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Abstract In this paper, the authors consider a reflected backward stochastic differential
equation driven by a G-Brownian motion (G-BSDE for short), with the generator growing
quadratically in the second unknown. The authors obtain the existence by the penalty
method, and some a priori estimates which imply the uniqueness, for solutions of the
G-BSDE. Moreover, focusing their discussion at the Markovian setting, the authors give
a nonlinear Feynman-Kac formula for solutions of a fully nonlinear partial differential
equation.
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1 Introduction

A general backward stochastic differential equation (BSDE for short) takes the following
form:

T T
Yt:§+/ f(s,Ys,Zs)ds—/ ZdW,, tel0,T].
¢ ¢

The function f is conventionally called the generator and the random variable ¢ is called the
terminal value. Bismut [2-3] initially gave a complete linear theory, where the generator is
linear in both unknown variables, and derived the stochastic Riccati equation as a particular
nonlinear BSDE where the generator is quadratic in the second unkown variable. Pardoux and
Peng [29] established the existence and uniqueness result when the generator f is uniformly
Lipschitz continuous in both unknown variables and the terminal value £ is square integrable.
Subsequently, an intensive attention has been given to relax the assumption of the uniformly
Lipschitz continuity on the generator. In particular, the one-dimensional BSDE with a quadratic
generator (i.e., the so-called quadratic BSDE) was studied by Kobylanski [18] for a bounded
terminal value ¢, and by Briand and Hu [5-6] for an unbounded terminal value ¢ of some
suitable exponential moments. The multi-dimensional quadratic BSDE was discussed by Tang
[39] and Hu and Tang [16].
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As a constrained BSDE, a reflected backward stochastic differential equation (RBSDE for
short) was formulated and studied by El Karoui et al. [11], where the first unknown Y is required
to stay up a given continuous process S and an additional increasing process which satisfies the
Skorohod condition, is thus introduced into the equation. Subsequently, much efforts have been
made to relax the Lipschitz assumption on the generator. For the quadratic case, see Kobylanski
et al. [19] with bounded terminal values, and Lepeltier and Xu [21] with unbounded terminal
values.

To incorporate the Knightian uncertainty, Peng [31-34] introduced the notion of
G-expectation as a time-consistent sub-linear expectation, and constructed (via a fully non-
linear PDE) the so-called G-Brownian motion {B;, t € [0,4+00)}, whose quadratic variation
process (B)—in contrast to the classical Brownian motion—is not deterministic. The stochastic
integral with respect to the G-Brownian motion and its quadratic variation were also discussed
by Peng [31]. Denis et al. [10] prove that the G-expectation is in fact the upper expectation
over a collection of mutually singular martingale measures P. Hu et al. [12] showed that
there is a unique triple of processes (Y, Z, K) in a proper Banach space satisfying the following
scalar-valued BSDE driven by the G-Brownian motion B:

T T T
Yio=tt / o(s,Ye, Z3)ds + / F(5.Ys, Z,)A(B)s — / 2,48,
t t t

T
—/ dK,, te[0,T), (1.1)

where f and g are uniformly Lipshchitz in both unknown variables. Hu et al. [15] proved the
existence and uniqueness for adapted solutions to the scalar-valued z-quadratic BSDE (1.1)
driven by the G-Brownian motion B for a bounded terminal value £. Very recently, Li, Peng,
and Soumana Hima [24] discussed a reflected BSDE driven by the G-Brownian motion subject
to a lower obstacle under the uniformly Lipschitz condition, where a G-martingale condition
rather than the conventional Skorohod condition, is used to characterize the unknown bounded
variational process which is introduced into the equation to keep the first unknown process stay
up the lower obstacle under the G-expectation. More precisely, they showed that there is a
unique triple (Y, Z, A) of processes satisfying the following equation:

T T
Y= ¢+ /t o(s,Ye, Zo)ds + /t F(s,Y, Z))d(B),

T T
—/ stBer/ dA,, tel0,T]; (1.2)
t t

Y, > S, 0<t<T; / (Ss — Ys)dA; is a non-increasing G-martingale.
0
A subsequent study of Li and Peng [22] reported the following unexpected observation on the
upper obstacle problem for the reflected BSDE driven by a G-Brownian motion: The proof of
the uniqueness of solutions in the lower obstacle problem turns out to be difficult to be adapted
to the upper obstacle problem. Since the preceding two equations hold P-a.s. for each P € P,
they are also associated to second order BSDEs, which were discussed by Cheridito et al. [8],
Soner et al. [37] and Possamai and Zhou [35]. Moreover, Matoussi, Piozin and Possamai [26]
and Matoussi, Possamal and Zhou [27, 28] discussed the reflected second order BSDEs. In the
context of a G-BSDE, the solution is universally discussed in a “better” space of processes, and
its existence naturally requires more regularity of the coeflicients.
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As a generalized counterpart of the classical reflected quadratic BSDEs, the existence and
uniqueness result for reflected quadratic BSDEs driven by G-Brownian motions still remains to
be studied. The main objective of this paper is to provide the well-posedness of the reflected
G-BSDE (1.2) when the generator has a quadratic growth and the terminal value £ is bounded.
As noted in Li, Peng and Soumana Hima [24] and Possamai and Zhou [35], the dominated con-
vergence theorem does not hold under the G-framework, and a bounded sequence in M (0,T)
does not necessarily have the weak compactness. These striking differences prevent us from
adapting the method of Kobylanski et al. [19] to approximate the quadratic generator with
Lipshcitz ones and then to prove the solutions of the approximating reflected BSDEs to con-
verge to that of the original reflected quadratic BSDE. Instead in this paper, we use a penalty
method in the spirit of El Karoui et al. [11] (for a BSDE in a Wiener space) and Li, Peng and
Soumana Hima [24] (for a G-BSDE). Since our generator is allowed to grow quadratically in
the second unknown variable, the terminal value ¢ is assumed to be bounded for simplicity of
exposition, and then the symmetric martingale part of the underlying BSDE is discussed in the
BMO space.

Asin Hu et al. [13] and Li, Peng and Soumana Hima [24], the solution of a forward backward
differential equation driven by G-Brownian motion (G-FBSDEs for short) can be interpreted as
a viscosity solution of a PDE. We first prove the existence of solutions of quadratic G-BSDEs
in a Markovian setting. We then give the nonlinear Feynman-Kac formula for a fully nonlinear
parabolic variational inequality via the quadratic G-BSDEs and the reflected quadratic G-
BSDEs.

The paper is organized as follows. Section 2 is dedicated to preliminaries on the G-
framework, the formulation of reflected G-BSDEs, G-BMO martingales and G-Girsanov the-
orem. In Section 3, we introduce some a priori estimates for quadratic reflected G-BSDEs
through the G-Girsanov transformation, which yield the uniqueness in a straightforward way.
In Section 4, we establish the approximation method via penalization. We state some conver-
gence properties of the solutions to the penalized G-BSDEs. In Section 5, we prove our main
result and a comparison theorem. Finally, in Section 6, we give a nonlinear Feynmann-Kac
formula and address the relation between quadratic G-BSDEs and nonlinear parabolic PDEs.

2 Preliminaries

2.1 Notations and results on G-expectation and quadratic G-BSDEs

In this section, we first recall notations and basic results concerning G-expectation, G-
Brownian motion and related G-stochastic calculus, and quadratic G-BSDEs. More details can
be found in [12, 13, 25, 31-33].

Let © be a complete separable metric space, and let H be a linear space of real-valued
functions defined on 2 satisfying ¢ € H for each constant ¢ and |X| € H if X € H. H is
considered as the space of random variables.

Definition 2.1 (Sublinear Expectation Space) A sublinear expectation IAE[] is a functional
E:H—R satisfying the following properties: For all X|Y € H,
(1) monotonicity. If X >Y, then E[X] > E[Y];
(2) constant preservation. Elc] = ¢, ¢ € R;
(3) sub-additivity. E[X + Y] < E[X] + E[Y];
(4 = AE[X] for all A > 0.

—_— — ~— ~—

positive homogeneity. E[AX]
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We call the triple (Q,’H,IAE) a sublinear expectation space.

Definition 2.2 (Independence) In a sublinear expectation space (Q,’H,IE), a random vec-
tor Y = (Y1,Y2,--+,Y,), Y; € H is said to be independent of another random wvector X =
(X1, X0, X)), Xi € H, if E[p(X,Y)] = E[E[¢(z,Y)]]a=x] for all ¢ € Cpyp(R™F™), where
Ciiip(R™) s the space of real continuous functions defined on R™ such that

|6(z) — o(y)] < CA+ |2f* +|y[*)|z —yl, Va,yeR",

where k and C depend only on ¢.

Definition 2.3 (G-Normal Distribution) We say that the random vector X = (X1, Xa,- -+, X4)
is G-normally distributed, if for any function ¢ € Cy1ip(R?), the function u defined by u(t,z) :=
E[p(z +VtX)], (t,x) € [0,+00) x R?, is a viscosity of G-heat equation:

Owu — G(D%u) =0, u(0,z) = ¢(x).
Here G denotes the function
G(A) = %]E[(AX, X)]: Sa > R,
where Sy denotes the collection of d X d symmetric matrices.

The function G(+) is a monotonic, sublinear mapping on Sy and
1~ 15 1
G(4) = ZBIAX, X)) < SARXP] = 5|4
implies that there exists a bounded, convex and closed subset I' C S} such that

G(4) = £ suptaly 4],
2 yel
where Sj denotes the collection of nonnegative elements in S;.

In this paper, we only consider a non-degenerate G-normal distribution, i.e., there exists
some o > 0 such that G(A) — G(B) > g*tr[A — B] for any A > B.

We now fix  := C([0,00); RY), the space of all R%valued continuous functions {w;, t €
[0,4+00)} with wg = 0. Let F = {F;, t € [0,400)} be the nature filtration generated by the
canonical process {B;, t € [0,400)}, i.e., Bi(w) = w; for (t,w) € [0,00) x Q. Set Qp :=
Co([0,T]; RY). Let us consider the function spaces defined by

Llp(QT) = {¢(Bt17Bt2 - Bt17 e 7Bt - Btnfl) : 0 S tl S t2 S Tt S tn S Ta ¢ S Cl,lip(Rdxn)}

n

for T'> 0, and Lip(Q2) = 6 Lip(Q,).
n=1

Definition 2.4 (G-Brownian Motion and G-Expectation) On the sublinear expectation
space (Q,Lip(Q),IE), the canonical process {By, t € [0,4+00)} is called G-Brownian motion if
the following properties are satisfied:

(1) By = 0;

(2) for each t,s > 0, the increment Byis — By is independent of (By,, By, -+ , By,) for each
neNand 0 <t <ty <..-<t, <t

(3) Biys — By is G-normally distributed.
Moreover, the sublinear expectation E[] is called G-expectation.
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Definition 2.5 (Conditional G-Expectation) For the random variable § € Lip(Qr) of the
following form:
¢(Bt,, By, — By, -+, By, — By, ), ¢ € Criip(R™),

the conditional G-expectation IAEti [],i=1,2,--- ,n, is defined as follows:

IEti = [¢(Bt17Bt2 - Btu e aBt - Btn—l)] = ¢(Bt1aBt2 - Btn T 7Bti - Bti—l)?

n

where

d(xr, 2, ,x5) = ]E[¢(1171,$2, o4, By, — By, By, — By, )]
Ift € (t;,tix1), the conditional G-expectation Et [€] could be defined by reformulating & as

¢ =¢(Bt,, By, — Bty , Bt — Bi,, Be,,, — Bty -+, By, — By, 1), & € Cpipp(RHD),

For ¢ € Lip(Qr) and p > 1, we consider the norm |[{[|z» = (E[|§|p])%. Denote by L7, (Q7)
the Banach completion of Lip(Q7) under [ - [|zr. It is easy to check that the conditional G-

expectation IAEt[] : Lip(Qr) — Lip(9:) is a continuous mapping and thus can be extended to
E; : LZ(QT) — Lg(Qt)

Definition 2.6 (G-Martingale) A process {M;, t € [0,T]} is called a G-martingale if
(i) My € LE(%) for any t € [0,T7;
(i) Eg[My] = M, for all0<s<t<T.
The process { My, t € [0,T]} is called a symmetric G-martingale if —M is also a G-martingale.

The following representation result of G-expectation on L} () can be found in Denis et
al. [10, Propositions 49 and 50, p. 157-158] and Hu and Peng [14, Theorem 3.5, p. 544].

Theorem 2.1 There exists a weakly compact set P C My (Qr) (i.e., the set of all probability
measures on (Qr, B(2r))), such that
E[¢] = sup E*[¢], V&€ Le(Qr),
PeP

where E¥[] is the expectation operator with respect to probability P. Such P is called a repre-
sentative set of E.

Let P be a weakly compact set that represents E. For this P, we define capacity ¢(4) :=
supP(A), A € B(Qr).
PeP

Definition 2.7 (Quasi-sure) A set A € B(Qr) is a polar set if ¢(A) = 0. A property holds
“quasi-surely” (q.s. for short) if it holds outside a polar set.

In what follows, two random variables X and Y will not be distinguished if X =Y, q.s.
Soner et al. [36, Proposition 3.4, p. 272] gave the following characterization of the condi-
tional G-expectation.

Theorem 2.2 For any & € L (), t € [0,T) and P € P,

E/[¢] = esssup EY [€], P-a.s.,
P EP(,P)
where
Pt,P):={P' € P:P' =P on F}.
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In view of Theorem 2.2, it is easy to check the following property for G-martingales.

Proposition 2.1 Assume that {M, s € [0,T]} is a G-Martingale and {ns, s € [0,T]} is
a process satisfying ns € L&(Qs) for any s € [0,T). Then we have for any t € [0,T],

Et[nt + Mp — M) = ;.

For the terminal value of quadratic G-BSDE, we define the space L (Q7) as the completion
of Lip(Q2r) under the norm

€]l s == inf{M >0 |¢] < M, qs.}.

For £ € Lip(Qr) and p > 1, define ||€]|,c = IAE[ sup IAEt[|§|p]]% and denote by L%(Qr)
te[0,T7]

the completion of Lip(€2r) under || - ||,,¢. Song [38, Theorem 3.4, p. 293]) gave the following
estimate.

Theorem 2.3 For any o > 1 and § > 0, Lg+6(QT) C Lg(Qdr). More precisely, for any

1<'y<6:=°‘7+6,”y§2, we have

. o 1 oth .
1€lla.e <Y {UENTars +147Calléll 215}, V& € Lip(Qr),
G vy LG

_B8
where C's E T,y =
57

Remark 2.1 In view of [12, Remark 2.9], there exists C1 depending only on « and ¢ such
that
B[ suwp B[le]] < CufElle*]55 +Blie*).
te[0,7)
Let B be a d-dimensional G-Brownian motion. For each fixed a € R, Bf = (a, B) is a
1-dimensional G,-Brownian motion, where G,(a) = G(aa™)at + G(—aa™)a~. The quadratic
variation process of B® is defined by

N-1

a a a \2
<B >t - ,u(jm)lao ( t;\]ﬂ - tﬁv) ’

where 7V, N = 1,2, -, are refining partitions of [0,t]. By Peng [33, Corollary 3.5.5, Chapter
3, p. 70], for all t,s > 0, (B%)¢ys — (B%); € [-2G(—aaT)s,2G(aa™)s], q.s.
For each fixed a,@ € R?, the mutual variation process of B* and B® is defined by

= Z[(B* %) — (B )]

(B*, B"), 1

Next we discuss the stochastic integrals with respect to the G-Brownian motion and its
quadratic variation.

Definition 2.8 Let M2(0,T) be the collection of processes n of the following form: For a
given partition {t1,r2, -+ ,tn} = 7 of [0,T],

Z 6] tj7t]+1 ( )
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where & € Lip(Qy,) for i =0,1,2,--- N —1. Forp>1 and n € MX(0,T), define
2 1

e = B[( [ 1Pas)¥1%, g = B[( [ Inas)]”.
0 0

Denote by H2(0,T) and ME(0,T) the completion of M2(0,T) under norms ||- a2, and || || arz,,
respectively.

For both processes n € MZ(0,T) and £ € M(0,T), the G-1t6 integrals { fot nsdBi, 0 <t <
T} and {fot &d(BY, BY)s, 0 <t < T} are well defined in [25, 33]. Moreover, the following BDG
inequality can be found in [38, Proposition 4.3, p. 295].

