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Composition Cesaro Operator on the Normal Weight
Zygmund Space in High Dimensions*
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Abstract Let n > 1 and B be the unit ball in n dimensions complex space C™. Suppose
that ¢ is a holomorphic self-map of B and ¢ € H(B) with ¥(0) = 0. A kind of integral
operator, composition Cesaro operator, is defined by

ToulN) = [ etk G feH(EB), zeB.

In this paper, the authors characterize the conditions that the composition Cesaro
operator T,, y is bounded or compact on the normal weight Zygmund space Z,(B). At the
same time, the sufficient and necessary conditions for all cases are given.
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1 Introduction

Let C™ be the Euclidean space of complex dimension n. For z = (z1,--+,2,) and w =

(w1, ,wy,) in C™, the inner product of z and w is denoted by
(z,w) = 21071 + -+ + 2,0y,

Let B denote the unit ball in C™. The class of all holomorphic functions on B is denoted
by H(B). For f € H(B), the complex gradient Vf and the radial derivative Rf are defined by

VIE) = (§ ) g (@), BIG) = (V)3 = 53 e

j=1

Definition 1.1 A positive continuous function u on [0,1) is called normal if there exist
constants 0 < a < b < oo and 0 < rg <1 such that

(1) % is decreasing on [ro,1); (2) %
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is increasing on [ro, 1).
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Such as, pu(r) = (1 —7r)*(log lir)ﬂ(loglog f_i)w (>0, B and 7 real) and

(2n — 2)!! )— 1 1,1 1
1—r), 1-=< 1——(— )
() ((Qn—l)” (1=7) n_T< 2 n+n—|—1
1 =
(2n)!!(n+1)) b 1(1 1 ) 1
N e 1- (= <r<l-
( (2n + )N (T=r)", 2 n+n—|—1 =TS n+1
(n=1,2,---, b>a > 0) are the normal functions.

Without loss of generality, let 7o = 0 in this paper.
Let D be the disc in complex plane C. If f € H(D) and sup(1 — |z|*)|f"(z)| < oo, then f
z€D

is said to belong to the Zygmund space Z(D). In fact, the function 1 — |z|?> may be regarded
as a kind of weight function. Later, the space is called as the Zygmund type space ZP(D) if
the weight function 1 — |2|? is generalized to (1 — |2|?)P (p > 0). In this paper, we generalize
2

the weight function 1 — |z|* to the normal function p(|z|), and generalize the variable from one

complex variable to several complex variables.

Definition 1.2 Let p be a normal function on [0,1). A function f is said to belong to the
normal weight Zygmund space Z,(B) if f € H(B) and

151 = sup i) 525 azja% 2)| < oo

It is easy to prove that Z,(B) is a Banach space under the norm

"9
1712, = 15O+ Y [SE @] + 11
=1

In particular, it is just the Zygmund space Z(B) when u(r) = 1 — r? or the Zygmund type
space ZP(B) when u(r) = (1 —7?)? (0 <p < 00).
When n > 1, we gave several equivalent norms of Z,(B) in [1]. About various Zygmund

type spaces, there have been a lot of work for examples see [1-27].

Definition 1.3 Let u be a normal function on [0,1). f € H(B) is said to belong to the
normal weight Bloch space B, (B) if f € H(B) and

A lls, = 1f(O)]+ sup u(lzNIV f(2)] < oo

In particular, it is just the Bloch space B(B) when pu(r) =1 —r2.

In the complex plane, the Cesaro operator is defined by

C(f)(z):i(aoﬁ-a;i.l..—i—aj)zj’ where f(z ZaszEH
j=0

It is known that C(f =1 fo (t)(log = t) dt. Therefore, the Cesaro operator C(-) is

extended to the weighted Cesaro operator as follows:

- / T fg(0dt, f e H(D),
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where ¢ is a given analytic function.

In several complex variables, the extended Cesaro operator is defined by

1
T,0E) = [ SRS 1< ()

where ¢ is a given holomorphic function on B with g(0) = 0.

