2]
[h1,h2]

|X
[~h]

= (e∗1V
[1]
Φ ⊕ e∗2V

[1]
Φ ⊕ e∗12V

[1]
Φ−1 ⊖ N

[2])
∣∣
X[~h]
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=
⊕

λ

(m1,λ +m2,λ + {1−m12,λ})V
[3]

[~h],λ
⊖ V

[3]

[~h]
⊕

⊕

m1,λ=m2,λ=0

V
[3]

[~h],λ

=
⊕

λ

(m1,λ +m2,λ + {1−m12,λ})V
[3]

[~h],λ
⊖

⊕

m1,λ+m2,λ+{1−m12,λ}=1

V
[3]

[~h],λ

=
⊕

m1,λ+m2,λ+{1−m12,λ}=2

V
[3]

[~h],λ
. (3.5)

Similarly,

E
[2]
[h1h2,h3]

∣∣
X
[~h]

= (e∗1V
[1]
Φ ⊕ e∗2V

[1]
Φ ⊕ e∗12V

[1]
Φ−1 ⊖ N

[2])
∣∣
X
[~h]

=
⊕

λ

(m12,λ +m3,λ + {1−m123,λ})V
[3]

[~h],λ
⊖ V

[3]

[~h]
⊕

⊕

m12,λ=m3,λ=0

V
[3]

[~h],λ

=
⊕

m12,λ+m3,λ+{1−m123,λ}=2

V
[3]

[~h],λ
.

On the other hand, the excess bundle for the intersection of X[h1,h2] and X[h1h2,h3] in X[h1h2] is

E(X[h1h2],X[h1,h2],X[h1h2,h3])

=
[( ⊕

m12,λ=0

V
[3]

[~h],λ

)
⊖ Rm

]
⊖
[( ⊕

m1,λ=m2,λ=0

V
[3]

[~h],λ

)
⊖ Rm

]

⊖
[( ⊕

m12,λ=m3,λ=0

V
[3]

[~h],λ

)
⊖ Rm

]
⊕
[( ⊕

m1,λ=m2,λ=m3,λ=0

V
[3]

[~h],λ

)
⊖ Rm

]

=
( ⊕

m12,λ=0

V
[3]

[~h],λ

)
⊕
( ⊕

m1,λ=m2,λ

=m3,λ=0

V
[3]

[~h],λ

)
⊖
( ⊕

m1,λ=m2,λ=0

V
[3]

[~h],λ

)
⊖
( ⊕

m12,λ=m3,λ=0

V
[3]

[~h],λ

)
.

Therefore the LHS of (3.4) is
⊕

λ

(m1,λ +m2,λ + {1−m12,λ})V
[3]

[~h],λ
⊖ V

[3]

[~h]
⊕

⊕

m1,λ=m2,λ=0

V
[3]

[~h],λ

⊕
⊕

λ

(m12,λ +m3,λ + {1−m123,λ})V
[3]

[~h],λ
⊖ V

[3]

[~h]
⊕

⊕

m12,λ=m3,λ=0

V
[3]

[~h],λ

⊕
( ⊕

m12,λ=0

V
[3]

[~h],λ

)
⊕
( ⊕

m1,λ=m2,λ

=m3,λ=0

V
[3]

[~h],λ

)
⊖
( ⊕

m1,λ=m2,λ=0

V
[3]

[~h],λ

)
⊖
( ⊕

m12,λ=m3,λ=0

V
[3]

[~h],λ

)

=
⊕

λ

(m1,λ +m2,λ +m3,λ + {1−m123,λ})V
[3]

[~h],λ
⊖ V

[3]

[~h]
⊕

⊕

m1,λ=m2,λ=m3,λ=0

V
[3]

[~h],λ

⊕
⊕

λ

(m12,λ + {1−m12,λ})V
[3]

[~h],λ
⊕

⊕

m12,λ=0

V
[3]

[~h],λ
⊖ V

3
[~h]

=
⊕

λ

(m1,λ +m2,λ +m3,λ + {1−m123,λ})V
[3]

[~h],λ
⊖ V

[3]

[~h]
⊕

⊕

m1,λ=m2,λ=m3,λ=0

V
[3]

