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Abstract Considering the prolongation of a Lie algebroid, the authors introduce Finsler
algebroids and present important geometric objects on these spaces. Important endomor-
phisms like conservative and Barthel, Cartan tensor and some distinguished connections
like Berwald, Cartan, Chern-Rund and Hashiguchi are introduced and studied.
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1 Introduction

The notion of Lie algebroids which was introduced by Pradines [12] is a vector bundle such
that its sections involve a real Lie algebra. Each section is anchored on a vector field, by
means of a linear bundle map named as anchor map, which is further supposed to induce a
Lie algebra homomorphism. The Lie algebroid is a good extension of tangent bundle since the
homomorphism property of the anchor map grants the basic notions of tangent bundle to the
vector bundle. Recently, Lie algebroids are important issues in physics and mechanics since the
extension of Lagrangian and Hamiltonian systems to their entity (see [2, 5-7, 9-10, 18, 20])
and catching the poisson structure (see [11]).

The aim of this paper is to study some concepts of Finsler geometry on Lie algebroid
structures. Of course, there are some discussions on Finsler geometry in [9, 19]. Finsler geometry
is a generalization of Riemannian geometry such that interfering of direction and position
duplicates the degree of freedom in view of configuration. Variety of tensors in Finsler geometry
is more than Riemannian case. A very good reference about Finsler geometry is [1].

The paper is organized as follows. In Section 2, we recall differential, contraction and
Lie differential operators, generalized Frolicher-Nijenhuis bracket and vertical and complete
lifts on Lie algebroids and we study the relation between these concepts. Also, we present
the notion of the prolongation of a Lie algebroid and we recall some concepts on it such as
horizontal and vertical endomorphisms, Liouville section, semispray, torsion, tension and almost
complex structure. Finally, distinguished connections on the prolongation of a Lie algebroid
are introduced and torsion and curvature tensor fields of these connections are considered.
In Section 3, we introduce the concept of Finsler algebroid and we study important geometric
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subjects on this space. Important endomorphisms like Conservative and Barthel, Cartan tensor
and some distinguished connections like Berwald, Cartan, Chern-Rund and Hashiguchi are
studied by Szilasi and his collaborators from a special point view based on pullback bundle (see
[13-17]). In this section we construct them on Finsler algebroids and obtain some results on
these concepts.

2 Basic Concepts on Lie Algebroids

Let E be a vector bundle of rank n over a manifold M of dimension m and = : E — M be the
vector bundle projection. Denote by I'(E) the C*° (M )-module of sections of 7 : E— M. A Lie
algebroid over M is the triple (E, [., ] g, p) where [-,-] g is a Lie bracket on T'(F) and p : E — T M
is a bundle map, called the anchor map, such that if we also denote by p : T'(E) — x(M) the
homomorphism of C°°(M )-modules induced by the anchor map, then

X, fY]p = fIX,Y]g + p(X)(f)Y, VX,Y €T(E), ¥f e C=(M).

Moreover, we have the relations

and
[X7 [Y, Z]E]E + [Y, [Zv X]E]E + [Z, [X7 Y]E]E =0.

Trivial examples of Lie algebroids are real Lie algebras of finite dimension, the tangent bundle
T M of an arbitrary manifold M and an integrable distribution of T'M.

On Lie algebroid (E, [-,-]g, p) we define the differential of E, d¥ : D(AFE*) — T'(AFH1E"),
as follows

k
d"p(Xo, -, Xi) = Y (=D p(Xi)((Xo, -+ Xi -, X))
i=0
+Z(—l)i+j,ll([Xi,Xj]EaXOv"' Xiyo X, Xp)
i<j
for 4 € T(A*E*) and Xo,---, X) € T'(E). In particular, if f € T(AE*) = C°°(M) we have
dPf(X) = p(X)f. Using the above equation it follows that (d¥)% = 0.

If we take the local coordinates (z°) on M and a local basis {e,} of sections of E, then we
have the corresponding local coordinates (x¢, y®) on E, where x! = z' o7 and y®(u) is the a-th
coordinate of u € F in the given basis. Such coordinates determine local functions pf,, L7 5 on
M which contain the local information of the Lie algebroid structure, and accordingly they are
called the structure functions of the Lie algebroid. They are given by

; 0
p(ea) :paaxiv [eo”eﬂ]E :Lgﬁe'}”
with conditions
9pt Dot ) 0Ly,
B j9Pa _ igry i v vore | _
P ~Phges = lis 3 [Pt + L] =0,
(a,8,7)
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A section w of E* also defines a function W on E by means of
W(u) = (wm,u), Vu€ Ey,.

If w = w,e®, then the linear function @ is W(z,y) = way*.
For X € I'(A*E), the contraction ix : [(APE*) — T'(AP~FE*) is defined in standard way
and the Lie differential operator £ : T(APE*) — T(AP~**1E*) is defined by

£E =ixod? — (—=1)*dF oix.

Note that if £ = TM and X € I'(E) = x(M), then d”™ and £IM are the usual differential
and the usual Lie derivative with respect to X, respectively. Also, for K € T'(AFE* ® E), the
contraction

i : T(A"E*) — T(A"TE=LE)

is defined in the natural way. In particular, for simple tensor K = p ® X, where p € T'(AFE*),
X €T'(E), we set igv = u Aixv. The corresponding Lie differential is defined by the formula

£E =igod? + (~1)FdP o iy,
and, in particular
£lox =N E£Y + (=DFdPp nix.
The contraction ix can be extended to an operator
i :D(A"E*® E) - T(A"TF1E* @ E)

by the formula iz (u® X) = ix (1) ® X. The generalized Frolicher-Nijenhuis bracket is defined
for simple tensors p® X € T(A*E* @ E) and v ® Y € T(A'E* @ E) by the formula

e X, v @ Y] N = (£iexv) @Y = (-)"(Luovp) © X + pAv @ [X,Y]E.

Moreover, for K € T(A\*E* ® E), L € T(A\\E* ® E), N € T(A"E* ® E) and X,Y € T'(E) we
have (see [3-4])

Ll pr-v = LEo £ — (=DM EF o L
(= 1)K [L, NYFNEN e ()L [N, KNP 4 ()M [ L)Y PN =0,
(K, Y7 N(X) = [K(X),Y]p - K[X, Y],
(K, L) N(X,Y) = [K(X), L(Y)]p + [L(X), K(Y)]g + (Ko L+ Lo K)[X,Y]p
- K[X,L(Y)]p — K[L(X),Y]p — L[X,K(Y)|p — LIK(X),Y]E.

For a function f on M, one defines its vertical lift f¥ on E by fY(u) = f(w(u)) for u € E.
Now, let X be a section of E. Then, we can consider the vertical lift of X as the vector field
on E given by XV(u) = X (7 (u)),,, v € E, where ) : Er,y = Tu(Er)) is the canonical
isomorphism between the vector spaces Er(,) and Ty (Er(y)). Let {eq} be a basis of sections of
E. The vertical lift XV of X = X%¢,, € I'(E) has the locally expression XV = (Xo‘ow) . The
complete lift of a smooth function f € C*°(M) into C°(E) is the smooth function f°: E —+R

defined by f¢(u) = d¥ f(u) = p(u)f. In the local basis, we have

Pl = () o)
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Let X be a section on E. Then there exists a unique vector field X© on E, the complete lift
of X, satisfying the following conditions:

(i) X°¢ is m-projectable on p(X),

(i) X°(a) = £&a,
where oo € T'(E*). Tt is known that X ¢ has the following coordinate expression (see [8]):

X¢ = {(X%i)o ”}aii + yﬂ{ (pi; %ﬁ; - X”L;‘B) o w}%.

Also we have X°f° = (p(X)f)° for all f € C*(M).

