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Abstract The author proposes an alternative way of using fixed point theory to get the

existence for semilinear equations. As an example, a nonlocal ordinary differential equa-

tion is considered. The idea is to solve homogeneous equations in the linearization. One

feature of this method is that it does not need the equation to have special structures, for

instance, variational structures, maximum principle, etc. Roughly speaking, the existence

comes from good properties of the suitably linearized equation. The idea may have wider

application.
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1 Introduction

The method of studying multiple solutions using fixed point theory has long time history. For

instance, Schauder linearization (see [1, p. 593]). Leray [6] also suggested the possible connection

between multiple solution and fixed point theory. Comparing with the rich development of fixed

point theory, the application in multiple solutions for equations without variational structures

and maximum principle seems not very fruitful (see [1, p. 594]). In this paper, we give an idea

which might help the application of this point theory.

Roughly speaking, the idea is to solve homogeneous linear equations in the reduction from

finding solution to fixed point problem. One thing about this idea is that somehow it is helpful

to keep the structures of the original nonlinear equations. We use the following model to

introduce the idea.

Theorem 1.1 Assume that V is a continuous operator from Lp(0, 1) to L1(0, 1), 1 ≤ p <

∞, and it holds that

(1) V (u) ≥ 0, ∀u ∈ Lp(0, 1),

(2) V (θu) = |θ|pV (u), θ ∈ R,

(3) C‖u‖Lp ≥ ‖V (u)‖L1 ≥ c0‖u‖Lp,

where c0 > 0. Then the problem

{
u′′ − u+ V (u)u = 0,

u′(0) = u′(1) = 0,
x ∈ (0, 1) (1.1)

has non-trivial solution u ∈ W 2,1(0, 1) and u > 0 for x ∈ (0, 1).
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Theorem 1.2 Assume that V is a continuous operator from L1(0, 1) to Lq(0, 1), 1 < q < 2,

and it holds that

(1) V (u) ≥ 0, ∀u ∈ Lq(0, 1),

(2) V (θu) = |θ|
1
q V (u), θ ∈ R,

(3) C0‖u‖L1 ≤ ‖V (u)‖qLq ≤ C‖u‖L1.

Then the problem

{
u′′ − u+ V (u)u = 0,

u′(0) = u′(1) = 0,
x ∈ (0, 1) (1.2)

has non-trivial solution u ∈ H2(0, 1) and u > 0 for x ∈ (0, 1).

Remark 1.1 The nonlinear potential is the generalization of the standard nonlinear term

|u|p. For specific nonlinear terms, the improvement of regularity of solution usually is standard

and simple. These two results could be known. Our focus is on the method.

One example of potential is V (u)(x) = |u(x)| + |
∫ 1

0 k(x, y)u(y)dy|, k ∈ L1. Then the

potential V is non-local and satisfies the assumptions in Theorem 1.1, and the solution u ∈

W 2,r, r < ∞.

Remark 1.2 In [3], it was suggested that the study of multiple solution might help the

generation of new methods. It seems that the Neumann boundary condition is more convenient

than the Dirichlet boundary condition in this sense.

Remark 1.3 The positiveness of the solution comes from the fact that it is a principal

eigenfunction of scalar elliptic equation. The existence of the solution does not depend on the

positiveness.

The proofs of Theorems 1.1 and 1.2 are essentially little examples how potentially the idea

of homogeneous linearization works. They consist of three steps. The first is the reduction

to the nonlinear operator. We will define an operator T from the unit sphere of Lp into the

projection space of Lp. Suppose that u is an element of unit sphere in Lp. For suitable α,

zero is the first eigenvalue of −△ + 1 − αV (u). Therefore, Tu is defined as the projection

space of the corresponding eigenfunction space. One may think of this operator as potential to

eigenfunction mapping. In general, as long as we have a mapping from a bounded manifold to

itself or the quotient manifold of it, there is a chance to do something.

