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1 Introduction

Let T > 0 and (Ω,F , (Ft)t≥0,P) be a given complete filtered probability space, where

{Ft; t ∈ [0, T ], T < ∞} satisfies the usual conditions. Let Wt be an n-dimensional standard

Brownian motion. Let S[0, T ] be the set of all {Ft}0≤t≤T -stopping times taking values in [0, T ].

For any τ1, τ2 ∈ S[0, T ] with τ1 ≤ τ2 almost surely, P{τ1 < τ2} > 0.

For any s ∈ [0, T ) and x ∈ R
n, consider the following stochastic differential equation (SDE

for short):

{
dXt = [b(t,Xt) + Ct]dt+ σ(t,Xt)dWt, t ∈ [s, T ],
Xs = x,

(1.1)

where the mappings b(t, x) and σ(t, x) are two Lipschitz continuous functions and take value

in R
n and R

n ⊗ R
n, respectively. Let A denote the class of all n-dimensional Ft-progressively

measurable processes C = (Ct) and there exists an M > 0 such that E
[ ∫ T

0
|Cs|2ds

]
< M .

Thus, SDE (1.1) has a unique strong solution X· := X(·; s, x). The cost functional is given by

J(C(·), τ ; s, x)

= E

[ ∫ τ

s

e−α(t−s){f(t,Xt) + a−1|Ct|2}dt+ e−α(τ−s)g(τ,Xτ )
]
, τ ∈ S[s, T ], (1.2)

where a > 0, mappings f, g : [0, T ]×R
n → [0,∞) are non-negative and satisfy proper conditions

and α > 0 is a discount rate. In this case, the value function V : [0, T ]× R
n → R is defined as
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follows:

V (s, x) = inf
(C(·),τ)∈A×S[s,T ]

J(C(·), τ ; s, x). (1.3)

We call τ ∈ S[s, T ] is an optimal stopping time if the cost functional J defined by (1.2) has

attained its infimum value, and the smallest one is referred to as the smallest optimal stopping

time.

The above optimal stopping problem over a finite time horizon can be reduced to the fol-

lowing variational inequality:

∂V

∂t
− LV + f − a

4
|DV |2 ≥ 0 in [0, T )× R

n,

V ≤ g in [0, T ]× R
n,

(∂V
∂t

− LV + f − a

4
|DV |2

)
(V − g)− = 0 in [0, T )× R

n,

V (T, x) = g(T, x) on R
n. (1.4)

Here L = L0 + α, L0 denotes the second order differential operator

L0 = −1

2
tr(σσ∗D2)− bD.

Here |·| is the Euclidean norm, σ∗ is the transpose of σ, x− := max(−x, 0), D :=
(

∂
∂x1

, · · · , ∂
∂xn

)
.

The purpose of this paper is to prove the existence and uniqueness of the solution of the parabolic

variational inequality (1.4) and then to characterize the solution V .

The theoretical results in the control of discrete stopping time are originated from Krylov

[23], El Karoui [7], Bensoussan and Lions [3] and Morimoto [21–22]. Many scholars have

introduced the method of variational inequality in order to solve the optimal stopping time

problems (see [4, 9, 11–14]). Some classic results for variational inequalities can be found in

[2, 10, 20]. Morimoto [24] investigated the elliptic variational inequality derived from the mixed

stochastic control; under the without uniform ellipticity condition, he proved the existence

and uniqueness of the viscosity solution for the elliptic variational inequality. In many scientific

fields such as engineering and finance (see Øksendal [25], Shiryaev [27], Karazas and Shreve [16]),

there is an optimal stopping time problem for a finite or an infinite time horizon for Itô diffusion

processes. Pham [26] investigated the state equation driven by a combination of the Brownian

motion and the compensated jump martingale random measure. He proved that the value

function is continuous and is a viscosity solution of the integrodifferential variational inequality

arising from the associated dynamic programming. Goreac and Serea [15] investigated that the

value functions had been introduced via linear optimization problems on appropriate sets of

probability measures. Both the lower and upper semicontinuous cases were considered. Then

they proved that the value function is a generalized viscosity solution of the associated HJB

system, respectively, of some variational inequality. Because the control state space of the above

two papers is a compact metric separable space, the second-order differential operator of the

Hamiltonian function in [26] is only linear growth with respect to gradient. However, we study

variational inequalities that have the square growth of the gradient. Because the control state

space of [15, 26] is a compact metric separable space, their second-order differential operator of

the Hamiltonian functions are only linear growth with respect to gradient. But for the previous
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paper, we study the square of the gradient DxV . We do not find appropriate functions (b

and σ) to rewrite (1.3) as in [26]. Moreover, our model and results have potential applications

in contingent claims. We also note the use of some pure probability methods to study the

optimal stopping time problems for general continuous-time stochastic processes. Without

using the dynamic programming principle, the optimal stopping time is characterized by the

Snell envelope, the super martingale, and so on. Assuming that the stochastic processes (see

[17–19]) is not using the dynamic programming principle, there is no natural HJB equation.

The rest of the paper is organized as follows. In Section 2 we derive the backward partial

differential variational inequality (BPDVI for short). In addition, we discuss the existence and

uniqueness of the viscosity solution Vǫ of the penalized problem. In Section 3 the definition of

the viscosity solutions to BPDVI (1.4) is given, and we prove that Vǫ converges to a unique

viscosity solution of the variational inequality (1.4). In Section 4 we investigate that the quasi-

variational inequality is derived from mixed impulse control.

2 Penalized Problem

In order to simplify the whole paper we take a = 1. Let C = C([0, T ] × R
n) denote the

Banach space which consists of all bounded uniformly continuous functions h on [0, T ] × R
n

with norm ‖h‖ = sup
(t,x)∈[0,T ]×Rn

|h(t, x)|, and C+ = {h ∈ C : h ≥ 0}.

Throughout the paper, we need the following three assumptions.

(H1) Mappings b : [0, T ]×R
n → R

n and σ : [0, T ]×R
n → R

n ⊗R
n are Lipschitz contiuous

and they satisfy the following condition: There exists a κ > 0 such that

|b(t, x)− b(s, y)|+ |σ(t, x) − σ(s, y)| ≤ κ[|x− y|+ |t− s|] a.e. t, s ∈ [0, T ], ∀x, y ∈ R
n.

(H2)

α > ν := sup
{
tr
[ (σ(t, x) − σ(t, y))(σ(t, x) − σ(t, y))∗

|x− y|2
]

+
2〈x− y, b(t, x)− b(t, y)〉

|x− y|2 : t ∈ [0, T ]; x, y ∈ R
n, x 6= y

}
.

(H3) f, g ∈ C+.

We will now derive the variational inequality (1.4) as follows. Firstly, for any τ ∈ S[s, T ],
we get

V (s, x) ≤ J(C(·), τ ; s, x) := E

[ ∫ τ

s

e−α(t−s){f(t,Xt) + |Ct|2}dt+ e−α(τ−s)g(τ,Xτ )
]
. (2.1)

Taking τ = s, we have V (s, x) ≤ g(s, x) for all (s, x) ∈ [0, T ]× R
n. Secondly, V is supposed to

be smooth. By the dynamic programming principle for (2.1), we get

V (s, x) ≤ E

[ ∫ s+δ

s

e−α(t−s){f(t,Xt) + |Ct|2}dt+ e−αδV (s+ δ,Xs+δ)
]
, ∀δ ≥ 0.

From this principle, we have

lim
δ↓0

E
[
e−αδV (s+ δ,Xs+δ)− V (s, x)

]

δ

=
∂V

∂s
(s, x)− LV (s, x) + 〈Cs, DV (s, x)〉 ≥ −f(s, x)− |Cs|2
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for all (s, x) ∈ [0, T ]× R
n.

Suppose that (s, x) ∈ [0, T ]× R
n is such that

V (s, x) < g(s, x), (2.2)

and let τn ∈ S[s, T ] and Cn(·) ∈ A be such that

lim
n→+∞

J(Cn(·), τn; s, x) = V (s, x). (2.3)

We claim that there exists s0 > s such that

τn ≥ s0 > s (2.4)

for sufficiently large n. To see this, set δn = J(Cn(·), τn; s, x) − V (s, x). By assumption (H3),

we have

V (s, x) + δn ≥ −‖f‖
∫ τn

s

e−α(t−s)dt− E

∫ τn

s

e−α(t−s)|C0
t |2dt

+ g(τn, Xτn)e
−α(τn−s).

If for some subsequence τn → s, the preceding would imply

V (s, x) ≥ g(s, x),

a contradiction to (2.2), thus (2.4) holds. Note that for u ∈ [s, s0],

J(Cn(·), τn; s, x) = E

[ ∫ u

s

e−α(t−s){f(t,Xt) + |Cn
t |2}dt

+ e−α(u−s)J(Cn(·), τn;u,Xs,x
u )

]
.

