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Abstract In this paper the authors derive regular criteria in Lorentz spaces for Leray-
Hopf weak solutions v of the three-dimensional Navier-Stokes equations based on the formal
equivalence relation π ∼= |v|2, where π denotes the fluid pressure and v denotes the fluid
velocity. It is called the mixed pressure-velocity problem (the P-V problem for short). It is
shown that if π

(e−|x|2+|v|)θ
∈ Lp(0, T ;Lq,∞), where 0 ≤ θ ≤ 1 and 2

p
+ 3

q
= 2− θ, then v is

regular on (0, T ]. Note that, if Ω is periodic, e−|x|2 may be replaced by a positive constant.
This result improves a 2018 statement obtained by one of the authors. Furthermore, as
an integral part of the contribution, the authors give an overview on the known results
on the P-V problem, and also on two main techniques used by many authors to establish
sufficient conditions for regularity of the so-called Ladyzhenskaya-Prodi-Serrin (L-P-S for
short) type.

Keywords Navier-Stokes equations, Pressure ∼= square velocity, Regularity criteria,
Lorentz spaces

2000 MR Subject Classification 35Q30, 76D03, 76D05

1 Preliminaries

We are concerned with the regularity of weak solutions to the Navier-Stokes equations




∂tv + v · ∇v −∆v +∇π = 0 in Ω× (0, T ),

∇ · v = 0 in Ω× (0, T ),

v(x, 0) = v0 in Ω,

(1.1)

where the vector field v is the flow velocity, the scalar function π stands for the pressure, and

the initial data v0 is divergence free. In some statements an external force is assumed. Below

QT = Ω × (0, T ], where Ω may be the whole space R
n ; the n-dimensional torus T

n ; or a

smooth open, bounded, subset of Rn. In this last case Γ denotes its boundary, and the non-slip

boundary condition is always assumed:

v = 0 on Γ× (0, T ]. (1.2)

Our new results concern the two first cases. The purpose of the present paper is to establish

new integral criteria for regularity of solutions that relate pressure and velocity, see the left-

hand side of (2.3) below. For convenience, they are called mixed pressure-velocity criteria,
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abbreviate simply to P-V criteria. It is strictly essential to start this paper by recalling the

so called Ladyzhenskaya-Prodi-Serrin (L-P-S for short) regularity criteria, see the pioneering

references [23, 26, 30]. This criterion, in its strong final form, establishes that if a weak solution

v of (1.1) satisfies

v ∈ Lp(0, T ;Lq(Ω)),
2

p
+

n

q
= 1, q > n, (1.3)

then v is a strong solution:

v ∈ L∞(0, T ; H1(Ω) ) ∩ L2(0, T ; H2(Ω) ). (1.4)

The result also holds for q = n (see [15, 28]). Furthermore, it is well-known that strong solutions

are smooth, if data and domain are also smooth.

The long history of the condition (1.3) is completely outside of the aim of this paper. To our

knowledge, the first paper where a complete proof of the above strong form was shown is Giga’s

1986 reference [19]. A totally different proof was shown in the 1987 reference [2], together with

global existence results for small data, and sharp decay estimates, in the presence of general

external forces. See Section 7 for some details. We also recall a third distinct proof by Galdi

and Maremonti in the 1988 reference [18].

For a “one page” proof of the L-P-S regularity criteria, in the general case (1.1), and for

n ≥ 3, see [5], by starting from (2.2) in this last reference.

Coming in the wake of assumption (1.3), many other similar sufficient conditions for reg-

ularity, but involving not just the velocity alone but also the pressure, or the gradient of the

velocity, or even possible combinations, like the above P-V problem, appear. In Section 2 we

introduce the P-V problem and justify its relevance. Moreover, we report back on two main

techniques that many authors have applied to prove the regularity criteria of the L-P-S type.

Pioneering work on these two techniques, and applications to the P-V problem, are due to one

of the authors, see Sections 3–4 below. More precisely, in Section 3 we recall and discuss the

results obtained on the P-V problem by the truncation method. In Section 4, we recall the

method introduced and developed in [2], and describe the results obtained to the P-V problem

by appeal to this technique.

In general, in equations like (1.3), we put in evidence the difference between conditions

with the equality sign, and conditions with this sign replaced by the inequality sign <. This

distinction extends in an obvious way to all similar conditions considered in the sequel. For

convenience, we call strong the results in the first case, and mild-strong, abbreviated mild, the

results in the second case. Weaker results are called weak.

The reader merely interested in the new results proved here may have a look to the next

section and then skip directly to Sections 5–6. Our main result is Theorem 5.1 below.

For a rather complete introduction to the Navier-Stokes equations, from the perspective of

our article, we refer to Galdi’s reference [17].

2 The P-V Problem and Its Motivation

Let us come to the main problem. The well-known equation

−∆π =

n∑

i,j=1

∂i∂j(vivj) (2.1)

roughly suggests the formal equivalence

π ∼= |v|2. (2.2)
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More appropriately, (2.1) merely suggests π / |v|2, rather than |v|2 / π, since it gives infor-

mation on π in terms of v, but not the reverse. This means that, formally,

|π|

|v|
/ |v|,

but not the reverse. So results under the same integrability assumption, but on the two different

quantities present in the above inequality, look stronger (more general) in the case of the left-

hand side term.

