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Abstract Quillen proved that repeated multiplication of the standard sesquilinear form

to a positive Hermitian bihomogeneous polynomial eventually results in a sum of Hermitian

squares, which was the first Hermitian analogue of Hilbert’s seventeenth problem in the

nondegenerate case. Later Catlin-D’Angelo generalized this positivstellensatz of Quillen

to the case of Hermitian algebraic functions on holomorphic line bundles over compact

complex manifolds by proving the eventual positivity of an associated integral operator.

The arguments of Catlin-D’Angelo involve subtle asymptotic estimates of the Bergman

kernel. In this article, the authors give an elementary and geometric proof of the eventual

positivity of this integral operator, thereby yielding another proof of the corresponding

positivstellensatz.
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1 Introduction

A central topic in real algebraic geometry is Hilbert’s seventeenth problem of representing a

nonnegative form on Rn as a sum of squares of rational functions. An affirmative solution was

first provided by Artin’s positivstellensatz in 1927 [1]. Since then, related topics have continued

to be widely studied from different viewpoints (see [6–8, 10, 11–12, 15–16] and the references

therein).

For the corresponding problem in the Hermitian case, Quillen [11] and Catlin-D’Angelo

[6] proved independently the following positivstellensatz: for any Hermitian bihomogeneous

polynomial f on Cn which is positive on Cn \ {0}, there exists ℓo > 0 such that for any ℓ ≥ ℓo,

there are homogeneous holomorphic polynomials g1, · · · , gN
on Cn satisfying

( n∑

i=1

|zi|2
)ℓ

· f(z) =
N∑

j=1

|gj(z)|2, (1.1)
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where z = (z1, · · · , zn). Later, Catlin-D’Angelo generalized this positivstellensatz to the case of

positive Hermitian algebraic functions on holomorphic line bundles over compact complex man-

ifolds, and this was formulated as an isometric embedding theorem of the associated Hermitian

metrics on the line bundles in [7] (see Section 2 for the two equivalent definitions of Hermi-

tian algebraic functions and Catlin-D’Angelo’s result stated as Theorem 2.1). For holomorphic

line bundles L and E over a compact complex manifold X and positive Hermitian algebraic

functions R and P on L and E respectively such that R satisfies the strong global Cauchy-

Schwarz (SGCS) condition, Catlin-D’Angelo obtained their positivstellensatz by proving that,

if m is a sufficiently large positive integer, then the associated integral operator KRmP,Ω on

H0(X,Lm ⊗ E) is positive (see (3.1) and Section 2 for the definitions of KRmP,Ω and SGC-

S respectively). Here Ω denotes the volume form on X induced from R. The arguments of

Catlin-D’Angelo in [7] depend on Catlin’s result [5] about perturbations of the Bergman kernel

on the unit disk bundle associated to a negative line bundle.

In this article, we give an elementary and geometric proof of an asymptotic formula, which

leads to the eventual positivity of the above integral operator. We state our main result as

follows.

Theorem 1.1 Let L and E be holomorphic line bundles over an n-dimensional compact

complex manifold X. Suppose R and P are positive Hermitian algebraic functions on L and

E respectively, such that R satisfies the strong global Cauchy-Schwarz condition. Then there

exists a constant C > 0 such that for all m ∈ N and all s ∈ H0(X,Lm ⊗ E), one has

∣∣∣KRmP,Ω(s, s)−
πn

mn
‖s‖22

∣∣∣ ≤ C

mn+1
‖s‖22, (1.2)

where Ω denotes the volume form on X induced from R, and ‖s‖2 denotes the L2 norm of s

with respect to RmP and Ω.

Theorem 1.1 would, in principle, also follow from [16, Section 5] (which depended on a

result of Berman-Berndtsson-Sjötrand [2]). However, we have some difficulty in understanding

some arguments in [16] (in particular, using the notation of [16, p. 313], it is possible that

〈L(m)
i a, a〉 = 0 for infinitely many m, which together with the last line of [16, p. 313], will

imply that 〈C(m)a, a〉 = 0, contradicting Theorem 1.1). As such, we are motivated to give

an independent proof of the asymptotic formula in Theorem 1.1, which is the purpose of this

article. See also [13] for a weaker version of (1.2) in the special case when X is a complex

projective space.

In comparison to the approach of Catlin-D’Angelo [7] which depends on estimates on

Bergman kernels, our proof of the above asymptotic formula is relatively elementary, direc-

t and geometric, and does not depend on estimates on Bergman kernel. Roughly speaking,

our approach is to consider separately the behaviour of the kernels of the integral operators

KRmP,Ω in tubular neighborhoods of the diagonal of the product manifold as well as that in

the complementary region. To derive our desired estimates, we construct good approximants

of the kernels of the integral operators in some carefully chosen tubular neighborhoods of the

diagonal.
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Some arguments in this article are not completely effective, for instance, Lemma 4.3 uses a

continuity argument. After writing this article, we have found a way to make the arguments of

this article effective, which will be discussed in a separate paper [14]. Still, we believe that this

article is of independent interest as it illustrates how the diastatic function of Calabi [4] and

the Bochner coordinate system [3] lead to an elementary proof of Theorem 1.1.

A Hermitian algebraic function Q on a holomorphic line bundle F over a compact complex

manifold X is called a maximal sum of Hermitian squares (resp. a sum of Hermitian squares)

if there exists a basis (resp. finite subset) {s0, s1 · · · , sN} of H0(X,F ) such that one has

Q(x, x) =
N∑
i=0

si(x)si(x) for all x ∈ X . Note that in this case, if Q is positive, then as in [7,

Theorem 3], the associated map φ : X → PN given by φ(x) = [s0(x), · · · , sN (x)] is holomorphic

and it induces an isometry between the Hermitian holomorphic line bundles (F ∗, hQ) and

(OPN (−1), hN), i.e., φ∗OPN (−1) = F ∗ and φ∗hN = hQ. Here hN denotes the Hermitian metric

on the universal line bundle OPN (−1) over PN induced by the polynomial
N∑
i=0

|zi|2, and hQ

denotes the Hermitian metric on F ∗ induced from Q. As is known in Catlin-D’Angelo [7]

and Varolin [16], the eventual positivity of the integral operator in Theorem 1.1 leads to the

following positivstellensatz.

Corollary 1.1 Let X, L, E, R, P , n, C be as in Theorem 1.1. Then for each integer

m >
C

πn
(resp. m ≥ C

πn
), the Hermitian algebraic function RmP is a maximal sum of Hermitian

squares (resp. a sum of Hermitian squares), and in particular, there exists some holomorphic

map φ : X → PN (with N depending on m) such that ((Lm⊗E)∗, hRmP ) = (φ∗OPN (−1), φ∗hN).

The organization of this paper is as follows. In Section 2, we cover some background material

and introduce some notations. In Section 3, we give the construction of the approximants to

the kernels of the integral operators being investigated. In Sections 4–6, we derive the desired

estimates needed for the proof of Theorem 1.1.

2 Notation and Background Materials

In this section, we recall some background materials regarding Hermitian algebraic functions

on holomorphic line bundles, which are taken from [7], [9] and [16]. As such, we will skip their

proofs here and refer the reader to these references for their proofs.