Since u ∈ [s, s0], according to definition of V , we get

J(Cn(·), τn; s, x) ≥ inf
C(·)∈A[s,u]

E

[ ∫ u

s

e−α(t−s){f(t,Xt) + |Ct|2}dt

+ e−α(u−s)V (u,Xs,x
u )

]
.

Letting n→ +∞, by (2.3) we have

V (s, x) ≥ inf
C(·)∈A[s,u]

E

[ ∫ u

s

e−α(t−s){f(t,Xt) + |Ct|2}dt+ e−α(u−s)V (u,Xs,x
u )

]
.

If V (s, x) < g(s, x) holds, we have

(∂V
∂t

− LV + f − 1

4
|DV |2

)
(V − g)− = 0,

which implies (1.4).

We hope that the solution of the variational inequality (1.4) can be approximated by the

solution of the following penalized equation: For ǫ ∈ (0, 1],





∂V

∂t
− LV + f − 1

4
|DV |2 − 1

ǫ
(V − g)+ = 0, (t, x) ∈ [0, T )× R

n,

V (T, x) = g(T, x), x ∈ R
n,

(2.5)
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which is equivalent to




∂V

∂t
−
(
α+

1

ǫ

)
V − L0V + f − 1

4
|DV |2 + 1

ǫ
(V ∧ g) = 0, (t, x) ∈ [0, T )× R

n,

V (T, x) = g(T, x), x ∈ R
n.

(2.6)

Thus, if the solution Vǫ of (2.6) exists, then it satisfies the following integral equation: For

ǫ ∈ (0, 1],

V (s, x) = inf
C(·)∈A

E

[ ∫ T

s

e−(α+ 1
ǫ
)(t−s)

{(
f +

1

ǫ
(V ∧ g)

)
(t,Xt) + |Ct|2

}
dt

+ e−(α+ 1
ǫ
)(T−s)g(T,XT )

]
. (2.7)

2.1 Existence

In this subsection, we prove the existence of the solution of (2.7) and prove that the solution

of integral equation (2.7) is a viscosity solution of (2.6).

Theorem 2.1 Let the assumptions (H1), (H2) and (H3) hold. Then (2.7) has a unique

solution V ∈ C+.

Proof It is clear that C+ is a closed subset of C. We define

Tw(s, x) := inf
C(·)∈A

E

[ ∫ T

s

e−(α+ 1
ǫ
)(t−s)

{(
f +

1

ǫ
(w ∧ g)

)
(t,Xt) + |Ct|2

}
dt

+ e−(α+ 1
ǫ
)(T−s)g(T,XT )

]
for w ∈ C. (2.8)

We will prove

T : C+ → C+. (2.9)

We can calculate that

0 ≤ Tw(s, x) ≤ E

[ ∫ T

s

e−(α+ 1
ǫ
)(t−s)

{(
f +

1

ǫ
g
)
(t,Xt)

}
dt+ e−(α+ 1

ǫ
)(T−s)g(T,XT )

]

≤ ǫ

αε+ 1

[
‖f‖+

(
α+

1

ǫ

)
‖g‖

]
, w ∈ C+

for the correspondence Xt to Ct = 0. Moreover, without loss of generality, let r < s hold and

from (2.8) we have

|Tw(s, x) − Tw(r, y)|

≤ sup
C(·)∈A

E

[ ∫ T

s

e−(α+ 1
ǫ
)(t−s)

{
|f(t,Xt)− f(t, Yt)|+

1

ǫ
(|w(t,Xt)− w(t, Yt)|

+ |g(t,Xt)− g(t, Yt)|)
}
dt+ e−(α+ 1

ǫ
)(T−s)(g(T,XT )− g(T, YT ))

]

+ inf
C(·)∈A

E

[ ∫ s

r

e−(α+ 1
ǫ
)(t−r)

{(
f +

1

ǫ
(w ∧ g)

)
(t,Xt) + |Ct|2

}
dt
]

≤ If +
1

ǫ
(Iw + Ig) + sup

C(·)∈A

E

[
e−(α+ 1

ǫ
)(T−s)(g(T,XT )− g(T, YT ))

]

+ E

[ ∫ s

r

e−(α+ 1
ǫ
)(t−r)

{(
f +

1

ǫ
(w ∧ g)

)
(t,Xt) + |Ct|2

}
dt
]
.
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Here Yt is the solution of (1.1) with initial value Yr = y, and

Ih = sup
C(·)∈A

E

[ ∫ T

s

e−(α+ 1
ǫ
)(t−s)|h(t,Xt)− h(t, Yt)|dt

]
for h ∈ C.

By (H2) we can select η > 0 such that −α+ ν + η < 0. We apply Itô’s formula to the function

|Xt − Yt|2e(−α+η)(t−s), then we get

E[|Xt − Yt|2e(−α+η)(t−s)] ≤ E|x− Ys|2. (2.10)

By a simple calculation, we have E|x−Ys|2 ≤ C2,T (|x−y|2+ |r−s|+E
∫ s

r
|Ct|2dt). Furthermore,

it is clear that there exists a constant Cζ,h > 0, for any ζ > 0, such that

|h(t, x)− h(t, y)| ≤ ζ + Cζ,h|x− y|, t ∈ [0, T ], x, y ∈ R
n. (2.11)

Then

Ih ≤ sup
C(·)∈A

E

[ ∫ T

s

e−(α+ 1
ǫ
)(t−s)(ζ + Cζ,h|Xt − Yt|)dt

]

≤ ζ

α
+

2
√
C2,TCζ,h

α+ η

(
|x− y|+

√
|r − s|+

(
E

∫ s

r

|Ct|2dt
) 1

2
)

(2.12)

and

sup
C(·)∈A

E[e−(α+ 1
ǫ
)(T−s)(g(T,XT )− g(T, YT ))]

≤ e−(α+ 1
ǫ
)ζ +

√
C2,TCζ,ge

−
α+η+2

ǫ
2 (T−s)

(
|x− y|+

√
|r − s|+

(
E

∫ s

r

|Ct|2dt
) 1

2
)
.

Therefore, letting δ → 0 and ζ → 0, we have

lim
δ→0

sup
|x−y|+|r−s|<δ

Ih = 0, lim
δ→0

sup
|x−y|+|r−s|<δ

E[e−(α+ 1
ǫ
)(T−s)(g(T,XT )− g(T, YT ))] = 0,

lim
δ→0

sup
|r−s|<δ

E

[ ∫ s

r

e−(α+ 1
ǫ
)(t−r)

{(
f +

1

ǫ
(w ∧ g)

)
(t,Xt)

}
dt
]
= 0, (2.13)

and thus

lim
δ→0

sup
|x−y|+|s−r|<δ

|Tw(s, x)− Tw(r, y)| = 0, (2.14)

which denotes (2.9).

Now, by (2.8) we obtain

|Tw1(s, x)− Tw2(s, x)| ≤ sup
C(·)∈A

E

[ ∫ T

s

e−(α+ 1
ǫ
)(t−s)

(1
ǫ
|(w1 ∧ g − w2 ∧ g)(t,Xt)|

)
dt
]

≤ sup
C(·)∈A

E

[ ∫ T

s

e−(α+ 1
ǫ
)(t−s)

(1
ǫ
|w1(t,Xt)− w2(t,Xt)|

)
dt
]

≤ 1

αǫ+ 1
‖w1 − w2‖.

Thus T is a contraction mapping and the proof is complete.
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2.2 Viscosity solutions

In this subsection, we study the viscosity solution of the following penalized equation:





∂V

∂t
− LV + f − 1

4
|DV |2 − 1

ǫ
(V − g)+ = 0, (t, x) ∈ [0, T )× R

n,

V (T, x) = g(T, x), x ∈ R
n.

(2.15)

Firstly, we introduce the definition of the viscosity solution for the quasilinear parabolic partial

differential equation (2.15).

Definition 2.1 A function w ∈ C is called a viscosity subsolution of (2.15) if

w(T, x) ≤ g(T, x), ∀x ∈ R
n, (2.16)

and for any ϕ ∈ C1,2([0, T ]×R
n), whenever w−ϕ attains a local maximum at (t, z) ∈ [0, T )×R

n,

we have

−ϕt(t, z) + αw(t, z) + L0ϕ(t, z)− f(t, z) +
1

ǫ
(w − g)+(t, z) +

1

4
|Dϕ(t, z)|2 ≤ 0. (2.17)

A function w ∈ C is called a viscosity supersolution of (2.15) if in (2.16)–(2.17) the inequalities

“ ≤ ” are changed to “ ≥ ” and “local maximum” is changed to “local minimum”. Further, if

w ∈ C is both a viscosity subsolution and viscosity supersolution of (2.15), then it is called a

viscosity solution of (2.15).

The above definition has the following equivalent definition (see Fleming and Soner [8] and

Crandall, Ishii and Lions [5]). We introduce the notions of superjet and subjet of a continuous

function w and let Sn be the set of n× n symmetric real matrices.