2.1 The prolongation of a Lie algebroid

Let £7F be the subset of E x TE defined by £"F = {(u,2) € EXTE | p(u) = 7.(2)} and
denote by m¢ : £7E — E the mapping given by 7¢(u, z) = ng(z), where 7p : TE — F is the
natural projection. Then, (£7E, 7z, E) is a vector bundle over E of rank 2n. Indeed, the total
space of the prolongation is the total space of the pull-back of 7w, : TE — T'M by the anchor

map p.
We introduce the vertical subbundle

vETE =kertg = {(u,2) € £7E | 7£(u,z) = 0},

where 72 : £7E — E is the projection onto the first factor, i.e., 7¢(u,z) = u. Therefore an
element of v£™E is of the form (0,z) € E x TE such that 7,(z) = 0 which is called vertical.

For local basis {e, } of sections of E and coordinates (x¢, y*) on E, we have local coordinates
(x%, y*, k%, 2%) on £7E given as follows. If (u, 2) is an element of £™E, then using p(u) = 7.(2),
z has the form

+ Zaﬂ
v 8y°‘

The local basis {X,,,Va} of sections of £7E associated to the coordinate system (x¢,y®) is
given by [6],
) o= (0 54])

The vertical lift XV and the complete lift X of a section X € I'(E) as the sections of £7F — E
are given by

, ze€T,FE.

v

T, Q 8
2= ((phu) o m)

9
3 6ya

Xo(0) = (calr(0), (sh 0 7)o

v

XYV (u) = (0,X"(u), X(u)=(X(n(u),X(u)), ueE

with locally coordinate expressions

«

9X
XV = (X omVa, XO=(XomAa +y° (o)

= - XWL;“B) o ﬂ Vo, (2.1)

where X = X%, € I'(E).
Here, we consider the anchor map pg : £7E — TFE defined by p¢(u, z) = z and the bracket
[-, ] £ satisfying the relations

[Xvﬂyv]f =0, [Xvﬂyc]f = [Xa Y]\Elv [Xcayc].f = [X7 Y](Ej

for X,Y € T'(E). Then, this vector bundle (£"E 7w, E) is a Lie algebroid with structure
([,-] £, pe)- The Lie brackets of basis {X,,V,} are

[Xa,Xg]f = (Lgﬁ o W)X.Y, [Xa,Vﬁ]g =0, [Va,Vg]g =0.
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2.2 A setting for semispray on £™F

A section of 7 along smooth map f : N — M is a smooth map ¢ : N — E such that
moo = f. The set of sections of 7 along f will be denoted by I'¢(m). Then, there is a
canonical isomorphism between I'(f*7) and I's(7) (see [15]). Now we consider pullback bundle
m*m = (7*E,pr1, E) of vector bundle (E,w, M), where

m'E:=FExy E:={(u,v) € ExXE|n(u)=n(v)}

and pry is the projection map onto the first component. The fibres of 7*7 are the n-dimensional
real vector spaces {u} X Er,) = Er(y)-
We consider the following sequence:

0= 1(E) - £7E L5 7%(E) - 0

with j(u, 2) = (mg(2),1d(u)) = (v,u), 2 € TL,E and i(u,v) = (0,v)), where v,/ : C*(E) — R
is defined by v (F) = %‘tZOF(u + tv). Indeed, we have v, = %|t20(u + tv). The function
J=tio0j: £LTE — £7F is called the vertical endomorphism (almost tangent structure) of £7FE.

From the definitions of 7, j and J, we get
ImJ=Imi=vL"FE, kerJ=kerj=vfTE, JodJ=0.

If {X, YV} is the corresponding dual basis of {X,, V,}, we get J =V, @ X*.

Let § be the canonical section along 7 given by d(u) = (u,u) € 7*E for each v € E. The
section C' given by C := i 0§ is called Liouville or Euler section. The Liouville section C has
the coordinate expression

C =y*V, (2.2)
with respect to {X,, Va}. Let X be a section of E. Then, we have
() [L,ClE N =g, (i) [XV,0)e =XV, (iii) JO =0. (2.3)

A section X of vector bundle (£7E, 7, , E) is said to be homogeneous of degree r (r is an
integer), if [C, X]£ =(r— 1)X. Moreover, f € C(E) is said to be homogeneous of degree r if
.,t%f— p£(C)(f) =rf. It is known that if X = XX, + Y *V,, X is homogeneous of degree r
if and only if

0X8 ~ oY 8 _
a —(r—1)X"8 aZ’  _pyh. 2.4
Y oya (r—1X" vy oys ~ " (2.4)
Also, the real valued smooth function f on F is homogeneous of degree r if and only if y“ 5 af =

rf.

A section S of the vector bundle (£7E, 7z, E) is said to be a semispray if it satisfies the
condition J(S) = C. Moreover, if S is homogeneous of degree 2, i.e., [C,S]g = S, we call it
spray. A semispray S has the coordinate expression S = y*X,, + S*V, and S is a spray if and
only if 287 =y ‘256

A function h : £7FE — £7E is called a horizontal endomorphism if hoh = h, kerh = v£™FE
and h is smooth on £’CT)E: £™FE — {0}. Also, v := Id — h is called the vertical projector

associated to h. Setting h£™E := Im h we have the following splitting for £™FE:

£°E =vL"E & hL™E. (2.5)
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Also, from the definition of the horizontal endomorphism we have

kerh=ImJ =kerJ =Imv=vL"FE.

(i) hJ=hv=Jv=0, (ii)vov=w, (iii)vh=0, (iv)Jh=J=0l (2.6)
It is known that h has the following locally expression:
h=(Xs+ B§Va) ® X7 (2.7)
Definition 2.1 For k € N, K € I'(A\*E* ® E) is called semibasic if
JoK =0, i;xK =0, VX eTD(B).

Let h be a horizontal endomorphism on £7E. Then, H = [h, C]g_N : £TE — £™F,
t = [LhE™N € T(L7E) and T = ist + H are called the tension, weak torsion and strong
torsion of h, respectively, where |-, -]g_N is the generalized Frolicher-Nijenhuis bracket on £7E.

If H =0, h is called homogeneous. Here, H, t and T have the following coordinate expressions:

0B%
a B
= (BIB —yrya—y,y)Va@XB, (28)
1 «
b=t XA ANXP @V, (2.9)
6 «
:(Bg—yﬁagg—yuLﬁowDV ® X8, (2.10)
where
B} oB}
S _ _ L’Y . 2.11
tozB ay ay,@ ( © ﬂ-) ( )

Theorem 2.1 (see [8]) If hy and hg are horizontal endomorphisms with same associated
semisprays and strong torsions, then hi = ha.

The curvature of a horizontal endomorphism h is defined by 2 = —Nj, where Nj, is the
Nijenhuis tensor of h given by

Nu(X,Y) =[hX,hY] — h[hX,Y] - h[X,hY] +h[X,Y], VX,Y € (£7E).

The curvature 2 has the following coordinate expression:

1 [e3
Q=—oR) X ANXP @V, (2.12)
where
0B} . OBy 0B} 0B,
R = (pl, o) e (pgom )8 - + B dy )\ Bg Byi + (Léa om)B]. (2.13)

Let the horizontal endomorphism h be given on £7 E. If S is an arbitrary semispray of £™F,
S = hS is also a semispray of £™FE which does not depend on the choice of S. S is called the
semispray associated to h. If the horizontal endomorphism h is homogeneous, the semispray
associated to h is spray.

Let S be a semispray on £™FE. We consider the map hg : £"F — £™FE given by hg :=
1(lerp+1J, S)E~N). Tt is known that hg is a horizontal endomorphism on £7E which is called
horizontal endomorphism generated by semispray S (see [8] for more details). We have the
following theorem.



Distinguished Connections on Finsler Algebroids 47

Theorem 2.2 (see [8]) Let h be a homogeneous horizontal endomorphism on £7E and S
be the semispray associated to h. Then, we have

1.
hs = h — 52515,

where t is the weak torsion of h and hg is the horizontal endomorphism generated by S.