Proposition 2.2 Forne H(0,T) with « > 1 and p € (0, ], we have

2o |( [ wra) ] <B[ e | [“nan [T <orom ([ mrw)] e

Denote by Cb7lip(R1+dX”) the collection of all bounded and Lipschitz functions on R +4xm,
Define

Se(0,T) == {h(t, By ats Beont — Beynes -+ s Bioae — B, _iat)

h € Cyiip (R and ty, by, -+ 1y € [O,T]}.

For p > 1 and n € S&(0,7), set

S

Il == E[ sup [mP’]
€10,

Denote by S%.(0,T') the completion of S&(0,7") under the norm ||- || sz.. The following continuity
of Y € S§%(0,T) for p > 1 can be found in Li, Peng and Song [23, Lemma 3.7, p. 12].

Lemma 2.1 ForY € S7,(0,T) with p > 1, we have, by setting Yy = Y7 for s > T,

=

F(Y):= limsupIAE[ sup sup |[Yi—-YiP|" =0
e—0 te[0,T] s€(t,t+e]
Similar to S%(0,7), we can define the space Sg°(0,7) as the completion of S&(0,7) under
the norm [|n|ses := || sup |77t|HLoo-
t€[0,T) ¢

)

We now introduce some results on quadratic G-BSDEs in [15]. For simplicity, we assume
d =1 and consider the following type of equation:

T T
th :§+/ g(S,W./\S,YS,Zs)dS-F/ f(S,w./\S,YS,ZS)d<B>S
t t

T T
—/ ZSdBS—/ dK,, qs., (2.1)
t t

where the generator (f,g) : [0,7] x Qr x R? — R? and the terminal value ¢ are supposed to
satisfy the following conditions:
(H1) f)"|f(tw,0,0)Pdt + i [g(t,w,0,0)Pdt + [§(w)] < Mo, a5
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(H2) The generator (f,g) is uniformly continuous in (¢,w), i.e., there is a non-decreasing
continuous function w : [0, +00) — [0, +00) such that w(0) = 0 and

sup. [f(tw,y,2) = f(t' 0y, 2)| S w(lt — ] + [w — w']l),
Yy,z2€

sup [g(t,w,y,2) — g(t',w',y, 2)| S w(|t = [ + [lw — w'[l);
y,z€R

(H3) There are two positive constants L, and L, such that for each (¢t,w) € [0,T] x Q,
|f(t7 w,Y, Z) - f(t, w, y/’ Zl)l + |g(t7 w,Y, Z) - g(tvwv y/’ Zl)l < Ly|y - yll + Lz(l + |Z| + |ZI|)|Z - le'

Remark 2.2 In [15], the triple (f, g,£) is supposed to satisfy the following condition:

(HY’) For each ¢ € [0,T], |f(t,w,0,0)| + |g(t,w,0,0)[ + [§(w)] < Mo, g.s.

The results there still hold if (H1’) is replaced with (H1), by a similar analysis as in [12,
15].

Remark 2.3 (H3) implies

1 3
|h(t,w,y, 2)] < [h(t,w,0,0)| + Lyly| + L. (2] + |2[*) < |h(t,w,0,0)] + oLe+ Lylyl + §LZ|Z|2
with A = f,g. So (f,g) are linear in y and quadratic in z.

For simplicity, we denote by ®%,(0,T") the collection of process (Y, Z, K) such that (Y, Z) €
S%(0,T) x HZ(0,T) and K is a decreasing G-martingale with Ko = 0 and K € LZ,(Q7). Hu
et al. [15, Theorem 5.3, p. 22; (3.2) and (3.3), p. 13] gave the following theorem.

Theorem 2.4 Assume that &€ € LE () and the triple (f,g,&) satisfies (H1)-(H3). Then
(2.1) has a unique solution (Y,Z,K) € &%(0,T) such that

IYllsg + 1 ZlBmoe < C(Mo, Ly, L)

and
EHKT'p] S C(p7 MOaLy7LZ)7 Vp 2 17

where the norm || - |pmo, will be defined in Subsection 2.3.

2.2 Formulation of the problem

For simplicity, we consider the G-expectation space (€2, L, (QT),IE) for the case of d = 1
and 72 = E[B}] > —E[-B?] = ¢% > 0. Consider the following equation:

T T
Y, =5+/ g(s,w.As,Ys,ZS)dH/ F (5,0, Y, Z,)A(B),s
t t

T T
—/ ZdB, —|—/ dA4,, qs.t€]0,T];
t t

Y: > S:, qs.t€]0,T];

the process — / (Y — S5)dAg is a non-increasing G-martingale on [0, 77,
0

where the generator (f,g) : [0,7] x Qr x R? — R? and the terminal value ¢ are assumed to
satisfy (H1)—(H3). Moreover, the obstacle process {S;, t € [0,T]} is supposed to satisfy the
following conditions:
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(H4) S € () S&(0,T) with Sp <&, g.s. Furthermore, there is a positive constant Ny such
a>1

that S; < Ny, g.s. for any t € [0,T].
(H5) S is uniformly continuous in (¢,w), i.e., there is a non-decreasing continuous function
w : [0, +00) = [0, +00) with w(0) = 0 such that

1Se(w) = Sy (W) S w(lt = '] + [lw — @[loo)-

Remark 2.4 Like in [15], (H2) and (H5) are used to ensure the existence of solutions to
our subsequent penalized quadratic G-BSDEs.

A solution of reflected G-BSDEs is defined as follows.

Definition 2.9 A triple of processes (Y,Z,A) belongs to S&(0,T) for a > 1 if (Y, Z) €
S&(0,T) x H&(0,T) and A is a continuous nondecreasing process such that Ay =0 and Ar €
L&(Qr). The triple (Y, Z, A) is said to be a solution to the reflected G-BSDE (2.2) if (Y, Z, A) €
S&(0,T), and satisfies (2.2) fort € [0,T].

Our objective is to establish the existence and uniqueness result for the quadratic G-
BSDE (2.2). For simplicity of exposition, we assume g = 0 in what follows. Corresponding
results still hold for the case of g # 0.

2.3 G-BMO martingales and G-Girsanov theorem

We now introduce some results of G-BMO martingale and G-Girsanov theorem in [15, 35].

Definition 2.10 For Z € HZ(0,T), a symmetric G-martingale [, ZsdBs on [0,T] is called
a G-BMO martingale if

w2 [C1zpam|, ] < o

||ZH%MOG = sup HZ||2BMO(IP) = sup { sup
PeP PeP 7.67—0T

where Tg" denotes the totality of all F-stopping times taking values in [0,T) and || Z|gmocr)
stands for the BMO norm of fo ZsdBs under probability measure P.

Set
BMOg¢ :={Z € H%(0,T) : | Z||smos < +00}.

In a straightforward manner, we have the following important norm estimate for a G-BMO
martingale [ Z,dB;.

Lemma 2.2 For Z € BMOg, we have for each t € [0,T],

Et[(/tT |zs|2d<3>s)%] < CullZl8mon, @5 Ya > 1,

where C,, is a positive constant depending on c.

Proof Fix some (t,P) € [0,7]xP. In view of [17, Corollary 2.1, p. 28], for each P’ € P(¢,P)
we have

T o
! 2 (0% (6%
g7 [( [ 12.24(B).) ] < CalZlno) < CalZlwop: P,
t
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where C,, is a positive constant depending only on «. In view of the definition of P(¢,P), we
have

T o
/ 2 -
B [( [ 12.24(8).) "] < CalZlno,, P-as
t
In view of Theorem 2.2 and noting that C,, is independent of ', we have
=" 5 s §
Et[(/ Z2d(B),) "] = esssup B [(/ Z2a(B)) " | < Call ZIRuo:  P-as.
t PreP(t,P) 0
Notice that C\, is independent of P and we get the lemma.

Like in the classical stochastic analysis, a G-BMO martingale can be used to define an
exponential G-martingale. Hu et al. [15, Lemma 3.2, p. 11] gave the following lemma.

Lemma 2.3 For Z € BMOg, the process

t t
E(Z) = exp(/ Z.dB, — %/ ZPA(B)), t20
0 0

1s a symmetric G-martingale.

In a way similar to [35], we have the following lemmas.

Lemma 2.4 (Reverse Holder Inequality) Let ¢(z) = {1 + x% log 22(§j) }% land1<q<
+oo. If || Z||Bmoe < ¢(q), we have

2 H ?(?)f }q} HLOO(]P’) <G

for a constant Cy > 0 depending only on q.

sup sup
PeP TE'TOT
Proof For each P € P,

1ZllBmo@) < 1 ZllBMos < ¢(q)-

Then, from [17, Theorem 3.1, p. 54], we have
E(Z)r\ 1
P
af 8(2). bl

for a positive constant C;; which does not depend on P.

sup
TETE

‘ <C, VPep
Loo(P)

Lemma 2.5 Let 1 <r < +oo. If || Z]|BMog < %5(\/? — 1), then
E(Z)r 7

P T
ez

holds with a constant C,. > 0 depending only on r.

sup sup
PeP reTt

T

‘LOO(IP) -

Proof In a way similar to the proof of Lemma 2.4, the desired result is an immediate
consequence of [17, Theorem 2.4, p. 33] for all P € P.
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Remark 2.5 Assume || Z||pmog < ¢(q) for some ¢ € (1,400). Fix some (¢,P) € [0,7] x P.
In view of Lemma 2.4, we have for each P’ € P(t,P),

’ g(Z)T q
v < "_a.s.
Ey H é”(Z)t} } <Cp P-as
In view of the definition of P(¢,P), we have

EF, H (Z((Z));F }q} < Cy P-as.

Thus in view of Theorem 2.2, we get

E({Go) - s e (G Y] <0 pas

Noting that C, is independent of P, we have the following reverse Holder inequality:

B[(42) ] <0, 0

Similarly, in view of Theorem 2.2 and Lemma 2.5, we have

{22 < s

if |Z ]| symog < 2 (VT — 1) for some r € (1, +00).

Remark 2.6 The reverse Holder inequality in Remark 2.5 is used in the proof of Hu et al.
[15, Lemma 3.4]. We give a proof here for convenience of the reader.

Remark 2.7 Suppose that there exist {Z"},eny € HZ(0,T) such that || Z"||pmo, < M for
all n € N. Taking ¢ = 0 in Reamrk 2.5, we can know that there exist ¢ > 1 and r» > 1 which
are depending only on M such that

E[£(Z2")%) < Cq, E{&(ZM)r} =] < O,

With the exponential martingale, we can generalize the Girsanov theorem. In [15], we know
that we can define a new G-expectation E[-] with &(Z) satisfying
E[X] = sup EF[£(Z)rX] = B[&(Z)rX], VX € L%(Qr), (2.3)
PEP

where p > qqu and ¢ is the order in the reverse Holder inequality for &(Z). Moreover, the

conditional expectation E,[-] is well-defined following the procedure introduced in [15, 40]. And

we have

E(Z)r

2(2);
The following two lemmas give the Girsanov theorem in the G-framework, and can be found

in Hu et al. [15].

E[X] = Et[ X}, qs. VX € L2 (7). (2.4)

Lemma 2.6 Suppose that Z € BMOg. We define a new G-expectation E[] by &(Z). Then
the process B — [ Zd(B) is a G-Brownian motion under E[-].

Lemma 2.7 Suppose that Z € BMOg. We define a new G-expectation E[] by &(2).
Suppose that K is a decreasing G-martingale such that Ko = 0 and for some p > #, K, €
L2.(), 0 <t <T, where q is the order in the reverse Holder inequality for &(Z). Then K is
a decreasing G-martingale under E[].
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3 A Priori Estimates for Solutions of Reflected Quadratic G-BSDEs

With G-BMO martingale and G-Girsanov theorem, we have the following comparison the-
orem for quadratic G-BSDEs.

Theorem 3.1 Let the triplet (€%, f%, g%) satisfy (H1)—(H3) fori=1,2. Let (Y, Z! K') €
&Z(0,T) be the solution to the following G-BSDE:

T T
Y:=£i+/ (s, Y7, 7) d8+/ fi(s,Yi, Z7) <B>s+/ av;
t t
T .
—/ Z;dBS—/ dK! qs te0,T),
t t

where V' is a continuous finite variation process, for i = 1,2. Assume that

(Y%, 2", K}, V') € 8§ (0,T) x BMOg x (| LE(Qr) x (1) SE(0,T),

p=>1 p=>1

and K* is a decreasing G-martingale. If €' > €2, g* > g%, f1 > f2, ¢.5. and V' —V? is an
increasing process, then we have Y,;' > Y72, q.s. for any t € [0,T].

Proof Without loss of generality, we assume that ¢g' = g% = 0.
Define £ := ¢! — £2 and for t € [0, 77,

Y, =Y -Y? Z,=2Z' -7 K;=K!-K Vi:=V!-V2
and f; == fL(t, Y2, Z2) — f2(t, Y2, Z2). As in the proof of [15, Proposition 3.5], we use the

method of linearization to write

T T T T
Yt=5+/ (Fo+ 7 + G5V, + 5 2,)d(B), _/ zsst_/ dKS+/ iV, qs.,
t t t

t

where for 0 < s < T,

fl(s Ylﬂzl) _fl(sjy2 Zl)

- _ % » TS s s 14 N
ag = [1 - 1(Y5)] 7 GARS
T > fl(s7Y2’ZI)—fl(s7Y2’Z2)A
e . o s s s s N
bs T [1 Z(Zs)] |Zs|2 Zsl{\Zs|>O}a

T/ﬁi = l(i}s)[fl(svifslv Z;) - fl(S,}/f,Zi)] + Z(Z\S)[fl(57}/s2v Z;) - fl(S,}/f,Zg)]

for a scalar Lipschitz continuous function [ such that 1j_. 4(z) < I(z) < 1j_g.9(x) with
x € (—00, +00). We also have

@) < Ly, [0 < L1+ 2L + | 22),
|mg| < 2e(Ly + L.(1+ 2+ 2|Z}))).

Define By := B; — fo b5 s for t € [0,T]. In view of [15, Lemma 3.6], we know that [
BMOg. Therefore, we can deﬁne a new G-expectation E[-] by &(b), such that B is a G-
Brownian motion under E[-]. Then the last G-BSDE reads

o~ -~ T -~ > T =3 g T 7> B i
}/t = f + / (fs + 'f/fli +a§}/s)d<B>s - / stBs - / dKS + / dVS’ a8
t t ¢ t
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Applying Ito’s formula to elo @ SY} we have

elo azd( Bly,
:efoTaid<B>s§+/ o aa ﬁd(B)s—i—/ oo WAB umed(BY,
t t
T P T . T N
_/ ef;azd<B>uZSst_/ ejgaid<B>udKS+/ oJd ALAB ],
t t
2/ elo @ud(B m§d<B>s—/ elo TdBr 7 4B, +/ elo TdBlg K2 s,
t t t
So we have

—eloaid SY+/ elo @ud(B dK§<—/ elo @ud( ﬁzid(B>s+/ elo @Bl 7 4B, qs.
t t t

In view of Hu et al. [12, Lemma 3. 4] and Lemma 2.7, we know f elo @ ABlud K2 is a decreasing
G-martingale under both E[-] and E[-]. Taking conditional G-expectation on both sides, we have

S e R A e
t

Since [a%| < L,,, we have

T
e A
t

Finally, it remains to prove the limit

T
: . -
sh—r%Et[/t |m8|d<B>S} =0, qs.

Let ¢(z) = {1 + 2= L log pTe 1)} — 1. We know that there exists p > 1 independent of € such
that
[z llBMoe < [IL2(1+[Z1] + [ Z2]) [ BMoG < ¢(P),

where p’ = 1%. Then according to Lemma 2.4, for X € L%, (Q7), we have

PG S/ EO) NP E o 1 ~ 1

Ex] =B [0 x] <&, [(ZD0Y ] B 1x1F <o BIXPE as
In view of Lemma 2.2, we have

~ T _ T

Et[/ |ﬁz§|d<B>s} < 2e62T(Ly + L. + 2L.¢) +451Et[/ |z;|d<B>S}

t t
_ (T 1
< 2e6°T(Ly + L. + 2L.¢) + 4ga2T1Et{ / |Zsl|2d<B>S}
t

—2 —2 T T 112 P ﬁ
< 266°T(Ly + L. + 2L.¢) + 4eC,5°TE, |Z12d(B),
t

< 2€E2T(Ly + L.+ 2Lz5) + 4SCPO;/||Z1||BMOG, q.s.
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3 ™ T NE —
So we get Eh_I,%Et[ft |ms|d(B)s] =0, q.s.
Consider the following type of BSDE:
T T T
Y;=¢ +/ f(s,w.ns, Ys, Zs)d(B)s —/ ZsdBg +/ dA,, qs.t€]0,T];
t . t t (3.1)

Y; > S, qs. te[0,T); / (Ss — Y;)dAg is a non-increasing G-martingale,
0

with A being a continuous nondecreasing process and Ag = 0.