[~h],λ

=
⊕

m1,λ+m2,λ+m3,λ+{1−m123,λ}≥2

(m1,λ +m2,λ +m3,λ + {1−m123,λ} − 1)V
[3]

[~h],λ

= (e∗1V
[1]
Φ ⊕ e∗2V

[1]
Φ ⊕ e∗3V

[1] ⊕ e∗123V
[1]
Φ−1 ⊖ N

[3])|X
[~h]
,

where for the second equality we have used the fact that
⊕

λ

(m12,λ + {1−m12,λ})V
[3]

[~h],λ
⊕

⊕

m12,λ=0

V
[3]

[~h],λ
= V

3
[~h]
.
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Similarly, the RHS of (3.4) is also

(e∗1V
[1]
Φ ⊕ e∗2V

[1]
Φ ⊕ e∗3V

[1] ⊕ e∗123V
[1]
Φ−1 ⊖ N

[3])|X
[~h]

=
⊕

m1,λ+m2,λ+m3,λ+{1−m123,λ}≥2

(m1,λ +m2,λ +m3,λ + {1−m123,λ} − 1)V
[3]

[~h],λ
.

The lemma follows.

3.2 Relation with stringy cohomology ring

We next study the relation between Chen-Ruan cohomology ring of stable almost complex

(global) quotient orbifolds and stringy cohomology of the ambient equivariant stable almost

complex manifolds.

3.2.1 Global quotient orbifolds

Suppose that G is a finite group and X is a compact G-equivariant stable almost complex

manifolds, i.e., there is a trivial bundle Rm = X × Rm over X such that V := TX ⊕ Rm is

a complex bundle and the G-action on TX together with trivial action on Rm gives rise to a

complex linear action of G on V . We refer the reader to [14, 17] for the explicit construction of

stringy cohomology ring of (X,G).

The global quotient orbifold X := [X/G] has a natural orbifold groupoid representation

X = (X ×G ⇒ X). It is a SACOG. In fact the stable almost complex structure is obtained via

the equality

[V/G] = [(TX ⊕ Rm)/G] = TX⊕ Rm,

and the complex structure over V = TX⊕Rm induces a complex structure over V := TX⊕Rm.

The stringy cohomology group H ∗(X,G) of (X,G) is the cohomology of its inertia manifold

IGX =
⊔

g∈G

Xg, with a degree shifting

H
∗(X,G) =

⊕

g∈G

H∗−2ι(g)(Xg,C),

where Xg is the fixed locus of g-action on X . The degree shifting ι(g) is defined to be

ι(g) =

ord(g)∑

j=1

j

ord(g)
rankC V |Xg (j), (3.6)

where V |Xg (j) is the eigen-bundle with eigen value exp2π
√
−1 j

ord(g) of the g-action on V |Xg . In

fact there is a formal bundle

Sg :=

ord(g)∑

j=1

j

ord(g)
V |Xg (j) ∈ K(Xg)⊗Z Q.

The pairing over H ∗(X,G) is the direct sum of

〈·, ·〉X,G : H∗(Xg,C)⊗H∗(Xg−1

,C) → C, 〈αg, βg−1〉X,G =

∫

Xg

αg ∧ I∗βg−1 ,
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where I : Xg → Xg−1

, x 7→ x.

G acts on IGX via h : Xg → Xhgh−1

, x 7→ h ·x. This action gives rise to an averaging map

H
∗(X,G) → H

∗(X,G), αg 7→
1

|G|

∑

h∈G

h∗(αg).

The image of this averaging map H ∗(X,G) is the G-invariant part of H ∗(X,G) w.r.t. the

G-action on IX . The pairing 〈·, ·〉X,G induces a pairing 1
|G|〈·, ·〉X,G over H ∗(X,G).

The ring structure over H ∗(X,G) is defined as follows. The 2-sector of (X,G) is

I2G(X) =
⊔

(g1,g2)∈G2

Xg1,g2 (3.7)

with Xg1,g2 = Xg1 ∩ Xg2 . We also have obvious maps ei : I2G(X) → IGX, i = 1, 2 and

e12 : I2G(X) → IGX with ei : X
g1,g2 →֒ Xgi , e12 : Xg1,g2 →֒ Xg1g2 . Over a component X~g with

~g = (g1, g2), by setting g3 = (g1g2)
−1, the component R(~g) over X~g of the obstruction bundle

R is

R(~g) = TX~g ⊖ TX |X~g ⊕

3⊕

i=1

Sgi |X~g .