Let X be an n-dimensional compact complex manifold, and let F be a holomorphic line

bundle over X with the corresponding projection map denoted by π : F → X . The dual

holomorphic line bundle of F is denoted by F ∗. The total space of F ∗ (denoted by the same

symbol) is a complex manifold, and the complex conjugate manifold of F ∗ (resp. X) is denoted

by F ∗ (resp. X). Following [9] and [16], a Hermitian algebraic function Q on F is simply a

Hermitian bilinear form on the complex vector space H0(X,F )∗. One sees that with respect to

any basis {sα} of H0(X,F ), there exists a corresponding Hermitian matrix
(
Cαβ

)
such that,
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for all x, y ∈ X , one has

Q(x, y) =
∑

α,β

Cαβs
α(x)sβ(y). (2.1)

Let ρ1 : X × X → X and ρ2 : X × X → X denote the projection maps onto the first and

the second factor respectively, and consider the holomorphic line bundle ρ∗1F ⊗ ρ∗2F over the

complex manifold X × X, whose fiber at a point (x, y) ∈ X × X is naturally isomorphic to

Fx ⊗ Fy. Here Fx := π−1(x) denotes the fiber of F at the point x ∈ X , etc. Then from

(2.1), one sees that Q can be regarded as a global holomorphic section of ρ∗1F ⊗ ρ∗2F (i.e.,

Q ∈ H0(X ⊗ X, ρ∗1F ⊗ ρ∗2F )) satisfying the condition Q(x, y) = Q(y, x) ∈ Fx ⊗ Fy for all

x, y ∈ X . Next, via pointwise evaluation, one obtains a function (denoted by the same symbol)

Q : F ∗ × F ∗ → C such that (i) Q is holomorphic on F ∗ × F ∗, (ii) Q(v, w) = Q(w, v) for all

v, w ∈ F ∗, and (iii) Q(λ · v, w) = λQ(v, w) for λ ∈ C and v, w ∈ F ∗, where λ · v denotes scalar

multiplication along fibers. From the above descriptions, one has

Q(v, w) = 〈Q(x, y), v ⊗ w〉 for all v ∈ F ∗
x , w ∈ F ∗

y , x, y ∈ X, (2.2)

where 〈 , 〉 denotes the pointwise pairing between ρ∗1F ⊗ ρ∗2F and its dual line bundle induced

from that between F and F ∗. Note that there is no confusion on which definition of Q is being

used, as this is indicated by the object at which Q evaluates. We will often make our statement

using only one of these two definitions, and leave the corresponding statement in terms of the

other definition as an exercise to the reader.

As mentioned in the last section, we say that a Hermitian algebraic function Q is a sum of

Hermitian squares (resp. a maximal sum of Hermitian squares) if the Hermitian matrix
(
Cαβ

)

in (2.1) with respect to one (and hence any) basis of H0(X,F ) is positive semi-definite (resp.

positive definite), or equivalently, there exists a finite subset (resp. a basis) {tα} of H0(X,F )

such that Q(x, x) =
∑
α

tα(x)tα(x) for all x ∈ X . Also, the Hermitian algebraic function Q is

said to be positive if Q(v, v) > 0 for all 0 6= v ∈ F ∗. If Q is positive, then Q induces a Hermitian

metric hQ on F ∗ given by hQ(v, w) = Q(v, w) for v, w ∈ F ∗
x , x ∈ X . (In [7], such a Hermitian

metric arising from a positive Hermitian algebraic function is called a globalizable metric.) We

recall that the curvature form ΘhQ
of the Hermitian metric hQ is the (1, 1)-form on X given

locally as follows: On any open subset U of X and for any local non-vanishing holomorphic

section s of F ∗
∣∣
U
, one has ΘhQ

∣∣
U
= −

√
−1∂∂ log hQ(s, s). Again we denote by π : F ∗ → X the

projection map. Following [16] again (and with origin in [7]), a positive Hermitian algebraic

function Q on X is said to satisfy the strong global Cauchy-Schwarz (SGCS) condition if the

following two conditions are satisfied:

(SGCS-1) |Q(v, w)|2 < Q(v, v)Q(w,w) for all non-zero v, w ∈ F ∗ such that π(v) 6= π(w).

(Note that one always has |Q(v, w)|2 = Q(v, v)Q(w,w) whenever π(v) = π(w).)

(SGCS-2) The (1, 1)-form ΘhQ
on X is negative definite.

Let Ω be a smooth Hermitian volume form on X , and let Q be a positive Hermitian algebraic

function on F as before. We endow the vector space H0(X,F ) with the L2 Hermitian inner
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product (induced from Q and Ω) given as follows. For s, t ∈ H0(X,F ), one has

(s, t) :=

∫

X

〈s, t〉Q(x)Ω(x), (2.3)

where 〈s, t〉Q(x) :=
s(x)t(x)

Q(x, x)
denotes the pointwise Hermitian pairing on F dual to (F ∗, hQ).

Note that the quotient in (2.3) makes sense and is a scalar-valued function on X , since both

the numerator s(x)t(x) and the denominator Q(x, x) take values in Fx ⊗Fx. For simplicity, we

denote the associated L2-norm (resp. pointwise norm) of s by ‖s‖2 (resp. ‖s(x)‖, x ∈ X), i.e.,

‖s‖2 =
√
(s, s) and ‖s(x)‖ =

√
〈s, s〉Q(x). (2.4)

Next one defines an integral operator KQ,Ω associated to Q and Ω and acting (as a Hermitian

bilinear form) on the vector space H0(X,F ) as follows. For s, t ∈ H0(X,F ), we let

KQ,Ω(s, t) :=

∫∫

X×X

Q(x, y)s(y)t(x)

Q(x, x)Q(y, y)
Ω(x)Ω(y). (2.5)

Note that as in (2.3), the quotient in the integrand in (2.5) makes sense as a scalar-valued

function on X ×X . With respect to an orthonormal basis {sα} of H0(X,F ) for the Hermitian

inner product in (2.3), it is easy to see that the Hermitian matrix
(
Cαβ

)
associated to Q as

given in (2.1) is simply given by Cαβ = KQ,Ω(s
β , sα) for each α, β. It follows that Q is a sum

of Hermitian squares (resp. a maximal sum of Hermitian squares) if and only if the integral

operator KQ,Ω is positive semi-definite (resp. positive definite) in the sense that KQ,Ω(s, s) ≥ 0

(resp. KQ,Ω(s, s) > 0) for all 0 6= s ∈ H0(X,F ).

For a positive Hermitian algebraic function Q on X , we define the Cauchy-Schwarz function

ΨQ : X ×X → R associated to Q given by

ΨQ(x, y) :=
Q(x, y)Q(y, x)

Q(x, x)Q(y, y)
, x, y ∈ X. (2.6)

From the positivity of Q and as in (2.5), one easily sees that ΨQ is a well-defined real-analytic

function on X ×X . Note also that ΨQ(x, y) = ΨQ(y, x) for all x, y ∈ X .

We remark that for two positive Hermitian algebraic functions Q1 and Q2 on two holo-

morphic line bundles F1 and F2 over X , the product Q1Q2 (obtained by taking pointwise

multiplication (resp. tensor product) when the Qi’s are taken as functions (resp. bundle-valued

sections)) is a positive Hermitian algebraic function on F1 ⊗ F2. Furthermore, one easily sees

that

ΨQ1Q2
(x, y) = ΨQ1

(x, y) ·ΨQ2
(x, y) for all x, y ∈ X. (2.7)

For the remainder of this section, we will fix two holomorphic line bundles L and E over X .

We also fix two positive Hermitian algebraic functions R and P on L and E respectively, such

that R satisfies the SGCS condition. From (SGCS-2), X is endowed with a Kähler form ω and

an associated Hermitian volume form Ω given by

ω := −ΘhR
and Ω :=

ωn

n!
. (2.8)

We recall the following result of Catlin-D’Angelo.
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Theorem 2.1 (see [7]) Let L and E be holomorphic line bundles over an n-dimensional

compact complex manifold X. Suppose R and P are positive Hermitian algebraic functions on

L and E respectively, such that R satisfies the SGCS condition. Then there exists mo ∈ N such

that for each integer m ≥ mo, R
mP is a maximal sum of Hermitian squares (on the line bundle

Lm ⊗E); in particular, there exists some holomorphic map φ : X → PN (with N depending on

m) such that ((Lm ⊗ E)∗, hRmP ) = (φ∗OPN (−1), φ∗hN ). Here hN is as in Corollary 1.1.

We remark that Catlin-D’Angelo obtained the above theorem by proving the positive-

definiteness of the integral operators KRmP,Ω for all sufficiently large m, where Ω is as in

(2.8).