Definition 2.2 Let w : [0, T ]×R
n → R be a continuous function and (t, x) ∈ [0, T )×R

n.We

denote J2,+w(t, x) (the parabolic superjet of w at (t, x)) the set of triples (p, q, P ) ∈ R×R
n×S

n

which are such that for all (s, y) ∈ [0, T )× R
n in a neighborhood of (t, x),

w(s, y) ≤ w(t, x) + p(s− t) + 〈q, y − x〉

+
1

2
〈P (y − x), (y − x)〉+ o(|s− t|+ |y − x|2).

We similarly define J2,−w(t, x) (the parabolic subjet of w at (t, x)) as the set of triples (p, q, P ) ∈
R× R

n × S
n which are such that for all (s, y) ∈ [0, T )× R

n in a neighborhood of (t, x),

w(s, y) ≥ w(t, x) + p(s− t) + 〈q, y − x〉

+
1

2
〈P (y − x), (y − x)〉+ o(|s− t|+ |y − x|2).

Here, r → o(r) denotes any function such that lim
r→0

o(r)
r

= 0.

According to [6] and [8], Definition 2.1 is equivalent to the following Definition 2.3.

Definition 2.3 A function w ∈ C is called a viscosity solution of the variational inequality
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(1.4) if the following inequalities (2.18)–(2.19) hold:




p− αw +
1

2
tr(σσ∗P ) + 〈b, q〉+ f − 1

ǫ
(w − g)+ − 1

4
|q|2 ≥ 0,

∀(p, q, P ) ∈ J2,+w(t, x), ∀(t, x) ∈ [0, T )× R
n,

w(T, x) ≤ g(T, x), ∀x ∈ R
n,

(2.18)





p− αw +
1

2
tr(σσ∗P ) + 〈b, q〉+ f − 1

ǫ
(w − g)+ − 1

4
|q|2 ≤ 0,

∀(p, q, P ) ∈ J2,−w(t, x), ∀(t, x) ∈ [0, T )× R
n,

w(T, x) ≥ g(T, x), ∀x ∈ R
n.

(2.19)

We prove that V is a viscosity solution of (2.15) and define Vk ∈ C by

Vk(s, x) := inf
{
E

[ ∫ T

s

e−(α+ 1
ǫ
)(t−s){F (t,Xt) + |Ct|2}dt

+ e−(α+ 1
ǫ
)(T−s)g(T,XT )

]
: C(·) ∈ Ak

}
(2.20)

for every k > 0, where Ak = {C(·) ∈ A : |Ct| ≤ k, ∀t ∈ [0, T ]} and

F = f +
1

ǫ
V ∧ g ∈ C+. (2.21)

The following Lemma 2.1 is a classic result. The similar proof can be found in [28].

Lemma 2.1 Let the assumptions (H1), (H2) and (H3) hold. Then Vk is a viscosity solution

of




∂Vk

∂t
−
(
α+

1

ǫ

)
Vk − L0Vk + F + min

|C|≤k
(|C|2 + 〈C,DVk〉) = 0,

Vk(T, x) = g(T, x), x ∈ R
n.

(2.22)

Lemma 2.2 Let the assumptions (H1), (H2) and (H3) be satisfied. We get

Vk → V locally uniformly in [0, T ]× R
n.

Proof By (2.7) and (2.20), obviously there holds Vk ≥ V . Using Dini’s theorem, this is

enough to show that

Vk(s, x) ↓ V (s, x) as k → ∞for each (s, x). (2.23)

Putting Ck
t = Ctχ{|Ct|≤k} for any C(·) ∈ A, Xk

t denotes the solution of

dXk
t = [b(t,Xk

t ) + Ck
t ]dt+ σ(t,Xk

t )dWt, Xk
s = x.

Application of Ito’s formula and localized the stochastic integration, combined with the as-

sumptions (H1) and (H2), for any θ ∈ S[s, T ] we have

E[e−α(θ−s)|Xθ|2]

≤ |x|2 + E

[ ∫ θ

s

e−α(t−s){−α|x|2 + 2〈x, (b(t, x) + Ct)〉+ tr(σσ∗(t, x))}
∣∣
x=Xt

dt
]

≤ |x|2 + E

[ ∫ θ

s

e−α(t−s)
{
− α

2
|Xt|2 +

4

α
|Ct|2 + β0(|Xt|2 + 1)

}
dt
]

<∞. (2.24)
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Here β0 is a positive constant and

E[e−α(θ−s)|Xk
θ −Xθ|2]

≤ E

[ ∫ θ

s

e−α(t−s){(−α+ ν)|Xk
t −Xt|2 + 2〈(Xk

t −Xt), (C
k
t − Ct)〉}dt

]

≤ E

[ ∫ θ

s

e−α(t−s){−η|Xk
t −Xt|2 + 2〈(Xk

t −Xt), (C
k
t − Ct)〉}dt

]

≤ E

[ ∫ θ

s

e−α(t−s)
{
− η

2
|Xk

t −Xt|2 +
2

η
|Ck

t − Ct|2
}
dt
]
.

We define

VC(s, x) := E

[ ∫ T

s

e−(α+ 1
ǫ
)(t−s){F (t,Xt) + |Ct|2}dt+ e−(α+ 1

ǫ
)(T−s)g(T,XT )

]
,

C(·) ∈ Ak. (2.25)

According to (2.7) there exists Cζ(·) ∈ A for any ζ > 0, such that V (s, x) + ζ > VCζ
(s, x).

Then, by (2.11), (2.21) and (2.25), we obtain

|VCζ
(s, x)− VCk(s, x)| ≤ E

[ ∫ T

s

e−(α+ 1
ǫ
)(t−s){ζ + Cζ,F |Xt −Xk

t |+ |Ct|2 − |Ck
t |2}dt

+ e−(α+ 1
ǫ
)(T−s)(ζ + Cζ,g|XT −Xk

T |)
]

≤
( 1

α
+ 1

)
ζ + Cζ,F

(
E

[ ∫ T

s

e−α(t−s)|Xt −Xk
t |2dt

]) 1
2

(∫ T

s

e−α(t−s)dt
) 1

2

+ E

[ ∫ T

s

e−α(t−s)(|Ct|2 − |Ck
t |2)dt

]

+ Cζ,g(E[e
−2α(T−s)|XT −Xk

T |2])
1
2

≤
( 1

α
+ 3

)
ζ

for a sufficiently large number k. Thus

V (s, x) + ζ ≥ VCk(s, x) − [VCk(s, x) − VCζ
(s, x)]

≥ Vk(s, x)−
( 1

α
+ 3

)
ζ.

Making k → ∞ and ζ → 0, we get (2.23).

Theorem 2.2 Let the assumptions (H1), (H2) and (H3) be satisfied. Then, the solution V

of (2.7) is a viscosity solution of (2.15).

Proof According to Lemmas 2.1–2.2, we obtain the following conclusion by the stability

result. Let ϕ ∈ C2([0, T ]× R
n) and V − ϕ attains a local maximum at (t0, x0) such that

(V − ϕ)(t0, x0) > (u− ϕ)(t, x), ∀(t, x) ∈ ([0, T ] \ {t0})× (B(x0, δ) \ {x0}), (2.26)

where B(x0, δ) is the closed ball with radius δ. By Lemma 2.2, Vk −ϕ attains a local maximum

at some (tk, xk) ∈ [0, T ]×B(x0, δ) and let (tk, xk) be defined by

(Vk − ϕ)(tk, xk) = max
[0,T ]×B(x0,δ)

(Vk − ϕ).
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Since the sequence (tk, xk)k≥1 is valued in the compact subset [0, T ] × B(x0, δ), we have

(tk, xk) → (t, x) ∈ [0, T ]×B(x0, δ), if necessary selecting a subsequence. Note that

Vk(tk, xk)− ϕ(tk, xk) > Vk(t, x)− ϕ(t, x), (t, x) ∈ [0, T ]×B(x0, δ).

Taking the limits, in view of Lemma 2.2 we have

V (t, x)− ϕ(t, x) ≥ V (t, x)− ϕ(t, x), (t, x) ∈ [0, T ]×B(x0, δ).

Then, we must have t = t0 and x = x0.

By Lemma 2.1, we have

∂ϕ

∂t
(tk, xk)−

(
α+

1

ǫ

)
Vk(tk, xk)− L0ϕ(tk, xk) + F (tk, xk)

+ min
|C|≤k

(|C|2 + 〈C,Dϕ(tk, xk)〉) ≥ 0.

Consider

min
|C|≤k

(|C|2 + 〈C, ξ〉) → min
C

(|C|2 + 〈C, ξ〉) locally uniformly in R
n as k → ∞.

Letting k → ∞, we have

∂ϕ

∂t
(t0, x0)−

(
α+

1

ǫ

)
V (t0, x0)− L0ϕ(t0, x0) + F (t0, x0)

+ min
C

(|C|2 + 〈C,Dϕ(t0, x0)〉) ≥ 0.