Then the product over H ∗(X,G) is defined by requiring that the equality

〈α ⋆ β, γ〉X,G =

∫

I2G(X)

e∗1α ∧ e∗2β ∧ (I ◦ e∗12)γ ∧ e(R)

holds for all γ ∈ H∗(IGX). This is equivalent to the formula

α ⋆ β = e12,∗(e
∗
1α ∧ e∗2β ∧ e(R)). (3.8)

Since

IX =
⊔

[g]∈[G]

[Xg/ZG(g)] = [IGX/G],

and G is a finite group, we see that there is a group isomorphism

H ∗(X,G) = H
∗(X,G)G = H∗(IGX,C)G ∼= H∗(IGX/G,C) = H∗

CR(X,C).

This isomorphism identifies the degree shifting, and the pairing by the definition of orbifold

integration. Therefore, to show the isomorphism between ring structure, we only need to show

that the isomorphism identifies the Euler class of the obstruction bundles. Note that

X
[2] =

⊔

[~g]∈[G2]

[X~g/ZG(~g)] = [I2G(X)/G].

Then from the definition of E[2] we immediately get [R/G] = E
[2]. In fact, Sgi corresponds to

e∗iV
[1]
Φ , and TX |X~g ⊖ TX~g corresponds to N

[2]. Therefore we have the following theorem.

Theorem 3.2 We have a ring isomorphism4 H ∗(X,G) ∼= H∗
CR(X,C).

4In fact, this is a Frobenius algebra isomorphism, since this isomorphism also identifies the pairing.
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3.2.2 Torus quotient orbifolds

Now suppose that Y is a compact T -equivariant stable almost complex manifold, T is a

torus and the T -action on Y is locally free. Then X = [Y/T ] is a SACOG since the adjoint

action of T on its Lie algebra is trivial. The construction of stringy cohomology group of (Y, T )

is identical to the previous case except that singular cohomology is replaced by T -equivariant

cohomology (see [15]). The stringy cohomology group of (Y, T ) is the T -equivariant cohomology

group of ITY :=
⊔
t∈T

Y t with a degree shifting

NH∗,⋄
T (Y ) =

⊕

t∈T

H
∗−2ι(t)
T (Y t,C),

where the sum indicates the ⋄-grading, i.e., NH∗,t
T (Y ) = H∗

T (Y
t,C). The degree shifting ι(t) is

defined in the same form as (3.6). We also have IX = [ITY/T ]. It is also direct to see that the

degree shifting of NH∗,⋄
T (Y ) is the same as the degree shifting of H∗

CR(X) since T is abelian.

Since for a locally free action H∗
T (Y

t,C) ∼= H∗(Y t/T,C), we get a group isomorphism

NH∗,⋄
T (Y ) ∼= H∗

CR(X,C).

The 2-sector of (Y, T ) is also of the form I2T (Y ) :=
⊔

(t1,t2)∈T 2

Y t1,t2 as (3.7) and X
[2] =

[I2T (Y )/T ]. The stringy product over NH∗,⋄
T (Y ) is defined by the same formula as (3.8) (see

[15, Definition 3.2]) with the obstruction bundle E (see [15, Definition 3.1]) constructed as

follows. Over a component Z of Y g1,g2 , the normal bundle νZ of Z in Y splits into irreducible

representation of 〈g1, g2〉 < T,

νZ =
⊕

λ

Iλ.

Denote the action weights of g1, g2, (g1g2)
−1 over each Iλ by m1,λ,m2,λ,m12,λ, respectively.

Then the obstruction bundle is given by

E|Z :=
⊕

m1,λ+m2,λ+m12,λ=2

Iλ.

Comparing with (3.5) [E/T ] = E
[2]. Therefore, we have the following theorem.

Theorem 3.3 We have a ring isomorphism NH∗,⋄
T (Y ) ∼= H∗

CR(X,C).