Let S be the semispray associated to h. We consider the map F' : £7E — £7E given by
F := h[S,h)5~" — J. Then, F is an almost complex structure on £7E (F? = —Id) which is
called the almost complex structure induced by h. F has the following coordinate expression:

F=—(BL(Xy + BiVg) + Va) @ X + (Xo + BVg) @ V. (2.14)
The following relations hold in [8]:
() FoJ=h, (i)Foh=—J, (ii)JoF=uv, (iv)Fov=hoF (2.15)

The map H := Foi: E xy E — £7FE is called the horizontal map for £7E associated to h.
Also, the map V:=jo F: £TE — FE x s E is called the vertical map for £7 FE associated to h.
Let h be a horizontal endomorphism on £7FE. We consider the map

X el(E) = X" :=hX“ cht™E,
and we call it horizontal lift by h. If X = X%e,, we have
X" = (X% o) (X, + B2Vg). (2.16)
The following equations hold in [8]:
(1) JX" =XV, (i) h[ X", VM) = [X,Y]E,  (il) [X, V]S = J[X", vh ..

Setting d, = € = X, + B2Vs = h(X,), it is easy to see that {J,} generates a basis of h£™E
and the frame {d,,V,} is a local basis of £7E adapted to splitting (2.5) which is called the
adapted basis. The dual adapted basis is {X“, 6V}, where

SV* =V — B’
Lie brackets of the adapted basis {0, Vo } are

OBy

[0a, 08l = (ng o T)dy +R(15VV7 [0a, Vale = _8—}75 v

[VQ,V,@]£ =0, (2.17)

where Rlﬁ is given by (2.13). It is easy to see that h and F' have the following coordinate
expressions with respect to the adapted basis

h=0, @& F==V,0&X%+0,®56V".

2.3 Distinguished connections on Lie algebroids

A linear connection on a Lie algebroid (E, [,]g, p) is a map

D :T(E) x T'(E) — I'(E),



48 E. Peyghan, A. Gezer and 1. Gultekin

which satisfies the rules
Dfx+yZ = fDXy + DYZ,
Dx(fY +Z) = (p(X)f)Y + fDxY + DxZ

for any function f € C*°(M) and X,Y, Z € T'(E). Let D be a linear connection on £™E and h
be a horizontal endomorphism on £7™FE. Then, (D, h) is called a distinguished connection (or
d-connection) on £7E, if

(i) D is reducible, i.e., Dh =0,

(ii) D is almost complex, i.e., DF =0,
where F' is the almost complex structure associated by h. It is known that a d-connection has
the following coordinate expression:

Ds Vg = F;,@V,Y, Dy Vg = C(;Y,@V,Y, (2.18)
Ds g = chﬁév, Dy, 65 = Cgﬁ&y. (2.19)

Let (D, h) be a d-connection. Then
hvy ._ v vy v
DYY :=D,3Y, D%Y :=D3Y
are called h-covariant derivative and v-covariant derivative, respectively. Moreover,
W (DC)(X):= D, 3C, v*(DC)(X):=D, 3C (2.20)

are called h-deflection and v-deflection of (D, h), respectively, where X,Yerl (£7E). It is easy
to see that h*(DC) has the following coordinate expression:

W (DC) = (BL +y FJ )V, @ X (2.21)
Similarly, we can see that v*(DC') has the following coordinate expression:

v*(DC) = (67 +y’Cl5)Vy @ 6V, (2.22)
where ¢) is the Kronecker symbol.

Theorem 2.3 Let (D, h) be a d-connection on £7E. Then, the torsion tensor field T of D
1s determined by the following, completely:

AX,Y):=hT(hX,hY) = D, shY — D,shX — h[hX,hY] ¢, (2.23)
B(X,Y):=hT(hX,JY) =D ,;hX — h[hX,JY],, (2.24)
RYX,Y):=vT'(hX,hY) = —v[hX,hY], (2.25)
PYX,Y):=vT(hX,JY) =D, 3 JY —v[hX,JY],, (2.26)
SUX,Y): =vT(JX,JY)=D,3JY — D, JX —v[JX,JY]s, (2.27)

where A, B, R*, P! and R' are called h-horizontal, h-mized, v-horizontal, v-mized and v-
vertical torsion, respectively.

It is easy to check that the components of the torsion tensor field have the following coor-
dinate expressions:
A=T)0, @ X*®@XP, B=-C1;0,0X® X",
R'=-RI .V, @X*®@XP Pl =PV, QX" QX" (2.28)
Q' = S1sVy @ X ® X8,
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where

0By

oyb’
Theorem 2.4 Let (D, h) be a d-connection on £7E. The curvature tensor field K of D is

determined by the following, completely:

(i) Tgﬂ = Fojﬁ — Fga — (thﬁ om), (i) Pl, = Fojﬁ +

= (iii) S75=Cls— Chy (229)

«

(i) RX,Y)Z : = K(hX,hY)JZ,
(i) P(X,Y)Z : = K(hX,JY)JZ,
(i) Q(X,Y)Z : = K(JX,JY)JZ.
Here, R, P and Q are called horizontal, mixed and vertical curvature, respectively.

By a direct calculation, we can see that the horizontal, mixed and vertical curvature, have
the following coordinate expressions:

R=R  MoX*®@X @ X",
P=Pps MoX*ox’oa”,

Q=155 MRX*0X° 07,

where
Pus = hom G 4 B~ Ghom S T
— Fl Fj, — (LhyomFy, —RAC), (2.30)
P = (pl om) 680)57 + B aa(;% +Ch Ry, — %Z;% — F Ch, + gﬁg Chs (2.31)
0¢,6’vA - %Cy%y By éu - aacy%y - Cgvcé\u' (2.32)

3 Finsler Algebroids

In this section, we introduce Finsler algebroids as a generalization of Finsler manifolds
and we present some basic objects such as conservative endomorphism (in particular, Barthel
endomorphism) and Cartan tensor on these spaces.

Definition 3.1 Finsler algebroid (E, F) is a Lie algebroid £™ E provided with a fundamental
Finsler function F : E — R satisfying the conditions:

(i) F is a scalar differentiable function on the manifold E=E - {0} and continuous on the
null section of m: E — M,

(il) F is a positive function and homogeneous of degree 2, i.e., ££]-" =2F,

(iii) the fundamental form w = d£d§F is nondegenerate, where

d5F =ijd*F=d*FoJ.
For the basis {X,,Va} of I'(£7E) and the dual basis {X®, V*} of it, we get d¥F(V,) =0

and d£ F(X,) = aa ;; Therefore, d4 F has the following coordinate expression:

OF
diF = —x°. 3.1
J 8y°‘ ( )
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Lemma 3.1 The fundamental form w of a Finsler algebroid has the following coordinate
exrpression:

. PF 10F, . s O°F

—— X AVA.
oy Y
Proof Using (3.1), we have

(3.2)

OF oF

£ L £ v £ 37

w=d*dEF = d (8y7)/\2( i, (3.3)
It is easy to see that (d£X7)(Xa, Xj3)

= —(L]zom) and (d* X7)(Xy, Vp) = (d*X7)(Va, Vg) = 0.
Thus, we have

1
d*x7 = —5(1:3[, om)X* A XP,

Also, it is easy to check that (d”’g (ByW )) (Xg) =
we have

p% 6;?7?28};m and (d£ (ayw )) (VB) W Hence

OF - 0?F 0*F
£ = (ply o M) —XP .
d (ay"Y ) (0 o) Oxt Oy dyP oy 4
Setting the above two equations in (3.3) impies (3.2)

From (3.2

), we deduce that the fundamental form w is nondegenarate if and only if the
symmetric matrix (%) is regular.