No matter one complex variables or several complex variables, many mathematicians have
done a lot of research on various Cesaro type operators. For example, see [2-4, 6-7, 9-10, 17,
24-25, 28-42]. In practical applications, we often encounter the combination of Cesaro type
operator and composition operator. In this paper, we consider the following composition Cesaro

type operator.

Definition 1.4 Let ¢ = (p1,--+ ,¢n) be a holomorphic self-map of B and ¢ € H(B) with
¥(0) = 0. The composition Cesaro type operator is defined by

1
Tow0)G) = [ TR S, feH(B), 2 € B

If o(2) = 2z, then T,  is just the extended Cesaro operator Ty. The purpose of this paper
is to characterize the conditions that the composition Cesaro type operator 7., 4 is bounded
or compact on Z,(B) when n > 1, and to give the sufficient and necessary conditions for
all cases. Ultimately, this problem can be transformed into a kinds of weighted composition
operator problem from the normal weight Zygmund space to the normal weight Bloch space in
high dimensions. Many scholars have discussed similar problems (see [4, 16, 18, 26-27] etc.).
However, so far, for abstract normal weight pu, especially in high dimensions, the sufficient and
necessary conditions for T, , to be bounded or compact on Z,,(B) have not been given.

In this paper, we use the symbols ¢, ¢1, 2, ¢3, ¢4 to denote positive constants independent of
variables z, w. But they may depend on some parameters or fixed values, with different values
in different cases. We say that two quantities £ and I are equivalent (denoted by “E =< F” in
the following ) if there exist two positive constants A; and Ay such that A1 E < F < AF.

2 Some Lemmas

Let 1 be a normal function on [0,1) and

1 t dp
Uu(t) _/14(0)_'—‘/0 ,U(p)\/lTp’ 0<t<1.

For any u € C?, let Gf(u) = g— When 0 # z € B, let

=

—~
(e

N

G*(u) = 1 {N2(|z|) luf? + (1_ N2(|Z|)) |<z,u>|2}

on(lzl)/ |zf?
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When z # 0, we may decompose u to u = Ut +uQ§ with (z,§) = 0 and £ € 9B. By

computation, it is clear that

(u,2) 2 2 2 |U1| |U2|2
Uy = ,ouz = (u,8),  |ult = |ur]® + fuelt, GE(u) = + :
|2 p2(|z])  on(lz))
t t
dr w(t) dr
1—tb(1+/ )g < 1—t“(1—|—/ 7) 2.1
-0 [ ) s e 00 [ (2.1)
1
Therefore, there is a constant ¢ > 0 such that "0 < T forall 0 <t < 1.
o
1 1
. af -l—ag 1 1 1
It is known that ———= < (a1 + a2)® < a? + a3 for all a3 > 0 and ag > 0. Therefore,
G = w2l | ol
lzu(lz])  ou(lz])

1
Further, by (2.1), there exists 3 < to < 1 such that

Ll |l el
(#(|Zl) %(IZI))< Gelw) < (,u(|z|)+aﬂ(|z|)) hen fo <[] <1. = (2.2)

For more information on this metric, see [20-21, 43-44]. In order to prove the main results,
we first give some lemmas.
Lemma 2.1 Let p be a normal function on [0,1) and f € H(B). Then the following

conditions are equivalent:
(1) f e Z,.(B).
(2) I = [f(0)| + Supu(l NIR® f(2)| < oo, where R f = R(R).

(3) I = [£(0)] +Supu(| ) IV(Rf)(2)] < oo.

(4) I3 = |f(0)] + Z ‘ ‘—l—iggW}t(z) < 00, where

(VO 0

Wh(z) = sup ; ! :
f weCn- {0}; VG ) 0z

Further, Iy < I < I3 < ||f||z,, and the controlling constants are independent of f. In
particular, Iy <||f||z,.

Proof These results come from [1, Theorem 3.1] and [20, Lemma 2.1].
Lemma 2.2 Let p1 be a normal function on [0,1). If f € Z,(B), then

rse e [ ks )il
\

Wi e(i+ [ ks )iz

|f(z)|<c{1+/0z( Opﬁ dp:)dp}llfllzw z € B.
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Proof These results comes from [2].