On the other hand, one has
|π|

1 + |v|
≤

|π|

|v|
.

So, results obtained under conditions on the left-hand side are stronger than results under the

same conditions on the right-hand side. This distinction is significant since the relation between

π and v is not local. For instance, the quantity π
|v|2 may be unbounded in some region merely

due to small values of |v|, even if π is bounded in the same region.

The formal relation (2.2) suggests the following generalization:

|π|

(1 + |v|)θ
∼= | v |2− θ. (2.3)

Sufficient conditions for regularity complying with (2.3) look significant since they suggest that

the ties between pressure and velocity are stronger than what one could a priori expect from

the global relation (2.1). Main references on the P-V problem are [4, 6–8, 38]. The approach

followed in the first two references, and in the three last references, are totally different. In the

first couple, and for the first time, one applies De Giorgi’s truncation method to the Navier-

Stokes equations. This method has led to mild, instead of strong, criteria. The reason for

this slight reduction of generality, actually a purely occasional fact, is quite important to the

understanding of the relation between the truncation method, the functional spaces L
p
∗ (see

below), and the mild results obtained by the truncation method. This phenomena will be

treated in Section 3 below.

The so-called weak-Lp spaces, denoted in the sequel by the symbol Lp
∗, are just a particular

case of the more recent Lorentz spaces. In fact, Lp
∗ ≡ Lp,∞. See (5.1) below for the definition.

However, in Section 3, we appeal to the old notation and old denomination.

The method used in references [6–7, 38], was developed in the 1987 reference [2]. This

method has been used by many other authors, in particular by us below. A brief note on [2]

will be given in Section 7. In references [6–7], while 0 ≤ θ ≤ 1, the method allows to prove

strong criteria, improving the mild criteria obtained in references [4, 6]. In reference [38] the

case θ > 1 is also treated, see below. It will be of great interest to understand why an apparent

loss of regularity for the case θ > 1 holds.

3 Pioneering Results on the P-V Criteria, and the Related
Truncation Method

This section mainly concerns the application of the truncation method to the P-V problem.

Some words on this crucial method must be spent. The truncation method was introduced

by the great mathematician Ennio De Giorgi in his outstanding paper, see [16], where the
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19th Hilbert’s problem was finally solved (also solved with a different method by John Nash)

after more than a half-century of attempts by many other mathematicians. The method has

been further applied and developed by Guido Stampacchia in a sequence of papers, see [33] for

instance. See also reference [24]. Application to variational inequalities was made for the first

time in 1969, by the first author of the present paper.

Application to the Navier-Stokes equations, see references [4, 6], was in strong discontinuity

with respect to the previous scalar cases. It was a considerable forward step since, in addition

to the presence of a system of equations, one has also to handle the loss of the divergence-free

property produced by the cut-off. Concerning the truncation method applied to the Navier-

Stokes equations, we recall two very important contributions, by Vasseur [37] and Bjorland and

Vasseur [13], published respectively in 2007 and 2011. In particular, an improvement of the

classical L-P-S criteria in terms of Lp
w spaces is shown in [13]. These papers are very innovative

due to the masterly use of the truncation method.

Let us turn back to the P-V problem. In [4, Theorem 1.1] the following theorem was proved.

Theorem 3.1 (see [4, Theorem 1.1]) Let v0 ∈ L∞(Ω)∩H1
0 (Ω) be divergence free. Assume

that (v, π) is a weak solution to the Navier-Stokes equations (1.1) under the assumption (1.2).

Furthermore, assume that

|π|

1 + |v|
∈ Lp(0, T ; Lq(Ω)), (3.1)

where p ∈ (2, ∞], q ∈ (2, +∞), and

2

p
+

n

q
< 1. (3.2)

Then v is bounded, and consequently is strong, and smooth if data are smooth.

Actually, assumption (3.1) was required merely on the subset where |v| is greater than an

arbitrarily large constant k0.

Furthermore, in [6, Theorem 1.1], the above result was extended to general values of θ with

0 ≤ θ ≤ 1. To simplify this new attempt, it has been assumed that space and time exponents

coincide, say p = q. Following [6] we set

N = n+ 2. (3.3)

Note that N is precisely the integrability exponent for which, in the particular case p = q, (3.2)

holds with the equality sign:

2

N
+

n

N
= 1. (3.4)

As in [4], the proofs given in [6] made use of the truncation method, but with a different

approach. In [6, Theorem 1.1] the following result was proved.