Proposition 3.1 For the fundamental form w we have the following identities

(1) ijw=0, (i) £&w=w, (i) icw =d45F.
Proof We have

LW = lxvgy,w = X7 A 1y, W.
It is easy to check that iy X'“ = 0 and iy V¢ = 05. Therefore, from (3.2), we get iy w =
Waj—g—w)( “ and consequently

O2F

) XTAX
(DI b O‘ByV

It is easy to see that aagv)ﬂ ANXY = 6}?;6];7 X7 AN XY Thus, we deduce iyw = 0. Now we
prove (ii). Since [C, X,] = 0, using (3.2) we derive that

(£60) (X X5) = po(O) (0} o) 5T

; 0%F OF
T . L,
x' Oy P (05 ° ™) Gxiaye oxidy> Oy By ))
) PBF ) BF
oA i A A | vy
Y ((pa o) Ox0yPoy* (0 o) Ox0y*Oy?
0?F

gy Fheom)

Since F is homogeneous of degree 2, we can obtain

(3.4)

(9_.7:_ A\ O*F
oyr Y Oy10y*”
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Using the above equation in (3.4), we get

2 2

£ _ 7 _ _
(£60)(Xa, X5) = (bhgis ~ Phgigys ~ By Los

Similarly, we can obtain

P*F

—W :LU(XQ,VQ), (.féw)(va,]}ﬁ):OZW(Va,Vg).

(£Ew)(Xay V) =

Hence, we have (ii). It is easy to check that ic XY = 0 and icV¥ = y?. Using (3.2) and (3.5),
we get

OPF . OF

= ——X"=diF.
dy*oy” dy® 77

lcw=y"
Definition 3.2 Let (E,F) be a Finsler algebroid with fundamental form w. The map
G :T(WELTE) x T(v£TE) — C®(£7E)
defined by G(JX,JY) :=w(JX,Y) is called the vertical metric of Finsle algebroid (E, F).

o]
It is easy to check that G is bilinear, symmetric and nondegenerate on v£™E. So, we can
deduce the following.

Proposition 3.2 Let h be a horizontal endomorphism and G be the vertical metric of Finsler
manifold (E, F). The function G : T(£7E) x T(£7E) — C®(£™E) given by

G(X,V) = GUX,JV) + GwX, V), VX,V cT(£7E) (3.6)

o
s a pseudo-Riemannian metric on £™E.

The pseudo-Riemannian metric G introduced in the above proposition, is called the prolon-
gation of G along h.
Using (3.2), we obtain the following coordinate expression:

0°F

Also, using (3.6) we can obtain

G(00:08) = Gap, G(0a,Vs) =0, G(Va,Vs) = Gup
and consequently
G = GapX® @ X + GopsV™ @ 6VP. (3.8)
Proposition 3.3 For the metrics G, G and sections X, Y of Lcj?, we have

GV, YY) =g(xV, YY) = pe(XV)(pe(YV)F), (3.9)

G(C,C) =G(C,C) = 2F. (3.10)
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Proof Using (3.7), we get

0%F
C,0) =y*y” .
G(C.C) =¥y 5 aay
Since F is homogeneous of degree 2, we can obtain yo‘yﬁay‘?j—g—w = 2F. Thus, we deduce

G(C,C) =2F. Using (iii) of (2.3) and (3.6), we get

G(C,C) =G(JC,JC) + G(vC,vC) = G(C,C) = 2F.

Now, let X = X%, and Y = Y'Beg be sections of E Then, we have

2
GXY, YY) = G((X" o mVau (VP o mVy) = (X" 0y om) 2
= pe(XV)(pe(YV)F).
Using (3.6) and the above equation, we can obtain

GXV, YY) = pe(XV)(pe(YV)F).

Let h be a horizontal endomorphism on £7E and G be a pseudo-Riemannian metric given
by (3.6). We consider
Kn(X,Y)=G(X,JY)-G(JX,Y), VX,Y €D (L7E)
and we call it the Kéahler form with respect to G.
Proposition 3.4 We have Kj, = i,w.
Proof Let X,Y € I'(£7E). Then, we have

(i,w)(X,Y) = w(©X,Y) 4+ w(X,0Y) = w(©X,Y) —w(®Y, X)
G(X,JY) ~ G(JX,Y)

Using (3.8), the Kéhler form K has the following coordinate expression with respect to

{00 Va }:
K = GapdV* A XP.

Definition 3.3 Let (E,F) be a Finsler algebroid with fundamental form w. If ¢ : B — R
is a smooth function, then the section grad ¢ € T'(£™E) characterized by

d£¢ = igrad oW (3.11)
1s called the gradient of ¢.

In the above definition, the nondegeneracy of w guarantees the existence and unicity of the
gradient section.

If 3 is a nonzero 1-form on £7E, we denote by A% the section corresponding to w, i.e.,
igrw = B. Also, we can introduce the gradient of ¢ by grad ¢ = (d£¢)*. Since grad¢ € T'(£7E),
we can write it as follows

grad ¢ = (grad ¢)* X, + (grad ¢)*V,. (3.12)



Distinguished Connections on Finsler Algebroids 53

Using (3.2) and (3.11), we get

0 . o O°F o
5¢B (d“¢)(Vs) = (igraa pw)(Vs) = —(grad ¢) By dyP = —(grad ¢)"Gap
which yields
(grad ¢)* = -G’ — 0¢ (3.13)

dyh’
where (G*?) is the inverse matric of (Gap). Similarly, using (3.2), (3.11) and the above equation
we obtain

=(d*$)(Xp) = (igraa ow)(X5)

E e . 2F  OF
ayY (( ) axiays P8 T gxigya oy Las o

i 0
(bl 0 1) 5o

g ))+(grad 6)"Gap,

which gives us

O*F O*F

_ , L0 0¢ ;
o _ af 7 Ay Y oy 7 - v
(grad ¢) g {(p © 7T) Ixi +¢ Iy ((p)‘ om) Oxidys (pﬁ ° ﬂ—) Oxi0y>
8y’Y ) } (3.14)
Plugging (3.13) and (3.14) into (3.12) implies the following local expression for gradient:
¢ 8(;5 8(;5 0*F
o afs af A -
grad¢ = —G —X +§ {(PB ° ) +0V = ((p,\ o) OxidyP
i 0*F oF
=~ (oM gays ~ yr Fs )) }va. (3.15)

Proposition 3.5 Let (E,F) be a Finsler algebroid and f € C*°(M). We have
(i) grad f¥ e T(v£L™E), (i) [C,grad V], = —grad f¥, (iii) pe(grad f¥)(F) = f°.

Proof Since fV = f o is a function with respect to (x'), we have ?—; = 0. From (3.15),
y
we deduce that grad fV has the following coordinate expression:

grad f¥ = QO‘B(p om) (fo.W)Va. (3.16)

ox’
Thus we have (i). The above equation and (2.2) give us

B . o ) o
(y“y( ;ow)Lf ) —gm(p;ow)Lgxi”))vﬁ.

V1, =
[C,grad f¥] Dy i

But using (3.5), we can deduce %ya = aagyﬂ: = 0. Setting this equation in

the above equation implies

) J(f o
[C,grad V]2 = =G (p! o) (gxiW) Vs = —grad f.

Therefore, we have (ii). To prove (iii), we use (3.5) and (3.16) as follows

: A(fom) ; O(fom) OF
\Y __ pafy i ° _ af( i o

pf(gra’df )(]:) _g (pﬂ 7T) Ix p,g(Va)(]:) g (pB 7T) Ixi aya

) O(f o . o(f o

= (o2 g, =y o m 2L — e
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3.1 Conservative endomorphism on Finsler algebroids

Definition 3.4 A horizontal endomorphism h on Finsler algebroid (E,F) is called conser-
vative if df F = 0.