Lemma 2.3 Let p be a normal function on [0,1) and
g&) =1+ 2°¢™, ¢eD.
s=1

Then g(r) is strictly increasing on [0,1) and

inf u(r)g(r) = No >0, sup p(|€])|g(§)| = Mo < oo,
rel0,1) £eD

where ng is the integer part of (1 —rs)™Y, 70 =0, pu(rs) =27° (s =1,2,---).
Proof These results come from [45, Theorem 1].

Lemma 2.4 Let p be a normal function on [0,1). Suppose that k is a positive integer. Let

0 <79 <1 be a fired number. Then

/IWI dt /wk dt
o w) o pt)
[w] dt ‘w‘k dt

o VI—tu(t) Jo  VT—tu(t)’

[ = [ (e

when ro < |w| < 1.

Proof The first two results come from [19, Lemma 2.5]. Notice that
‘w‘k Podt
— )d
/0 (/0 u(t)) ’
[w] z d
4 2k—2
= ——— | |w dz
L et
w] z 1— b d
Y Y 2k—2
> w dz
= [ () ) )
2k—2 Jw| T
> o 5 / (/ ﬂ)dac
k 0 0 KY)

This shows that the third result also holds.

Lemma 2.5 Let p be normal on [0,1). If the sequence {f;(2)} is bounded on Z,(B) and

converges to O uniformly on any compact subset of B.

1
dt
(1) If/ —— < 00, then lim sup |V f;(z)] =0 = lim sup |f;(2)|.
0 M(t) J=% zeB J=% eB

(2) If/ol (/OP %)dp< 00, then lim sup|f;(z)] = 0.

)7 zeB

Proof These results comes from [2].
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Lemma 2.6 Let p be normal on [0,1) such that

[ s

For 0 <ro <1and f € Z,(B), if [Vf(2)| < m when |z| < ro, then there exists constant
¢ > 0 such that

_ 1 P d
(1Bl <mdfl, [ ([ mT=)
for all rg < |z| <1, where §& € OB with (z,£) = 0.

Proof By a unitary transformation, we may let z = (|z|,0,---,0) with |z] < 1 and £ =

(0,1,0,---,0). For fixed 0 < p < 1, we let h(n) = D1(Rf)(p,n,0,---,0). If f € Z,(B), then
by Lemma 2.1 we have

alfllz, _ ellfllz, _ adllfllz,

v/ p? +l22f?) p(y/ 28 w(p)

[h(z2)] <

_ 2

for all |23]? <

Therefore, for any ro < |z| < 1 and 0 <t < |z|, we may obtain
|D2 R.f)( 30)_D2(Rf)(030770)|
[ dﬂ\

:27r‘/ /wrh(w)2 )df’}

t dp
o VI—pulp)

< callfllz,

When ro < |z| < 1, we have

|<Vf(z),€>| = |D2f(|Z|707 70)'
)
_ % roDaf(ro, 0, 0)+ | Da(RF)(E0,---,0) dt

|| To

<mt dllfllz, / ([t ae

3 Boundedness of T

Theorem 3.1 Let i1 be a normal function on [0,1). Forn > 1, suppose that o = (01, ,¢n)
is a holomorphic self-map of B and ¢ € H(B) with ¢(0) = 0. Then T, y is a bounded operator
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on Z,,(B) if and only if the following results hold:

sup (DR () RoL), )] [ o TR (3.1)
Sggu(IZI)IRw(Z)IIRSO(Z)I{l [ / #)dp} <o, 3.2)
jggu(|z|)|R(2)1/,(z)|{1 + /OISO(Z)I (/OP %)dp} < 00, (3.3)

where Rp(z) = (Rp1(2),- -+, Ron(2)).

Proof First, we prove sufficiency.