Theorem 3.2 (see [6, Theorem 1.1]) Let v0 and (v, π) be as in Theorem 3.1. Furthermore,

assume that for some θ ∈ [0, 1) and some γ ∈ (2, N), one has

|π|

(1 + |v|)θ
∈ Lγ

∗(QT ). (3.5)
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Then

v ∈ Lµ
∗ (QT ), where µ = µ(γ) ≡ (1− θ)

N γ

N − γ
. (3.6)

In particular, the solution is smooth in QT if

2

γ
+

n

γ
< 2− θ, θ ∈ [0, 1]. (3.7)

Next we analyse the reasons which led to the mild assumption (3.7) (sign <) instead of to

a strong assumption (sign =). To avoid misunderstandings, note that strong assumptions lead

to strong results, and mild assumptions to mild results. This is the reason for our convention,

even if the strong assumption is weaker than the mild assumption. Let γ1 = N
2− θ

be the value

of the parameter γ for which (3.7) holds with the equality sign. From (3.6) it follows that

µ(γ1) = N . So Theorem 3.1 implies the following result:

|π|

(1 + |v|)θ
∈ Lγ1

∗ (QT ),
2

γ1
+

n

γ1
= 2− θ =⇒ v ∈ LN

∗ (QT ),
2

N
+

n

N
= 1. (3.8)

Unfortunately, it is not yet known whether v ∈ LN
∗ (QT ) implies regularity. However, if γ

verifies (3.7), equivalently if γ > γ1, one has µ = µ(γ) > µ(γ1) = N. Since L
µ
∗ ⊂ LN+ǫ for

0 < ǫ < µ−N, it follows that v ∈ LN+ǫ(QT ), and smoothness follows from (1.3). This particular

case illustrates why the truncation technique has led to mild regularity statements instead of

to strong statements. However, it is worth noting that the sharp statement (3.8) is not weaker

than the corresponding strong statement obtained by replacing the two weak spaces in (3.8) by

strong Lebesgue spaces, since in the first case the right-hand side (the thesis) is weaker but so

is the left-hand side (the hypothesis).

Let us also consider the particular case of (3.8) for θ = 0 (see [6, Corollary 1.7]). For

γ0 = N
2 , it follows from (3.6) that

|π| ∈ Lγ0
∗ (QT ) =⇒ v ∈ LN

∗ (QT ). (3.9)

As above, to guarantee smoothness of solutions we are led to choose any given γ > N
2 . This

leads to the following result:

|π| ∈ Lγ
∗(QT ),

2

γ
+

n

γ
< 2 =⇒ v ∈ LN+ǫ(QT ),

2

N
+

n

N
= 1, (3.10)

where 0 < ǫ < µ−N. Hence, under the left-hand side assumption, solutions are smooth (a mild

regularity result).

Note that regularity under P-V, or pressure alone, assumptions was simply turned into

pure velocity criteria. So any improvement on velocity criteria may automatically lead to

improvements on other related criteria.

A Technical Remark In reference [6] it was assumed that γ > 2N
(2 θ+(1− θ)N) . This as-

sumption is superfluous (see [6, Remark 1.5]). However it implies γ > 2, which is required in

[6, (2.4)]. So, in the above formulation, this condition must be assumed.

Last but not the least, we refer to two interesting contributions by Suzuki [34–35], both in

2012, obtained by appealing to the truncation method in the [4, 6] version. The author proved,
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in particular, the following result (for details see [34, Theorem 2.4] and [35, Theorem 2.3]).

Assume that p and q satisfy (4.7) below for some q ∈
(
5
2 ,+∞

)
. Then there exists ǫ∗ > 0 such

that a weak solution u of the Navier-Stokes equations (1.1) in R
3×(0, T ) is smooth if it satisfies

the smallness assumption

‖π‖Lp
w(0, T ;Lq

w(Ω)) ≤ ǫ∗. (3.11)

In our context, in spite of the smallness assumption, the significance of this result is the combi-

nation of the truncation method with the condition expressed in terms of two weak Lp
w spaces.

4 On a Distinct, Fruitful Approach

The main aim of the couple of papers [7–8] was replacing in the mixed P-V case the mild

regularity assumptions by corresponding strong regularity assumptions. In the 2000 reference

[7, Theorem I], the following θ = 1 result was proved (for precise statements we always refer to

the original papers).

Theorem 4.1 (see [7, Theorem I]) Let v be a weak solution to the Navier-Stokes equations

(1.1) under the boundary condition (1.2), where v0 ∈ Lα(Ω) ∩ H1
0 (Ω) is divergence free, and

f ∈ L1(0, T ;Lα(Ω)) for some α > n. Assume that (4.2)–(4.3) below hold for θ = 1. Then

v ∈ C(0, T ;Lα(Ω)), |v|
α
2 ∈ L2(0, T ;H1

0 (Ω)). (4.1)

In particular, v is smooth in QT .

The technique followed in the proof essentially appeals to the argument developed in the 1987

reference [2]. See, in particular, Lemmas 1.1–1.2 therein. Some information will be furnished

in Section 7 below.

Much later, in the 2018 reference [8, Theorem 1.1], the above result was extended to the

general θ case. Moreover the assumption q > n was overtook.