Using (2.7), it is easy to check that h is conservative if and only if

(io )8]:+ 66_]:_
P T i “oyP

0. (3.17)

Proposition 3.6 Let h be a conservative horizontal endomorphism on Finsler algebroid
(E,F). We have d§F =0, where H is the tension of h.

Proof Using (2.8), we can obtain d4F(V,) = 0 and

. oBBN OF
£ — B _ o i
dpF(Xy) = (Ba vy 8y7)8yﬂ' (3.18)

Since h is conservative, differentiating (3.17) with respect to y” we obtain

; 0*F oBs oF 0’°F
L OT) & 4Bl ——— =0. 3.19
(P o) ox'dyY  dy" Oy” *+ Pa dyP oy (8.19)

Contracting the above equation by y? and using homogeneity of F we get

(io )a_]:+ ’YaBga_]:_
Pa T i TY oyY Oy8

(3.20)
Setting the above equation in (3.18) and using (3.17) we deduce d5F(X,) = 0. Therefore
d5F =0.

Lemma 3.2 If w is the fundamental two-form of Finsler algebroid (E,F) and h is a con-
servative horizontal endomorphism on £7E, then

Thw = w + itd‘E}'.
Proof Since h is conservative, we have (3.19). Then, using (3.2) and (3.19) we get

| . ®F ., ®F  _oF
(inw)(Xa, Xs) = (pq, OW)W — (pp OW)W - 28—}’»),(Laﬁ o)

oOB) OF  OB) OF

ayP ay> "y oyN
Also, (2.9) and (2.11) give us
(i2d* F)(Xa, Xp) = 7=

Two above equations yield
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Similarly we get
(inw — i¢d* F) (X, Vs) = (inw)(Xa, X5) = w(hXe, Vs) = w(Xa, Vs),

and
(inw — itd* F)(Va, V5) = 0 = w(Va, Vs).
Corollary 3.1 If w is the fundamental two-form of Finsler algebroid (E,F) and h is a
torsion free conservative horizontal endomorphism on £7E, then

ThW = W.

On any Finsler algebroid there is a spray S, : £ — £™E, which is uniquely determined on
£7E by the formula

is,w = —dfF. (3.21)

This spray is called the canonical spray of the Finsler algebroid. Using (3.8) and the above
equation, the canonical spray S, has the coordinate expression S, = y* X, + S$V,, where

. OF OF . O°F
o _ oaf 7 A _ i v
52 =G (o m) 5 (8y (L2g0m) <pyow>axiay3))

and (G%P) is the inverse matrix of (Gup).

(3.22)

Proposition 3.7 Let S, be the canonical spray and h be a conservative horizontal endo-
morphism on Finsler algebroid (E,F) with the associated semispray S. We have

S — S, = (d,F),

igt

where g, Fpw = df F.

Proof Let h = (X, + BQVB) ® XY S =y*X, + SV, and S, = y* X, + S$V,, where

S& are given by (3.22). Since (iy,w)(X3) = 6;1—;;‘3 = Gup and (iy,w)(Vz) = 0, we have
iy, w = GapX?. Therefore, using (3.22) we get
_ _ o O*F s OF OF ,
15—S W = (S — So)lvaw = (S W — (pB @) W)% — y By (L B @) 7T)
: 0?F
i B
+ (p}, om)y axzﬁyB)X .
From S = hS,, we deduce S = y7Bf. Setting this in the above equation gives us
) . O*F i OF OF ,
isse = (VB g~ (hemga =Y g (s
; 0*F
i v B
+ (pl o)y 3xi8y/3)X .

Since h is conservative, we have (3.17) and (3.19)—(3.20). Using these equations in the above
equation and using (2.11) we get

0B; 0By OF OF
. o B a Y B8 _— yotl 8
_ L _ e _ (L —XF =yt X
15-S.W =Y (aya dyP ( aﬁ”))ayv B gy
_ Ll OF ans_ Byay_ Ly axB _ By
= §ta/38y.y(y A7 —yPxY) = Stop(y " AT =y ) e (Va)(F)
1
= 57:7 (Y X = yP X )iy, d* F = iid* F = df, F =igge pypw.
igt
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3.2 Barthel endomorphism on Finsler algebroids
Let S, be the canonical spray on Finsler algebroid (F,F). We consider

1 _
ho = 5(1r(,£wE) + [, S5 M).

In the coordinate expression, we can obtain

oS
dy®

ho = (Xa + %( YL, om)Vs) @ A (3.23)

From the above equation, we deduce h? = h, and kerh, = v£™E. Thus, h, is a horizontal
endomorphism on £™E which is called Barthel endomorphism. Since Sy is a spray on (E,F),
we can deduce that the Barthel endomorphism is homogeneous.

Proposition 3.8 Let h be a conservative and homogeneous horizontal endomorphism and

ho be the Barthel endomorphism on Finsle algebroid (E,F). We have

1 1
h=ho+ist + 3 [J, (dE . F)% e

ist

Proof Let S be the semispray associated to h and h’ be the horizontal endomorphism
generated by S. Using Theorem 2.2 we get

1 1 .
he = 5(1r(£m) +[J,S0]e) = 5(1r(£wE) + [, 8)e = [, (d5,,. 7)) £)

=W~ 1 (dE P ]fzh—%ist—l[ (dE,F ).

Theorem 3.1 Barthel endomorphism of Finsler algebroid (E,F) is conservative.
Proof Using (3.17), it is sufficient to show that
- OF oOF
Lom)a— +Bi— =0 3.24
(hy o) 5o + B s =0, (3:24)

where B2 = %(i —y" (L5, om)) and 52 are given by (3.22). Using (3.5) we deduce

OF . PF
(i) ay7 =y'G, (i) y W =0. (3.25)

From (i) of (3.25) we derive that

oF 1,088
ga—yﬁ =5 (aya —y"(LE, 0 W)).V”Qu@- (3.26)

Using (3.22) we obtain

05 6 =G (20 (1 0w 2L 4y (2L (12, 0

Oy Oy ox? oy
i 0*F 0*F
—(pyom) 0xi0y° )) Tty ((p” °T) oxioya Oxt Oy
OF , i 0*F . 0*F A\
+a )\(L O’]T) (potoﬂ—)a Zay y ayaay ( 7T)
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» OBF
T(pt _— 3.27
Y o™ gty (3.27)
But (ii) of (3.25) implies
aGhe ,0G o OPF
Y"Gous = —yhGh w8 _ —yHGh 5 =
oy« dy« y*dyrdy
Moreover, we have y'Yy”(Lﬁ om) =0,y 5o g;a oy = affa]; — and y° affa]; = Z%Xf , because
8;?77265 nd g){: are homogeneous of degree 1 and 2, respectively. Therefore, (3.27) reduces to
aS? OF . OF
80(y gﬂ,@ y a )\(L )_2(/)04071—)8)(1"
Setting the above equation in (3.26), we deduce B aafﬁ = —(p¢, o) gf from which we have

(3.24).

Theorem 3.2 Let hy and hs be conservative horizontal endomorphisms on Finsler algebroid
(E,F). If h1 and hy have common strong torsions, then hy = ho.

Proof We denote by S; and Ss the associated semisprays of hy and hs, respectively and
let T7 and Ty be the strong torsions of hy and hs, respectively. From hypothesis we have
df F =df,F =0and Ty = T5. Also, from the last equation in the proof of Proposition 3.7,
]: 252 SoW = d

we deduce ig, _g,w = df F and consequently

i5yt1 15,5 t2

. £
ZSI_SZW - ’LS t1]: d’LS to

F, (3.28)

where ¢; and to are weak torsions of hy and hs, respectively. From the definition of strong
torsion we have

zsltlf dT1 H1]: dT1]:

F = df, F. Setting
this equation together with the above equation in (3.28), we deduce ig, —g,w = di]—" —di]—" =0.

because df;, F = 0, where H is the tension of ;. Similarly we obtain d st
Since w is nondegenerate, this equation gives us S; = S and consequently using Theorem 2.1,
we deduce hy = ho.