3 The Integral Operator and the Approximant

In this section, we are going to construct approximants to the kernels of the integral operators

in Theorem 1.1. The Cauchy-Schwarz functions defined in (2.6) and the canonical coordinates

(called Bochner coordinates in this article) associated to analytic Kähler metrics (as given in

[3] and [4]) will play important roles in our construction.

Throughout this section and as in Theorem 1.1, we let L and E be holomorphic line bundles

over an n-dimensional compact complex manifold X , and we let R and P be positive Hermitian

algebraic functions on L and E respectively, such that R satisfies the SGCS condition. We

recall from (2.8) the analytic Kähler form ω and the volume form Ω on X induced from R.

Recall from Section 2 that for each m ∈ N, RmP is a positive Hermitian algebraic function on

the holomorphic line bundle Lm ⊗ E, and one has an associated integral operator given by

KRmP,Ω(s, t) :=

∫∫

X×X

Rm(x, y)P (x, y)s(y)t(x)

Rm(x, x)P (x, x)Rm(y, y)P (y, y)
Ω(x)Ω(y) (3.1)

for s, t ∈ H0(X,Lm ⊗ E) (see (2.5)). We denote the diagonal of X ×X by

∆X := {(x, x) ∈ X ×X
∣∣ x ∈ X} ∼= X. (3.2)

Consider the real-analytic subvarieties of X ×X given by

ZR : = {(x, y) ∈ X ×X
∣∣R(x, y) = 0}, (3.3)

ZP : = {(x, y) ∈ X ×X
∣∣P (x, y) = 0}. (3.4)

From the positivity of R and P , one easily sees that ∆X ∩ (ZR ∪ZP ) = ∅. Recall from [4, p. 3],

the diastatic function Dω associated to the analytic Kähler form ω, which is defined on some

open neighborhood of ∆X in X ×X . In our present case where ω arises from R, Dω actually

extends to a function on (X ×X) \ ZR given by

Dω = − logΨR, (3.5)

where ΨR(x, y) =
R(x,y)R(y,x)
R(x,x)R(y,y) , x, y ∈ X, is the Cauchy-Schwarz function associated to R (see

(2.6)). Later we will also need to consider the Cauchy-Schwarz function ΨP associated to P
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given by

ΨP (x, y) =
P (x, y)P (y, x)

P (x, x)P (y, y)
, x, y ∈ X. (3.6)

Recall also from [4, p. 14], and [3, p. 181] that for any x ∈ X , there exists a canonical co-

ordinate system ẑ centered at x given by an n-tuple of holomorphic coordinate functions

z = (z1, z2, · · · , zn) : B(x, r) → Cn such that z(x) = 0 and the power series expansion of

the diastatic function Dω(x, ·) takes the form

Dω(x, y) = |z(y)|2 +
∑

|α|,|β|≥2

aαβ(ẑ)z(y)
αz(y)β, y ∈ B(x, r), (3.7)

where α = (α1, · · · , αn), β = (β1, · · · , βn) ∈ (N ∪ {0})n are multi-indices, |α| = α1 + · · ·+ αn,

zα = zα1

1 zα2

2 · · · zαn
n , |z|2 = |z1|2 + · · ·+ |zn|2, and the aαβ(ẑ)’s are Taylor coefficients of Dω at

x with respect to the coordinate system ẑ, etc; furthermore,

B(x, r) := {y ∈ X
∣∣ |z(y)| < r} (3.8)

denotes the open coordinate ball (with respect to ẑ) centered at x and of radius r. Note that

the right-hand side of (3.7) does not possess any monomial term in zαzβ with |α| ≤ 1 or |β| ≤ 1,

except when |α| = |β| = 1; in particular, it does not possess any monomial term of total degree

|α|+|β| = 3. For simplicity, any local coordinate system ẑ (with associated coordinate functions

z) satisfying (3.7) will be called a Bochner coordinate at x. It was shown in [4, p. 14–15], that

if ẑ (with associated coordinate functions z) is a Bochner coordinate at x, then a coordinate

system ẑ′ (with associated coordinate functions z′) is a Bochner coordinate at x if and only if

z′ = Uz (3.9)

for some U ∈ U(n), where U(n) denotes the group of n×n unitary matrices. In particular, the

coordinate ball B(x, r) in (3.8) is a well-defined open subset of X independent of the choice of

the Bochner coordinate ẑ at x, and we will simply call it the Bochner ball centered at x and

of radius r. Then one easily sees from the arguments in [3, p. 181] on the existence of Bochner

coordinates that for any xo ∈ X , any Bochner coordinate ẑ at xo (with associated coordinate

functions z : B(xo, r) → Cn), there exist some r′ satisfying 0 < r′ < r and open subsets V ⊂ X ,

W ⊂ X ×X , such that xo ∈ V ,

W =
⋃

x∈V

Wx, (3.10)

where Wx := {x}×B(x, r′) ∼= B(x, r′), and there exists a continuous function z̃ : W → Cn such

that the restriction z̃
∣∣
Wx

: B(x, r′) → Cn (under the identification in (3.10)) gives a Bochner

coordinate at x for each x ∈ V , and z̃
∣∣
Wxo

= z on B(xo, r
′); furthermore, shrinking r′ and V if

necessary, we may assume that for all x ∈ V and all Bochner coordinates ẑ at x, the associated

coordinate functions z (which are necessarily of the form Uz̃
∣∣
Wx

for some U ∈ U(n) (see (3.9)))

are defined on B(x, r′). Together with the compactness of X , it follows readily that there exists
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some constant r1 > 0 such that for all x ∈ X and all Bochner coordinates ẑ at x, the associated

coordinate functions are defined on B(x, r1). Furthermore, the Bochner coordinates form a

principal U(n)-bundle p : G → X over X such that for each x ∈ X and ẑ ∈ Gx := p−1(x), ẑ

is a Bochner coordinate at x with associated coordinate functions z : B(x, r1) → Cn, and for

each U ∈ U(n), Uẑ is simply the Bochner coordinate at x with associated coordinate functions

given by Uz. Throughout this article, we will fix a choice of the constant r1, and same remark

will apply to the other constants ri’s and Cj ’s defined later, unless stated otherwise.

Next we consider the power series expansions of the local expressions for ΨR, ΨP and Ω.

Take a point x ∈ X and a Bochner coordinate ẑ at x with associated holomorphic coordinate

functions z : B(x, r1) → Cn. From (3.5) and upon exponentiating the negative of both sides of

(3.7), one easily sees that the power series expansion of ΨR with respect to ẑ takes the form

ΨR(x, y) = 1− |z(y)|2 +
∑

|α|,|β|≥2

ΨR,αβ(ẑ)z(y)
αz(y)β, y ∈ B(x, r1). (3.11)

Here as in (3.7), the ΨR,αβ(ẑ)’s are the Taylor coefficients of ΨR at x with respect to the

coordinate system ẑ. Next we write

ω =

√
−1

2

∑

1≤i,j≤n

ωij(ẑ) dzi ∧ dzj on B(x, r1). (3.12)

where, for 1 ≤ i, j ≤ n, ωij(ẑ) denotes the (i, j)-th component of ω with respect to ẑ. From

(2.8) and (3.5), one has ωij(ẑ) = ∂zi∂zjDω(x, ·). Together with (3.7), one easily sees that the

power series expansion of ωij(ẑ) takes the form

ωij(ẑ)(y) = δij +
∑

|α|,|β|≥1

ωij,αβ(ẑ)z(y)
αz(y)β , y ∈ B(x, r1). (3.13)

where δij denotes the Kronecker symbol, and as before, the ωij,αβ(ẑ)’s denote the Taylor coef-

ficients of ωij(ẑ) at x with respect to ẑ. Next we let dV (ẑ) be the Euclidean volume form on