Proposition 3.1 Let f satisfy (H1) and (H3). Assume that (Y, Z, A) solves

T T T
Yt:§+/ f(s,Ys,Zs)d<B>s—/ stBS+/ dA4,, g.s. te0,T],
t t t

where
(Y,Z) € Sg(0,T) x H;(0,T),

and A is a continuous nondecreasing process with Ay = 0.
Then there exists a constant Cy := C1(||Y||sge, T, L2, Ly, Mo, @) such that

1Zll MmO < Ch,
and a constant Cz := Co(||Y|sgs, T', Lz, Ly, Mo, @, ) for any o > 1, such that
E[|A7|®] < Cs.

Proof For each P € P, we know

T T T
Y, =§+/ £(s,Ys, Z5)A(B), —/ Z,dB, +/ dA,, P-as.te[0,T).
t t t

Then, for some a > 0, applying It6’s formula under P to e~%¥*, we have for each 7 € 7',

T T
= % _eoYr —/ ae_“YSf(s,Ys,Zs)d<B>s+/ ae™ Y Z,dB,

T

a? T
) / e " Z2d(B)s
—aé —

T
— / ae”YsdA,, P-as.
-
Since A is a continuous nondecreasing process, noting a > 0 and Remark 2.3, we have

2 T

a_ e_aYs

2 T

T

—a¢ _

T
<e % e —/ ae_“YSf(s,Ys,Zs)d<B>s+/ ae~ Y+ Z.dB,

T

Z[*d(B),

T
1
<e ™ — e +/ ae= " (|f(s, 0,0)| + 5L+ Ly|Ys|)d<B>s

3alL, T_ay
+ 5 /Te

T
ZS|2d<B>S+/ ae~Y:7Z.dB,, P-as.
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Taking a = 4L, noting Y € S (0,7") and taking conditional expectations under P on both
sides, we have

22| [ ez i)

T

£(5,0,0)] + %Lz T Ly|Ys|)d<B>S}

T
<Ef [e_af —e " +/ ae_aYS(

T

T 1
N o1 N
< 2 - Wlsg 4 41, 52 (\/TEE’ K/ 1£(s,0, 0)|2ds) } + LT+ LyTHY||Sgo)e4Lz”YHSG
0
ALY || o0 _ 1 ALY || o0
< 2e* - Wlsy 441,52 (\/TMO +5L.T+ LyTHYHSgo)e Wiisg | p_as.
Then with the arbitrariness of 7, we obtain for all P € P,
1 oSi.vise |, 2 — 1 8L.[|Y| 500
120w < g5 15 + 02 (VIMy + 5 LT + LTIV s )15
Finally, with the arbitrariness of P, we get

1 - 2 _ 1 . oo
||Z||%MOG < ﬁeng“YHSG 4 L_O_Z( /TMO+ §L2T+LyTHY”SEO)68L “YHSG .

z

Now we get the estimate for Z. We have

T T
AT=Y0—§—/ f(s,Y;,Zs)d<B>s+/ Z,dB,, qs.
0 0

In view of BDG inequality and Remark 2.3, we have for each a > 1,
Blag] < CaBlVal* + 161+ CuE[( [ e v zojaB)) ]
- R 0

+CaB[( [ 1zPamy) ]

< 20|V g + (LE[(/OT £(5,0,0)[a(B),)" + (/OT %LZ + Ly|Yla(B),) "]
+ 353%[( / Nzpam)] + c.B]( / Czpam)’]

< 20|V 35 + Cor® {B[ (T /OT 7(5.0.0)%as) ] + (GLT + LY 155) )
+ 353L2E[(/0T |Zt|2d<B>t)a} + CQ]EK/OT |Zt|2d<B>t)%}'

In view of Lemma 2.2, we have

~ ~ o 1 a
BlAF) < 2CalY g5 + Car®*{(TM)F + (SL.T + LTIV lIsz ) }

3éa€2aLz o - o
+ fHZ”%MOG + CaCallZ|BMo -

Substituting the estimate for Z, we get the estimate for A.
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Proposition 3.2 Let (&, f,5) satisfy (H1) and (H3)—(H4). Assume that the triplet
(Y, Z,A) Sép(O7 T), with some p > 1, is a solution to the reflected G-BSDE with data (&, f, S).
Moreover, we suppose

1 2g—1 Y32
L1+ 1Z )0 < 6(a) = {1+ log g5} 1

with q satisfying p > q_il.
Then there exists o constant C := C(T, L., L,,7, No) such that

T 1
Wil < (146l + | [ 17s.0.0Pas]} ), vee .
0 3
Proof For some 7 > 0, applying Itd’s formula to e"|Y; — No|?, we have for each ¢ € [0, 77,

T T
e”|Yt—N0|2+r/ eTS|YS—NO|2ds+/ e"*|Z,)?d(B)s
t t

T
=e"T|e — No|? —1—/ 2e"*(Ys — No) f(s,Ys, Z5)d(B)s

t

T T
- / 2" (Y, — No)ZodBs + / 2e" (Y, — No)dAs, q.s.
t t

We have
f(s,Ys, Zs) = f(5,0,0) +m5 + alYs + bSZs,
where
f(say;a ZS) - f(saoa Zs)
ag = [1 = 1(Y5)] % Ly, >0y
fsvanS —fS,0,0
R e e LU

mS = WY [ (5, Yo, Zs) — [(5,0, Z3)] + UZ)[f (5,0, Zs) — f(5,0,0)]

with s € [0,7] and the function [ being Lipschitz continuous such that 1j_. ;(z) < I(z) <
1i_2c 2] () for x € (—00, +00). Moreover,

lag] < Ly, (05| < L2(1+1Zs]),  [mi] < 2e(Ly + L:(1 4 2¢)).

In view of [15, Lemma 3.6], we know that b° € BMOg. Set B; := B, — fot bsd(B), for t € [0, 7.
Thus we can define a new G-expectation E[] by &(b%), such that B is a G-Brownian motion
under E[-]. Then we have for each t € [0, T,

T T
e Y;: — No|* + 7“/ e"*|Y, — No|*ds +/ e"*|Z,|?d(B)
t t
T
<eTlE - Nol? + / 2e"5(Yy — No)(f(5,0,0) +mS + aZY, + b2 Z,)d(B)
t

T T
- / 2e"*(Y, — No)ZsdB, + / 2e"%(Y, — No)dA,
t t

T T
<eT|e— Nol2 + (1 + 2Ly)/ e"|Yy — No|*d(B), — / 2e"5(Y, — Ny)Z,dB,
t t
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T T
b [ e (60,00 + i+ NoLyPa(B). + [ 27V~ S04, as
t t
Setting r > 7>(1 + 2L,) and taking conditional expectations on both sides, we have
_ T
et |Y; — No|? + E, [ - / 26" (Y — SS)dAS]
t
_ _ T
<Eife"T|€ — No|?] + E; {/ e (£(5,0,0) + |m:| + NoL,)*d(B)s|, qs.
t

From (3.1), we know that {— fOt(YS — Ss)dAs}iejo,r) is a non-increasing G-martingale under
E[]. Moreover,

IAE[(/Ot(Ys—SS)dAS)p} gE{ sup |YS—5’S|1)(/OTdAS)p} SE[ sup |YS_SS|2pj|% [|AT|2p]

s€[0,T] s€[0,T]

Note p > q% and
65llBMog < I1L2(1+ |Z])IBMOG < ¢(q)-

In view of Lemma 2.7, we know that { - fot (Ys—Ss)dAs }te[o 7] is a non-increasing G-martingale

under E[-]. Then for each t € [0,7],

T
Y= Nof? < Bele'lg = NoP) + B [ e (£(5,0,0) + 3] + NoL, Pd(B).
t

< 2 T([¢lf3 + NZ) + 2777 2{(2&:(/: + L.(1+ 2¢)) + NoL,)°T

o [ 1seoora, )

Letting € — 0, we have

T
Y = NPt < 27T (€l + ) + 20T (MET + | [ 0.0 ). s
G

So we get the estimate for Y.

Proposition 3.3 Let (¢!, f1,SY) and (&2, f2,5%) be two sets of data, each one satisfying
(H1) and (H3)(H4). Assume that the triplet (Y, Z', A") € SeP(0,T), with some p > 1, is a
solution of the reflected G-BSDE with data (£%, f,5%), i = 1,2. Moreover, we suppose

1 2q—1 3
L.(1+12Y + 12 |lsmo. < 6(q ::{1+—1og7} _1
1E2(1 412" + 12%]) myoe < 6(a) log 50—

with q satisfying p >
each t € (0,7,

q_il. Then there exists a constant C1 := C1(q,T, L., Ly, No) such that for

~ T Py
Y-V < il - €l + B[ ([ AP,

L
+ OB sup IS} - SF] TRIAL - A+ AT - AZF)F, g,
s€t,T]
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where

= fl(sﬂ Y527 ZSQ) - fQ(Sv YsQﬂ Zs2)
Moreover, there ezists a constant Cy := Co(T, L, L,,, 7, Ny, My) such that

T
B[ [ 12~ Z2Pa(B).] < Call Vg (1+ BulAh - A1l + |4 — A2), g Ve 0.7,
t

Proof First, with Propositions 3.1 and 3.2, we know that there exists a constant C' :=
(T, L.,
L,,7, Ny, My) such that

2
> Y s + 12 IBMog) < C. (3.2)

i=1

Define
Yo=Y -Y? Z,=2} -7} S, =8-S} ¢&i=¢&-¢%

With the condition of f! and f?, we see that PN Hép(O7 T). As in the proof of Proposition 3.2,
define for 0 < s < T,

fl(&YSl’ZSl) - fl(&YSZ’ZSl)

a; = [1 - U(Y;)] 7 NGANOE
s . _ s s s s R
b =1 —1U(Z)] 7.2 Zs1qz, 101>

s = 1Y) (5, Y, ZY) = f(s, Y2, ZD] + UZ) f (s, Y2, Z) — f1(s, Y2, Z2)],

where [ is a Lipschitz continuous function such that 1j_. ;j(z) < I(z) < 1j_ac 2 (2). Also define
A:= A' — A%, We have

T T T
:§+/ (Ns + ME + @Y, + b52,)d(B), —/ stBs—i—/ dA,, qs. tel0,T),
t t t

and for each s € [0, T,

@S| < Ly, |05 < L.(1+ |2} +122)),
|mS| < 2e(Ly, + L(1 +2e +2|Z%))).

Then we have

T T T
Yt=§+/ ()\S+ﬁz§+a§Y5)d<B>s—/ stBS+/ dA., qs te[0.7),
t t

t

where dB, = dB, — b5d(B),. In a way similar to the proof of Proposition 3.2, we can define a
new G-expectation E[-] by & (bs) such that B is a G-Brownian Motion under E[-].
For some r > 0, applying It6’s formula to e”|Yt|2, we have for each t € [0, 77,

T T
e”|Yt|2+r/ eTS|YS|2ds+/ &% Z,2d(B)s
t t

T T T
_ e TIER + / 267V, (Ry + 7 + GV,)d(B), — / 26"V, d B, + / 267V, 4,
t t t
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T

T T
< o TIER 4 / &7 ([a[? + | MEP)A(B). + (2 + 2L,) / o7 [T 2(B), - / 2"V, dB,
t t t

T L T L
+/ 2e”S’SdAS+/ 2e"(Ys — Ss)d A,

t t

T

T T
< TIE? 4 / e ([Ra[2 + | ME2)A(B). + (2 + 2L,) / o7 [T 2(B), — / 2", dB,
t t t

T T T
+ / 2e"SydAg + / 2¢" (Y, — ShHydAL + / 2e" (Y2 — S2)dA?,  q.s.
t t t

In view of a similar argument as in the proof of Proposition 3.2, we see that Jo(SL—=Y!)dAL is

a non-increasing G-martingale on [0, 7] under E[-] for i =1, 2.
Setting r > 72(2 + 2L,) and taking conditional expectations on both sides, we have
T

T
T2 < Bele 1) + B | / e ([As[* + S 1) d(B)s + / 25,4,
t t

T
< T{[€3 + B[ [ (P + [@EPAB)] + 28| swp [8.01r - A]}, as
@ t sE[t,T)

Note that [[bZ][Bmos < |L=(1+ [Z1] + | Z2])|[BMos < @(q) < &(p') where p’ = -E;. Then
according to Lemma 2.4, VX € L{,(Qr), we have for each ¢ € [0, 77,

~ o~

B - B[S x) < [(£)"]

TR(XPr < CR(XP)F,  gs.
So by the Holder inequality, we have for each t € [0, T],
1
B[ sup |SllAr — Al] < CR[ sup |87z — A7)
se(t,T] se(t,T]
i i
< COE[ sup B,7] TR [| A} — A} 4 |43 - AP] T, g
set,T]

Then there exists a constant Cy := C1(q, T, L, L,,, No) such that for each ¢ € [0,T],

71 < on{ €l + B[ ( [ Ram)’ ] B / msPa(s),
HEt[ sup |§t|2p} ﬁEtHAclr — A +|AT - A?|2p]ﬁ}= q.s.
s€(t,T]

Finally, we just need to prove

e—0

. T
nmEt[/ mEPA(B)] =0, as.
t

In view of Lemma 2.2, we have
. T _ T
E, {/ |m§|2d<B>s} < 8252T(Ly + L. + 2L.¢)* + 32:°E, {/ |Zsl|2d<B>s}
t t

R T L
< 8%FT(L, + L. + 2L.¢)* + 32:2C, K, [(/ |Zsl|2d<B>S) } ’
t
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<8 T(Ly + Le 4 2L:2)” 4 325°C, 01| 2 B0 as

So we get lin% E, [ ftT |ms|2d(B)s] = 0. And we get the estimate for Y.
e—

Then we consider the estimate for Z. Applying It6’s formula to e”|}A/t|2, we have for each

t € 0,77,
o~ T o~
Vi / Z.A(B).
t

T T T
— |§|2+/ 2Ys(f1(s,Ysl,Zsl)—fQ(s,YSQ,Zf))d<B>S—/ 2YSdBS+/ 2Y,dA,, q.s.

t t t

Taking conditional expectations on both sides, we have

B[ [ 12ram.]

2 T
< W¥llsy (Mo +2 3 Be[ [ 1£(s Y2, ZD10(B).] + BellAr - &), as.
i=1 t
Note that Vi =1, 2,
B [ 15y Zhias).]
t
3

"1 7i)a(B).]

3L,

. T, L ;

7 / (|f1(s,o,o>|+—Z+Ly|Y;|+

t

- LZT 2 —2 7 1|2

< (VMT + == )7° + L T|Y s + 57117 [fmog:  as.

2

With (3.2), we get the estimate for Z.

Remark 3.1 The uniqueness for solutions to the reflected quadratic G-BSDE is an imme-
diate consequence of Proposition 3.3.

4 Penalized G-BSDEs and Their Limit

Similar to [22, 24], we use a penalized method. In this section, we first prove some con-
vergence properties of solutions to the penalized G-BSDEs. For (f,¢&,S) satisfying (H1)-(H5)
and n € N, we consider the following penalized G-BSDE:

T T
Y=k [ R 2B e [ (07 - 5 ds
t t
T T
—/ Z"dB, —/ dK", qs.teo,T). (4.1)
t t
Define L} :=n fOt(YS" —Ss)~ds for t € [0,T]. The penalized G-BSDE reads:

T T T T
Yt”=§+/ f(s,zg”,z;l)d<3>s—/ ZQdBS—/ dK:+/ dL", qs.te(0,T]. (4.2)
t t t t
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From (H4), we have
T T
/ I(=S,)~ 2ds = / |5+ 2ds < N2T.
0 0

Thus we can check that the generators of the penalized BSDE (4.1) or (4.2) satisfy (H1)-(H3).
In view of Theorem 2.4, the penalized BSDE (4.1) or (4.2) has a unique solution (Y, Z™, K™) €
%(0,T) such that

Y lsg + 12" [[B7MOG < C(Mo, Ly, Lz, m)

and
E[|K#[P] < C(p, Mo, Ly, Lz,n), Vp>1.