According to the following relation

V ∧ g = V − (V − g)+,

it is clear that V satisfies (2.17). By a similar proof, we obtain that V satisfies Definition 2.1.

2.3 Another representation of V

In this subsection, we will prove that the unique solution V of (2.7) exists another repre-

sentation,

V (s, x) = inf
C(·)∈A

E

[ ∫ τ

s

e−α(t−s)
{
f(t,Xt)−

1

ǫ
(V − g)+(t,Xt) + |Ct|2

}
dt

+ e−α(τ−s)V (τ,Xτ )
]

(2.27)

for any τ ∈ S[s, T ]. Let H(t, x) = f(t, x)− 1
ǫ
(V − g)+(t, x) and note that





∂ξ

∂t
− Lξ +H(t, x) − 1

4
|Dξ|2 = 0, (t, x) ∈ [0, T )× R

n,

ξ(T, x) = g(T, x), x ∈ R
n.

(2.28)

Define

ξ(s, x) := inf
C(·)∈A

E

[ ∫ T

s

e−α(t−s){H(t,Xt) + |Ct|2}dt+ e−α(T−s)g(T,XT )
]
, (2.29)
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which belongs to C. Through a similar proof in Subsection 2.2, we obtain that ξ meets the

principle of dynamic programming

ξ(s, x) = inf
C(·)∈A

E

[ ∫ τ

s

e−α(t−s){H(t,Xt) + |Ct|2}dt+ e−α(τ−s)ξ(τ,Xτ )
]
, τ ∈ S[s, T ].

Thus, ξ is a viscosity solution of (2.28).

Theorem 2.3 Let the assumptions (H1), (H2) and (H3) be satisfied. We have (2.27).

Proof From Theorem 2.2, the relationship (2.27) is the uniqueness of the viscosity solution

(2.28). Divide the proof into the following steps. We claim

ξ1 ≤ ξ2 (2.30)

for two viscosity solutions ξi ∈ C, i = 1, 2 of (2.28).

Step 1 Assume that there exists (t, x) ∈ [0, T )× R
n such that

ξ1(t, x)− ξ2(t, x) = sup
(t,x)∈[0,T ]×Rn

(ξ1(t, x)− ξ2(t, x)) > 0.

It shows that

ξ1(t, x)− ξ2(t, x) ≥ δ (2.31)

for some δ > 0. It is clear that t is not equal to T .

Define

Φk(t, x; s, y) := ξ1(t, x) − ξ2(s, y)−
k

2
(|x− y|2 + |t− s|2)

− 1

k
(ψ(x) + ψ(y)) +

1

k
(t+ s)− 2T

k
. (2.32)

Here ψ(x) = log(1 + |x|), k > 0. Since Φk is continuous and lim
|x|∨|y|→+∞

Φk(t, x; s, y) = −∞

uniformly in t, s ∈ [0, T ), there exists (tk, xk; sk, yk) ∈ ([0, T )× R
n)2 such that

Φk(tk, xk; sk, yk) = sup
([0,T )×Rn)2

Φk(t, x; s, y)

≥ Φk(t, x; t, x)

= ξ1(t, x)− ξ2(t, x)−
2

k
ψ(x)− 2

k
(T − t)

≥ δ − 2

k
ψ(x)− 2

k
(T − t)

≥ δ

2
for k ≥ k0, ∃k0 > 0. (2.33)

Thus

δ

2
≤ ξ1(tk, xk)− ξ2(sk, yk)−

k

2
(|xk − yk|2 + |tk − sk|2)−

1

k
(ψ(xk) + ψ(yk))

− 1

k
(2T − (tk + sk)) ≤ ξ1(tk, xk)− ξ2(sk, yk). (2.34)
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Step 2 In view of the definition of (tk, xk; sk, yk), we get

2Φk(tk, xk; sk, yk) ≥ Φk(tk, xk; tk, xk) + Φk(sk, yk; sk, yk),

or equivalently

2
[
ξ1(tk, xk)− ξ2(sk, yk)−

k

2
(|xk − yk|2 + |tk − sk|2)

− 1

k
(ψ(xk) + ψ(yk))−

1

k
(2T − (tk + sk))

]

≥ ξ1(tk, xk)− ξ2(tk, xk)−
2

k
ψ(xk)−

2

k
(T − tk)

+ ξ1(sk, yk)− ξ2(sk, yk)−
2

k
ψ(yk)−

2

k
(T − sk).

Therefore

k[|xk − yk|2 + |tk − sk|2] ≤ ξ1(tk, xk)− ξ2(sk, yk) + ξ2(tk, xk)− ξ1(sk, yk) ≤ C, C > 0.

Hence

|xk − yk|+ |tk − sk| ≤
(2C
k

) 1
2

. (2.35)

According to the uniform continuity of ξi, i = 1, 2, we have

k[|xk − yk|2 + |tk − sk|2] ≤ sup
|xk−yk|+|tk−sk|≤( 2C

k
)
1
2

(|ξ1(tk, xk)− ξ1(sk, yk)|

+ |ξ2(tk, xk)− ξ2(sk, yk)|) → 0 as k → ∞. (2.36)

Now we show that neither tk nor sk can converge to T for all k. In fact, if tk = T, ∀k ≥ 1,

Φk(T, xk; sk, yk) ≤ ξ1(T, xk)− ξ2(T, xk) + ξ2(T, xk)− ξ2(sk, yk)

≤ ξ2(T, xk)− ξ2(T, yk) + ξ2(T, yk)− ξ2(sk, yk)

≤ 2ζ + Cζ,ξ2 |xk − yk|+ Cζ,ξ2 |tk − sk|,

and we get a contradiction to (2.33) by choosing k and ζ such that 2ζ+Cζ,ξ2 |xk−yk|+Cζ,ξ2 |tk−
sk| < δ

2 . The proof that sk = T is similar.

Step 3 We need the following lemma. (Please refer to [8] for the proof of the lemma.)

Lemma 2.3 (Ishii’s Lemma) Let W, V be upper semicontinuous and lower semicontinuous,

respectively, on Q, where Q is ([0, T )×O), where O is a locally compact subset of Rn. Assume

that φ is twice continuously differentiable, and Φ(t, x; s, y) = W (t, x) − V (s, y) − φ(t, x; s, y)

attains an interior maximum (t, x),(s, y) ∈ [0, T )×O satisfying

Φ(t, x; s, y) > sup
∂[Q×Q]

Φ.

Then for each θ > 0 there exist symmetric matrices A and B satisfying

( ∂
∂t
φ(t, x; s, y), Dxφ(t, x; s, y), A

)
∈ J

2,+
W (t, x), (2.37)

(
− ∂

∂s
φ(t, x; s, y),−Dyφ(t, x; s, y), B

)
∈ J

2,−
V (s, y), (2.38)
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and

−
(1
θ
+ ‖X‖

)
I2n ≤

(
A 0
0 −B

)
≤ X + θX2,

where I2n is the (2n× 2n) identity matrix, X = D2Φ(t, x; s, y) ∈ S
n and the closure of J2,+ is

defined by

J
2,+
W (t, x)

=




(p, q, P ) ∈ R×O × S

n

∣∣∣∣∣∣∣∣

∃(tk, xk, pk, qk, Pk) ∈ [0, T )×Q× R× R
n × S

n

such that (pk, qk, Pk) ∈ J2,+W (t, x)
and (tk, xk, pk, qk, Pk)
→ (t, x, p, q, P ) as k → ∞




. (2.39)

Similarly we can define the closure J
2,−

of J2,−. In particular, choosing θ = 1
k
and φ(t, x; s, y) =

k
2 (|x− y|2 + |t− s|2) yield the elegant relations

−3k

(
I 0
0 I

)
≤

(
A 0
0 −B

)
≤ 3k

(
I −I
−I I

)
.

Now we take

W (t, x) = ξ1(t, x)−
1

k
ψ(x) +

1

k
(t− T ),

V (s, y) = ξ2(s, y) +
1

k
ψ(y)− 1

k
(s− T )

and consider

J2,+ξ1(t, x) =
{
(p, q, P ) +

(
− 1

k
,
1

k
Dψ(x),

1

k
D2ψ(x)

)
: (p, q, P ) ∈ J2,+W (t, x)

}
,

J2,−ξ2(t, x) =
{
(p, q, P )−

(
− 1

k
,
1

k
Dψ(y),

1

k
D2ψ(y)

)
: (p, q, P ) ∈ J2,+V (s, y)

}
.