From the above results, we understand that Barthel endomorphism is homogeneous, con-
servative and torsion free. Moreover, since Barthel endomorphism is homogeneous and torsion
free, we deduce that its strong torsion is zero. Also, from the above theorem we derive that if
h is a homogeneous, conservative and torsion free horizontal endomorphism, then it is coincide
with Barthel endomorphism. Hence, we have the following theorem.

Theorem 3.3 There exists a unique horizontal endomorphism on Finsler algebroid (E, F)
such that it is homogeneous, conservative and torsion free.

3.3 Cartan tensor on Finsler algebroids

Here, we consider the tensor

{C : F(£’?E) X F(.,ETOFE) —T(£7F), (3.29)
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on Finsler algebroid (E, F) which satisfies
JoC =0, (3.30)
and
G(C(X,Y),JZ) = %(,efgj*g)(?, Z), (3.31)

where X,Y, Z € I'(£7E), and we call it the first Cartan tensor. Also, the lowered tensor C, of
C is defined by

C,(X,Y,2)=G(C(X,Y),JZ), VX,V,ZcT(£7E). (3.32)
(3.30) tells us that C(X,Y) belongs to F(v£’$E). Also, from (3.31) we deduce that C(X,, V3) =
C(Va,Vs) =0 and

10Gsy ny, _ L OF

=—-—__"- g
2 Oy« 2 ayo‘ayﬂang V.

C(Xav Xﬂ) =

Therefore, the first Cartan tensor has the following coordinate expression:
C=ClLx*0x oV, (3.33)

where .
c .= 190G oy _ 1 0°F YA
a9 gy« 2 Oy dyP oy

From (3.33) and the above equation, we can deduce the following proposition.

Proposition 3.9 The first Cartan tensor is semibasic. Moreover, it and ils the lowered
tensor are symmetric tensors.

Using (3.32)—(3.33), we can obtain the following coordinate expression for the lowered tensor:
Cp=Cap, X* @ X’ @ X7,
where
1 PF

_ A - ___ -
Capy = Cagbn = 2 Oy dyPoyr’

Proposition 3.10 If S is a semispray on £7E, we have isC = isC, = 0.

Proof Let Y = YPX; +YPVs and Z = 27X, + Z7V, be sections of £7E. Using (3.25),
we have . ey
sC)(Y,Z) =Cy(8,Y,Z) = -y YFPZ' ———— =0
(15C)(T.2) = C(S.¥. 2) = gy VI st

Similarly, we can prove igC = 0.

Now we consider a horizontal endomorphism ~ on £™ E and the prolongation G of the vertical
metric G along h. The second Cartan tensor

{5: F(,E’CT)E) X F(fgrE) — I(£7E), (3.34)
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(belonging to h) is defined by the rules
JoC=0, (3.35)
SO | JOU
G(C(X,Y),JZ) = §(£h)~(g)(JY,JZ), (3.36)

where )~(, }7, Ze I'(£7E). Also, the lowered tensor (i, of C is defined by

C(X.V,2) = G(C(X.Y),7Z), VX.V,ZcT(£7E). (3.37)

In a way similar to the first Cartan tensor, using (3.35)—(3.36) we can deduce that the second
Cartan tensor has the following coordinate expression:

C=Clx*" X oV, (3.38)
where
5 1/, 0g oG 0B} 883
ng =3 ((pa o ) BM G 4 Bg e ﬁ;u g4 2o Ty g“mgw\) (3.39)
From (3.38), it is easy to see that the second Cartan tensor is semibasic. Moreover, (3.37)—(3.38)
give us
Cr = Capy X R X° @ X7, (3.40)
where
5 5 1/, oG g 86’)‘
Capy = Caplry = 3 ((Pa o) a)f: + B, Dy 2+ QM gﬁx) (3.41)

Proposition 3.11 Let (E,F) be a Finsler algebroid. We have

20,(X°, Y, Z°) = pe(XV)(pe (YY) (p£(Z2Y)F)), (3.42)
26,(X°, Y%, 29) = YV, (X" Z2V]e]e + pe(YY) (pe(ZY) (pe(X")F)). (3.43)

Proof Let X, Y and Z be sections of E. Using the second part of (2.1) we get

2C,(X°, Y9, Z9) = 2(X* o m)(YP 0 1) (Z7 0 7)Cy (X, X, X))
OPF
)ayaﬁyﬁﬁy7
= (X om)(Yom)(Z7 om)pe(Va)(pe(Vs)(pe(Vy)F))
= pe(XV)(pe(YV)(pe(2V)F)).

=X%om)(YPonm)(Z ox

Now we prove (3.43). Direct calculation gives us
WYX 2V el e + pe(YY)(pe(ZY)(pe(X")F))

OBPF oBy O*F
OyPoy oxt = 9y" OyPoy?

= (X om)(YP om)(Z7 om)((ph o)

B, O*F g F )
OyP dyroy* * OyPOy oy

But, using (3.41) we can see that the above equation is equal to 2C,(XC,YC, Z€). Thus, we

have (3.43).
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Proposition 3.12 Let (E,F) be a Finsler algebroid. If h is a torsion free and conservative
horizontal endomorphism on £7E, the lowered second Cartan tensor is symmetric.

Proof (3.41) implies that 50137 is symmetric with respect to last two variables. Then,
it is sufficient to prove that C,g, is symmetric with respect to first two variables. Since h is
conservative, using (3.24) and (i) of (3.25) in (3.41) we obtain

~ 1, 9°B)
— _ _yh_ T T
Caﬁ'y 2}’ ay,@ay,y g),u-

2B 2°B) . . L
= oya 85' <. Setting this equation in the

. . . . 928
Since h is torsion free, using (2.11) we have g5

above equation implies C~'a37 = éﬂw

3.4 Distinguished connections on Finsler algebroids

In this section, we study the existence and uniqueness of the distinguished connections
Berwald, Cartan, Chern-Rund and Hashiguchi and we present some properties of them.

Theorem 3.4 Let (E,F) be a Finsler algebroid and h be a conservative horizontal endo-
morphism on £7FE. There exists a unique d-connection B5 on (E,F) such that the v-mized and

BF
h-mized torsions of D are zero.

BF
Proof There exists a d-connection D on (E, F) such that the v-mixed and h-mixed torsions
BF

of it are zero. If we denote by P! the v-mixed torsion of Bﬁ, then we have
BFl ~  ~ BF ~ ~ BF ~ BF ~ ~ o~
0=P (X,FY)=vT (hX,vY)=v(D,5 vY— D,y hX — [hX,vY]g)
:BB}LX vY — v[hX,vY],
BF BF
where T is the torsion of D. The above equation gives us
D,z vY = v[hX, Y] (3.44)
Since the h-mixed torsion of ?)F is zero, we have
BF ~ ~ BF ~ ~ BF ~ BF ~ ~ ~
0=B (Y ,FX)=hT (hY,vX) = h(Dh? vX—D,x hY — [hY , vX]g)
=~ D, hY —h[hY,0X]s = — D g hY — h[YV,vX] e,
BF BF
where B is the h-mixed torsion of D. The above equation gives us
D g hY = hvX, Y. (3.45)
Since B5 is d-connection, using (3.44), (iv) of (2.6) and (i), (iv) of (2.15) we get
BF ~ BF ~ BF ~ ~ ~
Dh)z hY = F Dh)? JY =F Dh)z vJY = FU[hX,UJY]£
= hF[hX,JY],. (3.46)
Since D is d-connection, (iii)—(iv) of (2.15), (ii), (iv) of (2.6) and (3.45) give us

BF

D5 vY =D ¢ v(wY) =D, g J(FvY) = J D, g hFY = Jh[vX, FY],
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= J[vX,FY]. (3.47)

BF

Relations (3.44)—(3.47) prove the existence and uniqueness of D.