The second is the compactness of the operator. For Theorem 1.1, the proof is trivial. For

Theorem 1.2, we introduce the idea of invariant submanifold of the nonlinear operator.

The third is the existence of fixed point. For Theorem 1.1, we use Lefeschetz fixed point

theorem. For Theorem 1.2, we use one version of the Schauder fixed point theorem.

The reduction in the first step is possible due to the help of nonlinear zero order term.

Namely, the set {u | 0 is the eigenvalue of −△+1−V (u)} contains a submanifold of Lp whose

co-dimension is 1. This is also essentially the only prerequisite that the method of homogeneous

linearization has a chance to work. Somehow our method provides a possible way of getting

existence for equations without a priori estimates.

Remark 1.4 The idea of homogeneous linearization is standard in the existence theory for

quasilinear elliptic equation. It did not appear before in the literature for semi-linear equation,
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perhaps due to the following two reasons. One is that the linearized equation is ill-posed. The

other is that somehow the method of homogeneous linearization does not work directly for

Dirichlet boundary condition.

This paper is organized as follows. In Section 2, we present the reduction of the operator.

In Section 3, we prove Theorem 1.1. The proof of Theorem 1.2 is given in Section 4. In Section

5, we discuss the extensions of the model and Dirichlet boundary condition.

2 Reduction of the Operator

In this section, we present the reduction from solving the equation to the fixed point problem.

We will do the reduction under the assumptions of Theorem 1.1. The situation of Theorem 1.2

is almost the same as Theorem 1.1 and we omit it. The motivation is the following. Suppose

that u satisfies the equation. Then zero is an eigenvalue of the operator, Lu = −△+1− V (u),

and u is the corresponding eigenfunction. Clearly, not for each u, zero is an eigenvalue of Lu.

Roughly speaking, the lucky thing is that, after some suitable modifications of Lu, zero becomes

a principal eigenvalue.

We begin with the definition of the adjusting coefficients. For u ∈ Lp(0, 1), u ≥ 0, ‖u‖Lp >

0, we define

λ1(α, u) = min
‖ϕ‖

L2=1

ϕ∈W 2,1(0,1)
ϕ′(0)=ϕ′(1)=0

∫ 1

0

[|ϕ′|2 + ϕ2 − αV (u)ϕ2]dx. (2.1)

Note that g(α, u) is the principal eigenvalue of the operator −△ + 1 − αV (u) with Neumann

boundary condition. The following proposition states that the principal eigenvalue is strictly

monotone and continuous with respect to the adjusting factor α.

Proposition 2.1 The principal eigenvalue λ1 satisfies

(i) λ1(0, u) > 0, λ1(α, u) < 0, α ≫ 1.

(ii) λ1(α, u) is continuously in α.

(iii) λ1(α2, u) < λ1(α1, u), if α2 > α1.

Remark 2.1 The Proposition 2.1(ii) is a small example of spectra stability. The proof

below is elementary from spectral theory point of view. We refer to [5] for more on spectra

stability.

Proof of Proposition 2.1 (i) is obvious. For (ii), assume |α1 − α2| < ε. Standard

variational result implies ∃v1, such that






v′′1 − v1 + αV (u)v1 = −λ1(α1, u)v1,

v′1(0) = v′1(1) = 0,

‖v1‖L2 = 1, λ1(α1, u) =

∫ 1

0

[|v′1|
2 + v21 − αV (u)v21 ]dx.

(2.2)

We first estimate λ1(α1, u). Picking ϕ = 1 as test function implies

λ1(α1, u) ≤ 1 + α1C‖u‖Lp.
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For the lower bound, using the estimate

∣∣∣
∫ 1

0

V (u)v21dx
∣∣∣ ≤ ‖V (u)‖L1‖v1‖

2
L∞

≤ ‖V (u)‖L1(Cε‖v1‖
2
L2 + ε‖v1‖

2
H1),

we get

λ1(α1, u) =

∫ 1

0

[|v′1|
2 + v21 − α1V (u)v21 ]dx

≥ ‖v1‖
2
H1 −

(1
2
‖v1‖

2
H1 + C‖v1‖

2
L2

)

> −C‖v1‖
2
L2 = −C,

where C = C(α1, ‖u‖Lp).