Both estimates depend on n. In fact, (Y™, Z™ K™, L") is uniformly bounded in n.

Lemma 4.1 There exist two positive constants C' and C), which are independent of n, such
that
1Y"[|sgr + 12" lBMOG < €

and
E[|Kz|P] + E[|L7[P] < Cp, Vp>1.

Proof First we consider the estimate for Y. The proof is very similar to that of Proposition
3.2
For some r > 0, applying Ito’s formula to e"t|Y; — Ng|?, we have for each t € [0,T],

T T
eTtD/tn _ N0|2 —l—?"/ eTS|YSn o N0|2d8 +/ ers|Z;’L|2d<B>s
t t
T T
=Tl Nof o+ [ 2 = No) (s, Y2 2B — [ 2] - N2y,
t t
T
b [ 2t - Nz - K7 as
t
Noting that
T
[ e - Noary
t
T T
[ NV - S Tds < [ et (Y - S0 - 5)7ds <0, as.
t t
we have
T
ert|y;n _ N0|2 +T‘/ ers'y'sn —N0|2d8
t
T T
Tl Nof o [ 2V - No) (s, Y 2B — [ 267V~ No) 224,
t t
T
- / 2e" (Y] — No)dK”, q.s.
¢
In a way similar to the proof of Proposition 3.2, we have for each s € [0, 7],

F(s,Y,20) = f(5,0,0) + mS +al Y + b7 2,
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where

lag®] < Ly, 007 < Lo(1+[Z1),
|m2¢| < 2e(Ly + L.(1+ 2¢)).

So we have

T T
ertly;n _N0|2 —I—T/ ers|ysn —N0|2d8+/ 2eTS('Y'Sn _NO)-i-dK:u
t t
T T
< Y — Nof2 + 7"/ oY — NolPds +/ 267 (Y — Ny)dK™
t t
T
<ol Nof o [ 20T = No)(F(5,0,0) + < + a4 B2 ZTNA(B),
t
T
- / 2¢" (Y — No)Z"dB,
t
T
Tl N+ (1421 [ ey - NoPa(B),
t
T T _
—|—/ e (f(s,0,0) + [m™¢| + NoL,)?d(B)s — / 2e"(Y" — No)Z1dBs, q.s.,
t t
where dB™¢ = dB, —b™“d(B),. In view of [15, Lemma 3.6], we know that " € BMO. Thus
we can define a new G-expectation E™¢[-] by &(b7¢), such that B™* is a G-Brownian motion

under E™e[].

In view of Hu et al. [12, Lemma 3.4] and Lemma 2.7, we know that the process
/ 2e"5(Y]" — No)TdK?
0

is a decreasing G-martingale under both E[] and E™<[-]. Setting r > 52(1 + 2L,) and taking
conditional expectations in the last inequality, we have for each t € [0, T],

T
eIy = Nol? < EpelerTle — Nol?) +Ep?| / " (f(5,0,0) + [m2e| + NoL,)*d(B), |, ass.
t
Then
. . T
Y — Nof? < EpeerT|¢ — Nol?) + B [/ " (f(5,0,0) + [mi¥| + NoL,)d(B),
t

T
<206l + N + 27| [ 1r(s.0.0Pas

L

+(26(Ly + Lo +2L.e) + NoL, T}, qs.

Setting ¢ — 0, we have

T
Y = Nof? < 20T (Iel s + V) + 26T [ 170,00
0

NQLQT} s.
Ly + 0y ) q.s

So we know that there exists a constant C’ independent of n such that [|Y"| s < C".
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Then by Proposition 3.1, we know that there exist two constants C" and Cj, which are

independent of n, such that
12" lBmog < C”

and
E[lL} - K7|P] < C,, Vp>1.

We have
1Y"[sge + 12" |B7MOg < C

with C' = 2(C" 4+ C"), and
E[|L} ) + | K7 ) < 2E[|L} - KZFP) < Cp
with C), = 2.
The following lemma plays a key role in the proof of the convergence of {Y™}. It gives the
convergence of (Y — S)~ in S&(0,T).
Lemma 4.2 For each o > 1, we have

lim IE[ sup (V" —St)_|°‘} =0.

n—=0o0  Liclo,1)

Proof The lemma was proved by Li, Peng and Soumana Hima [24, Lemma 4.3] when
the generator (f,g) is uniformly Lipschitz continuous. Their arguments can be adapted to our
general case.

First, we sketch the main ideas. Under our z-quadratic generator, we will still use the
method of linearization. By the G-Girsanov theorem, we can rewrite the G-BSDE (4.1) so that
the generator is independent of z under a new G-expectation E[-]. Similarly as in [24, Lemma
4.3], the following holds true:

lim E| sup |(Y/*—5,)" || =0, Va>1.

n—=0o0  Liclo,T)

Then from Lemmas 2.4 and 2.5, we see that E[-] can be replaced with E[-] in the last limit,
which completes the proof.

Now we begin our proof. Similar to the proof of Proposition 3.2 and Lemma 4.1, we first
rewrite the G-BSDE (4.1) by linearization into the form:

f(s, Y, Z?) = f(s,0, O) +mgt+agtY + 0070, s€ [O,T],
with
lag®| < Ly, |00 < L1+ [Z7]),  Im{f| < 2e(Ly + L(1+2¢)), s€0,T].

So the G-BSDE (4.1) reads

T T
Yr =€+ / ((5,0,0) + m? +a™Y™")d(B)s +n / (Y7 — 5,)"ds
t t

T B T
—/ ngB?’s—/ dK7, qs.,
t t
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where dB™¢ = dB, —b™°d(B),. In view of [15, Lemma 3.6], we know that "¢ € BMO. Thus
we can define a new G-expectation E™¢[-] by &(b™*¢), such that B™* is a G-Brownian motion
under E™[].

We now prove

lim E™¢| sup |[(Y" — S;)~|*

lim. LG[O’T] } ~0 (4.3)

Set
T T
i =€ [ F.0,0) 4 mie  alYIAB) [ (S, - a)ds
t t
T _ T
- / zodBE — / dk?, q.s.t€]0,T].
t t
Then we have for each t € [0, T],
B T T
yp = e"E}* [e_"Té + / ne " ds + / e " (f(s,0,0) + ml° + aZ’EYZS")d<B>S}, q.s.
t t
In view of [13, Theorem 3.6], we have for each ¢ € [0, T,
o T
VP oSz - S= B[S [ e (6,0,0) 4 mi e+ a2 YAUB)] . as.
t

where .
Spi= et (e — 8)) +/ ne"t=9) (S, — S;)ds, te€[0,T).
¢

It follows that

T
(7 = S0 < o = 807 SEPE[IS71 | [ et (7(6,0,0) 4 m a2V )(B).
t

. s

We have for any o > 1,

]
T a T a
< GOE™E K/o (f(s,0,0) +m2* + aZ’EYS")st) © sup (/t e2”(t_s)ds) 2}

te[0,T]
1—e 2T\35 , T 5
< (- —2a
< (=) 7|l weoorad,

+ TILy Y™ |5 +26(Ly + L + 2LZ5)]2}§

T
| sup | / (=) (£(5,0,0) + m + a Y A(B).
tel0, 7] "' Jt

In view of Lemma 4.1, we have

T (03
lim E™°| sup ‘/ "= (f(s,0,0) +m™e 4+ ™Y )d(B), } =0. (4.4)
t

n—oo |: te [O,T]

For e > 0, it is straightforward to show for each ¢ € [0, 7],

T
|Sp| = [e" =€~ 5e) + /

t+e
ne"=9) (S, — S;)ds + / ne"=9) (S, — S’t)ds}
t+e t
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<e"Dle— G +e™™ sup |G — S|+ sup |Si— S|, qs.

s€[t+e, T sE[t,t+e]
For ¢ € (0,T), we have
sup | S|
te[0,7—4]
<e™ sup €S +e ™ sup sup |S; — S|
t€[0,T—96) te[0,T—6] s€[t+e,T]

+ s swp [Si— S
t€[0,T—6) s€[t,t+e]

< ( sup |Si]+J¢[) + 27

up |S¢|+ sup sup |S;— S|, q.s.
te[0,7] T

S
t€[0,T] t€[0,T] s€[t,t+e]
Define the function
1 2r —1 \3
= (1+ =1 7) _1, 1,00).
o) = (1+ Sylog 5o —5 z € (1,00)

In view of Lemma 4.1, we can choose p > 1 independent of n and ¢, such that

[0 llBmog < La(1+ 112" [moc) < ().

Set ¢ = =£-. Then in view of Lemma 2.4, we have for each a > 1 and X € L (Qr),

p—1°
E™[X] = E[6(b")rX] <E[6(b™)h] "B X|%)7 < C,E[| X7,
where (), depends only on p.

In view of (H4) on S, we know

]E{ sup |St|°“} < 400, Va>1
te[0,7)

So we have for all o > 1,

Q=

Bre] sup 15i1°] < GE[ sup |5i]°7]
te[0,T] te[0,T]

and

Q=

E"’s{ sup  sup |St—SS|O‘} SCPE{ sup  sup |St—SS|O‘q} )
te[0,T] s€(t,t+¢] te[0,T] s€[t,t+e]

From (4.5), we know

Q=

limsupr"’E{ sup |§t"|o‘} SCQCPE[ sup  sup |St—5’s|aq} .
n—00 te[0,7—46] te[0,T] s€[t,t+e]

Then, in view of (4.4), (4.7) and Remark 2.1, we have

limsupIE"’E{ sup I(Yt"—St)_|a}
n—00 te[0,7—4]

T
< limsup E™* [ sup E° [|St"| + ‘ / "= (f(s,0,0) +m™¢ 4+ a™=Y")d(B),
¢

n—00 te[0,7—4]

897
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< C'limsup E™e [ sup Efa [ sup |§3|a”
n—00 te[0,7—6] u€[0,T—4]

T
+ Climsup E™* [ sup [E;° [ sup ‘ / e"t=5)(f(5,0,0) +m™¢ 4+ a™°Y)d(B),
n—00 te[0,7—6] wel0,7-68] "' Ju

]

= C'lim sup E™e [ sup E?E [ sup |§3|a”
n—o0 te[0,7—46] u€el0,T—4]

1
< C'lim sup {E"E{ sup |SZ|2O‘} + E””E[ sup |33|2a} 2}
n—oo u€[0,T—4) uel0,T—4¢]

1 1
< C”{IE{ sup  sup |S; — SS|2O“1} "+ E{ sup sup |S¢— SS|2"“1} * },
te[0,T] s€[t,t+e] t€[0,T] s€[t,t+e]

where C” is independent of n, § and e. Therefore, in view of Lemma 2.1, setting ¢ — 0, we
have
limsupE"’E[ sup |(Y" — S’t)_|°‘} =0.

n—00 te[0,7—6]

In view of Theorem 3.1, we get Y;" > Y,! and then obtain

lim sup IE”E[ sup [(V" — St)_|a}

n—o00 t€[0,T]

< limsupIEn’E[ sup |V — St)—ﬂ FlimsupE™ [ sup (Y — 8,)|*
n—00 te[0,7—6] n—00 te[T—4,T)

< lim sup IE”E[ sup |V, — S’t)_|o‘} .
n—00 te[T—6,T)

By Lemma 2.1 again and noting that (Y} — S7)~ = 0, we obtain

limf@[ sup (Y, — St)_|o‘} =0, Va>1.
6=0  Licir=s,17

Finally, with (4.6), we derive that

Q=

limsup B[ sup (V! =877 <GB sup (87|
n—00 te[T—46,T] te[T—46,T]

Let 6 — 0 and we know

limsupf@"’a{ sup (Y, — S’t)_|°‘} =0.
n—00 te[T—46,T]

Therefore, we have (4.3).
Next we want to change the G-expectation in the last equality. Actually, in view of Lemma
2.5 and Remark 2.7, there exists r > 1 which is independent of n and &, such that

E{& ™) r} 7] < C,

for some positive constant C,. which depends only on r. Thus, for each a > 1, we have

~ ~ 1 _1
B[ sup | = $0)71*] = B[6(0")560m)7" sup (V" = 5)7|°]
te[0,T] te[0,T]

<l

<E[6@™)r sup (V) = 87| | BHE @ )r} ]

t€[0,T]



Reflected Quadratic BSDEs Driven by G-Brownian Motions 899

S

r—1 ~
<G B ] sup (7 - 8)7[]
t€[0,T]

So
limsupE[ sup |(Y;" — St)—ﬂ —0.
n—00 te[0,T]
Now we show the convergence of the sequence {Y"}2 .
Lemma 4.3 The sequence {Y"}7° is a Cauchy sequence in S&(0,T) for any o > 2.
Proof For m,n € N and each t € [0,77, set

Y=yt -y, 2=z —zm, KM =K' — K, L™ =Lr — L.

We use the method of linearization. Similarly as the proof of Proposition 3.2 and Lemma 4.1,
Ve > 0, we write for each s € [0,T],

F Y2 Z0) = f(3, Y™, Z0) = m™e 4 @ mEY T e prme Zm
with

lag ™ < Ly, 00 < La(L 4|20+ [27)),
Im™€| < 2e(Ly + Lo (1 + 26 + 2| Z2)).

So we have for each ¢ € [0,T],

T
Y;mm:/ (mg,m,s+a?,m,5yv§n,m+bg,m,szg,m)d<B>s
t

T T T
- / 2B, — / dR™ + / Lz
t t t

T T T T
= / (M 4 g EY ™ A(B), — / Znmqprme — / AK™™ + / dL™™,  qs.,
t t t t
where dB"™¢ = dB, — b Z™™d(B),. In view of [15, Lemma 3.6], we know that b ¢
BMOg and we define a new G-expectation E™™<[.] by &(b™™<), such that B™™*< is a G-
Brownian motion under E™™-[].
For all a > 2, by applying Ito’s formula to |Y,™|%e™, we get for each t € [0,T],
~ T ~ 1 T ~ .
Tt [ TR s + gata—1) [T 2 RA(E),
T ~ ' ~ T ' R
= [ aer T e, + [ e ),
t ) . - i t ) . . .
= [ aergrmegpm zmagis - [ ae g rmagy
tT i i i t
+ / Qe [P 2y ML s,
t

Let 7 > Lyaa?. Noting that [a™"™¢| < L, we get

T
|}/tn,m|aert S / aers|}/Sn,m|a—2}/sn,mm?,m,sd<B>s
t
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T A~ A~ o~ ~
_/ Oéersn/snﬂn|a—2}/sn,mZ;’L7mdB;z,m7€
t
T = =N =N T = = N
_ / aers'y'smmla—ZY'sn,de;’L7m +/ aers'y;mm'a—2y'sn7mdL7;7m7 q.s.
t t
It is easy to check that
T A~ ~ o~
/ aers|}/sn,m|o¢—2}/sn,mdL?,m
t
T R T ~
- [ e ety - sdLy - [ aen T - s)dL
t t
T N T .
+ [ e TRy < SgdLy 4 [ aen T - s.)dzy
t t
T R T ~
S‘Z/ adﬂY?mW*ﬂOik—S»dL?—1/ ae” Ve 2(Ym — §)dLY, g,
t t
Noting that

T T
/ aers|}/sn,m|a—2}/sn,de;1,m Z / aers|}/sn,m|o¢—2(}/sn,m)+dK;n
t t

T
+ / aerslysn,m|a—2(ysn,m)—dK;’L’ q.s.,
t

we have
T
|}/tn,m|aert +MT _ Mt S/ aers|}/Sn,m|oz—2}/sn,mm?,m,sd<B>s
t
T A~
_/ aers|§/sn,m|a—2(y'sn o SS)dL;’n
t
T A~
- [ e e Sdzy, - as.
t
where

t
My [ Qe [T T AR (T2 AR 4 T Zpmd B,
0

In view of [12, Lemma 3.3] and [15, Lemma 3.4], we conclude that M is a G-martingale
under E™™¢€[]. Thus we obtain