Then from (2.37)–(2.38) combining with the definition of J
2,+
ξ1(tk, xk), J

2,−
ξ1(sk, yk) we have

(p1, q1, P1) := (k(tk − sk), k(xk − yk), A)

+
(
− 1

k
,
1

k
Dψ(xk),

1

k
D2ψ(xk)

)
∈ J

2,+
ξ1(tk, xk), (2.40)

(p2, q2, P2) := (k(tk − sk), k(xk − yk), B)

−
(
− 1

k
,
1

k
Dψ(yk),

1

k
D2ψ(yk)

)
∈ J

2,−
ξ2(sk, yk). (2.41)

Step 4 By (2.28) and (2.41) we obtain

− αξ2(sk, yk) + k(tk − sk) +
1

k
+

1

2
tr(σσ∗(sk, yk)P2)

+ 〈b(sk, yk), q2〉+H(sk, yk)−
1

4
|q2|2 ≤ 0. (2.42)

Also, by (2.28) and (2.40),

αξ1(tk, xk) ≤ k(tk − sk)−
1

k
+

1

2
tr(σσ∗(tk, xk)P1)

+ 〈b(tk, xk), q1〉+H(tk, xk)−
1

4
|q1|2. (2.43)
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(2.42) is added to (2.43). Thus we obtain

α(ξ1(tk, xk)− ξ2(sk, yk)) ≤ − 2

k
+

1

2
tr(σσ∗(tk, xk)A− σσ∗(sk, yk)B)

+
tr(σσ∗(tk, xk)D

2ψ(xk) + σσ∗(sk, yk)D
2ψ(yk))

2k
+ [b(tk, xk)q1 − b(sk, yk)q2] + [H(tk, xk)−H(sk, yk)]

− [|q1|2 − |q2|2]
4

≡ I1 +
I2
2
+

I3
2
+ I4 + I5 −

I6
4
.

Step 5 We claim that Ij → 0 as k → ∞ (j = 1, 2, · · · , 6), which shows a contradiction to

(2.34).

It is clear that I1 → 0 as k → ∞.

Lemma 2.4 Let A, B satisfy −3k

(
I 0
0 I

)
≤

(
A 0
0 −B

)
≤ 3k

(
I −I
−I I

)
. Then for any

two n× d matrices D, C, we have

tr(DD∗A− CC∗B) ≤ 3k‖D− C‖2 = 3k

n∑

i=1

n∑

j=1

(D − C)2ij .

According to Lemma 2.4, we have

I2 = tr(σσ∗(tk, xk)A− σσ∗(sk, yk)B) ≤ 3k|σ(tk, xx)− σ(sk, yk)|2

≤ 6κ2k(|xk − yk|2 + |tk − sk|2) → 0 as k → ∞.

By a calculation, we have

|Dψ(x)| = 1

1 + |x| , |D2ψ(x)| ≤ 1

(1 + |x|)2 .

Then

I3 ≤ 1

2k
[|σσ∗(tk, xk)D

2ψ(xk)|+ |σσ∗(sk, yk)D
2ψ(yk)|]

≤ 1

2k

[ |σ(0, 0)|2 + 2κ2(|xk|2 + |tk|2)
(1 + |xk|)2

+
|σ(0, 0)|2 + 2κ2(|yk|2 + |sk|2)

(1 + |yk|)2
]
→ 0 as k → ∞.

By the Lipschitz continuity of b(t, x), we have

|I4| ≤ kκ
[5
4
|xk − yk|2 + |tk − sk|2

]
+

|b(tk, xk)||Dψ(xk)|+ |b(sk, yk)||Dψ(yk)|
k

≤ kκ
[5
4
|xk − yk|2 + |tk − sk|2

]
+

2 sup
x

( |b(0, 0)|+ |x|+ T

1 + |x|
)

k
→ 0 as k → ∞.

According to (2.35), we get

|I5| ≤ sup
|x−y|+|t−s|≤( 2C

k
)
1
2

|H(t, x)−H(s, y)| → 0.
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Finally, by (2.36),

|I6| ≤
2

k
|〈k(xk − yk), (Dψ(xk) +Dψ(yk))〉|+

∣∣∣1
k
Dψ(xk)

∣∣∣
2

+
∣∣∣1
k
Dψ(yk)

∣∣∣
2

≤ 4

k
|k(xk − yk)|+

2

k2
→ 0 as k → ∞.

Thus the proof is completed.

3 Viscosity Solutions of Variational Inequalities

Consider the convergence of Vǫ = V as ǫ = ǫn = 2−n → 0. Define

Rβh(s, x) = E

[ ∫ T

s

e−β(t−s)h(t,Xt)dt+
1

β
e−β(T−s)h(T,XT )

]
, β > 0, s ∈ [0, T ]. (3.1)

We introduce a class of functions:

D = {Rβ(βh) : h ∈ C, β > α}. (3.2)

Here Xt is the unique solution of the following equation:

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, Xs = x. (3.3)

3.1 Limit of the penalized problem

Lemma 3.1 Let the assumptions (H1) and (H2) be satisfied. Then D is dense in C.

Proof We claim that

D ⊂ C. (3.4)

Let h ∈ C be arbitrary. By a simple computation, we get ‖Rβ(βh)‖ ≤ ‖h‖. By (2.10) we have

E[|Xt − Y t|2e(−β+η)(t−s)] ≤ |x− y|2

for the solution Y t of (3.3) with Yt = y. According to the similar arguments as (2.12)–(2.13),

we obtain

|Rβ(βh)(s, x) −Rβ(βh)(t, y)| ≤ ζ +
Cβ

β + η
(|x− y|+

√
|s− t|) +

(
1− 2β

β + η

)

× Ce−
β+η
2 (T−s)(|x− y|+

√
|s− t|), ∀ ζ > 0.

Thus letting δ → 0 and ζ → 0, we get

lim
δ→0

sup
|x−y|+|s−t|<δ

|Rβ(βh)(s, x) −Rβ(βh)(t, y)| = 0,

thus (3.4) holds. By (2.11), (3.3) and (H1), we have

E[|h(t,Xt)− h(s, x)|] ≤ ζ + Cζ,hE[|t− s|+ |Xt − x|]
≤ ζ + Cζ,h(t− s) + C(t− s+

√
t− s).
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Here C = Cζ,hĈ and Ĉ := sup
(t,x)∈[0,T ]×Rn

|b(t, x)| + sup
(t,x)∈[0,T ]×Rn

|σ(t, x)|. Thus, letting β → ∞

and ζ → 0, we have

‖Rβ(βh)− h‖

= sup
(s,x)∈[0,T ]×Rn

E

[
e−β(T−s)|h(T,XT )− h(s, x)| +

∫ T

s

βe−β(t−s)|h(t,Xt)− h(s, x)|dt
]

≤ 2ζ + e−β(T−s)[(Cζ,h + C)(T − s) + C
√
T − s]

+

∫ T

s

βe−β(t−s)[(Cζ,h + C)(t− s) + C
√
t− s]dt

= 2ζ + e−β(T−s)[(Cζ,h + C)(T − s) + C
√
T − s]

+

∫ β(T−s)

0

e−u
[ (Cζ,h + C)u

β
+ C

√
u

β

]
du→ 0.

The proof is complete.

Lemma 3.2 Let the assumptions (H1), (H2) and (H3) be satisfied and Ṽǫ be the solution of

the integral equation (2.7) consistent with g̃ ∈ C+. Then we obtain

‖Vǫ − Ṽǫ‖ ≤ ‖g − g̃‖. (3.5)

Proof Let h, h̃ ∈ C be satisfied

‖h− h̃‖ ≤ ‖g − g̃‖.

Then it is obviously to get

‖h ∧ g − h̃ ∧ g̃‖ ≤ ‖g − g̃‖.
Then, by (2.8) we have

|Th(s, x)− T̃ h̃(s, x)| ≤ sup
C(·)∈A

E

[ ∫ T

s

e−(α+ 1
ǫ
)(t−s) 1

ǫ
|h ∧ g − h̃ ∧ g̃|(t,Xt)dt

+ e−(α+ 1
ǫ
)(T−s)|g − g̃|(T,XT )

]

≤
[ ǫ

αǫ + 1
+
(
1− ǫ

αǫ + 1

)
e−(α+ 1

ǫ
)(T−s)

]
‖g − g̃‖

≤ ‖g − g̃‖.

Here T̃ represents T with g̃ substituting for g. But

‖T 0− T̃0‖ ≤ sup
C(·)∈A

E

[ ∫ T

s

e−(α+ 1
ǫ
)(t−s) 1

ǫ
|g− − g̃−|(t,Xt)dt

+ e−(α+ 1
ǫ
)(T−s)|g − g̃|(T,XT )

]
≤ ‖g − g̃‖.