Combining the lower and upper bounds, we get

|λ1(α1, u)| ≤ C, C = C(α1, ‖u‖Lp). (2.3)

Then we can estimate ‖v1‖H1 , which is similar to the lower bound of λ1. Using (2.2), we have

‖v1‖
2
H1 = λ1(α1, u) +

∫ 1

0

α1V (u)v21dx

≤ C + α1‖V (u)‖L1‖v1‖
2
L∞

≤ C + α1‖u‖Lp

(
C‖v1‖

2
L2 +

1

2α1‖u‖Lp

‖v1‖
2
H1

)
.

So

‖v1‖
2
H1 ≤ C, C = C(α1, ‖u‖Lp). (2.4)

Next we estimate |λ1(α1, u)− λ1(α2, u)|. The idea is to use v1 as test function. By definition

of λ1, we have

λ1(α2, u) ≤

∫ 1

0

[|v′1|
2 + v21 − α2V (u)v21 ]dx

= λ1(α1, u) + (α1 − α2)

∫ 1

0

V (u)v21dx

≤ λ1(α1, u) + Cε.

So

λ1(α2, u)− λ1(α1, u) ≤ Cε.

Similarly we have

λ1(α1, u)− λ1(α2, u) ≤ Cε.

Therefore

|λ1(α1, u)− λ1(α2, u)| ≤ Cε.
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Then (ii) is proven. For (iii), still let v1 be the one in (2.2). Then we have

λ1(α2, u) ≤

∫ 1

0

[|v′1|
2 + v21 − α2V (u)v21 ]dx

= λ1(α1, u) + (α1 − α2)

∫ 1

0

V (u)v21dx

< λ1(α1, u).

So (iii) is proven. The proof of current proposition is finished.

Rewrite fu(α) = λ1(α, u). The adjusting coefficient is defined as

α(u) = f−1
u (0). (2.5)

Proposition 2.1 implies that for u ∈ Lp, u ≥ 0, ‖u‖Lp > 0, α(u) is well-defined.

Define

A(0, 1) = {u ∈ Lp(0, 1) | u ≥ 0, x ∈ (0, 1), ‖u‖Lp > 0}. (2.6)

Proposition 2.2 Suppose u ∈ A(0, 1). Then

α(u) ≤
1

‖V (u)‖L1

. (2.7)

Proof Using ϕ = 1 as test function, we have

λ1

( 1

‖V (u)‖L1

, u
)
≤

∫ 1

0

[
|ϕ′2|+ ϕ2 −

1

‖V (u)‖L1

V (u)ϕ
]
dx = 0.

So λ1

(
1

‖V (u)‖
L1

, u
)
≤ 0 ⇒ α(u) ≤ 1

‖V (u)‖
L1

. The proposition is proven.

Remark 2.2 It seems that Proposition 2.2 does not hold true if L1 is replaced by Lr, r > 1.

Perhaps this is a major trouble in dimensions two and higher. It also looks hard to extend

Proposition 2.2 to Dirichlet boundary condition.

Proposition 2.3 The adjusting coefficient α(u) is continuous in A(0, 1).