4 Stringy Product over Orbifold K-Theory of SACOGs

In this section we generalize the stringy product on orbifold K-theory and the modified de-

localized Chern character in [16] for compact presentable5 almost complex orbifolds to compact

presentable SACOGs. Suppose that X is compact, i.e., its coarse space is compact. Then there

is a delocalized Chern character.

Theorem 4.1 (see [16, Proposition 2.5]) For any compact presentable orbifold groupoid X,

the delocalized Chern character gives a ring isomorphism

chdeloc : K
∗
orb(X)⊗Z C → H∗(IX,C)

5An orbifold groupoid is presentable if it is Morita equivalent to a quotient groupoid G ⋉X with G being a
Lie group and X being a smooth manifold equipped with a smooth, almost free G-action.
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over C. Here the ring structure over K∗
orb(X)⊗Z C is tensor product of orbifold vector bundles,

and the ring structure on H∗(IX,C) is the wedge product of differential forms.

We recall the definition of chdeloc (see [16, Section 2.2]). Given a complex orbifold vector

bundle E over X, pull it back to IX by the evaluation map e : IX → X to get e∗E. Then e∗E has

the canonical automorphism Φ. Decompose it into eigen-bundles

e∗E =
⊕

θ∈Q∩[0,1)

e∗E(θ).

Then chdeloc : K
0
orb(X) → H∗

CR(X,C) is defined to be

chdeloc(E) =
∑

θ

e2π
√
−1θch(e∗E(θ)). (4.1)

chdeloc over K1
orb(X) is defined in the usual way.

For a compact presentable orbifold groupoid X we also have the following result.

Proposition 4.1 (see [16, Proposition 4.2]) There exists a canonical ring homomorphism

chΦ : K∗
orb(IX) → H∗(IX,C)

such that the diagram

K∗
orb(IX)

chΦ // H∗(IX,C)

K∗
orb(X)

e∗

OO

chdeloc

88qqqqqqqqqq

commutes.

Proof The proof is similar to the proof of [16, Proposition 4.2]. In fact, since any complex

orbifold bundle E over IX has a canonical automorphism Φ, we can always decompose it into

eigen-bundles, then chΦ is defined in a similar way as chdeloc in (4.1).

Let K∗
orb(IX,C) := K∗

orb(IX) ⊗Z C. Then the previous proposition implies the commutative

diagram of linear maps between vector spaces over C,

K∗
orb(IX,C)

chΦ // H∗(IX,C)

K∗
orb(X,C)

e∗

OO

chdeloc

77♣♣♣♣♣♣♣♣♣♣♣

with chdeloc being isomorphism. Following the same argument as in [16, p.6330] we get a left

inverse of e∗. First of all e∗ is injective. Hence K∗
orb(IX,C) = Im(e∗) + ker chΦ. Now suppose

α̃ ∈ Im(e∗) ∩ ker chΦ. Then there is an α ∈ K∗
orb(X,C) such that e∗α = α̃ and chΦ(α̃) = 0.

Then chdeloc(α) = chΦ ◦ e∗(α) = chΦ(α̃) = 0. Since chdeloc is an isomorphism, α = 0 and hence

α̃ = 0. Therefore

K∗
orb(IX,C) ∼= Im(e∗)⊕ ker chΦ.

Hence, each element α̃ ∈ K∗
orb(IX,C) can be uniquely written as α̃ = e∗α + β for a unique

element α ∈ K∗
orb(X,C) and β ∈ ker chΦ. We then can take a left inverse

e# : K∗
orb(IX,C) → K∗

orb(X,C)
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of e∗, i.e., e#◦e∗ = id overK∗
orb(X), which maps α̃ = e∗α+β to α. So we have chdeloc◦e# = chΦ.

Definition 4.1 Let X be a compact presentable SACOG and IX be its inertia orbifold. The

stringy product on K∗
orb(X,C) is defined by

α1 ◦ α2 := e#[e12,∗(e
∗
1(e

∗α1) · e
∗
2(e

∗α2) · λ−1(E
[2]))]

for α1, α2 ∈ K∗
orb(X,C). Here

e12,∗(e
∗
1(e

∗α1) · e
∗
2(e

∗α2) · λ−1(E
[2]))

is similar to the Adem-Ruan-Zhang stringy product on K∗
orb(IX,C) for almost complex orbifold

(see [3, 16] and Appendix), “·” is the tensor product of bundles, and λ−1 is the K-theory Euler

class.