T
|Y;n77TL|ae7‘t _ ]E?7my6 [/ aers|Y'Sn,m|a—2}/sn7mm?,m7€d<B>s
t
~ T A~
S ]E;L,m,s |: _ / aers|}/sn,m|a—2(}/sn _ Ss) dL;n
t

T A~

- / Qe S|y e (ym — SS)dL?}, q.s. (4.8)
t

Noting the following estimate

T
]E;L,m,s |: o / aers|}/sn,m|a—2()/sm _ Ss)dL?}
t



Reflected Quadratic BSDEs Driven by G-Brownian Motions 901

T
B[ [ maen TR < S0 - 8.)7ds]
t
B T
< aeTTE?)mﬁ [/ n|(Y;n - Ss) - (Ysm - SS)|a_2(Ysm - SS)_(st - SS)_dS
t
_ T
<cgpme] [l - st - s)7as)
t
B T
+ CE}™* {/ n|(Y™ — Sg) "o (Y — S’S)_ds}, q.s.,
t
where C' is independent of n, m and &, we deduce from (4.8) that

T
Erm™e [ sup |}/t",m|a} — Eromee [ sup ]E;%m,‘f |:/ aers|}/Sn,m|a—l|m?,m,s|d<B>S}:|
t€[0,T] t€[0,T] 0

T
< CIE"»M[ sup EPm™e [/ (m +n)|(Y" = 8,)~ |1 (v — SS)_dsH
te[0,7T] 0

T
B sup B [l - 8 (v - 57 ds] . (19)
te[0,T] 0

Recall that

In view of Lemma 4.1, we can choose p > 1 independent of n, m and ¢, such that
[6" ™ ¢[|BMo < L:(1+[[Z™[Bmog + [ 2™ [BMoOe) < ¢(P).

et ¢ = L. en in view of Lemma 2.4, we have for each a > 1 an € T),
S ppl Then in vi f L 2.4 h f h 1 and X € LE(Q

S = 6™ S (O )\ v 1
E [ X = E X < E E X 1)
] = B e, }— t[(@@(bmm»e)tﬂ (X1

< CEJ(IX|7, qs., (4.10)

where (), depends only on p.
Then we have for some 8 > 1,

e[ nio = s - s07as)']

~ r 2 T B
< B s (107 =800 =80 Py ( [ novr sy
t

s€[0,T]
_ 1 .
< Ermee sup |(}/Sn _ SS)—|4(O¢—2)B} 4En’m7€[ sup |(}/Sm _ Ss)_|4'8:| 1
s€[0,T] s€[0,T]
- T 2671
« Fromee K/ DY — SS)_ds) }
~ ' L L
< Cg]E[ sup |(Y)' — SS)—|4(0‘—2)5¢1} "E[ sup |(Y" — Ss)_|4ﬁq} q
s€[0,T] s€[0,T]

X E{(/tT n(Y) — SS)_ds)wq} &
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< CiE[ s |07 =57 (a.11)
and
([ Sl 8 - 5)7as) |
- t
SE"’“:S:EPT]I(K" O i (/ - s7as)|
by 0 -] o5
27 n —12(a=1)8 205 T m _\2Ba3
< CGR[ sup 107 =57 TR[( [ mov - s)7as) ]
< Cuf[ s |07 = 50y & (112)
sel0,T

Moreover, in view of the assumption on S and Lemma 4.1, we know that C; and C5 are
independent of n, m and €. From Remark 2.1, there exists a constant C’ independent of n, m

and €, such that

Erme] sup Bpm|X ) < /@K + BB X)),
te[0,T]

Then with (4.9) and (4.11)—(4.12), we have

N R B T N B1%
Ermee |: sup |thn,m|a:| o C/En,m,s |:(/ aersn/sn,m'a—l |m?,m,5|d<B>S) :| B
t€[0,T] 0

—ome[( [ aengrmpmrraas),)’]
0
oo e [( [Tz - s - somas) ]’

En,m 5

[ sz s e - sas)’]

Wl

/ Sl = 87 (7 — 5|

(
e
<

e (Mo mio - sz - sas) )

<T Y (B[ sup 107 - 8719 T 48[ sup [(v7 — 5.7 ple-s] ¥

j=m,n s€[0,T] s€[0,T)
_1 1
+ B[ sup (v7 = 8719 + B[ sup |(v7 - 5,)7 2o Dr] 77, (4.13)
s€(0,7] s€[0,T]

where C is independent of n, m and ¢.
In view of Lemma 2.5 and Remark 2.7, there is » > 1 which is independent of n, m and &,

such that

E[{&(b™™)r} T < G,
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where C, depends only on r. Thus, for each o/ > 2, we have

~ ~ ’ ~ 1 _1 ~ ’
]E|: sup D/tn,m|a :| — E{g(bn,m,s)%g(bn,m,s)T T sup |}/tn,m|a :|
te[0,T] te[0,T]

1 Tﬁ
<E[e@™m)r sup (T | RS ")} )T
t€[0,T]

3=

r—1 ~ ~ ’
S Cr I3 En,mﬁ{ sup |Y;n;m|0t T}
t€[0,T]

Setting o = &’r > 2 in (4.13), we have

~ —~ T ~ T N B %
]E[ sup |}/tn,m|a :| _ C«:—lcl]En,m,s {(/ aers|}/Sn,m|a—l|m?,m,s|d<B>S) :|
t€[0,T] 0

=1 ,vmn,m,e T rs|yvn,mia—1) __n,m.e A
Gy C'E ae” YW mP ™o d(B).s
0

1
r— ) e -
e 3 (Bl 07 -5 ] +E s 107 - syt
+E sup (07 57 %0] 7+ B[ sup ((v7 - 50yl ), (414)
s€[0,T] s€[0,T]

On the other hand,
~ T ~ B
En,m,s[(/ OéeTS|Y;n’m|a_1|m?’m’5|d<B>S> ]
0
~ T ~ 1 Baq g
<GE[( [ acmrmetmymejas).) |
0

T vn,m | Bla=1)% * n Pa %
< 2:Cpae T[T GE VR (| (Ly + Lo+ 20 +2022))A(B), )|
0
—0 as ¢—=0.

Let ¢ — 0 in (4.14). Then in view of Lemma 4.2, we conclude that (Y")52, is a Cauchy
sequence in S&'(0, 7).

5 Existence and Uniqueness Result on Reflected Quadratic G-BSDEs
Our main result is stated as follows.

Theorem 5.1 Let the triple (€, f,S) satisfy (H1)—(H5). Then, the reflected G-BSDE (3.1)
has a unique solution (Y, Z, A) such that (Y, Z) € S (0,T) x BMOg and A € () S&(0,T).

a>2

Proof The uniqueness of the solution is referred to Remark 3.1. We now prove the existence.
Recalling the penalized G-BSDE (4.2), for m,n € N and each ¢ € [0, 7], define

Y=Y Y, 2P =20 — 2, K= KPP — K, L™= L7 — L7,

and
ftn,m = f(tvnnaZZl) - f(ta}/tmvzgn)
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In view of Lemma 4.3, there exists Y € S&(0,T") satisfying

lim E| sup |Y; —Y*|*| =0, Va>2.
n—oo t€[0,T)

Note that there is L := L(L,, L) such that for each t € [0, T,
LS Ly Y™ 4+ Lo (U 4+ |20+ 120D 2™ < LA+ Y+ 120 + 120 P).
Applying Ito’s formula to [Y,"™[2, we get for each ¢ € [0, 7],
A~ T ~
e [z pae).
t
T T R T R T
- 2/ yrm frmy(py, 2/ yrmqgmm 4 2/ yrmqpmm _ 2/ yrmznmyp,
t t t t
T _ . T ~
2L [ TR T 20 ZEPAB), 2 [ TrmaR
t t
T R T
n 2/ yrmgpnm 2/ yrmZnmdB, g
t t
Setting ¢t = 0, we have

T T
/ \Zrm24(B), < 2LF2T sup [VM2 4 2L sup [V Caizre sz as),
0 s€[0,T] s€[0,T]

£ sup (97 S (G 4 |E4) 2 / §pmZimaB,, s

s€[0,T] j=m,n

With the B-D-G inequality and Hélder’s inequality, we have

B[( [ zpam).)]

T a
< Co{2L7*TR| sup |V7"(°] +2LE[ sup (7% ( / (L+ 122 +122 (B, ) |
0

s€[0,T s€[0,7
+2@L§[%pﬂ v ,Z (K4 +124)) }HE[(/OT |ff:7m2:’m|zds)%]}
< C&]ELSE?T] |57;n>m|a} + c;ﬁ[ses[%%] |?;n>m|a]é{1ﬁ[(/:(1 +1Z7P + |Z§|2)d<B>s)aF
FE[ X (K3 + (L )f [(/OT|22|2+|z:1|2ds)5]5}.
j=m,n

In view of Lemmas 4.1 and 2.2, there exists a constant C; independent of m and n, such that
~ T . $ ~ - ~ - 3
B[( [ 1ZzmpaB).) "] < GE[ swp [7710] + G| sup (7]
0 s€[0,T] s€[0,T]

In view of Lemma 4.3, we know that {Z"}22, is a Cauchy sequence in H&(0,7") for o > 2.
Thus there exists Z € H&(0,T) satisfying

lim IAE[(/T|ZS—Z§|ds)
n—roo 0

0, Va>2.

w2
R
Il
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Now set A" := L™ — K". It is easy to check that (A} );c[o,7] is a nondecreasing process and

t t
Ay — AT = O”m -y —/ fmd(B)s +/ Z™MdBs,  q.s.
0 0
So we get

E[ sup |4y —ap)]
t€[0,T]

<ol gy W] < B[( [ ) TRl e e

From the assumption on f, we have

wlp
|
——

1
2

(
(

< C{B[ suwp 7] +B[( / e zeprais).) ( / ' ZpmPaB). )
{

<c{8[ s 7] +B[( iz -1z
1

E[([ Erram) T

Then in view of Lemmas 4.1, 2.2 and (5.1), we know that {4"}2°, is a Cauchy sequence in
S¢(0,T) for each a > 2. There exists a nondecreasing process (A;):e[o, 7 such that

lim I@[ sup |A; — A7|¢| =0.
n—oo te[0,T

Now, we prove Y € S (0,T). In view of Lemma 4.1, we know that that there exists a
constant C' > 0 such that ||Y"[|ss < C. Recall that

E[X] = sup EP[X], VX eLL(Qr).

From

lim E{ sup |V —Y;ﬂ =0,
n—0oo t€[0,T)

we see that for each P € P, { sup [¥}"|, n=1,2,---} converges in probability P to sup |Y;|.
te[0,T] t€[0,T]
Then, there exists a sub-sequence of { sup |Y;"|} such that P-a.s.,
te[0,T]

lim sup |Y;"*|= sup |YZ].
k=00 tei0,1] telo,T

Since sup |Y;"*| < C for a positive constant C' independent of P, we have sup |V;|] < C
te[0,T] te[0,T]
P-a.s. for each P € P, and then sup [Y;| < C, g.s., which yields the inequality [|[Y]/se < C.
te[0,7)
In view of Proposition 3.1, we have Z € BMOg.
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From Lemma 4.2, we have Y; > S, for t € [0 T]. We claim that [ (Ss —Ys)dA, is a non-
increasing G-martingale on [0,7]. Set K7 = fo (Yy — S5)dK?. Since Y, > S’t for t € [0,7] and
K™ is a decreasing G-martingale, K"is a decreasing G-martingale.

We have

t
sup | — / (Yy — Ss)dAs — K[
te[0,7) 0

< su {‘ /O(Y S,)dA, +/(Y S,)dA"| +

‘/ Y,)dK"| + ‘/ dL"}
‘/ (Y, — 8y — (7" — §m)}d(A7 — A)

< sup ‘/
teOT

+ sup Y = Y[l A7 + |Kz[] + sup (V" —S6)7|L7l,  as.,
te[0,7)

| / —Y,)dAr

j

tel0,T
with
~ m—1
Zytm mam (@), S =Y SimLym ym (1)
1=0
and
T
M= =01, ,m.
m

In view of Lemma 4.1 and identically as in the proof of [24, Theorem 5.1}, we have

-0

which implies that [;(Ss — Y5)dA; is a non-increasing G-martingale on [0, 77.

t
lim IE[ sup —/ (Y, — S5)dAs — K}
n—o0 te[0,7) 0

In an identical way, we have the following theorem.

Theorem 5.2 Suppose that &, f, g, and S satisfy (H1)—(H5). Then the reflected G-BSDE
(2.2) has a unique solution (Y, Z, A) such that (Y, Z) € LF[0,T)xBMO¢ and A € () S&[0,T].

a>2

We have the following comparison theorem for reflected quadratic G-BSDEs.

Theorem 5.3 Let the set (&', %, g%, S%) satisfy (H1)~(H5), and (Y, Z¢, A") € S%(0,T) be
the solution to the following reflected G-BSDE:

T T T T
:fi +/ gi(s,w_AS’}/si,Zz)dS +/ fi(57w~Asa}/si7Zsi)d<B>S _/ Z;dBS+ dA;a q.5.;
t t t

) t
Yti > Sti, qs. 0<t<T, / (S’; — Ysi) dAi is a non-increasing G-martingale
0

with i = 1,2. Assume that (Y, Z%) € Sg(0,T) x BMOg and A% € (| LL(Qr) fori=1,2. If
p>1
EE>€2 gt >g2 1> f2, and S* > S?, qs., then Y > Y2, qs. for anyt € [0,T).

Proof The proof is identical to that of [24, Theorem 5.3].
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We first consider the following G-BSDE:
T T T
=€+ [ Funands s [P+ [ - 82
t t t

T T
—/ szBs—/ dK?, Vtel0,T)
t t
forn=1,2,---. As before, we have

lim IE{ sup |V —yf|"‘} =0, Va>2.
n—oo t€[0,T)

Noting that Y, > S}, we can rewrite the equation for (Y1, Z1, A') as
T T
viegs [ gevizhass [ s Yizhas).
t t

T T T
+/ n(Ysl—Ssl)‘ds—/ ZsldBS+/ dAl, qs. t€[0,T).
t t t

Using Theorem 3.1, we have Y,;! > ¢y, q.s. for all n € N. Letting n — oo, we conclude that
Y > Y2, gs.

6 Relation Between Quadratic G-BSDEs and Nonlinear
Parabolic PDEs

Consider the following PDE:

(6.1)

Owu+ F(D2u, Dyu,u,x,t) =0, (t,z) €[0,T) x R";
w(T,z) = ¢(z), =eR",

where

F(A, p,y,x,t) = G(UT(L‘, x)Ao(t,x) + 2f(t, z,y, JT(t, x)p) + 2hT(t, x)p)
+ b (t)p+g(t,x,y,0" (t, 2)p)

for each (A, p,y,x,t) €S, x R" x R x R™ x [0, T].

We will give a nonlinear Feynman-Kac formula for the fully nonlinear PDE (6.1) when the
functions f and g are quadratic in the last argument. Similarly as [24, Section 6], we give the
relationship between solutions of the obstacle problem for nonlinear parabolic PDEs and the
related reflected quadratic G-BSDEs.

In what follows, we consider the G-expectation space (2, L (27), IE) for the case of d = 1
and 52 = E[B2] > —E[-B2 = 02 > 0.

6.1 Nonlinear Feynman-Kac formula

Our main assumptions of this subsection are formulated as follows.

For deterministic functions b, h,o : [0,T] x R — R", ¢ : R®* - R, and f, g : [0,T] x R™ x
R x R — R, we make the following assumptions.

(A1) The functions b, h, o, f, g are uniformly continuous in ¢, i.e., there is a non-decreasing
continuous function w : [0, 400) — [0, +00) such that w(0) = 0 and

sup |ll(t7x7yaz) - ll(t/azayvzﬂ < ’UJ(|t - t/|)7 ll = fvgv
z,y,z€R
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sup |la(t,z) — lo(t', 2)| < w(|t —t'|), 12 ="b,h,o0.
z€eR

(A2) There exists a positive integer m and a constant L > 0 such that for each (¢, z, 2, y, v/,
2,2) €0, T] xR" x R" x R x R x R x R,
b(t, ) — b(t,2")| + |h(t,z) — h(t,2")| + |o(t,x) — o(t,2")| < L|lz — 2’|,
[6(z) — ¢(2)] < L1+ [2[™ + [2'|™) |z — 2],
[f(t 2y, 2) = f(t.2', 9, )| + gt 2.y, 2) — g(t, 2"y, &)
S LI+ 2™ + 2" ™) |e — o' + |y — o[ + (1 + 2] + [2])]2 = &[]

(A3) There is a positive constant My such that

T
L/‘ sup [I£(t,2,0,0)% + [g(t, 2, 0,0)] dt + sup |¢(z)| < Mo.
0 :EGR/” I‘GRTZ

(A4) There are two constants ¢ > 0 and K > 0 such that for each (¢,z) € [0,T] x R™,
el < crch(t,a:) < KI.