Proof The idea is similar to that of Proposition 2.1. Take u1, u2 ∈ A(0, 1), ‖u1−u2‖Lp ≤ ε

where ε ≪ ‖u1‖Lp . Let αi = α(ui), v1 be the minimizer of g(α1, u1), ‖v1‖L2 = 1. Then

λ1(α1 + Cε, u2) ≤

∫ 1

0

[|v′1|
2 + v21 − (α1 + Cε)V (u2)v

2
1 ]dx

= λ1(α1, u1) +

∫ 1

0

[α1V (u1)v
2
1 − (α1 + Cε)V (u2)v

2
1 ]dx

= λ1(α1, u1) + (α1 + Cε)

∫ 1

0

(V (u1)− V (u2))v
2
1dx− Cε

∫ 1

0

V (u1)v
2
1dx

≤ −Cε

∫ 1

0

V (u1)v
2
1dx+ ε(α1 + Cε)‖v1‖

2
L∞. (2.8)

Using (2.4) and Proposition 2.2, we know that

(1 + α1)‖v1‖
2
L∞ ≤ C1, C1 = C1(‖u1‖Lp). (2.9)
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Next we estimate the lower bound of
∫ 1

0
V (u1)v

2
1dx. The definitions of λ1, α1 and v1 imply

∫ 1

0

V (u1)v
2
1dx =

‖v1‖
2
H1

α1

≥ ‖v1‖
2
H1‖V (u1)‖L1 (using Proposition 2.2)

= (‖v′1‖
2
L2 + ‖v1‖

2
L2) · ‖V (u1)‖L1

≥ c‖u1‖Lp (‖v1‖L2 = 1). (2.10)

Plugging (2.9) and (2.10) into (2.8), we get

λ1(α1 + Cε, u2) ≤ ε[−C‖u1‖Lp + C1ε) + C1]

= ε[C(−‖u1‖Lp + C1ε) + C1]

≤ 0 for C =
2C1

‖u1‖Lp

, ε ≤
‖u1‖Lp

2C1
.

So λ1(α1 + Cε, u2) ≤ 0 = λ1(α2, u2) implies α2 ≤ α1 + Cε. Similarly we have

α1 ≤ α2 + Cε.

Therefore |α1 − α2| ≤ Cε. The proof is finished.

Now we are in a position to define the nonlinear operator T . Let

S = {u | ‖u‖Lp = 1}

be the unit space in Lp(0, 1). Similar to the finite dimensional case, let

PX := {{tϕ, t ∈ R} | ϕ ∈ X, ϕ 6= 0} (2.11)

be the projection space of linear space X .

Define

L̃uϕ = −ϕ′′ + ϕ− α(u)V (u)ϕ. (2.12)

Also define

E(u) = {v ∈ W 2,1 | v′(0) = v′(1) = 0, L̃uv = 0}. (2.13)

Then the operator T is defined as

Tu := PE(u). (2.14)

From spectral theory (see [4]), we get

(i)

dim(E(u)) = 1, (2.15)

(ii)

E(u) = {tv | t ∈ R, v(x) > 0, x ∈ (0, 1)}. (2.16)
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Remark 2.3 The property (2.15) implies that the operator T defined in the current

paper is single-valued. In general, the operator would be set-valued. Set-valued is also called

multivalued.

Proposition 2.4 The operator T from S to PLp is continuous.

Proof We will use the following elementary result in mathematical analysis. Suppose

that {ym} is a sequence. If for any subsequence, there exists a convergent subsequent, and

all the subsequences converge to the same limit, then the original sequence converges. The

assumptions in Theorem 1.1 and embedding theorem imply that the operator T is well-defined

and Tu ∈ PLp for u ∈ S. For continuity, take {um} ⊂ Lp, αm = α(um). Then the continuity

of α (see Proposition 2.3) implies

lim
m→∞

αm = α(u).

So

sup
m

αm, α(u) ≤
C

‖V (u)‖L1

. (2.17)

Let vm ∈ E(um), v ∈ E(u), ‖vm‖L2 = ‖v‖L2 = 1. Then (2.17) and (2.4) give

sup ‖vm‖H1 + ‖vm‖W 2,1 ≤ C. (2.18)

Now take any subsequence of {um} denoted as {umk
}. Sobolev compact embedding theorem

and (2.18) imply that ∃vmki
, v such that

vmki
→ v in H1. (2.19)

Passing to the limit, we see that v ∈ E(u). Therefore

lim
i→∞

Tumki
= Tu. (2.20)

This means that for any subsequence {umk
} of {um}, we can find a subsequence of {umk

} such

that Tumki
converges to the same limit Tu. Therefore Tum converges to Tu. The proposition

is proven.