Remark 4.1 We could directly prove the associativity of this product by using (3.4) in Lem-

ma 3.1 (see Theorem 4.3). However, this also follows from the isomorphism between K∗
orb(X,C)

and H∗(IX,C) = H∗
CR(X,C) in Theorem 4.2, which identifies the product ◦ with ∪CR.

Next, we follow [16] to define a modified version of the delocalized Chern character,

c̃hdeloc : K
∗
orb(X,C) → H∗(IX,C) = H∗

CR(X,C).

For a complex orbifold vector bundle E over an orbifold groupoid Y, we can assign it a

characteristic class T (E) ∈ H∗(Y,C) associated to the formal power series T (x) = 1−ex

x
. It

assigns E,

T (E) =
ch(λ−1(E))

e(E)
∈ H∗(Y,C).

On the other hand, an orbifold complex vector bundle E over IY has a canonical automorphism

Φ, and an eigen-bundle decomposition w.r.t this Φ,

E =
⊕

mi∈Q∩[0,1)

E(mi),

where Φ acts on E(mi) as multiplication by exp2π
√
−1mi . Define a cohomology class

T (E,Φ) :=
∏

mi

T (Emi
)mi ∈ H∗(IY,C),

where T (Emi
)mi is the characteristic class associated to the formal power series T (x)m :=(

1−ex

x

)m
. Then T (E,Φ) is an invertible element in H∗(IY,C), as the degree zero component is

1.

Now for the normal bundle

N
[1] =

⊔

[g]∈T 1

N
[1]
[g]

over IX of the evaluation map e : IX → X, we have the cohomology class T (N[1],Φ) in H∗(IX)

whose component in H∗(X[g],C) is given by T (N
[1]
[g],Φ). For the bundle E

[2]⊕N
e12 over X[2] we

also have the cohomology class T (E[2]⊕N
e12) in H∗(X[2],C) whose component in H∗(X[g1,g2],C)

is given by T (E
[2]
[g1,g2]

⊕ N
e12
[g1,g2]

).
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By Definition 3.1 of the obstruction bundle E
[2] over X[2] and (3.2) we have

E
[2] ⊕ N

[2] ⊕ e∗12N
[1]
Φ = e∗1N

[1]
Φ ⊕ e2N

[1]
Φ ⊕ e∗12N

[1]
Φ−1 ⊕ e∗12N

[1]
Φ

= e∗1N
[1]
Φ ⊕ e2N

[1]
Φ ⊕ e∗12N

[1],

which together with (2.4), i.e., N[2] = N
e12 ⊕ e∗12N

[1], implies that

E
[2] ⊕ N

e12 ⊕ e∗12N
[1]
Φ = e∗1N

[1]
Φ ⊕ e2N

[1]
Φ .

Therefore we have the following identity:

T (E
[2]
[g1,g2]

⊕ N
e12
[g1,g2]

) ∧ e∗12T (N
[1]
[g1g2]

,Φ) = e∗1T (N
[1]
[g1]

,Φ) ∧ e∗2(T (N
[1]
[g2]

,Φ)) (4.2)

in H∗(X[g1,g2],C) for any connected component X[g1,g2] of X
[2].

Definition 4.2 The modified delocalized Chern character on the orbifold K-theory K∗
orb(X)

is defined to be

c̃hdeloc := T (N[1],Φ) ∧ chdeloc : K
∗
orb(X) → H∗

CR(X,C).

Theorem 4.2 Let X be a compact presentable SACOG. The modified delocalized Chern

character

c̃hdeloc : (K
∗
orb(X,C), ◦) → (H∗

CR(X,C),∪CR)

is a vector space isomorphism that identifies the two products ◦ and ∪CR.

Proof The isomorphism between vector space follows from the fact that the degree 0

component of T (N[1],Φ) is 1 over each component of IX and chdeloc is an isomorphism of linear

spaces (see Theorem 4.1). The equality (4.2) and the same computation as the proof of [16,

Theorem 4.5] would prove this theorem.