B(x, r1) with respect to the Bochner coordinate ẑ at x given by

dV (ẑ) =
(√−1

2

)n

dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn, (3.14)

so that we may write

Ω = Ω(ẑ) dV (ẑ) on B(x, r1), (3.15)

where Ω(ẑ) is a positive real-analytic function. In fact, one easily sees that Ω(ẑ) = det(ωij(ẑ))

on B(x, r1). Together with (3.13), one easily sees that the power series expansion of Ω(ẑ) with

respect to ẑ takes the form

Ω(ẑ)(y) = 1 +
∑

|α|,|β|≥1

Ωαβ(ẑ)z(y)
αz(y)β , y ∈ B(x, r1). (3.16)

Here as before, the Ωαβ(ẑ)’s are the Taylor coefficients of Ω(ẑ) at x with respect to ẑ. As for

ΨP , we consider its power series expansion with respect to ẑ, which is valid on B(x, r2) for
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some r2 satisfying 0 < r2 < r1, so that we have

ΨP (x, y) =
∑

α,β

ΨP,αβ(ẑ)z(y)
αz(y)β, y ∈ B(x, r2). (3.17)

By differentiating the expression of ΨP in (3.6), one easily sees that ΨP,αβ(ẑ) = 1 when |α| =
|β| = 0, and ΨP,αβ(ẑ) = 0 when exactly one of the two numbers |α|, |β| is 0. Thus, one may

refine (3.17) as follows:

ΨP (x, y) = 1 +
∑

|α|,|β|≥1

ΨP,αβ(ẑ)z(y)
αz(y)β , y ∈ B(x, r2). (3.18)

Furthermore, it is easy to see that shrinking r2 if necessary, we may choose (and will choose) r2

so that (3.18) holds for all x ∈ X and all ẑ ∈ Gx. Next we consider certain truncations of the

power series expansions considered above. Take x ∈ X and a Bochner coordinate ẑ at x with

associated holomorphic coordinate functions z : B(x, r1) → Cn as before. With notation as in

(3.11), we define a function ΨR,≤4(ẑ) : B(x, r1) → C given by

ΨR,≤4(ẑ)(y) := 1− |z(y)|2 +
∑

|α|=|β|=2

ΨR,αβ(ẑ)z(y)
αz(y)β, y ∈ B(x, r1). (3.19)

In other words, ΨR,≤4(ẑ) is obtained by taking the sum of the monomial terms of total degree

|α|+ |β| ≤ 4 in the power series expansion of ΨR(x, ·) at x with respect to ẑ. With notation as

in (3.16) and (3.18), we similarly define

Ω≤2(ẑ)(y) := 1 +
∑

|α|=|β|=1

Ωαβ(ẑ)z(y)
αz(y)β, y ∈ B(x, r1), (3.20)

ΨP,≤2(ẑ)(y) := 1 +
∑

|α|=|β|=1

ΨP,αβ(ẑ)z(y)
αz(y)β, y ∈ B(x, r2). (3.21)

For an open subset U ⊂ X , a continuous section of G
∣∣
U
is a continuous function σ : U → G

such that σ(x) ∈ Gx for all x ∈ U .

Lemma 3.1 There exists an open subset X ′ ⊂ X such that
∫
X\X′ Ω = 0 and the restriction

G
∣∣
X′ admits a continuous section.

Proof Since X is compact, there exists a finite open cover {Vi}1≤i≤N of X such that each

G
∣∣
Vi

is trivial, i.e., G
∣∣
Vi

admits a continuous section σi for each i = 1, · · · , N . Now, we let

U1 := V1, and for each 2 ≤ k ≤ N , we let Uk := Vk \
⋃

1≤i≤k−1

Vi. Finally, we let X
′ :=

⋃

1≤i≤N

Ui,

and let σ : X ′ → G be given by σ(x) := σi(x) for each x ∈ Ui, i = 1, · · · , N . Then one easily

checks that
∫
X\X′ Ω = 0 and σ is a continuous section of G

∣∣
X′ .

For each r satisfying 0 < r < r1, we let

W (r) := {(x, y) ∈ X ×X
∣∣ y ∈ B(x, r)} (3.22)

(see (3.8)), which is an open neighborhood of ∆X in X×X . For discussion in ensuing sections,

we define a function ρ : W (r1) → R given by

ρ(x, y) := |z(y)|, (x, y) ∈ W (r1), (3.23)
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where z = (z1, · · · , zn) are the coordinate functions associated to a (and hence any) Bochner

coordinate ẑ ∈ Gx (see (3.9)). It is easy to see that ρ is continuous on W (r1), but in general,

ρ is not symmetric in x and y, i.e., ρ(x, y) 6= ρ(y, x). Let ZR and ZP be as in (3.3) and (3.4).

Since ∆X ∩ (ZR∪ZP ) = ∅, it is easy to see that there exists a constant r3 satisfying 0 < r3 < r1

such that

W (r3) ∩ (ZR ∪ ZP ) = ∅. (3.24)

We proceed to construct the approximant to the kernel associated to the integral operator in

(3.1) (see (3.27) below). First we let

ro := min{r1, r2, r3} > 0. (3.25)

From now on and as given in Lemma 3.1, we fix an open subset X ′ ⊂ X such that
∫
X\X′ Ω = 0

and a continuous section σ : X ′ → G
∣∣
X′ so that σ(x) ∈ Gx for each x ∈ X ′. For r > 0, let

W ′(r) := (X ′ ×X) ∩W (r) = {(x, y) ∈ X ′ ×X
∣∣ y ∈ B(x, r)}. (3.26)

For each m ∈ N, we define a function T
(m)
σ : W ′(ro) → C given by

T (m)
σ (x, y) :=

(ΨR,≤4(σ(x))(y))
m ·ΨP,≤2(σ(x))(y) · Ω≤2(σ(x))(y)

Ω(σ(x))(y)
(3.27)

for (x, y) ∈ W ′(ro) (see (3.15) and (3.19)–(3.21)). We remark that it follows readily from the

continuity of σ and the associated continuous family of Bochner coordinates (cf. the construc-

tion of G) that T (m)
σ is a continuous function on W ′(ro). Note that for (x, y) ∈ W (ro), we have

R(y, x) 6= 0 and P (y, x) 6= 0 (see (3.24)), and thus we have

Rm(x, y)P (x, y)s(y)s(x)

Rm(x, x)P (x, x)Rm(y, y)P (y, y)
= Ψm

R (x, y)ΨP (x, y) ·
s(y)s(x)

Rm(y, x)P (y, x)
(3.28)

for (x, y) ∈ W (ro) (see (3.5) and (3.6)). Also, since
∫
X\X′ Ω = 0, it follows that the value of

the right-hand side of (3.1) remains unchanged if we replace the domain of integration there by

X ′×X (in lieu of X ×X). Together with (3.1) and (3.28), it follows that for each m ∈ N, each

r > 0 and each s ∈ H0(X,Lm ⊗ E), if r < ro, then

KRmP,Ω(s, s)−
πn

mn
‖s‖22 = I + II + III, (3.29)

where

I :=

∫∫

(x,y)∈W ′(r)

(
Ψm

R (x, y)ΨP (x, y)− T (m)
σ (x, y)

) s(y)s(x)

Rm(y, x)P (y, x)
Ω(y)Ω(x),

II :=

∫∫

(x,y)∈W ′(r)

T (m)
σ (x, y)

s(y)s(x)

Rm(y, x)P (y, x)
Ω(y)Ω(x) − πn

mn
‖s‖22, (3.30)

III :=

∫∫

(x,y)∈(X′×X)\W ′(r)

Rm(x, y)P (x, y)s(y)s(x)

Rm(x, x)P (x, x)Rm(y, y)P (y, y)
Ω(y)Ω(x).

In the ensuing sections, we will make suitable choices of r = r(m) for each m ∈ N, which

will allow us to obtain desired estimates for I, II and III.
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4 Estimation of I

In this section, we are going to estimate the integral I in (3.30).