Theorem 4.2 (see [8, Theorem 1.1]) Let v0 ∈ Ln(Ω) ∩ H1
0 (Ω) be divergence free and

f ∈ L1(0, T ;Ln(Ω)). Assume that a weak solution of the Navier-Stokes equations (1.1) under

the boundary condition (1.2) satisfies the assumption

|π|

(1 + |v|)θ
∈ Lp(0, T ;Lq(Ω)), (4.2)

where 0 ≤ θ ≤ 1, and the exponents p, q ∈ (2,+∞) verify the condition

2

p
+

n

q
= 2− θ. (4.3)

If 2 ≤ q < n, we also assume that

p ≤
(n− 2) q

n− q
≡

n− 2(n
q

)
− 1

. (4.4)

Under the above hypotheses one has v ∈ L∞(0, T ;Ln(Ω)) ∩ Ln(0, T ;L
n2

n−2 (Ω)), and ∇|v|
n
2 ∈

L2(0, T ;L2(Ω)).

In particular, the solution is strong. Additional smoothness of solution follows from suitable

smoothness of the data.
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Note that p has the full range (2, ∞) if q ≥ n. But for values q < n the range of p shrinks

as q decreases. For some considerations see the appendix in [8].

We advise the interested reader that notations in [2, 7] are different. The quantities denoted

in [2] by the symbols Nα(v) and Mα(v) are the α-powers of the quantities denoted by the same

symbols Nα(v) and Mα(v) in reference [7]. In reference [8], see definitions (31) in this reference,

the author follows the notation used in [7] for α = n.

Note that Theorem 3.1 and the last statement in Theorem 3.2 are mild forms of results

contained in Theorems 4.1 and 4.2 respectively. Furthermore, for p = q = γ1 = N
2−θ

, Theorem

4.2 shows that (3.8) holds by replacing the two weak spaces by Lebesgue spaces.

Next, we consider the case θ > 1 treated by Zhou in the 2004 reference [38], by partially

appealing to the method introduced in [2]. In a very systematic way, many other related criteria

are proved. For the very wide set of interesting results, we refer the reader directly to the original

paper. Below we will refer to the particular result concerning our main concern, namely the

P-V criteria, this time for θ > 1. In this case, there is no evidence of a positive answer to

the relation π ∼= |v|2. On the contrary, both Zhou’s result, see below, and the constraint (51)

imposed in [8, Lemma 3.6], go in the direction of a negative answer to the equivalence π ∼= |v|2.

In [38, Theorem 1, item (H3)], among many other results, the author stated the following

result (for the precise statement, see the original paper).

Theorem 4.3 (see [38, Theorem 1, item (H3)]) Let v0 ∈ L2(Ω) ∩ Lq(Ω), q > 3, be

divergence-free, and let f = 0. Let v be a weak solution of the Navier-Stokes equations (1.1)

under the boundary condition (1.2). Furthermore, assume that v satisfies (4.2), where θ ∈[
1, 5

3

]
,

2

p
+

3

q
=

5

2
−

3

2
θ, (4.5)

and

6

5− 3θ
< q ≤ ∞. (4.6)

Then v is smooth in QT .

The result extends to dimensions n > 3 (see [38, Remark 3, item (H3)’]).

For the value θ = 1, the above result coincides with the previous result obtained in [7].

However comparison with [8] looks more interesting. For θ = 1 the two results glue perfectly.

However, for θ > 1, the above result looks weaker in the sense that the right-hand side of (4.5) is

strictly smaller than that of (2.2). Since the proofs in [7–8, 38] have, as starting point, the ideas

developed in [7], we guess that all the results are the best possible attainable by the method.

So the above “loss of regularity” could be substantial, and not due to a merely technical reason.

Note that larger is θ “weaker” becomes the result. For θ = 5
3 , (4.5) becomes v ∈ L∞(QT ),

which yields regularity by itself. It would be of great interest having a deeper explanation of

this phenomena.

Let us also consider the particular case θ = 0, the “pressure alone” case. A necessary

classical reference is the pioneering 1969 Kaniel’s paper [22]. In more recent times, in Berselli’s

reference [10, Theorem 1.1], by following [7] (see information below), it is proved that solutions
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to the problem (1.1)–(1.2), satisfying the assumption

π ∈ Lp(0, T ;Lq(Ω)),
2

p
+

n

q
= 1 +

n

p
, p < n

are regular. If the value p = n would be reachable, the result for this particular value would

be strong since the value 2 would be attainable on the right-hand side of the above equality.

Furthermore, as p decreases, the result becomes weaker (for instance, for p = q compare with

(3.10)).

It looks useful to inform the interested readers that the item [4] in the list of references

in [10] was not published by the journal therein indicated. Avoiding any comment, the first

author merely informs that the same paper was published, but with a different title, in another

journal. It corresponds to our reference [7] below.

For the pure pressure problem in the whole space R3, Berselli and Galdi in [11], by appealing

to [7, 27], proved regularity under the strong condition

π ∈ Lp(0, T ;Lq(Ω)),
2

p
+

n

q
= 2, q >

n

2
. (4.7)

Note that (3.10) is a mild form of Berselli-Galdi’s result. See [11] for a wide bibliography on

the pressure problem.