First of all by the definition of stringy product we have

chdeloc(α1 ◦ α2) = (chdeloc ◦ e#)(e12,∗(e
∗
1α1 · e

∗
2α2 · λ−1(E

[2])))

= chΦ[e12,∗(e
∗
1α1 · e

∗
2α2 · λ−1(E

[2]))]

for α1, α2 ∈ K∗
orb(X,C).

The inertia orbifold IX =
⊔

[g]∈T 1

X[g], the evaluation map e : IX → X decompose into e∗ =

⊕[g]∈T 1e∗[g]. We next compute the X[g]-component of chdeloc(α1 ◦ α2). It is given by

∑

[g1,g2]∈T 2,[g1g2]=[g]

chΦ[e12,∗(e
∗
1e

∗
[g1]

α1 · e
∗
2e

∗
[g2]

α2 · λ−1(E
[2]
[g1,g2]

))].

Here the pushforward map e12,∗ : K∗
orb(X[g1,g2],C) → K∗

orb(X[g1g2],C) is obtained by composing

the Thom isomorphism for the normal bundle Ne12
[g1,g2]

of e12 : X[g1,g2] → X[g1g2] with the natural

extension for open embeddings.

Using the fact that the Thom class of Ne12
[g1,g2]

has trivial automorphism (see [16, p.6332]),

we obtain

c̃hdeloc(α1 ◦ α2)
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= chdeloc(α1 ◦ α2) ∧ T (N
[1]
[g1g2]

,Φ)

=
∑

[g1,g2]∈T 2

chΦ[e12,∗(e
∗
1e

∗
[g1]

α1 · e
∗
2e

∗
[g2]

α2 · λ−1(E
[2]
[g1,g2]

))] ∧ T (N
[1]
[g1g2]

,Φ)

=
∑

[g1,g2]∈T 2

e12,∗[e
∗
1chΦe

∗
[g1]

α1 ∧ e∗2chΦe
∗
[g2]

α2 ∧ ch(λ−1(E
[2]
[g1,g2]

)) ∧ T (Ne12
[g1,g2]

)] ∧ T (N
[1]
[g1g2]

,Φ)

=
∑

[g1,g2]∈T 2

e12,∗[e
∗
1chΦe

∗
[g1]

α1 ∧ e∗2chΦe
∗
[g2]

α2 ∧ e(E
[2]
[g1,g2]

) ∧ T (E
[2]
[g1,g2]

⊕ N
e12
[g1,g2]

)] ∧ T (N
[1]
[g1g2]

,Φ)

=
∑

[g1,g2]∈T 2

e12,∗[e
∗
1chΦe

∗
[g1]

α1 ∧ e∗2chΦe
∗
[g2]

α2 ∧ e(E
[2]
[g1,g2]

) ∧ T (E
[2]
[g1,g2]

⊕ N
e12
[g1,g2]

) ∧ e∗12T (N
[1]
[g1g2]

,Φ)]

=
∑

[g1,g2]∈T 2

e12,∗[e
∗
1chΦe

∗
[g1]

α1 ∧ e∗2chΦe
∗
[g2]

α2 ∧ e(E
[2]
[g1,g2]

) ∧ e∗1T (N
[1]
[g1]

,Φ) ∧ e∗2T (N
[1]
[g2]

,Φ)]

=
∑

[g1,g2]∈T 2

e12,∗[e
∗
1c̃hdeloc(α1) ∧ e∗2c̃hdeloc(α2) ∧ e(E

[2]
[g1,g2]

)]

= e12,∗[e
∗
1c̃hdeloc(α1) ∧ e∗2c̃hdeloc(α2) ∧ e(E[2])]

= c̃hdeloc(α1) ∪CR e∗2c̃hdeloc(α2),

where we have used (4.2). This shows that c̃hdeloc preserves the product.

Appendix Stringy Product over Twisted Orbifold K-theory of SACOGs

In the appendix we extend the stringy product over twisted orbifold K-theory of almost

complex orbifolds of Adem-Ruan-Zhang [3] to twisted orbifold K-theory of SACOGs. We refer

the reader to [3] for the definition of twisted orbifold K-theory for general orbifolds.