Lemma 4.1 There exist constants C1, C2, C3, C4, C5, C6, r4 > 0 with r4 < ro such that

one has

|ΨR(x, y) −ΨR,≤4(ẑ)(y)| ≤ C1ρ(x, y)
5, (4.1)

|ΨR(x, y)− (1− ρ(x, y)2)| ≤ C2ρ(x, y)
4, (4.2)

|ΨP (x, y)−ΨP,≤2(ẑ)(y)| ≤ C3ρ(x, y)
3, (4.3)

|ΨP (x, y)− 1| ≤ C4ρ(x, y)
2, (4.4)

|Ω(ẑ)(y)− Ω≤2(ẑ)(y)| ≤ C5ρ(x, y)
3, (4.5)

|Ω(ẑ)(y)− 1| ≤ C6ρ(x, y)
2 (4.6)

for all (x, y) ∈ W (r4) and all ẑ ∈ Gx. Here ρ and ro is as in (3.23) and (3.25).

Proof To prove (4.1), we take an arbitrary point xo ∈ X , and take an open subset V

of X containing xo such that G
∣∣
V

is trivial, so that there exists a number r′4 > 0 and a

continuous family of coordinate functions {zẑ}
ẑ∈G

∣∣
V

such that for each x ∈ V and each ẑ ∈ Gx,

zẑ : B(x, r′4) → Cn are the coordinate functions associated to ẑ. Then ΨR gives rise to a

continuous family of real-analytic functions ΨR(ẑ) : B(x, r′4) → R (and given by a continuous

family of power series expansions in the variables zẑ) parametrized by ẑ ∈ G
∣∣
V

such that

ΨR(ẑ)(y) = ΨR(x, y) for all x ∈ V , y ∈ B(x, r′4) and ẑ ∈ Gx. By polarization, we obtain

for each ΨR(ẑ) a holomorphic function Ψ̃R(ẑ) on B(x, r′4) × B(x, r′4) such that ΨR(ẑ)(y) =

Ψ̃R(ẑ)(y, y) for y ∈ B(x, r′4). Here B(x, r′4) denotes the complex conjugate manifold of B(x, r′4).

Furthermore, it is clear that the Ψ̃R(ẑ)’s form a continuous family of functions parametrized

by ẑ ∈ G
∣∣
V
. Then it follows readily from standard theory for convergent power series of

holomorphic functions (for the Ψ̃R(ẑ)’s) that for some C1, r4 > 0 satisfying 0 < r4 < r′4, (4.1)

holds for all x ∈ V , y ∈ B(x, r4) and ẑ ∈ G
∣∣
V
, upon shrinking V if necessary. Together with

the compactness of X , it follows that (4.1) holds for all (x, y) ∈ W (r4) and all ẑ ∈ Gx, upon

shrinking r4 and enlarging C1 if necessary. The proofs of (4.2) to (4.6) are the same as that

of (4.1), and thus they will be skipped. We just remark that the explicit expressions for the

lower order terms in (3.11), (3.16), (3.18) are needed in the derivation of (4.2), (4.4) and (4.6)

respectively.

Let X ′ and σ : X ′ → G be as chosen in Section 3. Let m ∈ N, r be a number satisfying

0 < r < ro, s ∈ H0(X,Lm ⊗ E), and I be as in (3.30). Then one easily sees that

|I| ≤
∫∫

(x,y)∈W ′(r)

|ΨR(x, y)
mΨP (x, y)− T (m)

σ (x, y)| ·
∣∣∣ s(y)s(x)

R(y, x)mP (y, x)

∣∣∣Ω(y)Ω(x). (4.7)

By (2.3)–(2.4) (with Q there given by RmP ), (3.5)–(3.6) and using the identities R(y, x) =

R(x, y), P (y, x) = P (x, y), one easily sees that

∣∣∣ s(y)s(x)

R(y, x)mP (y, x)

∣∣∣
2

=
‖s(x)‖2‖s(y)‖2

ΨR(x, y)mΨP (x, y)
. (4.8)
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Together with (4.7), one has

|I| ≤
∫∫

(x,y)∈W ′(r)

∣∣∣1− T
(m)
σ (x, y)

ΨR(x, y)mΨP (x, y)

∣∣∣ΨR(x, y)
m
2 ΨP (x, y)

1
2

· ‖s(x)‖ · ‖s(y)‖Ω(y)Ω(x). (4.9)

Next we consider a pointwise estimate for part of the integrand in (4.9) as follows.

Lemma 4.2 There exist constants C7, r5 > 0 with r5 < r4 such that, for all m ∈ N and all

(x, y) ∈ W ′
(

r5

m
1
5

)
, one has

∣∣∣1− T
(m)
σ (x, y)

ΨR(x, y)mΨP (x, y)

∣∣∣ ≤ C7(ρ(x, y)
3 +mρ(x, y)5). (4.10)

Here ρ(x, y) is as in (3.23).

Proof Recall from (3.27) that, for (x, y) ∈ W ′(ro),

T
(m)
σ (x, y)

ΨR(x, y)mΨP (x, y)
= A(x, y) · B(x, y) · C(x, y)m, (4.11)

where

A(x, y) :=
ΨP,≤2(σ(x))(y)

ΨP (x, y)
,

B(x, y) :=
Ω≤2(σ(x))(y)

Ω(ẑ)(y)
,

C(x, y) :=
ΨR,≤4(σ(x))(y)

ΨR(x, y)
.

(4.12)

Using the identity 1−ABCm = (1 −A) + A(1− B) + AB(1− Cm), one has

∣∣∣1− T
(m)
σ (x, y)

ΨR(x, y)mΨP (x, y)

∣∣∣ ≤ |1−A(x, y)|+ |A(x, y)| |1− B(x, y)|

+ |A(x, y)| |B(x, y)| |1− C(x, y)m| . (4.13)

Let C4 be as in (4.4). Now we choose r5 < r4 so that 1 − C4r
2
5 > 1

2 . Then by (4.3)–(4.4), for

all (x, y) ∈ W ′(r5), one has

|1−A(x, y)| ≤ C3ρ(x, y)
3

1− C4ρ(x, y)2
≤ C3ρ(x, y)

3

1− C4r
2
5

≤ C8ρ(x, y)
3, (4.14)

where C8 = 2C3. Similarly, using (4.1)–(4.2), (4.5)–(4.6), and shrinking r5 if necessary, one

easily sees that there exist constants C9, C10 > 0 such that for all (x, y) ∈ W ′(r5), one has

|1− B(x, y)| ≤ C9ρ(x, y)
3, (4.15)

|1− C(x, y)| ≤ C10ρ(x, y)
5. (4.16)

By (4.3)–(4.4), and shrinking r5 further if necessary, it is also clear that there exist constants

C11, C12 > 0 such that for all (x, y) ∈ W ′(r5), one has

|A(x, y)| ≤ C11, (4.17)
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|B(x, y)| ≤ C12. (4.18)

Now let m ∈ N and (x, y) ∈ W ′
(

r5

m
1
5

)
be given. By (4.16), one has |C(x, y)| ≤ 1 +

C10r
5
5

m
, so

that for each 1 ≤ k ≤ m− 1,

|C(x, y)|k ≤
(
1 +

C10r
5
5

m

)k

≤
(
1 +

C10r
5
5

m

)m

≤ eC10r
5
5 , (4.19)

and thus

|1− C(x, y)m| = |1− C(x, y)| ·
∣∣1 + C(x, y) + C(x, y)2 + · · ·+C(x, y)m−1

∣∣

≤ C10ρ(x, y)
5 ·m · eC10r

5
5

= C13 ·mρ(x, y)5, where C13 := C10e
C10r

5
5 . (4.20)

Combining (4.13)–(4.15), (4.17)–(4.18) and (4.20), one has, for all (x, y) ∈ W ′
(

r5

m
1
5

)
,

∣∣∣1− T
(m)
σ (x, y)

ΨR(x, y)mΨP (x, y)

∣∣∣ ≤ C8ρ(x, y)
3 + C11C9ρ(x, y)

3 + C11C12C13mρ(x, y)5

= C7(ρ(x, y)
3 +mρ(x, y)5), (4.21)

where C7 := max{C8 + C11C9, C11C12C13}. This finishes the proof of the lemma.