Remark 2.4 The procedure presented in this section also works for high dimensional

and system cases. The keys are Proposition 2.1 and 2.3. Certainly, we need to assume more

regularity on the nonlinear potential.

3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We will use the following fixed point theorem, which

looks like textbook things in the literature of fixed point theory.

Lemma 3.1 Assume that X is a seperable Banach space. Then any compact continuous

mapping from the unit sphere in X to PX has fixed point, i.e., ∃u ∈ X, ‖u‖X = 1, Fu = [u].

Proof The idea is standard: Use finite dimensional case to approximate infinite dimensional

case. It is well-known that any continuous mapping from even dimensional sphere to even
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dimensional projection space has fixed point. The tool is Lefschetz fixed point theorem (see

[2]).

Let {ei} be the basis for X. Define Jm = span{ei}
2m+1
i=1 . Fix a small ε. The compactness of

F{‖u‖X = 1} implies dist(PJm, F{‖u‖X = 1}) ≤ ε, m ≫ 1.

Suppose [u] ∈ F{‖u‖X = 1}. Let hm([u]) be the projection of [u] on Jm, i.e.,

| hm([u])− [u] |= dist([u], PJm).

Note that hm is well-defined and continuous since ε is small and PJm is compact. Also note

that

sup | hm([u])− hk[u] |≤ ε, [u] ∈ F ({‖u‖X = 1}), m, k ≫ 1.

Therefore we can show

hm[vm] → [v], if [vm] → v. (3.1)

Clearly Jm
⋂
{‖u‖X = 1} is isomorphic to S2m and PJm is isomorphic to RP 2m. So there exists

um such that

(hm ◦ F )(um) = [um], um ∈ Jm ∩ {‖u‖X = 1} . (3.2)

The compactness of F implies that {F (um)} has a convergent subsequence, still denoted by

{F (um)}. The property (3.1) gives that (hm ◦ F )(um) also converges. Using (3.2), we know

that {[um]} converges, denote by [um].

Since [um] = (um, − um), ‖um‖ = 1, so ∃{umi
}, ‖umi

‖ = 1, {umi
} converges. We denote

the limit by u. Hence ‖u‖ = 1, umi
→ u in X . Passing limit in (3.2), we prove the lemma.

Proposition 3.1 The operator T is compact from {‖u‖Lp = 1} to PLp.

Proof It follows from Proposition 2.2 and the proof of Proposition 2.4.

Remark 3.1 The compactness for Theorem 1.1 is so easy to prove mainly since L1 is the

admissible space in 1D and V (u) ∈ L1, u ∈ Lp. In 2D and higher, the compactness seems to be

a major issue. The difficulty seems to be the control of the adjusting coefficients.

Proof of Theorem 1.1 Lemma 3.1 and Proposition 3.1 imply ∃u ∈ S, s.t F (u) = [u]. So

u′(0) = u′(1) = 0,

u′′ − u+ α(u)V (u)u = 0. (3.3)

Set

v = α
1
p (u)u. (3.4)

Then v satisfies (1.1). Using (2.16), we can pick v > 0, x ∈ (0, 1). The theorem is proven.

Here we want to emphasize that the solution to (1.1) may not generate the fixed point of the

operator defined in Section 2. Certainly if u solves the equation, then zero is the eigenvalue of

−△+1− V (u), and u is the corresponding eigenfunction. But zero might not be the principal

eigenvalue. Therefore u
‖u‖Lp

is not the fixed point of the operator defined in Section 2.
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4 Proof of Theorem 1.2

In this section we will prove Theorem 1.2. The main difference with Theorem 1.1 is that the

L1 norm of V (u) cannot be controlled from below. So we have to deal with the compactness

in another way. We present Theorem 1.2 mainly because the proof of it contains the idea

of invariant submanifold of the reduced operator, which may be useful in the study of high

dimensional case.