Using (3.44)—(3.47), the d-connection 85 has the following coordinate expression:

BF oBY BF
Ds.0p = =550y, Du,V3 =0,

y (3.48)
BF 8[33 BF ’
D5 Vs = —3—y5Vw Dv, b5 =0.

Proposition 3.13 Let (E,F) be a Finsler algebroid, h be a conservative horizontal endo-
morphism on £ E and B5 be the d-connection given by (3.48). If h-deflection and h-horizontal

BF
torsions of D are zero, h is the Barthel endomorphism.

Proof It is sufficient to show that A is homogeneous and torsion free. Since h-deflection of

BF
(D, h) is zero, we have

oB?
0= 1*(DC)(8) =Dus(C) =Dua(y*Vs) = (BL — ¥ 558 Vs

BF
The above equation shows that h is homogeneous. Also, since the h-horizontal torsion of D is
zero, we get

0 = hT(0a,05) = h(Ds.0s— De,de — [0 05)2)

- h((%% - gz;’% — (L5 0m) 8, — R1,V7)
= 11,5,

From the above equation, we deduce that the weak torsion of h is zero.

If h is the Barthel endomorphism of Finsler algebroid (E, F), the d-connection D given in
(3.48) is called the Berwald connection of (E, F).

Theorem 3.5 Let (E,F) be a Finsler algebroid, h be a torsion free and conservative hor-
izontal endomorphism on £7E and G be the prolongation of G along h. There exists a unique

C C Cc o~
d-connection D on (E,F) such that D is metrical, i.e., D G = 0 and the v-vertical and h-
C
horizontal torsions of D are zero.

C C
Proof There existcs a d-connection (p such that D is metrical and the v-vertical and h-
horizontal torsions of D are zero. Since D is metrical, we have

p£(62)G(05.8,) = G(Ds.08,05) + G35, D5, 05), (3.49)
pe (6ﬂ)§(5V7 604) = g(B(sg&Va 60() + g(é'ya Béﬂdoz); (350)
—p£(5,)G(3as05) = —G(Ds, 00 85) — G (3, Ds, 35)- (3.51)

C
Since the h-horizontal torsion of D is zero, we have

C C
Ds.05— D500 = [0a,0p)e = (L) 50 m)0y + R V5.
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Summing (3.49)—(3.51) and using the above equation give us

9Gsy 2995,
L+ B

ox? +Ba oy?
; 9Ga 9Ga

= (p5om) 3Xf - Biwf — (L3 0 T)9xy — (Lo, 0 T)Grp

— (Lg,}, o w)gw).

aga'y A aga’y
Ixt +Bj oy*

o 1, . }
G(Ds.,08,0,) = 3 ((Pla o) + (ppom)

Since h is torsion free, using (2.11) in the above equation we get
9Gsy 2093y 9Gay 2090y
— +B ’ 2+ B

9%’ +5a dy> + (pB om) Ix’t B oy>
BB[’} 0B
oy® oy®

lc)a dg = lgw((l’i o)
e 2 (o7
0Gas 2 0Gus OB
ox? T oy Oyf

oB) 833 882‘
=+ TQAﬁ - Wgo»\ + (9—y"7ga)‘)5“' (3.52)

- (p; © ﬂ-) g)\'y + g)\'y - g)\ﬁ

Since h is conservative, we have (3.19). Differentiation of this equation with respect to y gives
us
, 9G+a ’B; oF 0B oB; 4 0G0
7 ‘ Y o B ios
(pjs o) oxi T Dy 9ye dyX + Oy Gra + yo Gy + Bj oy
Gse ~ O0°B) oF 0B) OB 4 0Gsa

i os R v
(p% o) oxi | DyPoyo oy + e Gra + Iy G + B5 oy

=0, (3.53)

=0. (3.54)

Setting two above equations in (3.52), we obtain

c 1 - 0Gs 0Gs oB> oB)
— MY 7 i A Yo o «
Dsa9s 2g ((pa o) oxi T Ba oy*  0OyP Gay + oy g’\B)(S"'

(3.55)

C
Since the v-horizontal torsion of D is zero, we have
C C
Dv,Vs— Dy;Va = [Va,Vsle = 0.

If we replace dq, 0g, 0 by Va, V3, V in (3.49)—(3.51), summing these equations and using the
above equation we get

C
g(DvaVB7 V’Y) =

l(agﬂv 9Gay _ 8ga6) _ lagﬁv
2\ Oy« Oy?P oy 2 oy’
which gives us

1 8957

C
V p—
Dv.Vs 2 Oy~

GV, (3.56)

C
Since D is d-connection, using the above equation we obtain
C C C 1 89
Dy, 0 =Dy, FVg =F Dy Vg = 5?@97”:0}“)’
which gives us

l agﬂv

C
5 =
Dv.os 2 Jy®

G, (3.57)
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Similarly, using (3.55) we get
C C C
D5, Vs =Ds,Jog = J D5, 63
1 - 0Gs 0G oB) 88’\
_ T Oopy i ol AYYBy o
39" ((oh o ™) Bt + BAG R = 58 0n, + 58033 ) T (0,),
which gives us
c 1 N 0Gs, OB aBA
Ds, Vs = ng((pa om P | ;2 yﬁ; Gy gm) (3.58)

Relations (3.55)—(3.58) prove the existence and uniqueness of B

Proposition 3.14 Let (E,F) be a Finsler algebroid, h be a torsion free and conservative
C
horizontal endomorphism on £7E and D be the d-connection given by the above theorem. If

C
h-deflection of D s zero, h is the Barthel endomorphism.

Proof It is sufficient to show that h is homogeneous. Since h-deflection of ( B, h) is zero,
using (3.25) and (3.58) we obtain

c C
0= h"(DC)(6a) =Dns.(C) =Ds.(y 'BV,@)
1 ; PF ﬁaB 53 5
— §Q#'y((/)a e} 7T) 8X18y’y - g)\’y y g}\ﬂ)VM + BZVN

Since h is conservative, we have (3.19). Using this equation in the above equation we deduce
2

5 O°F )V

*OyBoy .

oB!
B

ozég*”(— —y’ 3 ﬁgM)v + BV, —%(B

The above equation shows that h is homogeneous.

If h is the Barthel endomorphism of Finsler algebroid (E, F), the d-connection B given by
(3.55)—(3.58) is called the Cartan connection of (E, F).
Using (2.30)—(2.32) and (3.55)—(3.58), we can obtain

Ry == om) (3L OF o OBy
P * 0xt* \2 Jy"dy* dy” oy"
_Bui(agé\ 1 OBy oF /\H)
YOy \dyr = 2 0yr0y* dy”
+ (p} o7r)i,(l 0°By oF 8—33)
A 0x* \2 ByVBy” dy? oy”
o (1 0°BY 883
+ ﬁ Ay (2 oy dy* 8y 8y'V )
N (1 >’By OF 33’5) (1 0’°B, OF ., Q_Bg\x)
2 Qy" oy* Oy” JdyY /) \2 dyHdy° dy* OyH
B (1 0’°BY OF 83&) (1 By OF ., 3_32)
2 dy" 0y* Oy¥ JdyY /) \2 dy*dy° dy* oy
o M)(l B, OF 6_83)_1 p 0 oan.
of 2 dyYdy* dyV oy Rag oy
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Igaﬁi\y ;(Paoﬂ)a (%gyv;gm) %Baafm(%g;; Arg) ;%g;; M(Zl;:
1 8282 oF )\a) o (1 6282 OF . (9Ba)