Lemma 4.3 There exists a constant r6 > 0 with r6 < r4 such that, for all (x, y) ∈ W (r6),

the quantity ρ(y, x) is well-defined and ρ(y, x) ≤ 2ρ(x, y).

Proof First it follows readily from the compactness of X , the construction of G and the

definition of ρ that there exists a constant r7 > 0 with r7 < r4 such that, for (x, y) ∈ W (r7),

the quantity ρ(y, x) is well-defined and satisfies ρ(y, x) < r4. By shrinking r7 if necessary and

using (4.2), we may assume that

1

2
ρ(x, y)2 ≤ |ΨR(x, y)− 1| ≤ 2ρ(x, y)2 for all (x, y) ∈ W (r7). (4.22)

Repeating the above argument (with r4 replaced by r7), one sees that there exists a constant

r6 > 0 with r6 < r7 such that, for (x, y) ∈ W (r6), one has ρ(y, x) < r7. Now let (x, y) ∈ W (r6)

be given (so that (y, x) ∈ W (r7)). Then using (4.22) but with the roles of x and y interchanged,

one has

1

2
ρ(y, x)2 ≤ |ΨR(y, x)− 1| . (4.23)

Together with the identity ΨR(x, y) = ΨR(y, x) and the second inequality in (4.22), one has
1
2ρ(y, x)

2 ≤ 2ρ(x, y)2 and thus ρ(y, x) ≤ 2ρ(x, y).

For Cn, we denote its Euclidean ball centered at 0 and of radius r and its Euclidean volume

form by

B(r) : = {z ∈ Cn
∣∣ |z| < r}, (4.24)

dV (z) =
(√−1

2

)n

dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn. (4.25)
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Lemma 4.4 There exist constants C14, r8 > 0 with r8 < r4 such that, for all k, r ≥ 0 and

all x ∈ X, if r < r8, then
∫

y∈B(x,r)

ρ(x, y)kΩ(y) ≤ C14r
2n+k. (4.26)

Proof One easily sees from (4.6) that there exist constants C15, r8 > 0 with r8 < r4 such

that, for all x ∈ X , all ẑ ∈ Gx and all y ∈ B(x, r8), one has Ω(ẑ)(y) ≤ C15. Hence, in terms

of the coordinate functions z : B(x, r4) → Cn associated to ẑ, (4.24)–(4.25), one has, for each

k > 0 and 0 < r < r8,
∫

y∈B(x,r)

ρ(x, y)kΩ(y) ≤ C15

∫

z∈B(r)

|z|k dV (z)

= C15
2πnr2n+k

(n− 1)!(2n+ k)

≤ C14r
2n+k, where C14 := 2πnC15. (4.27)

Here the second line in (4.27) follows from a straightforward computation.

Proposition 4.1 There exist constants C16, r9 > 0 such that, for all m ∈ N, all s ∈
H0(X,Lm ⊗ E) and all r satisfying 0 < r ≤ r9

m
n+2
2n+5

, one has

|I| ≤ C16

mn+1
‖s‖22. (4.28)

Here I is as in (3.30) (with r there as above).

Proof Recall from the (SGCS-1) condition for R that |ΨR(x, y)| ≤ 1 for all (x, y) ∈ X×X .

One also easily sees from (4.4) that there exist constants C17, r10 > 0 such that, for all (x, y) ∈
W (ro), one has |ΨP (x, y)| ≤ C17. Now, we let r9 := min{r0, r4, r5, r8

2 , r10} > 0, where the ri’s

(and Cj ’s) are as chosen before. Let I be as in (3.30) with r there satisfying 0 < r ≤ r9

m
n+2
2n+5

.

Note that for n ≥ 1, one has
1

m
n+2

2n+5

< 1

m
1
5

. Hence from (4.9) and Lemma 4.2, one has

|I| ≤ C7C17

∫∫

(x,y)∈W ′(r)

(ρ(x, y)3 +mρ(x, y)5)‖s(x)‖ ‖s(y)‖Ω(y)Ω(x)

= C7C17(J3(r) +mJ5(r)), (4.29)

where, for k > 0 and 0 < r < r0,

Jk(r) :=

∫∫

(x,y)∈W (r)

ρ(x, y)k‖s(x)‖ ‖s(y)‖Ω(y)Ω(x). (4.30)

By the Cauchy-Schwarz inequality, one has

|Jk(r)| ≤ (Jk,1(r))
1
2 (Jk,2(r))

1
2 , (4.31)

where, as iterated integrals,

Jk,1(r) :=

∫

x∈X

∫

y∈B(x,r)

ρ(x, y)2k‖s(x)‖2Ω(y)Ω(x), (4.32)
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Jk,2(r) :=

∫

x∈X

∫

y∈B(x,r)

‖s(y)‖2Ω(y)Ω(x). (4.33)

By Lemma 4.4, one has

Jk,1(r) =

∫

x∈X

‖s(x)‖2
∫

y∈B(x,r)

ρ(x, y)2kΩ(y)Ω(x) ≤ C14r
2n+2k‖s‖22. (4.34)

For each y ∈ X , let B′(y, r) := {x ∈ X | ρ(x, y) < r}. Note that, for r ≤ r9, it follows

from Lemma 4.3 that B′(y, r) ⊆ B(y, 2r) ⊆ B(y, r8). Thus, upon interchanging the order of

integration in (4.33), one has

Jk,2(r) =

∫

y∈X

‖s(y)‖2
∫

x∈B′(y,r)

Ω(x)Ω(y)

≤
∫

y∈X

‖s(y)‖2
∫

x∈B(y,2r)

Ω(x)Ω(y)

≤ C14(2r)
2n‖s‖22, (4.35)

where the last line follows from Lemma 4.4. Combining (4.31) and (4.34)–(4.35), it follows that

for r ≤ r9,

|Jk(r)| ≤
(
C14r

2n+2k‖s‖22
) 1

2
(
C14(2r)

2n‖s‖22
) 1

2 = C142
nr2n+k‖s‖22. (4.36)

From (4.29) and (4.36), one has

|I| ≤ C7C17(C142
nr2n+3 +mC142

nr2n+5)‖s‖22
= C18(r

2n+3 +mr2n+5)‖s‖22, where C18 := 2nC7C17C14. (4.37)

Now for each r satisfying 0 < r ≤ r9

m
n+2
2n+5

, one easily checks that r2n+3 ≤ r
2n+3

9

mn+1 and mr2n+5 ≤
r
2n+5

9

mn+1 , and hence one has

|I| ≤ C16

mn+1
‖s‖22, where C16 := C18(r

2n+3
9 + r2n+5

9 ). (4.38)

5 Estimation of II

In this section, we are going to estimate the expression II in (3.30). For r > 0, let B(r)

be as in (4.24), and denote its closure by B(r) := {z ∈ Cn
∣∣ |z| ≤ r}. Let q be an analytic

function admitting a power series expansion q(z) =
∑
α,β

qαβz
αzβ on B(r) (here the notation is

as in (3.7)). Then q is said to have only quasi-diagonal terms if qαβ = 0 whenever |α| 6= |β|.