Lemma 4.1 Suppose

{
v′′ + wv = 0, x ∈ (0, 1),

v′(0) = v′(1) = 0.
(4.1)

Let K = ‖w‖Lq + 1, q > 1. Then

‖v‖L2 ≤ CK
1
2

q

2q−1 ‖v‖L1 , where C is absolute constant. (4.2)

Proof Energy integration gives

‖v‖2H1 =

∫ 1

0

(|v′|2 + wv2)dx ≤ CK‖v‖2
L2q′ ,

1

q′
+

1

q
= 1.

So

‖v‖H1 ≤ CK
1
2 ‖v‖L2q′ ≤ CK

1
2 ‖v‖

1
2
(1+ 1

q′
)

L2 · ‖v‖
1
2
(1− 1

q′
)

H1 .

Therefore

‖v‖
1
2
(1+ 1

q′
)

H1 ≤ CK
1
2 ‖v‖

1
2
(1+ 1

q′
)

L2 .

This means

‖v‖H1 ≤ CK
1

1+q′ ‖v‖H1 . (4.3)

Using Nirenberg inequality, we have

‖v‖L2 ≤ ‖v‖
2
3

L1 · ‖v‖
1
3

H1

≤ ‖v‖
2
3

L1 · CK
1
3
· 1

1+q′ ‖v‖
1
3

L2.

So

‖v‖
2
3

L2 ≤ CK
1
3
· q

2q−1 ‖v‖
2
3

L1.

Therefore

‖v‖L2 ≤ CK
1
2
· q

2q−1 ‖v‖L1.

The lemma is proven.

Lemma 4.2 Under the assumptions of Theorem 1.2, the set
{
u ∈ L2 | ‖u‖L2 = 1, ‖u‖L1 ≥

1
M

}
,M ≫ 1 is an invariant submanifold of T , i.e.,

T
{
u ∈ L2

∣∣∣‖u‖L2 = 1, ‖u‖L1 ≥
1

M

}
=

{
(u,−u)

∣∣∣‖u‖L2 = 1, ‖u‖L1 ≥
1

M

}
.
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Proof Clearly it is a submanifold. For invariance, assume u ∈ L2, ‖u‖L2 = 1, ‖u‖L1 ≥ 1
M
,

then

‖V (u)‖Lq , ‖V (u)‖L2q ≤ C, ‖V (u)‖Lq ≥
C

M
.

Hölder inequality implies

‖V (u)‖Lq ≤ ‖V (u)‖
1

2q−2

L1 · ‖V (u)‖
2q−1

2q−2

L2q .

So

‖V (u)‖L1 ≥
( 1

C
· ‖V (u)‖Lq

)2q−1

≥ C
( 1

M

)2q−1

.

Using Proposition 2.2, we have

α(V (u)) ≤
1

‖V (u)‖L1

≤ C ·M2q−1.

By definition,

Tu = P{v | v′′ − v + α(V (u))V (u)v = 0, v′(0) = v′(1) = 0}.

Lemma 4.1 implies

‖v‖L2 ≤ C‖α(V (u))V (u)− 1‖
1
2
· q

2q−1

Lq · ‖v‖L1

≤ CM (2q−1) 1
2
· q

2q−1 · ‖V (u)‖
1
2
· q

2q−1

Lq · ‖v‖L1

≤ CM
q

2 · ‖v‖L1

≤ M‖v‖L1, M ≫ 1.

The lemma is proven.