Concerning the pressure, we quote the outstanding result proved by Seregin and Šverák in

[29]. In particular the authors show that the solution is necessarily smooth if the pressure is

everywhere non-negative. A result out of the main-stream, may be the more impressive global

sufficient condition for regularity.

To end this section we recall the 1995 reference [3] where smoothness is proved for Ω = R
n

under assumption (4.7), this time for ∇v instead of π. This shows the natural equivalence

between π and ∇v.

5 Lorentz Spaces and Main Results

It is worth noting that in recent years many mathematicians have been devoted to system-

atically extending known regularity criteria of L-P-S type from Lebesgue to Lorentz and other

functional spaces. This tendency is nowadays a quite general, modern trend, in mathematics.

Since Lorentz spaces are larger than Lebesgue spaces, results in Lorentz spaces are stronger

than the corresponding results in Lebesgue spaces.

In [32] Sohr proved that if

v ∈ Lp,s(0, T ;Lq,∞(Ω)),
2

p
+

3

q
= 1, 3 < q < ∞, 2 < s ≤ p < ∞

or

‖v‖Lp,∞(0,T ;Lq,∞(Ω)) ≤ ǫ,
2

p
+

3

q
= 1 for a positive constant ǫ,

then the weak solution u is regular on (0, T ]. Furthermore, in [12], by appealing to the method

developed in [2], Berselli and Manfrin obtained similar results. They proved that v is regular,

provided that

‖v‖Lp,∞(0,T ;Lq(Ω)) ≤ ǫ,
2

p
+

3

q
= 1, 3 < q < ∞.
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Recently, Suzuki [34–35], and Ji, Wang and Wei [21] studied some regularity criteria in terms

of the pressure π in Lorentz spaces (we still referred to Suzuki’s contributions at the end of

Section 3, due to the appeal to the truncation method). In [21], Ji, Wang and Wei extended

Suzuki’s assumption (3.1) to the range 3
2 ≤ q < 5

2 , by partially appealing to ideas in [7–8].

By following the above line of research, a natural question is whether we can extend Theorem

4.2 to Lorentz spaces. Below, we give an answer to this problem. A sufficient condition involving

Lorentz spaces will be established, see (5.7) and (5.9). As in [8], we may extend our new results

to any space dimension n ≥ 3. Furthermore, extension to the boundary value problem (1.2) is

the subject of a forthcoming paper.

Finally, concerning some regularity criteria involving the gradient of velocity or pressure,

the reader can refer to [3, 11, 21, 34–35].

Let us state our new results, after recalling definition and some properties of Lorentz spaces.

Definition 5.1 Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞. The Lorentz space Lp,q is the set of all

functions f such that ‖f‖Lp,q < ∞, where

‖f‖Lp,q :=






(
p

∫ ∞

0

τq|{x ∈ Ω : |f(x)| > τ}|
q
p
dτ

τ

) 1
q

, q < ∞,

sup
τ>0

τ |{x ∈ Ω : |f(x)| > τ}|
1
p , q = ∞.

(5.1)

Actually the quantity ‖f‖Lp,q is merely a semi-norm, not a norm. However it is well known

that there are equivalent norms.

Now, we give some useful properties which were listed in [21].

(i) Interpolation character of Lorentz spaces, see for example [9, Theorem 5.3.1],

(Lp0,q0 , Lp1,q1)δ,q = Lp,q,
1

p
=

1− δ

p0
+

δ

p1
,

1

q
=

1− δ

q0
+

δ

q1
, 0 < δ < 1. (5.2)

(ii) Boundedness of Riesz Transform in Lorentz spaces, see for example [14, Lemma 2.2],

‖Rjf‖Lp,q ≤ C‖f‖Lp,q , 1 < p < ∞. (5.3)

(iii) Hölder inequality in the Lorentz spaces, see for example [25, Proposition 2.3],

‖fg‖Lr,s ≤ ‖f‖Lr1,s1 ‖g‖Lr2,s2 , (5.4)

where

1

r
=

1

r1
+

1

r2
,

1

s
=

1

s1
+

1

s2
.

(iv) For 1 ≤ p < ∞, 1 ≤ q1 < q2 ≤ ∞, we have, see for example [20, Proposition 1.4.10],

‖f‖Lp,q2 ≤
(q1
p

) 1
q1

− 1
q2
‖f‖Lp,q1 . (5.5)

(v) Sobolev inequality in Lorentz spaces, see for example [36, Theorem 8],

‖f‖
L

np
n−p

,p
(Rn)

≤ C ‖∇f‖Lp(Rn) with 1 ≤ p < n. (5.6)

Now, we state our main result.
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Theorem 5.1 Set Ω = R
3 or T

3. Let (v, π) be a weak solution to (1.1) with divergence-free

initial data v0 ∈ L2(Ω) ∩ L4(Ω). Assume that 0 ≤ θ ≤ 1 and that

π

(e−|x|2 + |v|)θ
∈ Lp(0, T ;Lq,∞(Ω)), (5.7)

where p and q are finite, and

2

p
+

3

q
= 2− θ. (5.8)

Then v is regular on (0, T ]× Ω.