For any f € Z,,(B), we have

(V) le(2)], Bo(D) — (V)(0), Bol2))
/0 1D flrol:)]) dr

-2 M
> [ (9D B

By Lemmas 2.1-2.2 and (2.2), we may obtain

w(2D I RE (Y D)l (2)], Rp())
< {u(2) |Re() | Re(=) 1|2,

+ lp(=) (DI R (2) / 1 (§|<V<sz>[w<z>1,m>|)dt
< {2 | Re ()| Re(=) 1|2,

T elp() ()| R (2 / Gl Ro(2)] )17,

lo(2)] 2 oz s
L R e e L [/ PR

If (3.1)—(3.3) hold, then by Lemma 2.2 and (3.4) we have

ull2)IRP T4 (£)(2)]] = nl2) RIS © o(2) R (2)]]
=p(|2)| R (2) flo(2)] + RU()((V)lp(2)], Re(2))]

()
<ullDIR@ {1+ [ N I f))dp 1£1lz,
\
(I

o(z

(Ro(2), ()] , |Re(2)
TR Jat}ifll,

{
+ alDIReEI{IReE) + | o)

<allfllz,-

This shows that T, , is bounded on Z,(B) by Lemma 2.1.
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Conversely, if T, ,, is a bounded operator on Z,(B), then ¢ € Z,(B) by taking fo(z) =1 €

Z,(B). At the same time, we have

p(lzD Ry (2)|| R (2)]

n

<Y u(l2DIRe(2) Reu(2)] =Y ull2])|Rli(2) Rep(2)] — i(2) R (2))|
=1 =1

<> NTpw(foo)llz, +nllvlz, (3.5)
=1

by taking fo;(z) =z € Z,(B) for any [ € {1,2,--- ,n} and Lemma 2.1.
If there is always |¢(2)| < to (o is the number in (2.2)), then (3.1)—(3.3) hold by (3.5) and
€ Z,(B). If ||¢]|oc = sup|e(z)| > to, then for any 0 # w € B with |¢(w)| > to we take
z€B

£ol) :2/0«7(711)2(2,@(10)) (/Opg(t) (hL)dp_/O(zmo(w))2 (/Opg(t) dt)dp,

where g is the function in Lemma 2.3.
By Lemmas 2.3-2.4, it is clear that (V f,)[¢(w)] = (0,0,---,0) and

falotw) = [ e ([ o0 at)ar= [ N | =5)e (3.6)

By Lemma 2.3 and the definitions of p and g, we have

(I DIR® fu(2)]
I

= ‘2|s0 (2, 0(w))*g(lp(w)*(z, p(w))) — 4(z, o(w))*g((z, p(w))?)

[o(w)]*(z,(w)) (z,0(w))?
+ 20p(w)] (2 p(w)) / 9(p) dp — Az, p(w))? / o(p) dp

|z
< 6u(|z])g(l2]) + 6u()]) / 9(p) dp < 12M,.

This shows that || fu||z, < c by Lemma 2.1.
By the boundedness of T, ,, Lemma 2.1 and (3.6), we have

ATl 2 1Tl fullzy > T fu)l|2,
> p(|w) [RP [Ty (fu)] (w)
— ()| RD(w) fulp(w)]|
5 [o(w)] o dt
> aup(fu) ROu(w)] [ ( / ). (3.7)

(3.7) and ¢ € Z,(B) show that (3.3) holds.

Similarly, if we take

£ol) :/O(z>so(1ff)>2 (/Opg(t) dt)dp_/oso(w)ﬂz,w(w» (/Opg(t) dt)dp,
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then we may obtain

[ (w)]
)| R ()| [ {Replw), o(w) / % < [Tyl

This shows that (3.1) holds.