2 dyHdy°® dy” 8—y5 2 dyYoy* dy” oy”
L 10 oo (aBg 1 9°BY OF ) L0BL 09,1 5
2 Oy?P dyY | 20y19y* Oy 2 0yP dy+ ’
c A 170Gy, 0GM  0G.,. 0G onrn 990 0Guk
aby ™ 5( oy? dy>  dy> OyP ) Z(g g dyP Oy~
xro 09k 0Guo
—g"g Oy> OyP )

Let X and Y be sections of £7E. Using (3.55)—(3.58) we can obtain the following formula for
Cartan connection:

c C ~
D Y =D X ’UY—I— D hY—|— DhX UY—|— DhX hY,

where
Dy 5 hY = hF[hX,JY]; + FC(X,Y), (3.59)
D,z vY = J[uX,FY|; +C(FX,FY), (3.60)
D, 5 hY = hjvX, V] + FC(FX,Y), (3.61)
Dy5 vY = v[hX,v¥]; +C(X, FY). (3.62)

Theorem 3.6 Let (E,F) be a Finsler algebroid, h be a torsion free and conservative hor-
1zontal endomorphism on £7E and G be the prolongation of G along h. Then, there exists a
unique d-connection CDR on (E,F) such that (B is h-metrical, (i.e., VX € D(£7E), (Bh)} G =0),

C C C
J*DR: J*BB and the h-horizontal torsion of DR 1s zero. Moreover, if the h-deflection of DR is
zero, h is the Barthel endomorphism.

Proof There exists a d-connection D on (E F) such that D is h-metrical, J* D J* D and
the h-horizontal torsions of DR is zero. Since D is h-metrical and h-horizontal torsion of D is

zero, similar to the proof of Theorem 3.5 we can deduce

on 1 : 9Gs G 83k aBA
— oMY i vy AYYBy
Déaaﬁ 2g ((pa © 7T) BXi + Ba ay)\ g)\'y g)ﬁ) (363)
Also, since (B is d-connection, the above equation gives us
CR 1 ; 0Gs oG 88’\ 88’\
— o () v ANYYBy
Ds.Vs =59 ((pa om) > T Ba oy QM Qw) (3.64)
CR BF
The condition J*D= J*D and (3.48) give us
CR CR BF BF
Dv Vs =D js.Jog =D js,J0s =Dy, Vs =0, (3.65)

and consequently

CR
Dv.83 = 0. (3.66)
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CR
Relations (3.63)—(3.66) prove the existence and uniqueness of D. The proof of the second part
of the assertion is similar to Proposition 3.14.

If h is the Barthel endomorphism of Finsler algebroid (E, F), the d-connection D given by
(3.63)—(3.66) is called the Chern-Rund connection of (E, F).
Using (2.30)—(2.32) and (3.63)—(3.66), we can get

cr A . 0 (l 8235 oOF }\N+86g‘)
2 0y 0y* Oy¥ ay”

Raﬁ'y: - (pla © 7T) Ix’

o (1 9°By OF By
_ g_(_ B g)\ﬁ_'__ﬁ)
Ay \2 Qy"oy* dy¥ oy”
i o (1 9*B4 OF . OB}
+ (oo W)% (5 oy dy* By”g + B—y"Y)
By (OB DT g 5_33)
Boyr \2 dyrdy* dy” dy”
(1 9°Bj afg#u&l%g)(l 0’°B, OF ., 833)
2 Qy"oy* dyV Oy / \2 dy+dy? dy* oy
v L A
B (1 °BY OF .. 835)(1 OBy OF ., %)
2 0y 0y* Oy¥ oy”

2 dyHdy? dy* dyH
1 82BZ OF . BB;))

H _
+ (Lo‘ﬂ o) (2 dyYoy* dyV oy
o ’\_i(l 0?BY OF . N 833)
B 9y B \2 9y 1dy* dy” oyr /)’

CR A

S apy=0.

Let X and Y be sections of £7E. Then, using (3.63)—(3.66) we can obtain the following formula
for Chern-Rund connection:

CR ~

CR ~ CR ~ Cr ~ CR ~
D)? Y:Dv)? vY + DU)} hY + Dh)? vY + Dh)? hY,

where
Do hY = hF[nX,JV]; + FE(X,Y), (3.67)
D,x oY = JpX FY],, (3.68)
D,z hY =h[pX, V], (3.69)
CDRh;( vY = w[hX,vY]e +C(X,FY). (3.70)

Theorem 3.7 Let (E,F) be a Finsler algebroid, h be a conservative horizontal endomor-
phism on £7E and G be the prolongation of G along h. There exists a unique d-connection B
on (E,F) such that D is v-metrical, (i.c., VX € T(£7E), ZH)U); G = 0) and the v-vertical and

H
v-mized torsions of D are zero.

H H
Proof There exists a d-connection D on (E, F) such that D is v-metrical and the v-vertical

H H H
and v-mixed torsions of D are zero. Since D is v-metrical and the v-vertical torsion of D is
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zero, similar to the proof of Theorem 3.5 we can deduce

i 1
Dv.Vs =3 agﬂcjng (3.71)

Also, since lH) is d-connection, using the above equation we obtain
10
Dv.0s = 5 ag‘ij G, (3.72)

H
Moreover, since the v-mixed torsion of D is zero, we can obtain

H oB!
Ds, Vs = v[ba; Vsle = 8—},5% (3.73)
and consequently
H oB!
Ds, 65 = _6 3 O, (3.74)

because D is d-connection. Relations (3.71)—(3.74) imply the existence and uniqueness of D.

Proposition 3.15 Let (E,F) be a Finsler algebroid, h be a conservative horizontal en-
domorphism on £7E and 5 be the d-connection given by the above theorem. If h-horizontal

H
torsion and h-deflection of D are zero, h is the Barthel endomorphism.

Proof The proof is similar to the proof of Proposition 3.13.

If h is the Barthel endomorphism of Finsler algebroid (E, F), the d-connection B given by
(3.71)—(3.74) is called the Hashiguchi connection of (E, F).
Using (2.30)—(2.32) and (3.71)—(3.74), we can obtain
a A ) 628)\ 628)\ ) aQBA 826)\
7 B B 3 o (]
- _ _ _ Bt _ w
Rapy (Pl o) XLy > Qyrdy +(phom) OxiQy” + By OyHdy”
" A A
OB 0B B oBH 0Bj ey OW)@BN 1o, 0k A
oyt dyY  Jdy? dy* of oy 2 @B gym

H A 8Qw Ak 1 m 0 6g’yﬁ Ak 1 agvﬁ )\n 2
Pagy = (v 0 )axz(ayﬁg )+§Bo‘3—yl‘(8y5g )_gﬁyﬁg ay+
0B 110G,k G OB~ 1 0Gx G OB~

8yf88y"Y 2 OyP oy 2 OyH oyP’
n A 170G, 0GM  9G,, 0G L/ oprn 09v0 0Gu
Sapy = 5( dyP dye  dy> dyP ) * Z(g g dyP Oy~

G 0G
_ OBKOAC YK no
g6 dy> 0yP )

Let X and Y be sections of £7E. Then, using (3.71)~(3.74) we can obtain the following formula
for Hashiguchi connection:

H H ~
DY =D, vY + D hY + DhX vY + DhX LY,
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where

D,z hY =hF[hX,JY],, 3.75

D,z oY = JuX,FY]; +C(FX,FY), 3.76

(3.75)
(3.76)
D, 5 hY = hjvX, Y], + FC(FX,Y), (3.77)
D,z oY = v[hX oY, (3.78)

Theorem 3.8 Let h be the Barthel endomorphism on Finsler algebroid (E,F). Then, the

C
Cartan connection D

C BF
(i) is Chern-Rund connection if J*D= J*D,
C BF
(i) is Hashiguchi connection if h*D=D,
(iii) s Berwald connection if it is the Chern-Rund connection and the Hashiguchi connection

at the same time.
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