Remark 5.1 When Ω = T
3, the assumption (5.7) is equivalent to

π

(1 + |v|)θ
∈ Lp(0, T ;Lq,∞(Ω)). (5.9)

However, when Ω = R
3, the assumption (5.7) is not replaced by (5.9) since we can control the

term ‖(e−|x|2 + |v|)2‖2
L2, but not the term ‖(1 + |v|)2‖2

L2 (see (6.13)) according to the following

proofs.

We may also try to replace 1 by a power |v|µ, for a suitable exponent µ ∈ (0, 1), instead of

e−|x|2. This would be significant, and we hope that it could interest some readers.

Remark 5.2 Assumption θ ≤ 1 in our proof is necessary. In (6.3), the Hölder’s inequality

in Lorentz spaces is used to get that

∫

Ω

|π̃|β |π|2−βV 2+βθdx ≤ ‖π̃β‖
L

q
β

,∞‖π2−β‖
L

r1,
2

2−β
‖V 2β‖

L
r2,

2
β
. (5.10)

Clearly, we require 2
β
≥ 1. Hence θ = 2− 2

β
≤ 1. This constraint was already crucial in [8], as

explained therein. See in particular Lemma 3.6 in this last reference.

6 Proof of Theorem 5.1

We first introduce the following lemma, which was proved in [2, Lemmas 1.1–1.2]. See also

[7, Lemma 2.1] or [8, Lemma 3.1]. Actually, it can be obtained by multiplying both sides of (1.1)

by |v|2v, integrating by parts, using divergence-free condition and Cauchy-Schwarz inequality.

We note that this was also the starting point of the proofs in [21].

Lemma 6.1 Let (v, π) be a regular solution to (1.1) in Ω× [0, T ]. Then we have

1

4

d

dt

∫

Ω

|v|4dx+
1

2

∫

Ω

|∇v|2|v|2dx+
1

2

∫

Ω

|∇|v|2|2dx ≤

∫

Ω

|π|2|v|2dx. (6.1)

Lemma 6.1 follows from the estimate (2.3) in [7] by setting α = 4 and dimension n = 3.

Next we set Ω = R
3 and β = 2

2−θ
, see Remark 6.1 for Ω = T

3. Note that β ∈ [1, 2] due to

θ ∈ [0, 1], and that 2 + θβ = 2β.

Now, we control the term
∫
Ω
|π|2|v|2dx. For convenience, we set

V = e−|x|2 + |v|, π̃ =
π

(e−|x|2 + |v|)θ
. (6.2)
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By Hölder’s inequality in Lorentz spaces (5.4), we can get

∫

Ω

|π|2|v|2dx =

∫

Ω

( π

(e−|x|2 + |v|)θ

)β

|π|2−β(e−|x|2 + |v|)βθ|v|2dx

≤

∫

Ω

|π̃|β|π|2−βV 2+βθdx

≤ ‖π̃β‖
L

q
β

,∞‖π2−β‖
L

r1,
2

2−β
‖V 2β‖

L
r2,

2
β

= ‖π̃‖βLq,∞‖π‖2−β

L(2−β)r1,2‖V
2‖β

Lβr2,2
, (6.3)

where

β

q
+

1

r1
+

1

r2
= 1. (6.4)

Here, we remark that when θ = 1, i.e., β = 2, the corresponding estimate is

∫

Ω

|π|2|v|2dx ≤ ‖π̃‖2Lq,∞‖V 2‖2
L

2q
q−2

,2
. (6.5)

Since −∆π =
3∑

i,j=1

∂i∂j(vivj), by (5.3), we have

∫

Ω

|π|2|v|2dx ≤ C‖π̃‖βLq,∞‖π‖2−β

L(2−β)r1,2‖V
2‖β

Lβr2,2

≤ C‖π̃‖βLq,∞‖|v|2‖2−β

L(2−β)r1,2‖V
2‖β

Lβr2,2

≤ C‖π̃‖βLq,∞‖V 2‖2−β

L(2−β)r1,2‖V
2‖β

Lβr2,2
. (6.6)

By the interpolation character of Lorentz spaces (5.2) and by Sobolev inequality in Lorentz

spaces (5.6), it follows that

‖V 2‖L(2−β)r1,2 ≤ C‖V 2‖1−δ1
L2,2 ‖V 2‖δ1

L6,2 ≤ C‖V 2‖1−δ1
L2 ‖∇V 2‖δ1

L2 (6.7)

and

‖V 2‖Lβr2,2 ≤ C‖V 2‖1−δ2
L2,2 ‖V 2‖δ2

L6,2 ≤ C‖V 2‖1−δ2
L2 ‖∇V 2‖δ2

L2 , (6.8)

where 0 < δ1, δ2 < 1, and

1

(2− β)r1
=

1− δ1

2
+

δ1

6
,

1

βr2
=

1− δ2

2
+

δ2

6
. (6.9)