We write Ro(w) = 7;%([})') + u2€, where (p(w), &) = 0 with £ € 9B. Take

foe) =t [ ([,

It is clear that f,[p(w)] =0 and

_ ple@)? e
(Vfw)lp(w)] =¢ /0 ( ) f/(?__di)dp. (3.8)

1
Since [(z,&)]? + |(2, 20)|? < |2|> < 1 and |p(w)| > to > 3 then

(o0 < YT D@ o@D _, A=y, (59)

|p(w)]
Therefore, by Lemma 2.3 and (3.9), we have

<Z’€>/O<z,w(w)>( OP %)dp

e g(p) dp (2,62, 0(w))?g((z, p(w)))
3<z,§><z,<p(w)>/0 JT—p " 1— (2, p(w)) ‘

[(z,¢(w))
< 2=V @] /

u(|2)IR® fu(2)] = p(z])

(t) dt
(), =)
[{(z,p(w))|
+ 6u(]z]) 1—|<Z,‘P(w)>|/0 %

2p(lzD) V1 = 1€z, p(w))] 9(I(z, p(w))])
1= (2, ¢(w))] B

This means that ||f,||z, < ¢ by Lemma 2.1.
By the boundedness of T, ,, and (3.8), Lemmas 2.3-2.4, we have

p(w )>|
\ww)\2
(D Rl (Retw). &) "9 )
p(w)|
> 3 u(fl) | Rep () | / ([ M(t)j%)dp
w [ (w)] P
- clu<|w|>|Rw<w>|¢ Reo - e [ ([

w w [ (w)] 14
> expl|wl) | R (w)] (| Re(2)] - M / / d

A Tppll = p(wD RY )V fu) [p(w)], R

(&)

‘2
v
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tobirseiree) [ ([ ML\/—)dP

lo(w)]
< oo |[Typll + esp(|w])| R (w)|[(Re(w I/ dp - (3.10)

By (2.1), (3.1), (3.5) and (3.10), this means that (3.2) holds.
The proof is completed.

Corollary 3.1 Let p be a normal function on [0,1). For n > 1, suppose ¢ € H(B) with
¥(0) = 0. Then the extended Cesaro operator Ty, is a bounded operator on Z,,(B) if and only if

sup (D iRo [

z€B

H
sup pu(|2]) R (2)| / / )dp < ox.
z€EB

Proof By (2.1), it is clear that

e .

Therefore, if p(z) = z, then (3.2) is redundant in Theorem 3.1.

Note 3.1 In general, the above two conditions in Corollary 3.1 are not independent. Let

a be the parameter in the definition of p. If |z] — 17, then we have

2| 5 |2l z 2
[t e [

This means that Ty, is bounded on Z,(B) if and only if ¢ € B(B) when a > 2. Otherwise, it is
1
dt
clear that T, is bounded on Z,(B) if and only if ¢ € Z,(B) when / PG < o0
o H

4 Compactness of T, ,,

Theorem 4.1 Let p be a normal function on [0,1). For n > 1, suppose that ¢ is a
holomorphic self-map of B and v € H(B) with 1¥(0) =
(1) If ll¢lloo < 1 or fo < 00, then T, is a compact operator on Z,(B) if and only if
Y e Z,(B) and
M = sup ()| R () | R (2)| < o (4.1)

(2) If ||¢lleo = 1 and fo (fy o) ﬁ)dp <oo= fl udi)’ then T, is a compact operator
on Z,,(B) if and only if v € Z,,(B), (4.1) holds and

. lp(2)] dt B
L dm DIRGE I Re ) 0] [ -0 (42)
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(3) If ll¢llec = 1 and fol( « #d(i )Jdp < 00 = fo (Jy o t)\/—)dp, then T, is a compact
operator on Z,,(B) if and only if ¢ € Z,,(B), (4.1)-(4.2) hold and

(=) dt
lm a(DIReEIRR) [ / =0 (43)
(4) If l|¢lleec = 1 and fol( « u%i )dp = oo, then T,y is a compact operator on Z,(B) if
and only if ¥ € Z,(B), (4.1)~(4.3) hold and
() gt
(2) _
dm(eDiR@u) [ ([ 5= (4.4

Proof First, we prove sufficiency.

Let {f;(2)} be a sequence which converges to 0 uniformly on any compact subset of B and
|fillz, <1. Then {|Vf;(2)[} has the same uniformly convergence.

(1) () Case [[¢]loc < 1.