Remark 6.1 (A4) implies that o is bounded on [0, 7] x R™.
For each (t,&) € [0,T] x () Lg(€;R™), we consider the following G-SDE:

p>2
X :§—|—/t b(u,Xu)du—i—/t h(u,Xu)d<B>u+/t o(u,X,)dB,, qs.s€t,T]. (6.2)

Denote by X*¢ the solution to G-SDE (6.2). Then, we have the following proposition.

Proposition 6.1 (see [33, Exercise 5.4.8, Chapter 5, p. 111]) Let &, & € LE(Q4;R™) with
p > 2. Then we have, for each § € [0,T —t],

E| swp |XUE-XEP] < Cle -,
- s€(t,t+0)

B sup |XISP] <O+ ),
Lsc[t,t+4]

E, [ sup | XD — €|p} <C(1+ |§|p)5%7
- s€(t,t+0)

where the constant C' depends on L,G,p,n and T.

Proposition 6.2 Let the triplet (b', hi, o?) satisfy (A1)—(A2) fori=1,2. For each (t,) €
[0,T] x LZ,(Q; R™), p > 2, let X487 be the solution to the following G-SDE:

X6 =gy / b (s, X6 du + / B (u, X569 d(B), + / o' (u, XE5)dBy,  g.s. s € [t,T).
t t t

Then for each 6 € [0,T — t], there exists a constant C' depending only on L,G,p and T, such
that

= t,6,1 t,€,2
Et[|Xt+6 _Xt+6 |p]
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<o@[( [ an) B [( [ Rl ][ ) ]). g,

where for each u € [t, T,

t t+0

T o= 1M (u, X562) = 12(u, X5E2), 1 =b,h,o.

Proof For simplicity, we assume h’ = 0. Then we have

t+06
6,1 ,€,2 0 6,1 ,€,2
X - Xpi = / (b + b (t, X025 — 01 (8, X157 du

t+3
+ / Gu+ ot (6, X5 — o' (t, X15))dB,.
t

In view of BDG inequality, we have

~

t,€,1 t,,2
E(IX05 — X051

<q@¢[ﬂﬁm_ﬁmm4+EK[”mmﬂ+EK[”mm@ﬂ)

< Cl(/ttH Ee[| X561 — X062 P)du + [(/:M |3u|du>p} +B, [(/:H |3u|2du)%D.

By the Gronwall’s inequality, we obtain
~ N t+6 P . t+0 2
B IXPS — X623 < C’leclT(]Et [(/ |bu|du) ] +E, [(/ |Eu|2du) D
t t
We now consider the following G-BSDE:
T T
Y, = ¢(X55) +/ g(u, X55, Yy, Z,)du +/ flu, X505, Yy, Z,)A(B).,

T T
—/ ZudBu—/ dK,, qs.selt,T]. (6.3)

We should point out that [15, Theorem 5.3] can not be used to our case directly, for it is hard
to check (H2) directly in our Markovian case. We now give the existence of the solution to
G-BSDE (6.3) in the spirit of the method in Hu et al. [12] and Hu et al. [15].

Without loss of generality, we assume h = 0, g = 0 and ¢t = 0. For each xy € R", we consider
the following forward and backward differential equations in the G-framework (G-FBSDE for
short):

t t
X; = 29 +/ b(u, X, )du +/ o(u, X, )dB,, qs.te€[0,T], (6.4)
0 0

T T T
Vim o) + [ S Xo Yo Z0AB) - [ 2,8, - [ aK. aste0T) (65)

where b, 0, f and ¢ satisfy (A1)—(A4).
First, we introduce the following fully nonlinear PDE on [0, T:

o+ G(o™ (t,2)D2uo(t,x) + 2f(t,z,u, 0" (t,x)Dyu)) + b  (t, ) Dyu = 0,
(t,z) € [0,T) x R™; (6.6)
u(T,z) = ¢(x), =xe€R™
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We make the following assumptions on the coefficients of the PDE (6.6).

(A5) The function f(t, z,y,z) is continuously differentiable in (z,y, z), differentiable in ¢,
and twice differentiable in (z,y, z), where the first-order time derivative of f and the second-
order derivatives of f in (z,y, z) are bounded on the set [0, 7] x R™ x [—M,, M,] x [—M,, M,],
for any M, M, > 0.

(A6) Both functions b and o are differentiable in ¢ and twice differentiable in x, where the
first-order time derivative of (b, o) and the second-order spatial derivatives of (b, o) are bounded
on the set [0,7] x R™.

(A7) The functions b is bounded on the set [0,7] x R™. The function f is bounded on the
set [0, 7] x R™ x R x R.

(A8) There exists a constant L > 0 such that for each (¢,y,2) € [0,T] x R x R,

l¢(x) = ¢(@")| + | f(t, 2, y,2) — f(t, ', y,2)| < Llz — 2’|, Va2’ €R™

Note that Peng [33, Appendix C] used Krylov [20, Theorem 6.4.3] to prove that there is
a classical solution to PDE (6.6) when b = 0, f = 0, and 0 = 1. In a similar way, we prove
that there is a classical solution to PDE (6.6) and further that w(t,-) is uniformly Lipschitz
continuous.

Proposition 6.3 Assume that b, o, f and ¢ satisfy (A1)—(A8). Then the PDE (6.6) admits
a classical solution v € C([0,T] x R™) bounded by M := M(My, L), and there exists a constant
a € (0,1) such that for each k € (0,T),

HUHCI+%,2+a([01T_k]XR”) < Q.

Moreover, there exists a constant C' > 0 such that for all t € [0,T],
lu(t,z) —u(t,2")| < Clz — 2’|, Vaz,2’ € R™

Proof First, we introduce the truncation function. For each integer NV, let py : R — R be a
smooth modification of the projection on [—N, N] such that |px| < N, |ply| <1 and pn(2) =2
when |z| < N — 1. We consider the following PDE:

Owu+ G(a T (t,2)D2uc(t,z) + 2f N (t,z,u, 0T (t,x)Dyu)) + b (t, 2)Dpu = 0,
(t,x) € [0,T) x R™; (6.7)
w(T,z) = ¢(x), =xeR™,

where fV is defined as
(2, y,2) = f(t2,y,pn(2)), Y (t2,y,2) €[0,T] x R" x R x R.

It is easy to check that fV is uniformly Lipschitz in z.

Considering the PDE for the quantity e(LE2+1)(t_T)u(t,x) as in [33, Appendix C], in view
of [20, Theorem 6.4.3], we can prove that the PDE (6.7) admits a classical solution u” €
C(]0, T)xR™) dominated by a constant M := M (My, L), such that for some constant o € (0, 1),
the related restriction of u” belongs to C1*2:272([0, k] x R™) with any k € (0, 7).

We now rewrite PDE (6.7) into a HJB equation, and then estimate the gradient D,u”.
Since 1 1

G(a) = =(7%a™ —g?a™) = sup —v’a,
2 v€lo,7] 2
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the PDE (6.7) is the following HJB equation:
O+ sup HN(t,2,u(t,z), Dyu(t,x), Diu(t,z),v) = 0,
v€E|[o,T] (68)
w(T, z) = ¢(x),
where the Hamiltonian H” is defined as follows: For (¢,z,y,p, A,v) € [0,7] x R" x R x R™ x
Sn X [0, 7],

1
HY(t,z,y,p, A,v) == §3T(t, x,0)AG(t, z,v) + FN(t,z,y,0" (t,2)p,v) + b  (t,2)p

with
. z
a(t,x,v) == vo(t,x), FN(t,x,y, z,v) = V2N (t, ,, —) for z € R.
v

This shows that u'V is in fact a value function of a control problem.
Let (Q, F,P) be the classical Wiener space. Let W be a one-dimension standard Brownian
motion under Probability P. For each (¢,z) € [0,T] x R", we consider the FBSDE:

Xb*Y =g —|—/ b(r, XH"V) dr —|—/ o(r, XH"0 v.)dW,, P-as.s € [t,T),
t t
T
yﬁ,w,mN _ ¢(X%,m,v) + / FN(T', X:@m’yﬁ,m,mN’ Zﬁ,w,mN’ vr) dr

T
—/ zbevNqw,, P-as. s € [t,T].

S

Let FW be the filtration generated by W and augmented by all P-null sets. Let V be the set
of all F}V-progressively measurable processes valued in [g,7]. In view of [30, Theorem 4.2] or
[7, Theorems 4.2 and 5.3] and noting that uV is a viscosity solution of the PDE (6.8), we have

uM (t,x) = sup YN,
veV

Note that for each z € R,
lon(2)] < 2, o (2)] < 1.
We have for each (t,z,y,v) € [0,T] x R x R x [g,7],
|FN(t7$7yazaU) - FN(t,JJ,y/,Z/,U”

/!

z z
= ‘U2fN(t7$7y7 _) - U2fN (tvxvylv _)‘
v v
!/

< Lv? (1 + ‘pN(%)‘ + ‘pN(%) D ‘pN(%) - PN(%)‘

< L@+ |z| + 1))z = 2.

In view of [5, Lemma 1], there exists a constant C; independent of v and N such that for each
(t,z) € [0,T] x R™,

sup |YEoU N < 0.
se(t,T]

In view of [4, Proposition 2.1], there exists a constant Co independent of v and N such that for
each (t,z) € [0,T] x R™,

[ / ZherNaw,
t

<
BMO(P) —
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By a similar stability result as in [1, Theorem 5.1], there exists a constant C3 and some p > 2
which are independent of v and N such that for each (¢,z,2’) € [0,7] x R™ x R™,

’ ’ T P 1
[y =y N < o Bl - ot + B[ 1R 1as)]
t
where
5FSN = FN(S, Xst,ac,v’ yﬁ@ﬂl;N’ Z;f,w,mN’ 'Us) _ FN (S, X§7w/7v, yﬁ,m,v7N7 Z?Lv,N’ Us)~
Thus we get
’ ’ 1 T ’ Py
|ytt7w7'u,N o ytt@ ;u,Nl S LC3{EIP[|X;@7U _ X,—?w 7'U|p]5 + EIP |:(/ |Xst,m,v o Xst,z ,vlds) :| P }
t
By [7, (3.3)], there exists a constant C4 independent of v and N such that for each (¢,z,2') €

[0,7] x R™ x R™,

EF[ sup |xime — bl < Gyl —a'p.
set,T]

Thus there exists a constant C' independent of v and N such that for each (¢,z,2") € [0,T] x
R” x R”,
N =yt N < Ole - 2

which means |u? (t,2) — uN (t,2')| < Clx — 2’|. So we get

sup |Du™ (t,2)| < C.
(t,z)€[0,T]xR"

In view of Remark 6.1, we know that ¢ is bounded. Let

N>14+C- max lo(t, x)].
(t,z)€[0,T]xR™

It is easy to check that for each (¢,z) € [0,T] x R™,
ANtz uN, 0T (t, 2)Deu) = f(t,z,uN, 0T (t, ) Du™).
Set u := u” and we know that v is the solution of PDE (6.6).

For each t € [0,T], we set Y; := u(t, Xy), Z¢ := o ¥ (t, X;)Dyu(t, X;) and
t
1
K, :/ (EDiu(s,Xs) + f(s,Xs,u(s,Xs),ch(s,XS)DgCu(s,XS)))d<B>S
0

_ /t G(D2u(s, Xa) + f(5, X, u(s, Xa), 07 (5, Xo) Dau(s, Xs)))ds.
0

For any 0 < k < T, applying It6’s formula to u(t, X;) for ¢ € [0, k], we get

k k k
Y: = u(k, Xk) +/ f(s, Xs,Ys, Z5)d(B)s —/ ZsdBs —/ dKs, q.s. (6.9)
t t t

Similarly as [12, (4.3)], in view of Proposition 6.3 and (6.9), we could obtain that there
exists a constant C' > 0, for t1,¢2 € [0,7] and z1, 22 € R",

u(ty, 21) — ulte, z2)| < C((1+[21])V/ [t — taf + |21 — 22]).

Then we can deduce that (Y, Z,K) € (] &%(0,T) and (Y, Z, K) is a solution to (6.5). So we
p=2
have the following lemma.
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Lemma 6.1 Assume that b,o,f and ¢ satisfy (A1)—(A8). Then G-BSDE (6.5) has a
solution (Y, Z,K) € () &%(0,T).
p=2

As an immediate consequence of both proofs of [15, Proposition 3.5] and Proposition 3.3,
we have the following stability property for quadratic G-BSDEs.

Proposition 6.4 Let the triplet (¢, fi,g") satisfy (H1) and (H3) for i = 1,2. Let
(Y, Z' K" € 8%(0,T) be the solution to the following G-BSDE:

T T
=&+ /fz 5, YE 79 <>—/ Z;’dBS—/ dK!,  g.s. t€0,T).
t t

Moreover, we suppose
1 2¢—1 13
L.(1+1|Z1|+|Z2|)|lBmoe < 9(q) := {1+—log7} -
|- +121] + | ZaDllmaro < 6(0) lo i
Then for each p > ﬁ, there exists a constant C := C(p, T, L, My) such that for any t € [0,T],

vl < offle - e+ ([ - ez zam) ) s

Remark 6.2 We still have [15, (3.2)], which means that the constants Cy and p in Propo-
sition 6.4 depend only on T', L. and M.

The main result of this section is stated as follows.

Theorem 6.1 Assume that b,o, f and ¢ satisfy (A1)—(A4). Then G-BSDE (6.5) has a
unique solution (Y, Z,K) € (| &%(0,T).
p=2
Proof The uniqueness result directly comes from Proposition 6.4. Now we focus on the
existence result. We borrow the idea of Hu et al. [15] to mollify the coefficients of the G-FBSDE.

Step 1 We assume that f satisfies the following condition.
(A5’) The first-order time derivative of f in ¢, and the spatial derivatives of f up to the
second-order are bounded on the set [0,T] x R™ x [—M,,, M| x [-M., M.], for any M,, M, > 0.
We replace (A5) with (A5’). Assume that b,o, f and ¢ satisfy (A1)—(A4), (A5’) and
(A6)—(A8). Then we can obtain that G-BSDE (6.5) has one solution (Y, Z, K) € 92 6%(0,7T)
b=

with exactly the same method of Step 1 in Hu et al. [15, Section 5].
Step 2 We assume that b,0, f and ¢ satisfy (A1)—(A4) and (A6)—(A8). For each
(t,x,y,2) € [0,T] x R" x R x R, we define
)= [ f =T -T2l D,
Rn+1

where py, is a positive smooth function such that its support is contained in a %-ball in R"*! and

fRn+1 pr = 1. In addition, we define the extension of f on R, i.e., f(t,+, ) = f(tT AT,-,-,-).