We remark that there exist r1 and r2 satisfying (6.4) and (6.9). Actually, we can take

1

r1
=

2− β

2

(
1−

β

q

)
,

1

r2
=

β

2

(
1−

β

q

)
,

and therefore δ1 = δ2 = 3β
2q ∈ (0, 1) due to q ∈

(
3

2−θ
,∞

)
. Hence, from (6.6) it follows that

∫

Ω

|π|2V 2dx ≤ C‖π̃‖βLq,∞‖V 2‖
(1−δ1)(2−β)
L2 ‖ ∇V 2‖

δ1(2−β)
L2 ‖V 2‖

(1−δ2)β
L2 ‖∇V 2‖δ2β

L2

≤ C‖π̃‖βLq,∞‖V 2‖
(1−δ1)(2−β)+(1−δ2)β
L2 ‖∇V 2‖

δ1(2−β)+δ2β

L2
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≤ C‖π̃‖
2β

2−δ1(2−β)−δ2β

Lq,∞ ‖V 2‖
2[(1−δ1)(2−β)+(1−δ2)β]

2−δ1(2−β)−δ2β

L2 + ǫ‖∇V 2‖2L2 . (6.10)

Noting that

(1 − δ1)(2− β) + (1 − δ2)β = 2− δ1(2− β) − δ2β, (6.11)

we have
2[(1− δ1)(2 − β) + (1− δ2)β]

2− δ1(2− β) − δ2β
= 2.

Thus we have
∫

Ω

|π|2|v|2dx ≤ Cǫ ‖π̃‖
2β

2−δ1(2−β)−δ2β

Lq,∞ ‖V 2‖2L2 + ǫ‖∇V 2‖2L2 . (6.12)

Note that

‖V 2‖2L2 = ‖e−2|x|2 + 2e−|x|2|v|+ |v|2‖2L2 ≤ C(1 + ‖v‖2L2 + ‖|v|2‖2L2) (6.13)

and

‖∇V 2‖2L2 = ‖∇(e−2|x|2 + 2e−|x|2|v|+ |v|2)‖2L2

≤ C(1 + ‖v‖2L2 + ‖∇v‖2L2 + ‖∇|v|2‖L2). (6.14)

Hence, we have
∫

Ω

|π|2|v|2dx ≤ Cǫ ‖π̃‖
2β

2−δ1(2−β)−δ2β

Lq,∞ (1 + ‖v‖2L2 + ‖|v|2‖2L2)

+ Cǫ(1 + ‖v‖2L2 + ‖∇v‖2L2) + Cǫ‖∇|v|2‖2L2. (6.15)

By this estimate and Lemma 6.1, and setting ǫ sufficiently small, using Gronwall’s lemma and

Ladyzhenskaya-Prodi-Serrin regularity criteria (1.3), we can get that v is smooth in Ω× [0, T ],

provided that

π̃ ∈ L
2β

2−δ1(2−β)−δ2β (0, T ;Lq,∞).

Finally, if we have

2
2− δ1(2− β)− δ2β

2β
+

3

q
= 2− θ, (6.16)

then we can get Theorem 5.1. Actually, from (6.4) and (6.9), we have

1 =
β

q
+

1

r1
+

1

r2

=
β

q
+ (2− β)

(1− δ1

2
+

δ1

6

)
+ β

(1− δ2

2
+

δ2

6

)

=
β

q
+

1

2
(2 − β) +

1

2
β −

1

3
δ1(2− β)−

1

3
δ2β

=
β

q
+ 1−

1

3
δ1(2− β)−

1

3
δ2β, (6.17)

which gives

δ1(2− β) + δ2β =
3β

q
. (6.18)
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Hence, we have

2
2− δ1(2− β)− δ2β

2β
+

3

q
=

2

β
−

δ1(2− β) + δ2β

β
+

3

q
=

2

β
= 2− θ. (6.19)

Remark 6.1 When Ω = T
3, the Sobolev inequality in Lorentz spaces should be

∥∥∥f −

∫

T3

fdx
∥∥∥
L

np
n−p

,p
(Tn)

≤ C ‖∇f‖Lp(Tn) with 1 ≤ p < n. (6.20)

Hence,

‖f‖
L

np
n−p

,p
(Tn)

≤ C (‖f‖Lp(Tn) + ‖∇f‖Lp(Tn)) with 1 ≤ p < n. (6.21)

Thus, as the main differences of the proofs, the above (6.7) and (6.8) should be replaced by

‖V 2‖L(2−β)r1,2 ≤ C‖V 2‖1−δ1
L2,2 ‖V 2‖δ1

L6,2 ≤ C‖V 2‖1−δ1
L2 (‖V 2‖+ ‖∇V 2‖L2)δ1 (6.22)

and

‖V 2‖Lβr2,2 ≤ C‖V 2‖1−δ2
L2,2 ‖V 2‖δ2

L6,2 ≤ C‖V 2‖1−δ2
L2 (‖V 2‖+ ‖∇V 2‖L2)δ2 , (6.23)

respectively, and therefore (6.12) becomes

∫

Ω

|π|2|v|2dx ≤ Cǫ ‖π̃‖
2β

2−δ1(2−β)−δ2β

Lq,∞ ‖V 2‖2L2 + ǫ‖V 2‖2L2 + ǫ‖∇V 2‖2L2. (6.24)

Remaining proofs are the same.