If ¢ € Z,(B) and (4.1) holds, then by Lemma 2.1 we have

Ty (f)ll 2. = [T (£5)(0 )I+SHPM(IZI)IR( [T (f5)1(2)]
< sup w12 RP9 ()1 f5lp ()] + sup p(l2DIRG )V ) (2)], Re(2))]

<I[¥llz, suwp [fj(w)]+M sup [|Vfj(w)] =0, j—=oc.
wl<llelloo wl<llelleo

(ii) Case fol % < 0.
If ¢ € Z,,(B) and (4.1) holds, then by Lemmas 2.1 and 2.5 we have
1Tew(fillz, < iz, sup |fslp(2)]l + eM sup [(V ;) le(2)]]

< c[|Yl|z, sup |fj(w)| +cM sup [V f;(w)] =0, j— oo.
weB weB
1
(2) If (4.2) holds, then for any £ > 0, there exists 3 < 6 < 1 such that

le(2)]
HDIROEIRR. o) [ o< when lp(a)] > b (45)

By fo (Jy o t)\/—)dp < oo and Lemma 2.6, there is a § < 79 < 1 such that

{(VI)le(2)), ) < sup IVfj(w) + el fjl|z,e < sup IV fi(w)] + ce, (4.6)
where & € OB with (p(z2),£) = 0.
If Y € Z,(B) and (4.1)-(4.2) hold, then by Lemmas 2.1-2.2, (4.5)-(4.6) and

(Ro(2), 0(2))

Bel) = 1P

p(2) + (Rp(2),§) &,
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we have

Tep(fi)llz, < clldllz, sup [filp()]l + csup u(zDIBY )V )l (2)], Bo(2))]

<z, jgglfj[ p(z )]|+cM sup |V f;(w)]

|w| <8
(=) dt
o s u(DRUCIRA) )] [
lo(2)|>5
+ceM sup [((Vf)le(2)],6)
o (2)]>6
< CHwHZM Su% |fj(’w)| —+ CQM ‘Sl‘lpé |ij(U1)| + (CBM + Cl)r‘f.
we w S

This shows that limsup [T, (f;)||z, < (c3sM + c1)e by Lemma 2.5. Therefore, it implies that
j—o0

lim [T, (f;)]|z, = 0 by the arbitrariness of €.
j—o0
(3) If v € Z,(B), (4.1)-(4.3) hold, then by the proof in (2), Lemma 2.5, (3.4) and

T (fi)llz. < cll¥llz, jlelglfj[ () + M sup. IV fj(w)]

[w|<

le(2)]
+ e ;ll)p>6ﬂ(|z|)|R1/’(z)||<R<P(Z)v@(2)>|/O Mo)

lo(2)] dt
oo s DIRUINRAGN [ ([7 orrs )ao

we have lim [T, ,(f;)||z, = 0.
J—o0
(4) If ¢y € Z,(B), (4.1)-(4.4) hold, then by the method of proof in (2), (3.4) and

T (Fi)ll 2, < clldllz, S Ifg( ) +aM S IV fi(w)

+ o sup p(]z])[R®( I/ / )dp
6 (2)[ >0

\sa
+oes sup p(l2)RY()(Rel2), 0(2))] /

le(2)[>8

lo(2)] dt
b s DRI / ( / W)dﬂa

we have 11}1{.10 |Tp,0(fi)llz, =0.

In a vjvord, we have lim ||T, 4(f;)||z, = 0 for all cases. This means that T,y is a compact
operator on Z,(B) by ‘leeoobasic theory of functional analysis.

Conversely, if T, is a compact operator on Z,(B), then T, ;4 is bounded on Z,(B). By
Theorem 3.1, it is clear that ¢ € Z,(B) and (4.1) holds.

This means that (1) is true.