We take h = T 0, h̃ = T̃0, and get

‖T 20− T̃ 20‖ ≤ ‖g − g̃‖

and then, by iteration,

‖T n0− T̃ n0‖ ≤ ‖g − g̃‖, n = 1, 2, · · · .
Letting n→ ∞, according to Theorem 2.1 we have (3.5).
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Lemma 3.3 Let the assumptions (H1), (H2) and (H3) be satisfied. We have

Vǫ(s, x) = inf
C(·)∈A

inf
τ
E

[ ∫ τ

s

e−α(t−s){f(t,Xt) + |Ct|2}dt

+ e−α(τ−s){g + (Vǫ − g)+}(τ,Xτ )
]
. (3.6)

Proof By Theorem 2.3,

Vǫ(s, x) = inf
C(·)∈A

E

[ ∫ τ

s

e−α(t−s)
{
f(t,Xt)−

1

ǫ
(Vǫ − g)+(t,Xt) + |Ct|2

}
dt

+ e−α(τ−s)Vǫ(τ,Xτ )
]

≤ inf
C(·)∈A

E

[ ∫ τ

s

e−α(t−s){f(t,Xt) + |Ct|2}dt+ e−α(τ−s)(Vǫ ∨ g)(τ,Xτ )
]

for all τ ∈ S[s, T ]. Taking τ = θ := inf{t : Vǫ(t,Xt) ≥ g(t,Xt)}, we have

e−α(θ−s)Vǫ(θ,Xθ) = e−α(θ−s)g(θ,Xθ) = e−α(θ−s)(Vǫ ∨ g)(θ,Xθ)

and

(Vǫ − g)(t,Xt) < 0 for t ∈ [s, θ).

Then, we have

Vǫ(t, x) = inf
C(·)∈A

E

[ ∫ θ

s

e−α(t−s)
{
f(t,Xt)−

1

ǫ
(Vǫ − g)+(t,Xt) + |Ct|2

}
dt

+ e−α(θ−s)Vǫ(θ,Xθ)
]

= inf
C(·)∈A

E

[ ∫ θ

s

e−α(t−s){f(t,Xt) + |Ct|2}dt+ e−α(θ−s)(Vǫ ∨ g)(θ,Xθ)
]
,

which completes the proof by applying Vǫ ∨ g = g + (Vǫ − g)+.

Theorem 3.1 Let the assumptions (H1), (H2) and (H3) be satisfied. We have

Vǫn → V ∈ C+, (3.7)

where ǫn = 2−n.

Proof Let g = Rβ(βh) ∈ D for some h ∈ C. By the similar arguments as in Theorems

2.2–2.3, it is clear that g is the unique viscosity solution of the following equation:





∂g

∂t
− βg − L0g + βh = 0, (t, x) ∈ [0, T )× R

n,

g(T, x) = h(T, x), x ∈ R
n,

or equivalently





∂g

∂t
−
(
α+

1

ǫ

)
g − L0g + βh̃+

1

ǫ
g = 0, (t, x) ∈ [0, T )× R

n,

g(T, x) = h(T, x), x ∈ R
n.
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Here βh̃ = βh+ (α − β)g. Thus we get g = Rα+ 1
ǫ

(
βh̃+ 1

ǫ
g
)
. Therefore

Vǫ − g ≤ Vǫ − inf
C(·)∈A

E

[ ∫ T

s

e−(α+ 1
ǫ
)(t−s)

{
βh̃(t,Xt) +

1

ǫ
g(t,Xt) + |Ct|2

}
dt

+
ǫ

αǫ+ 1
e−(α+ 1

ǫ
)(T−s)

(
βh̃+

1

ǫ
g
)
(T,XT )

]

≤ sup
C(·)∈A

E

[ ∫ T

s

e−(α+ 1
ǫ
)(t−s)

{
f − βh̃+

1

ǫ
(Vǫ ∧ g − g)

}
(t,Xt)dt

+
ǫ

αǫ+ 1
e−(α+ 1

ǫ
)(T−s)(αg − βh̃)(T,XT )

]

≤ ǫ(‖f − βh̃‖+ ‖αg − βh̃‖). (3.8)

Applying (3.6) to Vǫn+1 and Vǫn , by (3.8) we obtain

|Vǫn+1(s, x)− Vǫn(s, x)| ≤ sup
C(·)

sup
τ

E[e−α(τ−s)|(Vǫn+1 − g)+ − (Vǫn − g)+|(τ,Xτ )]

≤ (ǫn+1 + ǫn)(‖f − βh̃‖+ ‖αg − βh̃‖).

Thus
∞∑

n=1

‖Vǫn+1 − Vǫn‖ ≤
∞∑

n=1

(ǫn+1 + ǫn)(‖f − βh̃‖+ ‖αg − βh̃‖) <∞.

It shows that {Vǫn} is a Cauchy sequence in C+, and we deduce (3.7).

Supposing that g ∈ C+, we can choose a convergent sequence {gm} ∈ D converging to g.

Let Vm
ǫ denote the solution of the integral equation (2.7) corresponding to gm. By the above

calculation, we have

Vm
ǫn

→ V
m ∈ C+ as n→ ∞. (3.9)

Also, by Lemma 3.2,

‖Vm
ǫn

− V m′

ǫn
‖ ≤ ‖gm − gm′‖.

Letting n→ ∞, we have

‖Vm − V
m′

‖ ≤ ‖gm − gm′‖.
Thus {Vm} is a Cauchy sequence, and {V m} converges to V ∈ C+. Therefore

‖Vǫn − V ‖ ≤ ‖Vǫn − V m
ǫn
‖+ ‖Vm

ǫn
− V

m‖+ ‖V m − V ‖
≤ ‖g − gm‖+ ‖Vm

ǫn
− V

m‖+ ‖Vm − V ‖.

Letting n→ ∞ and then m→ ∞, we complete the proof.

Consider the following parabolic variational inequality:

∂V

∂t
− LV + f − 1

4
|DV |2 ≥ 0 in [0, T )× R

n,

V ≤ g in [0, T ]× R
n,

(∂V
∂t

− LV + f − 1

4
|DV |2

)
(V − g)− = 0 in [0, T )× R

n,

V (T, x) = g(T, x) on R
n. (3.10)

We introduce the following definition of the viscosity solution of the variational inequality.
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Definition 3.1 A function w ∈ C is called a viscosity solution of the variational inequality

(3.10) if the following claims hold:

(i) For any z ∈ R
n, w(T, z) = g(z).

(ii) For any ϕ ∈ C1,2([0, T ]×R
n), whenever w−ϕ has a local maximum at (t, z) ∈ [0, T )×R

n,

we have

ϕt(t, z)− αw(t, z)− L0ϕ(t, z) + f(t, z)− 1

4
|Dϕ(t, z)|2 ≥ 0,

and

w(t, x) ≤ g(t, x), ∀(t, x) ∈ [0, T ]× R
n.

(iii) For any ϕ ∈ C1,2([0, T ] × R
n), whenever w − ϕ has a local minimum at (t, z) ∈

[0, T )× R
n, we have

(
ϕt(t, z)− αw(t, z)− L0ϕ(t, z) + f(t, z)− 1

4
|Dϕ(t, z)|2

)
(w − g)−(t, z) ≤ 0.

Theorem 3.2 Let the assumptions (H1), (H2) and (H3) be satisfied. Then the limit V of

(3.7) is a viscosity solution of the variational inequality (3.10).

Proof It is clear that V (T, z) = g(z) for any z ∈ R
n. For any ϕ ∈ C1,2([0, T ]×R

n), V −ϕ

attains a local maximum at (t, z), i.e.,

V (t, z)− ϕ(t, z) > V (u, x)− ϕ(u, x), (u, x) ∈ B(t, z; δ), t 6= u, z 6= x,

where B(t, z; δ) := {(s, x) ∈ [0, T ]× R
n | |t − s|2 + |z − x|2 ≤ δ}. The uniform convergence is

applied in Theorem 3.1. We get Vǫn − ϕ to attain a local maximum at (un, xn) ∈ B(t, z; δ).

According to the same inference in Theorem 2.2, we have (un, xn) → (t, z) and Vǫn(un, xn) −
ϕ(un, xn) ≥ Vǫn(u, x)− ϕ(u, x), ∀(u, x) ∈ B(t, z; δ).

Now, combining Theorem 2.2 and (2.17) we obtain

ϕt(un, xn)− αVǫn(un, xn)− L0ϕ(un, xn) + f(un, xn)

− 1

ǫ
(Vǫn − g)+(un, xn)−

1

4
|Dϕ(un, xn)|2 ≥ 0.

From the last inequality, we have

ϕt(un, xn)− αVǫn(un, xn)− L0ϕ(un, xn) + f(un, xn)−
1

4
|Dϕ(un, xn)|2 ≥ 0.

Letting n→ ∞, we get

ϕt(t, z)− αV (t, z)− L0ϕ(t, z) + f(t, z)− 1

4
|Dϕ(t, z)|2 ≥ 0. (3.11)

By (3.8) we have

(V m
ǫn

− gm)+ ≤ ǫn(‖f − βh̃m‖+ ‖αgm − βh̃m‖).

Here gm = Rβ(βhm) and βh̃m = βhm + (α− β)gm for some h̃m ∈ C. Letting n→ ∞, by (3.9)

we have V
m ≤ gm, and letting m→ ∞, we get

V ≤ g. (3.12)
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At last, let V − ϕ attain the minimizer at (t, z), and let Vǫn − ϕ attain the local minimum

at (un, xn) with (un, xn) → (t, z). Combining Definition 2.1 and Theorem 2.2, we obtain

ϕt(un, xn)− αVǫn(un, xn)− L0ϕ(un, xn) + f(un, xn)

− 1

ǫ
(Vǫn − g)+(un, xn)−

1

4
|Dϕ(un, xn)|2 ≤ 0.