Lemma 5.1 Let f be a holomorphic function admitting a power series expansion f(z) =
∑
α

fαz
α on B(r), and let q be an analytic function admitting a power series expansion q(z) =

∑
α,β

qαβz
αzβ on B(r). If q has only quasi-diagonal terms, then

∫

B(r)

f(z)q(z) dV (z) = f(0)

∫

B(r)

q(z) dV (z). (5.1)

Here dV (z) is as in (4.25).
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Proof First we recall that for multi-indices α and β, one has
∫

B(r)

zαzβdV (z) = 0 whenever α 6= β, (5.2)

which can be verified easily by considering the change of variables given by (z1, · · · , zn) →
(eiθ1z1, · · · , eiθnzn), and then letting θ1, · · · , θn vary. Let g be the function given by g(z) =

f(z)−f(0) for z ∈ B(r). Then g(0) = 0 and g is also a holomorphic function admitting a power

series expansion g(z) =
∑

|γ|>0

gγz
γ on B(r), noting that gγ = g(0) = 0 when |γ| = 0. Then one

has
∫

B(r)

g(z)q(z)dV (z) =
∑

|γ|>0

∑

α,β

gγqαβ

∫

B(r)

zα+γzβdV (z)

=
∑

|γ|>0

∑

α

gγqα,α+γ

∫

B(r)

|zα+γ |2dV (z), (5.3)

where the last equality follows from (5.2). Since q has only quasi-diagonal terms, it follows that

for each α and γ satisfying |γ| > 0, one has |α + γ| = |α| + |γ| > |α|, and thus qα,α+γ = 0.

Hence one has
∫
B(r) g(z)q(z) dV (z) = 0, which leads to (5.1) readily.

Lemma 5.2 Notation as in (4.24)–(4.25). For each integer m, k ≥ 0 and real number

a > 0,
∫

z∈B( 1√
a
)

|z|2k (1− a|z|2)m dV (z) =
πn(n+ k − 1)!m!

(n− 1)!(m+ k + n)!an+k
. (5.4)

Proof We will skip the proof, which follows from a direct calculuation.

Let X ′ and σ : X ′ → G be as chosen in Section 3. Let m ∈ N, r be a number satisfying

0 < r < ro, s ∈ H0(X,Lm ⊗ E), and II be as in (3.30). Rewriting the first term of II as an

iterated integral, one has

II =

∫

x∈X′

Λ(x)Ω(x) − πn

mn
‖s‖22, (5.5)

where, for each x ∈ X ′,

Λ(x) :=

∫

y∈B(x,r)

T (m)
σ (x, y)

s(y)s(x)

R(y, x)mP (y, x)
Ω(y). (5.6)

Using (3.14)–(3.15) and (3.27), for x ∈ X ′, one has

Λ(x) =

∫

y∈B(x,r)

λ(x, y)
s(y)s(x)

R(y, x)mP (y, x)
dV (σ(x))(y), (5.7)

where, for (x, y) ∈ W ′(ro),

λ(x, y) := ΨP,≤2(σ(x))(y) · Ω≤2(σ(x))(y) · (ΨR,≤4(σ(x))(y))
m
. (5.8)

For each x ∈ X ′ and in terms of the coordinate functions z : B(x, r0) → Cn associated to σ(x),

it follows readily from (3.19)–(3.21) that λ(x, y) is an analytic function in the variable z = z(y)
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and has only quasi-diagonal terms. Also, the quotient s(y)s(x)
R(y,x)mP (y,x) is a holomorphic function

in the variable y. Thus, by Lemma 5.1, one has, for x ∈ X ′,

Λ(x) = ‖s(x)‖2
∫

y∈B(x,r)

λ(x, y) dV (σ(x))(y). (5.9)

In a way similar to Lemma 4.2, we have the following pointwise estimate.

Lemma 5.3 There exist constants C19, r10 > 0 with r10 < r4 such that, for all m ∈ N and

all (x, y) ∈ W ′(r10), one has

∣∣λ(x, y)− (1− ρ(x, y)2)m
∣∣ ≤ C19(ρ(x, y)

2 +mρ(x, y)4)
(
1− ρ(x, y)2

2

)m−1

. (5.10)

Proof For (x, y) ∈ W ′(r0), we rewrite (5.8) as

λ(x, y) = A(x, y)B(x, y)m, (5.11)

where

A(x, y) := ΨP,≤2(σ(x))(y) · Ω≤2(σ(x))(y),

B(x, y) := ΨR,≤4(σ(x))(y).

It follows readily from Lemma 4.1 that there exist constants C20, C21, r10 > 0 with r10 <

min{r4, 1} such that, for all (x, y) ∈ W ′(r10), one has

|A(x, y)− 1| ≤ C20ρ(x, y)
2, (5.12)

∣∣B(x, y)− (1− ρ(x, y)2)
∣∣ ≤ C21ρ(x, y)

4, (5.13)

0 ≤ B(x, y) ≤ 1− ρ(x, y)2

2
. (5.14)

(For example, (5.13) follows immediately from (4.1)–(4.2), while (5.14) follows from (5.13),

upon shrinking r10 if necessary.) By (5.11), one has

λ(x, y) − (1− ρ(x, y)2)m

= (A(x, y) − 1)B(x, y)m + B(x, y)m − (1− ρ(x, y)2)m

= (A(x, y) − 1)B(x, y)m + [B(x, y)− (1− ρ(x, y)2)] ·
m−1∑

j=0

B(x, y)j(1− ρ(x, y)2)m−1−j . (5.15)

For all (x, y) ∈ W ′(r10), from (5.14), one has

m−1∑

j=0

B(x, y)j(1 − ρ(x, y)2)m−1−j

≤
m−1∑

j=0

(
1− ρ(x, y)2

2

)j

(1− ρ(x, y)2)m−1−j

≤ m
(
1− ρ(x, y)2

2

)m−1

, (5.16)
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and together with (5.12), (5.14)–(5.15), one has

∣∣λ(x, y)− (1 − ρ(x, y)2)m
∣∣ ≤ C20ρ(x, y)

2
(
1− ρ(x, y)2

2

)m

+ C21ρ(x, y)
4m

(
1− ρ(x, y)2

2

)m−1

≤ C19(ρ(x, y)
2 +mρ(x, y)4)

(
1− ρ(x, y)2

2

)m−1

,

where C19 := max{C20, C21}, noting that 0 < 1− ρ(x,y)2

2 < 1.

Lemma 5.4 There exist constants C22, r11 > 0 such that, for all m ∈ N, all x ∈ X ′ and

all r satisfying

√
(n+1) logm

m
< r < r11, one has

∣∣∣
∫

y∈B(x,r)

λ(x, y) dV (σ(x))(y) − πn

mn

∣∣∣ ≤ C22

mn+1
. (5.17)

Proof For x ∈ X ′, m ∈ N and r > 0, we let

η(x, r) :=

∫

y∈B(x,r)

λ(x, y) dV (σ(x))(y) − πn

mn

= η1(x, r) + η2(x, r), (5.18)

where

η1(x, r) :=

∫

y∈B(x,r)

[λ(x, y)− (1 − ρ(x, y)2)m] dV (σ(x))(y), (5.19)

η2(x, r) :=

∫

y∈B(x,r)

(1− ρ(x, y)2)m dV (σ(x))(y) − πn

mn
. (5.20)

In terms of the coordinate functions z : B(x, ro) → Cn associated to σ(x) ∈ Gx, and identifying

B(x, r) with B(r) (following the notation in (4.24)–(4.25)), it follows readily from Lemma 5.3

that, if 0 < r < r10, then

|η1(x, r)| ≤ C19

∫

B(r)

(|z|2 +m|z|4)
(
1− 1

2
|z|2

)m−1

dV (z). (5.21)

From Lemma 5.2 (with k = 1, 2, a = 1
2 , and m replaced by m−1) and noting that (m−1)!

(m−1+n+k)! ≤
1

mn+k , etc., one has, for r <
√
2,

|η1(x, r)| ≤
C19π

nn!(m− 1)!2n+1

(n− 1)!(m+ n)!
+m

C19π
n(n+ 1)!(m− 1)!2n+2

(n− 1)!(m+ n+ 1)!
≤ C23

mn+1
, (5.22)

where C23 := C19π
n(n · 2n+1 + n(n+ 1)2n+2). Similarly, for r < 1, one has

η2(x, r) =

∫

B(r)

(1 − |z|2)m dV (z)− πn

mn

=
(∫

B(1)

(1− |z|2)m dV (z)− πn

mn

)
−
∫

B(1)\B(r)

(1 − |z|2)m dV (z). (5.23)

By Lemma 5.2 again (with k = 0 and a = 1), one has

0 <
πn

mn
−
∫

B(1)

(1− |z|2)m dV (z) =
πn

mn
− πnm!