Let ϕ be a U(1)-valued 3-cocycle for X, i.e., a 2-gerbe over X, and θ(ϕ) be its inverse

transgression, hence a U(1)-valued 2-cocycle over IX, i.e., a 1-gerbe over IX. Then there is a

twisted orbifold K-theory of IX,
θ(ϕ)K∗

orb(IX).

Definition 4.3 Suppose that X is a SACOG. Let α, β ∈ θ(ϕ)K∗
orb(IX). We define

α ⋆ β = e12,∗(e
∗
1α · e∗2β · λ−1(E

[2])),

where “·” is the product in twisted orbifold K-theory, and λ−1(E
[2]) is the K-theory Euler class.

When ϕ is trivial, we get a stringy product over K∗
orb(IX).

Remark 4.2 Note that here α, β are elements in the twisted orbifold K-theory, however

λ−1(E
[2]) is an element in K0

orb(X
[2]). The product between e∗1α and e∗2β is the product in

twisted orbifold K-theory, the product between (e∗1α · e∗2β) and λ−1(E
[2]) is obtained from the

natural module structure of twisted orbifold K-theory over K0
orb (see [3, Section 3]).

Theorem 4.3 The product ⋆ over θ(ϕ)K∗
orb(IX) is associative.

Proof The proof is similar to that of Theorem 3.1. Take α, β, γ ∈ θ(ϕ)K∗
orb(IX). Then we

have

(α ⋆ β) ⋆ γ = e12,∗[e
∗
1(e12,∗(e

∗
1α · e∗2β · λ−1(E

[2]))) · e∗2γ · λ−1(E
[2])]

and

α ⋆ (β ⋆ γ) = e12,∗[e
∗
1α · e∗2(e12,∗(e

∗
1β · e∗2γ · λ−1(E

[2]))) · λ−1(E
[2])].
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For simplicity we assume that α ∈ θ(ϕ)K∗
orb(X[g1]), β ∈ θ(ϕ)K∗

orb(X[g2]), γ ∈ θ(ϕ)K∗
orb(X[g3 ]).

Then (α ⋆ β) ⋆ γ supports over a neighborhood of

⊔

[~h]=[h1,h2,h3],[hi]=[gi]

X[~h].

As the proof of Theorem 3.1, by the clean intersection formula (see [3, Lemma 7.2]), for a fixed

X[~h] the restriction of (α ⋆ β) ⋆ γ in a small neighborhood U[~h] of X[~h] is

e12,∗[e
∗
1(e12,∗(e

∗
1α · e∗2β · λ−1(E

[2]))) · e∗2γ · λ−1(E
[2])]|U

[~h]

= e123,∗[e
∗
1α · e∗2β · e∗3γ · λ−1(E

[2]
[h1,h2]

)|X
[~h]

· λ−1(E
[2]
[h12,h3]

)|X
[~h]

· λ−1(E(X[h12],X[h1,h2],X[h12,h3]))].

Similarly, the restriction of α ⋆ (β ⋆ γ) in a small neighborhood U[~h] of X[~h] is

e12,∗[e
∗
1α · e∗2(e12,∗(e

∗
1β · e∗2γ · λ−1(E

[2]))) · λ−1(E
[2])]|U

[~h]

= e123,∗[e
∗
1α · e∗2β · e∗3γ · λ−1(E

[2]
[h2,h3]

)|X
[~h]

· λ−1(E
[2]
[h1,h23]

)|X
[~h]

· λ−1(E(X[h23],X[h2,h3],X[h1,h23]))].

Then by Lemma 3.1 we get

e12,∗[e
∗
1(e12,∗(e

∗
1α · e∗2β · λ−1(E

[2]))) · e∗2γ · λ−1(E
[2])]

= e12,∗[e
∗
1α · e∗2(e12,∗(e

∗
1β · e∗2γ · λ−1(E

[2]))) · λ−1(E
[2])].

This finishes the proof.

By using this stringy product, we could rewrite the stringy product over K∗
orb(X,C) as

α ◦ β = e#(e
∗
1α ⋆ e∗2β).

Here the stringy product “⋆” is defined over non-twisted orbifold K-theory of IX by using the

trivial gerbe ϕ = 1.
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