On both sides of the last inequality multiplied by (Vǫn − g)−, we have

(
ϕt(un, xn)− αVǫn(un, xn)− L0ϕ(un, xn) + f(un, xn)

− 1

4
|Dϕ(un, xn)|2

)
(Vǫn − g)−(un, xn) ≤ 0.

Letting n→ ∞, we have

(
ϕt(t, z)− αV (t, z)− L0ϕ(t, z) + f(t, z)− 1

4
|Dϕ(t, z)|2

)
(V − g)−(t, z) ≤ 0. (3.13)

The claims (3.11)–(3.13) are proved. Thus V is a viscosity solution of the variational inequality

(3.10).

3.2 Uniqueness

Theorem 3.3 Let the assumptions (H1), (H2) and (H3) be satisfied and Vi ∈ C, i = 1, 2 be

two viscosity solutions of (3.10). Then we have

V1 = V2.

Proof We will prove the following equation:





(
p− αV2(t, z) +

1

2
tr(σσ∗(t, z)P ) + 〈b(t, z), q〉+ f(t, z)− 1

4
|q|2

)

·(V2 − V1)
−(t, z) ≤ 0,

∀(p, q, P ) ∈ J
2,−

V2(t, x), ∀(t, z) ∈ [0, T ]× R
n,

V2(T, x) = g(T, x), ∀x ∈ R
n,

(3.14)

or equivalently





(∂ϕ
∂t

(t, z)− αV2(t, z)− L0ϕ(t, z) + f(t, z)− 1

4
|Dϕ(t, z)|2

)
(V2 − V1)

−(t, z) ≤ 0,

V2(T, x) = g(T, x), ∀x ∈ R
n.

(3.15)

Here ϕ ∈ C1,2([0, T ] × R
n) and V2 − ϕ attains the minimizer at (t, z). If V2 ≥ V1, then

(V2 − V1)
− = 0. If V2 < V1, then V2 < V1 ≤ g, and thus (V2 − g)− > 0. By (3.13) we recall

(
ϕt(t, z)− αV2(t, z)− L0ϕ(t, z) + f(t, z)− 1

4
|Dϕ(t, z)|2

)
(V2 − g)−(t, z) ≤ 0, (3.16)

and we conclude

ϕt(t, z)− αV2(t, z)− L0ϕ(t, z) + f(t, z)− 1

4
|Dϕ(t, z)|2 ≤ 0.
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Thus the proof of (3.15) is complete.

Now, by the same inference in Theorem 2.3 we prove Theorem 3.3. Assume that there exists

(t̃, x̃) ∈ [0, T )× R
n such that

V1(t̃, x̃)− V2(t̃, x̃) = sup
(t,x)∈[0,T ]×Rn

(V1(t, x)− V2(t, x)) > 0.

Thus, we have

V1(t̃, x̃)− V2(t̃, x̃) ≥ δ (3.17)

for some δ > 0. Define

Φk(t, x; s, y) := V1(t, x) − V2(s, y)−
k

2
(|x− y|2 + |t− s|2)

− 1

k
(ψ(x) + ψ(y)) +

1

k
(t+ s)− 2T

k
(3.18)

as in (2.32). Then Φk(tk, xk; sk, yk) has the maximum point (tk, xk; sk, yk) with

δ

2
≤ V1(tk, xk)− V2(sk, yk) (3.19)

for sufficiently large number k. As in Steps 2–3 of Theorem 2.3 we get

k[|xk − yk|2 + |tk − sk|2] → 0 as k → ∞

and

(p̂1, q̂1, P̂1) := (k(tk − sk), k(xk − yk), A)

+
(
− 1

k
,
1

k
Dψ(xk),

1

k
D2ψ(xk)

)
∈ J

2,+
V1(tk, xk)

(p̂2, q̂2, P̂2) := (k(tk − sk), k(xk − yk), B)

−
(
− 1

k
,
1

k
Dψ(yk),

1

k
D2ψ(yk)

)
∈ J

2,−
V2(sk, yk).

By (3.19) we have

V1(sk, yk)− V2(sk, yk) ≥ V1(tk, xk)− V2(sk, yk)− |V1(tk, xk)− V1(sk, yk)|

≥ δ

2
− |V1(sk, yk)− V1(tk, xk)|

≥ δ

4
for sufficiently large k.

It shows

(V2(sk, yk)− V1(sk, yk))
− > 0.

By (3.14), we get

p̂2 − αV2(sk, yk) +
1

2
tr(σσ∗(sk, yk)P̂2) + 〈b(sk, yk), q̂2〉+ f(sk, yk)−

1

4
|q̂2|2 ≤ 0. (3.20)
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Also, by (3.11),

αV1(tk, xk) ≤ p̂1 +
1

2
tr(σσ∗(tk, xk)P̂1) + 〈b(tk, xk), q̂1〉+ f(tk, xk)−

1

4
|q̂1|2. (3.21)

Thus, (3.20) and (3.21) have the similar relationships between (2.42) and (2.43). So, by the

same calculations as in Steps 4–5 of Theorem 2.3, w have

α(V1(tk, xk)− V2(sk, yk)) → 0 as k → ∞.

This is contradictory to (3.19), which completes the proof.

3.3 A stochastic interpretation of V

Firstly we introduce a stochastic interpretation of the viscosity solution V of (3.10).

Theorem 3.4 Let the assumptions (H1), (H2) and (H3) be satisfied. Then we have

V (s, x) = inf
C(·)∈A

inf
τ
E

[ ∫ τ

s

e−α(t−s){f(t,Xt) + |Ct|2}dt+ e−α(τ−s)g(τ,Xτ )
]
. (3.22)

Proof Let V̂ denote the right-hand side of (3.22). By (2.27) we get

Vǫn(t, x) = inf
C(·)∈A

E

[ ∫ τ

s

e−α(t−s)
{
f(t,Xt)−

1

ǫn
(V − g)+(t,Xt) + |Ct|2

}
dt

+ e−α(τ−s)Vǫn(τ,Xτ )
]

≤ inf
C(·)∈A

E

[ ∫ τ

s

e−α(t−s){f(t,Xt) + |Ct|2}dt+ e−α(τ−s)Vǫn(τ,Xτ )
]
.

Letting n→ ∞, by (3.7) we get

V (s, x) ≤ inf
C(·)∈A

E

[ ∫ τ

s

e−α(t−s){f(t,Xt) + |Ct|2}dt+ e−α(τ−s)V (τ,Xτ )
]

≤ inf
C(·)∈A

E

[ ∫ τ

s

e−α(t−s){f(t,Xt) + |Ct|2}dt+ e−α(τ−s)g(τ,Xτ )
]
.

This shows V ≤ V̂ . For the proof of reverse inequality, take any C(·) ∈ A and let

Rm = inf
{
t : V (t,Xt) +

1

m
≥ g(t,Xt)

}
.

Since

V (t,Xt) +
1

m
< g(t,Xt) on {t < Rm},

we have

E

[ ∫ Rm

s

e−α(t−s)(Vǫn − g)+(t,Xt)dt
]
≤ E

[ ∫ Rm

s

e−α(t−s)
(
Vǫn −

(
V +

1

m

))+

(t,Xt)dt
]

≤ E

[ ∫ Rm

s

e−α(t−s)
(
‖Vǫn − V ‖ − 1

m

)+

(t,Xt)dt
]

= 0
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for sufficiently large number n. Hence, by (2.27),

Vǫn(t, x) = inf
C(·)∈A

E

[ ∫ Rm

s

e−α(t−s)
{
f(t,Xt)−

1

ǫn
(Vǫn − g)+(t,Xt) + |Ct|2

}
dt

+ e−α(Rm−s)Vǫn(Rm, XRm
)
]

≥ inf
C(·)∈A

E

[ ∫ Rm

s

e−α(t−s){f(t,Xt) + |Ct|2}dt+ e−α(Rm−s)Vǫn(Rm, XRm
)
]
.

Letting n→ ∞, applying the definition of Rm and (3.7) we get

V (s, x) = inf
C(·)∈A

E

[ ∫ Rm

s

e−α(t−s){f(t,Xt) + |Ct|2}dt+ e−α(Rm−s)V (Rm, XRm
)
]

= inf
C(·)∈A

E

[ ∫ Rm

s

e−α(t−s){f(t,Xt) + |Ct|2}dt+ e−α(Rm−s)
(
g(Rm, XRm

)− 1

m

)]

≥ inf
C(·)∈A

E

[ ∫ Rm

s

e−α(t−s){f(t,Xt) + |Ct|2}dt+ e−α(Rm−s)g(Rm, XRm
)
]
− 1

m

≥ V̂ (s, x)− 1

m
.