Let {27} C B is a sequence with lim |¢(z7)| =1 and |p(27)| > to (j = 1,2,---).
j—00
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(2) We just need to prove that (4.2) holds. Let g be the function in Lemma 2.3. We choose

function sequence as follows:

Jy £z ap (z0(=)) 2
fi(z) = W’ where Fj(z) = (/ g(t) dt) .
Jo dt 0
It is clear that Rf;(z) = B Therefore, it is easy to prove that ||f;[|z, < c and

j‘\‘/’(zj)\2 (t)
{fj(2)} converges to 0 uniformly on any compact subset of B by Lemmas 2.1 and 2.3. At the

same time, we have

, 23 (2 le(27)?
RIf; 0 )() = () 2Z)) / (47)

EGLE 9(t) dt.

By Lemma 2.1 and ¢ € Z,(B), (4.7) and Lemmas 2.3-2.5, the compactness of T, y, we

have
0 ITps(F)llz, + 1]z, sup )
WD RSEIRLE, o )
) ) ) ) lo(z7)]
> eu(|9) | R (Rl ol27))| / & s

This shows that (4.2) holds.

) I (27 o o
3) We just need to prove (4.3). Let Rp(z7) = ulnp(g ) + ud€ with (p(27),£&7) = 0 and
(2 :
& €0B (j=1,2,---). We take function sequence

{fo(z,sa(zj) (fp g(t) dt) }2'
ISD(Z] (J"P g(t )

It is easy to prove that ||f;||z, < ¢ and {f;(2)} converges to 0 uniformly on any compact
subset of B by (3.9), Lemmas 2.1 and 2.3-2.4. Otherwise, we have

fi(z) = (2,€)

. o rleED? P
Rlfiodl() = (ro).6 [ ([ 90 (45)

By Lemma 2.1 and (4.8), ¢ € Z,(B) and Lemmas 2.3-2.5, the compactness of T, ,, we

h
h lim (|| Re(2)|(Re(2), €)] /W)' / — T Ydp=0 (4.9)
(=) =1~ (HVI—t

with (p(z),£) =0 and & € 9B.

By (2.1), (4.2), (4.9) and |Ro(2)| = [(Re(2), 0(2))] + [(Re(2), §)| (Ie(2)] > to), it is clear
that (4.3) holds.

(4) All that remains is to prove (4.4). We take function sequence

U™ (f 9 dt)ap)”

fJ(Z) = \%’ 29)|2 (fo B )
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Then ||f;]|z, < c and {f;(2)} converges to 0 uniformly on any compact subset of B by

simple calculation. At the same time, we have

_ _ o pleEhP
R[fj o pl(27) = 2(Rep(27), w(z3)>/0 g(t) dt. (4.10)

By Lemmas 2.1, 2.3 2.4, ¢ € Z,(B), (4.2), (4.10) and the compactness of T, ,, it is clear
that

‘ ‘ ‘ . [p (27
0 T (£3)2, + cm<lz]|>IR¢<ZJ>||<R*"(Z”’W”'/0 %

, , , . lp(=?
> T (fi)ll2, + 2u(|zjI)IRw(zJ)IKRsD(zJ%w(zj)>|/O 9(p) dp

> (|9 ) [R@(=9)| / e / (1) dt)dp
202M(|Zj|)|R(2)¢(Zj)|/O o (/Op%)dm j — oco.

This shows that (4.4) holds.
The proof is completed.

Corollary 4.1 Let u be normal on [0,1). Forn > 1, suppose ¢ € H(B) with ¥(0) =
(1) If fl #‘%i) < 0o, then Ty is compact on Z,(B) if and only if Y € Z,,(B).

) If fo ( Op Hd’;))dp < oo = fo u(t then Ty, is a compact operator on Z,(B) if and only

ifz/J € Z,(B) and

. |z dt B
Jim p(=)IROE) [ =0 (4.11)

) If fol ( P #‘%’é))dp = 00, then Ty is compact on Z,(B) if and only if (4.11) holds and

|| 14 dt
Jim (=) RO 2| / (| Z5)a=0 (4.12)

Proof By taking ¢(z) = z in Theorem 4.1, it is easy to obtain these results. Otherwise, if
(4.12) holds, then ¢ € Z,,(B).

Note 4.1 If a > 2, then Ty is a compact operator on Z,,(B) if and only if ¢ € By(B) (the
little Bloch space on B).
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