We can check that f* satisfies (A5’). Therefore, in view of the result in Step 1, we obtain that

the G-BSDE (6.5) with the coefficients (¢, f*) admits a solution (Y*, 2k, K*) € N &%(0,7).
P22

Noting that for each k1 > ko and ¢ € [0, 7],
|(fk1 - fk2)(t7Xta }/tkza Zfz)|
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< |(fk1 - f)(taXtvnbﬂZfﬂ' + |(fk2 - f)(taXth;fkaZfﬂl

</ - |f(t_£Xt_%7Y;fk2vzf2)_f(taXth;fbﬂZf2)|pk1(£§)dgd%
R’n

+/ |f(t _aXt -z, Y;szﬂ 2152) - f(taXtaY;tbﬂ Zf2)|p7€2 (;7 &T)dgd%
Rn+1

() <o) 1l )
- kq ko k1 ) '
we could deduce that the sequence {Y*}2°  is a Cauchy sequence in S%(0,7) for any p > 2

by Proposition 6.4 and Remark 6.2. Thus we could conclude that G-BSDE (6.5) has a solution

(Y,Z,K) € QQ ®¢.(0,T) in a similar way as in Step 1 in Hu et al. [15, Section 5].
p>

Step 3 We assume that b, 0, f and ¢ satisfy (A1)—-(A4) and (A7)-(A8). For each (¢,z) €
[0, 7] x R™, we define

*(t,z) = / It —t,x — Z)py(t,T)dtdE, [ =b,0,
Rn+1

where pj is a positive smooth function and is supported in a %-ball in R**! and fR"+1 pr = 1.
We can check that b* and o* satisfy (A6). Moreover, (A4) still holds here for o* when k is
large enough. Actually, if we assume that o satisfies (A4) with constants ¢ and K, we can
check that for k large enough and for each (¢,z) € [0,T] x R",

%I <ot (t,x)(o™) T (t,x) < 2K1T.
Let X* be the solution of the following G-SDE:
t t
XF = +/ bk(u,Xff)du—F/ o (u, X")dB,, qs.tec]0,T).
0 0

From Step 2, we can let (Y*, Z¥, K*) be the solution to the following G-BSDE:

VFE = o(XE) + /T f(s, XEYE ZF)a(B), — /T ZFdB, — /T dKF, qs.te0,7).
t t t
For each k1,ke € N and ¢ € [0,T], set
=1, X)) — 12 (t, X)), 1=0b,0.
It is easy to check that for [ = b, 0 and each ¢ € [0, 7],
o] < 1 (8, XE2) — Ut XE2)| + 192 (8, XF2) — 1t X{2)]

< [ W= XS = 8) — Ut X0, ()R
R

U= 6 XER = F) = Ut X2 | pry (F, ) dEdE
Rz

< w(kil) +w(k—12) +L(ki1 + k%)

In view of Proposition 6.2, we obtain for each p > 2 and t € [0, 77,

Bl Xk — xke ) < C(E[(/Ot |55|d5)p} +IEK/Ot |3S|2ds)%})
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< Cpfw (kl/l\k2)+(k1/1\k2)}p' (6.10)

On the other hand, in view of Proposition 6.4 and [15, (3.2)], we obtain that for some p > 1
and each ¢ € (0,77,

VP = Y[ < CR[lo(XE) — o(Xh2)P]»
R T pr L
HCB( [ 15 X0 Y 2) — fs X0V 2B |
t
T 1
< O\ [IXE — XE21P)5 + O, [/ | Xk X§2|Pds] P gs.
t
Therefore,

B[ swp v v
t€[0,T]

1 N - T 1
< CgE[ sup B[ X5 — X§22|P]} "y C4E[ sup Et[/ Xk X§2|PdsH v
te[0,7] te[0,T] 0

In view of (6.10), we obtain that for each ¢ > 0,

T
1@[/ | X —X’“2|P+5ds}
0

TA
< [ B - xer s < Gar o) + (o))

Then in view of Remark 2.1, we know that {Y*}2° | is a Cauchy sequence in S%(0,7) for any

p > 2. Thus we could conclude that G-BSDE (6.5) has a solution (Y, Z, K) € (| &%(0,7).
p>2

Step 4 We now consider the situation that ¢(-) and f(t, -, y, z) can be locally Lipschitz. We
assume that b, o, f and ¢ satisfy (A1)—(A4) and (A7). For each (t,z,y,2) € [0,T]xR*"xRxR,
we define

¢*(z) = | ¢z —2)pi(2)dz,

R™

Aty z)= | flt,x -7,y 2)pn()d7,
Rn

where pj is a positive smooth function such that its support is contained in a %-ball in R™ and
Jgn Pr = 1. Noting that

| < [ o 2o e < a2

we obtain that ¢* is Lipschitz in x. Similarly, it is easy to check that f*(t,-,y,2) is uniformly
Lipschitz. Therefore, in view of the result in Step 3, we obtain that the G-BSDE (6.5) with the
coefficients (¢, f*) admits a solution (Y*, Z¥, K*) e N &%,(0,T). It is easy to check that
p=2
6" (X7) — ¢** (X))
< @M (Xr) — ¢(X1)| + 9" (X1) — ¢(X7)|
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< / 6(Xr — ) — S(Xr)|pi, ()7 + / 6(Xr — ) — $(Xr) pra (F)dF
R R

11
<orn(—+ — m),
< 2L (5 + ) (LX)

Similarly, for each ¢ € [0,7],

1
(7 = 1) X, i, 2] < 20 (o )+ X,
ki ke
In view of Proposition 6.1, we obtain for each p > 2,
=~ 1 1\P ~ 1 1\P
E[|¢" (X7) — "2 (X7)[P] < O — + — ) (1 +E[|X7|™]) < C'(1 MY — 4 —
164 (Xr) = % (X)) < O+ =) U+ BIX ™)) < Ot [aol ™) (5 + 1)

and

~

B([ 10 - v zia)] <0k (4 )

Then again in view of Remark 2.1, Proposition 6.4 and Remark 6.2, we know that {Y*}2°  is
a Cauchy sequence in SZ,(0,7T') for any p > 2. Thus we could conclude that G-BSDE (6.5) has

a solution (Y, Z, K) € [ &£(0,7).
p=>2

Step 5 Finally, we remove the boundedness condition on b and f. We assume that b, o, f
and ¢ satisfy (A1)—(A4). Set b* := [bV (=k)] Ak and f*:=[f Vv (—k)] A f. Tt is easy to check
that b*, o, f¥ and ¢ satisfy (A1)-(A4) and (A7). Let (X* Y* Z¥ K%) be the solution of the
following G-FBSDE:

Xk —xo—l—/ b* (u, X )du—|—/t (u, X¥dB,, qs.tel0,T],
otxby+ [ Ptz - [ 2k [ (o0
t q.s. tte [0,T7.
For each kq,ke € N and ¢ € [0,T], set
by o= bRt XF2) — bR2(t, X[2)

and
ﬁ = fkl(thflvnkzvzfz) _fk2(thf25Ytkzvzfz)'

Assume k1 < ko. Then for each § > 0 and t € [0, T], we have

|bt| < |b(t’th2)|1{\b(t,Xf2)|>k1} < k_[lslb(thf2)|1+6

and
|ﬁ| < |fk1(t7Xflv§/;k27Zf2) _fkl(taXf27§/;k27Zf2)|
IR = R X Y, 2

1
< LA X ™ 4+ X027 XE = X+ Flf(t,XfZ,Ytkz,Zfz)l”é-
1
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In view of Proposition 6.2, we obtain for each p > 2 and t € [0, 7],

Bl Xk — xkep) < c@[(/t |Bs|ds)p}
0

C, Ciar [f L
<=4 _F X K2y p(1496)
<Et [ [ s xzprtoal
G, G S 5
<+ W(AT + [/ Bl xt2r0+0)ds))
1 1 0
o, C
< o5 s (L Ar o+ [ [POH), (6.12)
1 kl

where \p 1= fOT |b(s,0)[?(1+9)ds. In view of Proposition 6.1, we obtain for each p > 2,

E[lo(X7') = o(X7*)P] < CEI(L+ [XP ™ + | X52["P) [ X7 — X7|7]
< CE[L+ X PP+ | X2 PR X - Xg2 )
< Co(1+ |wo[™)E[|IXJ — XJ2[2P]3. (6.13)

On the other hand, for each p > 2 and 0 < § < 1,
o~ T —~ P T/\
B[( [ 1fae)] <0 [ Bl pel e i - X plar
0 0
C ~ T
+5E|( / £ X0 v 2 )|
kS 0
T . 1
<Cu(1+ faol™) [ B{XE - xpPritar
0
Ci~

T p
+ B[( [ s xt 0,007 + v P+ 12 P)at)].
kl 0

Note that [15, (3.2)] still holds here, which means that there exists a constant C' = C (M, L, G, T),
such that
1Y*2 | see + 127 [lB7MOG < C.

In view of Lemma 2.2 and (A3), we obtain

=10 (T ) moy [ Tk ka2p1h o, C2
E[( [ Ifldt) ] <r+lao™) [ BIXS - XfPr)Rat+ 3 (6.14)

0 0 1
In view of Remarks 2.1 and 6.2, inequalities (6.12)—(6.14) and Proposition 6.4, we see that
{Y*}2e | is a Cauchy sequence in S%(0,7) for any p > 2. Thus we could conclude that G-

BSDE (6.5) has a solution (Y, Z,K) € (| &%(0,T).

p>2

Moreover, we have the following result with a similar argument before.
Theorem 6.2 Assume that { € () L% (Q;R™) and b, h, 0,9, f and ¢ satisfy (A1)—(A4) .
p>2
Then G-BSDE (6.3) has a unique solution (Y,Z,K) € (| &%(0,T).

p>2



918 D. Cao and S. J. Tang

Remark 6.3 Once we have a solution (Y, Z, K) € (| &%(0,T) to G-BSDE (6.3). In view of

p>2

[15,(3.2) — (3.3)], there are two constants C'1 = C1(My, L, G,T) and C2 = C2(p, My, L,G,T)
such that for all p > 2,

IV lsss + 1 Zllsymoe < C1, E[[E7[P] < Co.

Now we can give the relationship between quadratic G-FBSDEs and parabolic PDEs. For

(t,€) € [0,T] x N LE(;R™), denote by (X", Y6, 248 K5¢) the solution to the G-FBSDE
p=>2

(6.2)—(6.3).

Proposition 6.5 For eacht € [0,T] and &, & € () LE&(Q:R™), we have
p=2

Y - Y <o+ gm+ e mE-¢€l, g
i <c, g,

where the constant C' depends on L,G and T'.

Proof For simplicity, we assume g = 0 and h = 0. In view of Propositions 6.1, 6.4 and
Remark 6.3, we obtain

’ ~ / 1
Y, = Y| < CR[|g(X5S) — p(X55)[P)7

=

T
+ R |( / £, X Y6, 206 = (5, X1€ Y1, 289)]a(B). )|

t

~ ’ ’ 1
< CrE[(1+ | X35 + [ X5 [P XS — X )

=

rai [ N+ X0 X0 P X0 X0 pa)
t
< Co(L €™ + I B X5 — X5 7]
el + i ([ Bl - i€ prasit)
<G+ +IEMIE- ¢ as.

On the other hand, we get |Y;**| < C, q.s., directly from Remark 6.3.

Now for each (t,z) € [0,T] x R", we define u(t,z) := Y;"". Identically as in [13, Reamrk
4.3], we deduce that u is a deterministic function. In view of Proposition 6.5, we immediately
have the following estimates:

u(t, z) —u(t,2’)] < C(1+ [ + [2']") |z — 2],
lu(t, z)| < C,

where the constant C' depends on L, G and T. Moreover, with the same proof of [13, Theorem
4.4], we have the following proposition.

Proposition 6.6 For cach & € () L%(Q;R™), we have u(t,€) = Y5,
p>2

Now we give the main result of this section.
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Theorem 6.3 Let u(t,z) := Y for (t,x) € [0,T] xR"™. Then, the function u is a viscosity
solution to the PDE (6.1).

Proof Without loss of genearlity, we still assume that h = 0 and g = 0. First, we show

. . : : : t+8,X,7
that u is a continuous function. Fix some (¢,2) € [0,T] x R"™. In view of YV,;5 = ¥,y """ and

Proposition 6.6, we obtain Y, = u(t + 6, X,2) for 6 € [0, T — t]. Thus we obtain

t468 t46 t+45
v sutraxigy+ [ o xtnvin zemap), - [ ziman- [ akts as
t t t

The generator can be written as Proposition 3.2 in the following form: For each s € [0, T],

f(Sa X;’mv Yst"zv Zﬁ’m) = f(S, Xs'zv Ov O) + mi + aiyst"z + bEZt"z

with
fls, X0% Y%, Z0%) — f(5, X070, Z57)
yhe {y&*|>0}
fs, X070, 25%) — f(s,X57,0,0)
|25 2
s = LV (f(s, X7, Y, 287) = [, X17,0,217))
+UZT)(f (5, X570, 207) = f(5,X.7,0,0))

s = (1= 1(}7)

b = (1= 1(ZE7))

t,x
23 L 207 50y

for a Lipschitz continuous function [ such that 1j_. ;(z) < I(z) < 1_s.2.(2) at each z €
(—o00, +00). Moreover,

lal| <L, b3 < L1+ |257)), |mg| <4Le(l+e).

In view of [15, Lemma 3.6] and Remark 6.3, we know that b* € BMOg. Set By == B, —
fg bsd(B), for t € [0,7]. Thus we can define a new G-expectation E[-] by &(b%), such that B is

a G-Brownian motion under E[-]. Thus we have

t+0

t+48 . t+08
Vs X + [ Germerainamy - [ zeaB - [ akE s,
t t

t
where f, := f(s, X1®,0,0). Taking G-expectation E[], we get

t+6
u(t,r) =E [u(t +9, Xffé) + / (fs +mS + aiyst,ac)d<B>S] .
t
In view of Proposition 6.5, we obtain

_ t+6
|u(t,z) —u(t +d,2)| < E[|u(t + 4, Xttfé) —u(t+4,2)| + /t |fs +mS + aSYP*|d(B),

<E[(1+ |2 ™ + [ X355 Xl — )

s 1
+ Vo / oS+ a2 Ps]
t
Let € < 1. In view of Remark 6.3 and (A3), there exists a constant C' depending on My, L, G

and T, such that
ot
EQE[ /
t

2 1
fs+mS +aly” ds} e
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Thus we know
u(t, ) — u(t +6,2)] <E[(1+ |z|™ + | X5™)2) 2 E[|X)5 — «f*]2 + CVo. (6.15)

Note that [|bS|lpmos < [|L(1+ |Z5*])|lBMog- Then according to Lemma 2.4 and Remark 6.3,
there exists p > 1 depending on My, L, G and T, such that, for each (s, X) € [0,T] x LZ,(Qr),

E,[| X[ = E, [ff(l;?)lel] < ﬁs[(i@(fé’ff )p/}

1
7

TEJX [P < CEJ[X[P)F, g,

where (), depends only on p. In view of Proposition 6.1, we get

= T 12m o~ T 12mp]+ m
E[| X, 5517 < CoE[IX 75177 < (1 + |a*™)

and

E[IXy5 — 2’ < O+ |af?)s.

Then from (6.15), we have for each (¢,z) € [0,T] x R™,
lu(t, 2) — u(t + 6,2)] < C(1 + 2™+ V6,

where C' depends on My, L, G and T'. On the other hand, we get from Proposition 6.5 that for
each (t,z,2') € [0,T] x R™ x R™,

u(t, z) —u(t,2’)] < C(1+ |2 + [2'|") |z — 2|.

It follows that u is continuous.
For any fixed (tg,70) € (0,T) x R", let v» € C*2([0,T] x R™) such that for each (t,z) €
([0, 7] x R")\{(to, z0)},

Y(t,x) —u(t,x) > Y(to,x0) — ulto, xo) = 0. (6.16)

Without loss of generality, we may assume that there exists some m; > 0 such that for each
(t,z) € [0,T] x R™,

[t )| + D2y (t, )| < C(L+ [2|™), [Datp(t,z)| < C. (6.17)
We want to prove that
O + G(a " (to, x0) Divpo(to, wo) + 2f (to, 2o, ¥, 0 (to, 20) Da))) + b (to, 19) Dytp > 0.

Let us assume that the inequality above does not hold. Let Os(to,x¢) be an open ball centered
at (to,zg), with radius §. By continuity, there exists some ¢ € (0,7 — tp) such that for each
(t, $) S Og(t(), 130),

O + G(o™ (t,2) D2po(t, ) + 2f(t, 2,0, 0" (t,2) Dyap)) + bT (t,2) Dyip < 0.