Letting m→ ∞, we have V (s, x) ≥ V̂ (s, x), hence the proof is finished.

4 Impulsive Control

4.1 Description of the problem

Consider an application of the variational inequality in the impulse control problem. Let a

set (Θ, γ) be decision variables of impulse control

Θ = {θn}n≥1, θn ∈ S[s, T ] ↑ T,
γ = {γn}n≥1, γn ∈ R

n
+ : Fθn-measuable.

We consider the following state equation:





dχt = [b(t, χt) + Ct]dt+ σ(t, χt)dWt, t ∈]θn, θn+1[,
χs = x,

χθn
+
= χθn

−

+ γn, n = 1, 2, · · · .
(4.1)

The notation χθn
−

stands for

χθ
n−1
−

+

∫ θn

θn−1

[b(t, χt) + Ct]dt+

∫ θn

θn−1

σ(t, χt)dWt

and χθn
+
:= lim

t→θn
+

χt. The triplet β = (C, {θn}, {γn}) is the control. Taking s ∈ [0, T ), we define

K[s, T ] =




γ(·) =

∞∑

n=1

γnX[θn,T ](·)

∣∣∣∣∣∣∣∣∣

[s, T ] → R
n
+, θ1 ≥ s, θn ↑ T,

γn ∈ R
n
+, ∀n ≥ 1,

∞∑

n=1

e−α(θn−s)ρ(γn) <∞




.
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Our objective is to minimize the cost functional

J(s, x, β) = E

[ ∫ T

s

e−α(t−s){f(t, χt) + |Ct|2}dt+ e−α(T−s)g(T, χT )

+

∞∑

n=1

e−α(θn−s)ρ(γn)
]
,

where f, g ∈ C+ and the impulse cost ρ is assumed to satisfy




ρ(ξ) = k + ρ0(ξ), k > 0 and ρ0 ∈ C(Rn
+) with ρ0(0) = 0,

ρ0(ξ + ξ̃) ≤ ρ0(ξ) + ρ0(ξ̃), ∀ξ, ξ̃ ∈ R
n
+,

ρ0(ξ) ≤ ρ0(ξ̃) if ξ̃ − ξ ∈ R
n
+,

ρ0(ξ) → +∞ as |ξ| → +∞.

(4.2)

The value function of the present problem is

V (s, x) := inf
β∈A×K[s,T ]

J(s, x, β).

Now, we give the following quasi-variational inequality derived from the impulsive control prob-

lem

∂V

∂t
− LV + f − 1

4
|DV |2 ≥ 0 in [0, T )× R

n,

V ≤MV in [0, T )× R
n,

(∂V
∂t

− LV + f − 1

4
|DV |2

)
(V −MV )− = 0 in [0, T )× R

n,

V (T, x) = g(T, x) on R
n,

(4.3)

where MV (s, x) := inf
γ∈R

n
+

[V (s, x+ γ) + ρ(γ)].

4.2 Quasi-variational inequalities

In this subsection, we will prove the existence and uniqueness of the viscosity solution of

the quasi-variational inequality (4.3).

We define

Qw(s, x)

:= inf
C(·)∈A

inf
θ
E

[ ∫ θ

s

e−α(t−s){f(t,Xt) + |Ct|2}dt+ e−α(θ−s)Mw(θ,Xθ)
]
, w ∈ C+. (4.4)

Here Xt is as in (1.1) and w(T, x) = g(T, x).

Lemma 4.1 Let the assumptions (H1), (H2) and (4.2) be satisfied. For all w, w̃ ∈ C+, we
have

0 ≤ Qw ≤ C(‖f‖+ ‖w‖), (4.5)

Qw ∈ C+, (4.6)

w ≤ w̃ ⇒ Qw ≤ Qw̃, (4.7)

Q(µw + (1− µ)w̃) ≥ µQw + (1− µ)Qw̃, µ ∈ [0, 1]. (4.8)
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Proof In [1], it is obvious that

0 ≤Mw ≤ ‖w‖+ k, Mw ∈ C+,
‖Mw −Mw̃‖ ≤ ‖w − w̃‖, w ≤ w̃ ⇒Mw ≤Mw̃,

M(µw + (1− µ)w̃) ≥ µMw + (1− µ)Mw̃, µ ∈ [0, 1].

Thus (4.5) and (4.7) are clear. (4.8) is a simple inference of the concavity of M . By Theorems

3.2–3.4 we have (4.6).

Lemma 4.2 Let the assumptions (H1), (H2), (H3) and (4.2) be satisfied and w, w̃ ∈ C+
satisfing w − w̃ ≤ λw for some λ ∈ [0, 1]. Then we have

Qw −Qw̃ ≤ λ(1− µ)Qw, ∀µ ∈
(
0,

k

‖V 0‖ ∧ 1
)
, (4.9)

where

V 0(s, x) := inf
C(·)∈A

E

[ ∫ T

s

e−α(t−s){f(t,Xt) + |Ct|2}dt+ e−α(T−s)g(T,XT )

+

∞∑

n=1

e−α(θn−s)ρ(γn)
]
.

Proof By (4.8) we obtain

Q((1− λ)w + λ0) ≥ (1 − λ)Qw + λQ0.

Since

(1− λ)w ≤ w̃,

we have

Qw̃ ≥ (1 − λ)Qw + λQ0,

or equivalently

Qw −Qw̃ ≤ λ(Qw −Q0).

In view of (2.11)–(2.12), noting V 0 ∈ C+ and by (4.4), we get Qw ≤ V 0.

In order to finish the proof, we must also prove that (4.10) holds:

Q0 ≥ µV 0, ∀µ ∈
(
0,

k

‖V 0‖ ∧ 1
)
. (4.10)

By (4.2) we have M0 = k, and then

Q0 = inf
C(·)∈A

inf
θ
E

[ ∫ θ

s

e−α(t−s){f(t,Xt) + |Ct|2}dt+ e−α(θ−s)k
]
.

Obviously, we have

µV 0(t,Xt) ≤ µ‖V 0‖ ≤ k

‖V 0‖‖V
0‖ = k.
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Therefore, we apply the dynamic programming principle to V 0(s, x),

Q0 ≥ inf
C(·)∈A

inf
θ
E

[ ∫ θ

s

e−α(t−s){f(t,Xt) + |Ct|2}dt+ e−α(θ−s)µV 0(θ,Xθ)
]

≥ µ inf
C(·)∈A

inf
θ
E

[ ∫ θ

s

e−α(t−s){f(t,Xt) + |Ct|2}dt+ e−α(θ−s)V 0(θ,Xθ)
]

= µV 0(s, x).

This shows that (4.10) holds, and the proof is complete.

Theorem 4.1 Assuming that (H1), (H2), (H3) and (4.2) are satisfied. Then there is only

one viscosity solution V ∈ C+ of the quasi-variational inequality (4.3).

Proof Let V n = QV n−1 ∈ C+. Obviously, we have

0 ≤ V 1 = QV 0 ≤ V 0

and then

0 ≤ V n ≤ V n−1 ≤ V 0.

Moreover, V 0 − V 1 ≤ V 0. By (4.9) we have

QV 0 −QV 1 ≤ (1− µ)QV 0, ∀µ ∈
(
0,

k

‖V 0‖ ∧ 1
)
.

It shows that

V 1 − V 2 ≤ (1− µ)V 1.

By iteration, we have

V n − V n+1 ≤ (1− µ)nV n ≤ (1− µ)nV 0.

Hence we get

V n → V in C+.

By Theorems 3.2–3.4 we see that V n is a unique viscosity solution of the following quasi-

variational inequality:

∂V n

∂t
− LV n + f − 1

4
|DV n|2 ≥ 0 in [0, T ]× R

n,

V n ≤MV n in [0, T ]× R
n,

(∂V n

∂t
− LV n + f − 1

4
|DV n|2

)
(V n −MV n)− = 0 in [0, T ]× R

n,

V (T, x) = g(T, x) on R
n.

(4.11)

Using the stability result of the viscosity solution in Theorem 2.2 and putting n → ∞, we get

that V is a viscosity solution of the quasi-variational inequality (4.3) in the sense of Definition

3.1 with MV substituting for g.

In order to obtain uniqueness, suppose that Vi ∈ C+, i = 1, 2 are two viscosity solutions of

(4.3). Applying Theorems 3.3–3.4, we have

Vi = QVi, i = 1, 2.
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Obviously, we have V1 − V2 ≤ V1. Appliying (4.9) and λ = 1, we have

QV1 −QV2 ≤ (1− µ)QV1, ∀µ ∈
(
0,

k

‖V 0‖ ∧ 1
)
.

Hence

V1 − V2 ≤ (1− µ)V1.

By iteration,

V1 − V2 ≤ (1 − µ)nV1, n = 1, 2, · · · .

Letting n→ ∞, we have V1 ≤ V2. The proof is complete.
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