(m+ n)!
<

πnn(n+ 1)

2mn+1
, (5.24)
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where the last inequality can be obtained by substituting xk = k
m+k

into the following general-

ization of Bernoulli’s inequality (which follows from a straight-forward induction):

n∏

k=1

(1− xk) ≥ 1−
n∑

k=1

xk, if 0 ≤ x1, · · · , xn ≤ 1.

From pointwise consideration, one has

0 ≤
∫

B(1)\B(r)

(1− |z|2)m dV (z)

≤ (1 − r2)m
∫

B(1)\B(r)

dV (z)

≤ (1 − r2)m
πn

n!
. (5.25)

Note that, if 0 < r < 1, then, upon taking the natural logarithm,

(1 − r2)m <
1

mn+1
⇐⇒ − log(1− r2) >

(n+ 1) logm

m
. (5.26)

Using the fact that − log(1 − t) > t for all 0 < t < 1, one sees that both sides of (5.26) hold if

r >

√
(n+1) logm

m
. For such r, it follows from (5.23)–(5.25) that

|η2(x, r)| ≤
πnn(n+ 1)

2mn+1
+

πn

n!

1

mn+1
. (5.27)

Now we let r11 = min{r10, 1}(> 0). Combining (5.18), (5.22) and (5.27), it follows that, if√
(n+1) logm

m
< r < r11, then

∣∣∣
∫

y∈B(x,r)

λ(x, y) dV (σ(x))(y) − πn

mn

∣∣∣ ≤ C23

mn+1
+

πnn(n+ 1)

2mn+1
+

πn

n!

1

mn+1
=

C22

mn+1
, (5.28)

where C22 := C23 +
πnn(n+1)

2 + πn

n! ,

Proposition 5.1 Let C22 and r11 be as in Lemma 5.4. Then, for all m ∈ N, all s ∈
H0(X,Lm ⊗ E) and all r satisfying

√
(n+1) logm

m
< r < r11, one has

|II| ≤ C22

mn+1
‖s‖22. (5.29)

Here II is as in (3.30) (with r there as above).

Proof From (5.5) and (5.9), one easily sees that

II =

∫

x∈X′

‖s(x)‖2
[ ∫

y∈B(x,r)

λ(x, y) dV (σ(x))(y) − πn

mn

]
Ω(x). (5.30)

Then, by Lemma 5.4, one immediately has

|II| ≤ C22

mn+1

∫

x∈X′

‖s(x)‖2Ω(x)dx =
C22

mn+1
‖s‖22. (5.31)
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6 Estimation of III and Proof of Theorem 1.1

Lemma 6.1 There exists a constant r12 with 0 < r12 < r4 such that, for each real number

r satisfying 0 < r < r12 and each (x, y) ∈ (X ×X) \W (r), one has ΨR(x, y) ≤ 1− r2

2 .

Proof It follows readily from (4.2) that there exists a constant r13 > 0 with r13 < r4 such

that, for all (x, y) ∈ W (r13), one has

ΨR(x, y) < 1− 1

2
ρ(x, y)2. (6.1)

Then by (SGCS-1) for R, one has

α := sup
(x,y)∈(X×X)\W (r13)

ΨR(x, y) < 1. (6.2)

Now one has r12 := min{
√
2(1− α), r13} > 0, and let r be a number satisfying 0 < r < r12.

Note that (X×X)\W (r) = [(X×X)\W (R13)]∪[W (r13)\W (r)]. For any (x, y) ∈ X×X\W (r13),

it follows from (6.2) and the definition of r12 that

ΨR(x, y) ≤ α ≤ 1− r212
2

< 1− r2

2
. (6.3)

On the other hand, if (x, y) ∈ Wr13 \W (r) (so that ρ(x, y) ≥ r), one also has, from (6.1),

ΨR(x, y) ≤ 1− ρ(x, y)2

2
≤ 1− r2

2
. (6.4)

Hence, for all (x, y) ∈ (X ×X) \W (r), one has ΨR(x, y) ≤ 1− r2

2 .

Proposition 6.1 Let r12 be as in Lemma 6.1. Then there exists a constant C23 > 0 such

that, for all m ∈ N, all s ∈ H0(X,Lm ⊗ E) and all r satisfying

√
2(n+1) logm

m
< r < r12, one

has

|III| ≤ C23

mn+1
‖s‖22. (6.5)

Here III is as in (3.30) (with r there as above).

Proof From the definitions of ΨR,ΨP in (3.5)–(3.6) and similar to (4.9), one easily sees

that the integral III in (3.30) satisfies

|III| ≤
∫∫

(X×X)\W (r)

ΨR(x, y)
mΨP (x, y)‖s(x)‖‖s(y)‖Ω(y)Ω(x). (6.6)

By Lemma 6.1, if 0 < r < r12, then one has, for all (x, y) ∈ (X ×X) \W (r) and m ∈ N,

ΨR(x, y)
m ≤

(
1− r2

2

)m

≤ e−
mr2

2 , (6.7)

where the last inequality follows from the fact that 0 ≤ 1 − t ≤ e−t for all 0 ≤ t ≤ 1. By the

compactness of the manifold X , there exists a constant C24 > 0 such that 0 ≤ ΨP (x, y) ≤ C24

for all (x, y) ∈ X ×X . Together with (6.6) and (6.7), for 0 < r < r12, one has

|III| ≤ C24e
−mr2

2

∫∫

(X×X)\W (r)

‖s(x)‖‖s(y)‖Ω(y)Ω(x) ≤ C24e
−mr2

2 volΩ(X)‖s‖22 (6.8)
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where the last inequality follows from the Cauchy-Schwarz inequality and volΩ(X) :=
∫
X
Ω. By

taking the natural logarithm, one has

e−
mr2

2 ≤ 1

mn+1
⇐⇒ r ≥

√
2(n+ 1) logm

m
, (6.9)

It follows that if
√

2(n+1) logm

m
< r < r12, then one has

|III| ≤ C23

mn+1
‖s‖22, where C23 := C24volΩ(X). (6.10)

Now we complete the proof of Theorem 1.1 as follows.

Proof of Theorem 1.1 Let C16, r9, C22, r11, C23, r12 be as in Proposition 4.1, Proposition

5.1 and Proposition 6.1. Then it is easy to see that there existsm0 ∈ N such that, for allm ≥ m0,

one has
√

2(n+ 1) logm

m
<

r9

m
n+2

2n+5

< min{r11, r12}. (6.11)

Now, for each m ≥ m0, we choose a number r(m) satisfying

√
2(n+ 1) logm

m
≤ r(m) ≤ r9

m
n+2

2n+5

(6.12)

(in particular, r(m) may be taken to be one of the two bounds). Then by (3.29)–(3.30),

Proposition 4.1, Proposition 5.1 and Proposition 6.1, one sees that for all m ≥ m0 and all

s ∈ H0(X,Lm ⊗ E), one has, with the number r in I, II, III in (3.30) given by r(m) in (6.12),

∣∣∣KRmP,Ω(s, s)−
πn

mn
‖s‖22

∣∣∣ ≤ |I|+ |II|+ |III|

≤ C16 + C22 + C23

mn+1
‖s‖22, (6.13)

By the compactness of the manifold X , there exists a constant C25 > 0 such that, for each

integer satisfying 1 ≤ m < m0,

∣∣∣KRmP,Ω(s, s)−
πn

mn
‖s‖22

∣∣∣ ≤ C25

mn+1
‖s‖22, (6.14)

Thus by letting C = max{C16 + C22 + C23, C25} > 0, one sees that (1.2) holds for all m ∈ N,

and the proof of Theorem 1.1 is completed.

Finally we remark that the deduction of Corollary 1.1 from Theorem 1.1 can be found in

[7], and thus it will be skipped here.
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