Define

D =
{
u ∈ L2(0, 1)

∣∣∣‖u‖L2 = 1, u ≥ 0, x ∈ (0, 1), ‖u‖L1 ≥
1

M

}
. (4.4)

Note that

D ∩−D = φ. (4.5)

Then Lemma 4.2 and (2.16) imply that T is an operator from D to D.

Now we recall the following definition of convex in manifold by Berger.

Definition 4.1 Suppose that D is a subset of a manifold. If for any a, b ∈ D, there exists

a unique geodesic in D connecting a and b, then we say D is convex.

Proposition 4.1 The set D is a closed convex bounded set in {‖u‖L2 = 1}.

Proof Clearly D is closed and bounded. For convexity, taking u1, u2 ∈ D, there are two

geodesic connecting u1, u2 in {‖u‖L2 = 1},

γ1 =
{ λu1 + (1− λ)u2

‖λu1 + (1− λ)u2‖L2

, λ ∈ [0, 1]
}
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γ2 =
{ −λu1 + (1− λ)u2

‖ − λu1 + (1− λ)u2‖L2

, λ ∈ [0, 1]
}

⋃{ −λu1 − (1− λ)u2

‖λu1 + (1 − λ)u2‖L2

, λ ∈ (0, 1)
}

⋃{ λu1 − (1 − λ)u2

‖λu1 − (1 − λ)u2‖L2

, λ ∈ [0, 1]
}
.

Clearly γ2 does not completely belong to D. For γ1, the key is that ui ≥ 0.

Note that

Q = ‖λu1 + (1− λ)u2‖L2 ≤ 1.

So

‖λu1 + (1− λ)u2‖L1

Q
=

1

Q

∫ 1

0

[λu1 + (1− λ)u2]dx

=
1

Q
λ‖u1‖L1 + (1− λ)‖u1‖L1

≥
1

Q

[
λ
1

M
+ (1 − λ)

1

M

]

≥
1

M
.

So γ1 ⊂ D. The proposition is proven.

Proof of Theorem 1.2 Lemma 4.2 and Proposition 4.1 imply that the operator T is

compact continuous operator from D to itself. The existence of fixed point comes from the

following version of Schauder fixed point theorem. Any compact, continuous mapping from a

closed convex bounded set of a manifold to the set itself has fixed point. The rest is essentially

the same as Theorem 1.1.

Probably the property (2.16) would only hold true for the principle eigenfunction of second

order equation. The other way of getting existence of fixed point is to use homotopic invari-

ance of Nielsen number. Such number is not easy to estimate in multivalued cases, and the

construction of the homotopy may be hard. But both things look doable.

5 Further Discussions

Extension of the model From the very simple model (1.1), there are various ways of

improvement, for instance, the removing of artificial helping term −u, system case, non-self-

adjoint linearized operator, compactness of the nonlinear operator in higher dimensions, etc.

Among all the generalizations, the compactness issue looks a lot harder than others. The latter

could be difficult or very complicated, but still looks to be within the reach of current method.

But for compactness in dimension two and higher, the method seems not clear. Somehow the

role of compactness is like a priority estimates in the existence theory based on Leray-Schauder

fixed point theorem.

Dirichlet boundary condition It is perhaps hard to extend the method to Dirichlet

boundary condition directly. At first glance, this seems to be a drawback of the method.

But after further thinking, this even maybe a little supporting evidence for the method. As
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suggested in [3], one major goal of studying multiple solutions in bounded domain is to induce

method for studying singluar solutions. But for singular solutions, usually the first typical case

is the whole space case. From this point of view, Dirichlet or Neumann does not matter.

More importantly, consider the following standard semilinear elliptic equation:

△u+ |u|σu = 0, x ∈ Ω,

where Ω is a bounded domain in Rn. It is well-known that if σ ≥ 4
n−2 , n ≥ 3 and the domain is

convex, then the equation above does not have nontrivial solution for zero Dirichlet boundary

condition. This property suggests that Dirichlet boundary condition might not be a first choice

in the search for method of utilizing the help of nonlinear terms.
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