Setting Y; := ¥(t, X)) and Z, := oT(t, X[*"0)Dyap(t, X[, it is easy to check that for
each t € [to, T,

T
Y, = (T, Xiow0) — / {0(s, X1070) 4 b (s, X1070) Dy (s, X1070) }ds
t
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T T

1 ~

—/ gaT(S,Xﬁ““)Dﬁws,XﬁO’“)U(s,X§°7“)d<B>s—/ ZsdBs, qs.
t t

For each t € [to, T], set K; := ftto Fyd(B)s — ftto G(2Fs)ds, where

1 ~ ~
Fy =50 o (s, Xm0 D2ap(s, XL0ow0) (s, X10™0) + f(s, X107, Yy, Z,), s € [to, T

We can check that K is a decreasing G-martingale. Noting that ¢ is bounded here, by Propo-

sition 6.1 and (6.17), we deduce that Kp € () LZ.(Qr). Now we have for each ¢ € [to,T],
p>1

T
Yo =(T,Xp2") — / (Ortp(s, X070) + b7 (5, X70) Dyp(s, X 0) + G(2F%))ds
t
T o T _ T
+/ f(s,X;WO,Ys,ZS)d<B>S—/ stBs—/ dK,, qs.
t t t

Now we set §Y :=Y — Y020 §7 .= 7Z — Z0:%0 and for each s € [to, T,
Fy = 0p)(s, X10%0) 4 b (s, X10%0) D ap(s, XL070) 4+ G(2Fy).

Then for each t € [tg, T,

T
5Y7t = (¢ - U)(T, X’;“[)7w0) + / (f(87 X£0,107 Ysu ZS) - f(su X£0>107 Y;t()@(), Zzoywo))d<B>s
t

T _ T T T
—/ Fsds—/ 6ZSdBS—/ dKS—I—/ dKlo"0 .. (6.18)
¢ ¢ ¢ ¢

As what we do in Proposition 3.3, we have for each s € [tg, T],
o, X000, Yy, Zg) = f (s, X000, YJ0m0, Z10:0) = mS + a8V, + b36 2,
where
jasl < L, b5l < DL+ [Z2% | +|Z,)),  |mi| < 4Le(1+e+|Z)).

In view of [15 Lemma 3.6], Remark 6.3 and (6.17), we know that b € BMOgq. Set By :=
fo b2d(B), for t € [0,T]. Thus we can define a new G-expectation E[-] by &(b%), such that
B is a G- Brownlan motion under E[-]. Thus (6.18) can be written as

8Y; = (¢ — u) (T, X2 + / m§ + a50Y,d(B)

/Fds—/ §74dB, /d[?s—i—/ dK™® .
t

Applying It6’s formula to elo a:d(B)s§Y,, we have
efot a§d<B>55§/t

T
— oJo s (w—u)(T,X?p“’“)—/ oJs aid(B uFSd<B>S+/ olo @dtBumid(B),
t

t
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T s ~ T s ~ T "s
—/ elo aid<B>uazsst—/ elo aid<B>usz+/ elo and(Blugptomo s (6.19)
t t t

Let P be the weakly compact set that represents E. For each P € P, let ¥ be the following
stopping time under P :

= inf{s > to : (5, X0%0) & Os(to, x0)}.
By the strict minimum property (6.16), we notice that

= min —u)(t,z) > 0.
K (t11)€305(t0,r0)(w )(t.2)

It is easy to check that 7 < T, P-a.s. and (¢ — u)(TP,Xi%’wO) > 7, P-as.. From (6.19), we
have for each t € [to, T,

tnrl e
ad(B)s
ejo s (B) 5}/"4/\7_]],

T]:P €
=elo u’sd<B>S(¢ _ U)(T]P,Xi%’mo) _ /

tATE

P T]P’

efosaid<3>uﬁsd<3>s+/ ofi LA Blumed (),

tATF

T

P

T]P T T]P
- / oJi 9 Brsz aB, — [ olieidBlgR, 4 / ofs aLABhugRtoro Py,
t

ATF tATE tATE

Note that for each (s,w) € [to, T] x Qr satisfying to < s < 7% (w), Fs < 0. Thus we have

T]P’

engT“’ A d(B)sgy,, » > e—LT5277+/ elo @wd(Blumeq(B),
TP
. tA -
_/ el aLdBlus 7 4B, +/ elo @ d(Blud[toro P,
t

ATP tATE

Since B is a martingale under the new probability Q with dQ := &(b°)rdP, we have in particular

T]P T]P’
B9(6Y;,) 2 o217y - T B0 [ pmja().] + 227 g0

to tATE

thWO} .

While §Y;, = (¢ — u)(to, xo) and |ms| < p(e) for a nonnegative continuous function p defined
on R* with p(0) = 0, we have

7,]P’

(6 = w)(to, w0) = ¢ 27y — LT T2 p(e) 4 €217 5O / dio|

tATE
> e—2LT5277 . eZLTE2 T62p(5) + eZLTE2 EQ [K;_gwo]

_ e—zLTﬁ277 - e2LTEQT62p(E) + e2LT32EIF’[éo(b5)TK§97w0]
for each P € P. Consequently, we have

(¢ _ u)(to, 130) > e—QLTﬁz,'7 _ eQLTEZT52p(E) + e2LT?2 ;161713 EIP’[éa(bs)TK;o,ro]

= e 2Ty — PLTT 15 p(e) + LT B[ (0F)p K10 ™). (6.20)
In view of Lemma 2.7 and Remark 6.3, the process K™%0 is a G-martingale under E[], and

E[&(b°)p Ko™) = E[K1™] = 0.



Reflected Quadratic BSDEs Driven by G-Brownian Motions 923
Letting € — 0 in the last inequality, we have
0= (¢ —u)(to, z0) > e 2Ty > 0,
which is a contradiction. Hence, u is a viscosity subsolution.
In a similar way, u can be shown to be a viscosity supersolution.

Remark 6.4 When the functions f and g do not depend on ¥, one can get the uniqueness
of viscosity solution to PDE by the uniqueness result in Da Lio and Ley [9] concerning Bellman-
Isaacs equation.

6.2 Relation between reflected quadratic G-BSDEs and obstacle problems for
nonlinear parabolic PDEs

With the preceding nonlinear Feynman-Kac formula, we can give the relationship between
solutions of the obstacle problem for nonlinear parabolic PDEs and the related reflected quadrat-
ic G-BSDEs. For each (¢,€) € [0,T] x () L& (Q;R™), we consider the following G-SDE:

p>2
X§>f:§+/ b(u,Xf;f)dqu/ h(u,ng)d<B>u+/ o(u, XL9)dB,, seclt,T], (6.21)
t t t

and the following type of reflected G-BSDE:

S

T T
YHE = g(XLE) + / g, X56, Y56, Z6)du + / Flu, XEE VS Z56)d(BY),

T T
_/ Zf;dequ/ dAGS, s s €[ T);
Y05, X09), as s € [t T);

/ (I(u, X5%) — Y14)dALS is a non-increasing G-martingale on [s, T7,
t

(6.22)

where b, h,0,1 : [0, T] x R" = R, ¢ : R" - R, f,g:[0,7] x R" x R x R — R are deterministic
functions and satisfy (A1)—(A4). Moreover, we have the following assumption on :
(A9) The function I(t, -) is uniformly Lipschitz and I(7, z) < ¢(x) for any x € R™. Further-
more, there exists a constant Ny such that I(¢,2) < Ny for any ¢ € [0,T].
(A10) The function I(-, z) is uniformly continuous, i.e., there is a non-decreasing continuous
function w : [0, +00) — [0, +00) such that w(0) = 0 and
sup [I(t, z) — 1(t', )| < w(|t —t']).
TER™
Remark 6.5 In the Markovian case, (H2) and (H5) may not hold directly. However, in
view of Remark 2.4, one can still get the results under (H1) and (H3)—(H4) as long as the
penalized quadratic G-BSDE has a solution. The reflected G-BSDE (6.22) has one solution in

the sense of Definition 2.9 and all results in Sections 3-5 still hold here under (A1)—(A4) and
(A9)-(A10).

Consider the following obstacle problem for a parabolic PDE:

{min{—@tu — F(D2u, Dyu,u,x,t),u(t,z) — l(t,z)} =0, (t,z) €[0,T) x R", (6.23)

u(T,z) = ¢(z), xe€R",
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where

F(A, p,y,z,t) = G(UT(L‘, x)Ao(t,x) + 2f(t, z,y, JT(t,x)p) + 2hT(t,x)p)
+ b (t)p+ g(t,x,y,07 (t, 2)p)
for each (A, p,y,x,t) €S, x R" x R x R™ x [0, T].

We need to recall the equivalent definition of the viscosity solution of the obstacle problem
(6.23) as in [24] or [33].

Definition 6.1 Let u € C([0,T] x R™) and (t,x) € [0,T] x R™. We denote by P?Tu(t,z)
the set of triples (p,q, A) € R x R™ x S,, satisfying

u(s,y) <ult,y) +pls—t)+q" (y — ) + %A(y —x)? +o]s —t| + |y — ).

Similarly, we define P>~ u(t,z) := —P>T(—u)(t,z).
Definition 6.2 The function u € C([0,T] x R™) is called a viscosity subsolution of (6.23)
if u(T,z) < ¢(z), x € R, and for each (t,z) € [0,T) x R™ and (p,q, A) € P>Fu(t,z),
min{_p - F(A7 q, U(t, 1’), z, t)a U(t, 1’) - l(tv 1’)} <0.

The function u € C([0, T]xR™) is called a viscosity supersolution of (6.23) if u(T,z) > ¢(z), = €
R”, and for each (t,z) € [0,T] x R™ and (p,q, X) € P%~u(t, x),

min{—p - F(Av q, u(tv ZI?), xz, t)a U(t, ZIJ) - l(tv ZIJ)} > 0.
u € C([0,T] x R™) is said to be a viscosity solution of (6.23) if it is both a viscosity subsolution
and supersolution.

We now define u(t,z) := Y;**. Similarly as before, we can note that u is a deterministic
function. We now should prove that u € C([0,7] x R™).

Lemma 6.2 Let (A1)—(A4) and (A9)—(A10) hold. For each t € [0,T], x1,22 € R™, we
have
u(t, z1) = u(t,z2)* < O+ |21 "™ + a2 [*™) o1 — 22]* + Clan — wa|.

Proof Without loss of generality, we assume h = 0 and g = 0. In view of Propositions 3.1
and 3.2, we deduce that there exists a constant C; := C1(T, L, G, My, Ny) such that

125 [mog + 112572 [lBMog < Ci,
and a constant Co := Co(T, L, G, My, Ny, «), for any o > 1, such that
E[|AR™ | + 4% < Cb.

In view of Proposition 3.3 and its proof and noting that u is deterministic, we obtain that there
exists a constant C' := C(T, L, G, My, Np) and p > 2 such that for each ¢t € [0,T],

lu(t, z1) — u(t, z2)|?

1
< O{BlIOCK™) = o(XG™) P + B s 165, X0m) =15, X ]
se|t,



Reflected Quadratic BSDEs Driven by G-Brownian Motions 925

B

~ T P
+ CE|:(/ |f(3, X§7w17}gt,127 Z?wz) - f(Ssz’wza }/st7w25 Z?wz”zds) :|
t
< C/E[(l + |X?w1|2pm + |X§l$2|2pm)2]ﬁﬁ[|X§lwl _ X{?w2|4p]ﬁ
1
+ C’E[ sup [ X[ — Xﬁ’“lﬂ K

s€t,T]

1

T 1 T 1
+C’E[/ (1+ | Xbor2m 4 |X§>””2|2pm)2ds} E[/ Xt — xtez|drgs|
t t
< C"(1 A4 |21 P™ 4 @2 ™) |21 — 22)® 4+ O |21 — 2.

Lemma 6.3 Let (A1) (A4) and (A9)(A10) hold. The function u(t,z) := Y,;"" is con-
tinuous in t.

Proof For simplicity, we assume h = 0 and ¢ = 0. We define X% := z, Y% := V",
Zb =0 and AL" := 0 for s € [0,¢]. Tt is easy to check that (Y"*, Zh* A%*) is a solution to
the following G-BSDE on [0, T:

T T
Ve =005+ [ (o)1 X0 i Zas), — [ 2ea,
T ) ’
+ [ dALS se0,T],
s (6.24)
Yie > She s s€[0,T);

{ - / (V" — S dAL*T ) s € [0, T]} is a non-increasing G-martingale,
0

where

ghe — l(S,X;%é)7 s €L, T],
s I(s,x), s€10,t.
Fix © € R™. As before, in view of Propositions 3.1-3.3, we have for 0 < ¢; <ty < T and some
p =2,
[u(ty, x) — u(ts, $)|2 = |Y0tl>m _ Yot2,1|2
1

1
< C{E[W(Xftplw) - (ZS(X;}@)l?p]p + E[ S[%pT] li(s, X117y — l(s,X§27w)|2P] zp}
s€[o,

S

+CE|:(/ |1[t1,T](S)f(SuX£17w7§/;t27w7Zzzyw) - 1[t2,T](S)f(S,X£2’w,Y;tz’m7Z;27w)|2ds> }
0

< C'E[(1+ | X272 4 | X2 2P 2R X" — X327 |7]%
N L N to

+ C'E{ sup |X!T — X§2’1|2p} oy C'E[(/
ty

r3
(s, X000, Y2200, Z00) 2 )|
s€[0,T]

T 1 T L
+C’E[/ (14 | X0 prm + |X§2’””I2p’”)2ds} E[/ XD —X§2’1|4”ds] >

ta to

L L
<CM(+[aP™E] sup | X0 - XEe] T L O] sup |XIn0 Xl ]
s€[t2,T) s€[0,T]

+ C”E[(/tz 75, X0, Y 0)Pds)| g (6.25)

ty
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For each o > 2, we have

IE[ sup |X§1’I—X£2’z|°‘}

s€1[0,T
A t1,x « A t2’X:1Y’I to,x |
SE[ sup | X" — x| }—I—E[ sup | X5 7 — X227
Se[tl,tg] Se[tg T]
< Ci(1+ 2|t — 2| + CLE[|IX{)" — 2|

S 02(1 + |ZZ?| )|t1 —t2|2.

On the other hand, in view of Proposition 3.2, for each @ > 2,

K/ttz [F(s, X7 ¥ 17, 0)%as) |

1

&

~

CE[/ (1£(5,0,0,0)/2 + [ XL 4 [y f27|)ds|
/ (I£(5,0,0,0)]%* 4+ 1 + E[| X *|**])ds
<e / (17(.0,0,0)[2 + 1+ [2[2*)ds
t1

Then from (6.25), we know that u is continuous in t.

Now we consider the penalized G-BSDEs:
T
}/St,z,n:d)(X%,z)_F/ (T’Xtm thn thndT—F/ fTXtr Ytzn thn)d<B>r

T
+n/ (Yhem —(t, X57)) ~dr —/ ZL* "B, — / dKL™™  qs. s € [t,T).

We define u,(t,z) := Y,"™", (t,x) € [0,T] x R". In view of Theorem 6.3, u,, is the viscosity
solution to the following PDE:

{atun + Fo(D?uy, Dy, v, t) =0,  (t,z) € [0,T) x R, (6.26)

un (T, x) = ¢(x), =€ R",
where
Fo(DA,p,y,z,t) == F(A,p,y,x,t) +n(y — (t,x))”
for each (A, p,y,2,t) €S, x R" x R x R™ x [0, 7.

Theorem 6.4 Let (A1)-(A4) and (A9)(A10) hold. The function u(t,z) := Y"" is a
viscosity solution of the obstacle problem (6.23).

Proof We follow the procedure of [24, Theorem 6.7], and only sketch the main ideas.
From the previous results, we have for each (¢,z) € [0,T] x R™,

lim wu,(t, ) = u(t,z), Uni1(t,z) >un(t,z), VneZ'.

n—oo

Moreover, functions v and w,, are continuous. Then in view of Dini’s theorem, w,, uniformly
converges to u on any compact subset.
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We now show that u is a viscosity subsolution to (6.23). For each fixed (¢,z) € [0,T] x R™,
let (p,q,A) € P> u(t,z). We may assume u(t,z) > [(t,z). Similarly as in the proof of [24,
Theorem 6.7], we deduce that there exist sequences

ng —» 00, (tj,$j)—>(t,$), (pjaqijj)%(paqvA)a

where (p;,q;, X;) € P> up, (tj, ;). Since uy, is the viscosity solution to (6.26), it follows that
for any j,
min{—p; — F; (A5, ¢, un, (85, 25), 5, t5), ulty, 25) — U(t;, 25)} < 0.

Noting that w(t,z) > I(¢,z), by the uniform convergence of w,, we deduce that u;(t;,z;) >
I(tj, z;) for sufficiently large integer j. Thus letting j — oo, we have

—P— F(A,q,u(t,x),x,t) S 07

which means that u is a viscosity subsolution to (6.23).
In a similar way, u is proved to be a viscosity supersolution to (6.23).
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