7 Notes on Reference [2]

By taking into account that some ideas developed in reference [2] have been a main departure

point in the proofs of many of the results quoted in the previous sections, it looks suitable to

give here some comments (due to the first author) on the above publication, first published as

the IMA preprint [1].

To our knowledge, a complete proof of the L-P-S strong condition for regularity (1.3) was

shown for the first time in Giga’s 1986 reference [19]. A totally different proof was also shown

in the 1987 reference [2], even if this fact was not explicitly written as a formal theorem (see

below). Reference [2] was received for publication on October 1985, hence without intersection

with the 1986 reference [19] (received for publication on July 1984). A third distinct proof was

given by Galdi and Maremomti in the 1988 reference [18].

The proof in reference [2] was given up to obvious details, already well known at that time.

We briefly explain this point below where, for convenience, we replace the (q, α)-notation used

in [2] by our present notation (p, q). The following is one of the results proved in [2].

Theorem 7.1 (see [2, Theorem 0.1]) Consider the evolution Navier-Stokes equations

in the whole space R
n, with a divergence-free initial data v0 ∈ Lq(Rn) and an external force

f ∈ L1(0, T Lq(Rn). Assume that

v ∈ Lp(0, T ;Lq), q > n, (7.1)
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where

2

p
+

n

q
= 1. (7.2)

Under the above hypothesis, if v is “sufficient regular”, one has

‖v(t)‖q ≤ exp(cµ− n+q
q−n ‖v‖p

Lp(0,t;Lq))(‖v0‖q + ‖f‖L1(0,t;Lq)) (7.3)

for every t ∈ [0, T ]. In particular v ∈ L∞(0, T ;Lq(Rn)).

Note that (7.1) under assumption (7.2) coincides with assumption (1.3). Moreover, the es-

timate (7.3) implies, in particular, v ∈ L∞(0, T ; Lq(Rn)). This immediately yields smoothness

of solutions, due to (for instance) a previous 1983 result by Sohr [31], or much more simpler, by

appealing to weaker (or mild) forms of assumption (1.3), which were well know and discussed

at that time. This situation was claimed in [2, Remark (i), p. 152].

As remarked in [2, p. 153], in the proof of Theorem 0.1, the author proved a priori estimates

in the usual mathematical sense. To justify formal calculations, some additional regularity on

the solution was assumed. Obviously, this regularity was not used to estimate any kind of

quantities.

The following bold type remark was stated immediately after [2, Theorem 0.1]: “The a

priori estimate (7.3) can be utilized to show that if a solution v of (0.1) belongs to the class

Lp(0, T ;Lq), then v ∈ L∞(0, T ; Lq), and (7.3) holds”.

Furthermore, this sentence was immediately followed by this second remark: “We leave the

technical details to the interested reader. Note that the existence of a solution in the class

Lp(0, T ; Lq ) is an open problem”.

The fact that the existence of a solution in the above class (7.1)–(7.2) was an open problem

led the author, at that time, to avoid an explicit statement (a theorem) merely based on

a conjecture. In fact, full C∞(QT ) regularity was explicitly stated as Theorems each time

the additional L-P-S assumption was not required in the proof. This was the case for the

results under smallness assumptions on initial data and external forces like, for instance, global

C∞(Q∞) regularity for sufficient small data. See [2, Theorems 0.2–0.3, Remark (i), p. 152]. See

also Theorems 2.1–2.2. In these cases, non-additional conditions of regularity were assumed,

and this allowed explicit formal theorems.

In [2], many local and global sharp estimates were also proved, in particular, lower and

upper bounds on time, and decay at infinity.
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[9] Bergh, J. and Löfström, J., Interpolation Spaces, Springer-Verlag, Berlin, 1976.

[10] Berselli, L. C., Sufficient conditions for the regularity of the solutions of the Navier-Stokes equations, Math.

Meth. Appl. Sci., 22, 1999, 1079–1085.

[11] Berselli, L. C. and Galdi, G. P., Regularity criteria involving the pressure for the weak solutions to the
Navier-Stokes equations, Proc. Amer. Math. Soc., 130, 2002, 3585–3595.

[12] Berselli, L. C. and Manfrin, R., On a theorem of Sohr for the Navier-Stokes equations, J. Evol. Eq., 4,
2004, 193–211.

[13] Bjorland, C. and Vasseur, A. F., Weak in space, Log in time improvement of the Ladyz̆enskaja-Prodi-Serrin
criteria, J. Math. Fluid Mech., 13, 2011, 259–269.

[14] Carrillo, J. A. and Ferreira, L. C. F., Self-similar solutions and large time asymptotics for the dissipative
quasi-geostrophic equation, Monatsh. Math., 151, 2007, 111–142.
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