Composition Cesàro Operator on the Normal Weight Zygmund Space in High Dimensions*

Si XU¹ Xuejun ZHANG² Shenlian LI¹

Abstract Let n > 1 and B be the unit ball in n dimensions complex space $\mathbf{C}^{\mathbf{n}}$. Suppose that φ is a holomorphic self-map of B and $\psi \in H(B)$ with $\psi(0) = 0$. A kind of integral operator, composition Cesàro operator, is defined by

$$T_{\varphi,\psi}(f)(z) = \int_0^1 f[\varphi(tz)]R\psi(tz)\frac{\mathrm{d}t}{t}, \quad f \in H(B), \ z \in B.$$

In this paper, the authors characterize the conditions that the composition Cesàro operator $T_{\varphi,\psi}$ is bounded or compact on the normal weight Zygmund space $\mathcal{Z}_{\mu}(B)$. At the same time, the sufficient and necessary conditions for all cases are given.

 Keywords Normal weight Zygmund space, Composition Cesàro operator, Boundedness and compactness
 2000 MR Subject Classification 32A36, 47B38

1 Introduction

Let $\mathbf{C}^{\mathbf{n}}$ be the Euclidean space of complex dimension n. For $z=(z_1,\cdots,z_n)$ and $w=(w_1,\cdots,w_n)$ in $\mathbf{C}^{\mathbf{n}}$, the inner product of z and w is denoted by

$$\langle z, w \rangle = z_1 \overline{w_1} + \dots + z_n \overline{w_n}.$$

Let B denote the unit ball in \mathbb{C}^n . The class of all holomorphic functions on B is denoted by H(B). For $f \in H(B)$, the complex gradient ∇f and the radial derivative Rf are defined by

$$\nabla f(z) = \left(\frac{\partial f}{\partial z_1}(z), \cdots, \frac{\partial f}{\partial z_n}(z)\right), \quad Rf(z) = \langle \nabla f(z), \overline{z} \rangle = \sum_{j=1}^n z_j \frac{\partial f}{\partial z_j}(z).$$

Definition 1.1 A positive continuous function μ on [0,1) is called normal if there exist constants $0 < a \le b < \infty$ and $0 \le r_0 < 1$ such that

(1)
$$\frac{\mu(r)}{(1-r)^a}$$
 is decreasing on $[r_0,1)$; (2) $\frac{\mu(r)}{(1-r)^b}$ is increasing on $[r_0,1)$.

Manuscript received October 8, 2019. Revised May 8, 2020.

¹College of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China. E-mail: 372613910@qq.com 1493351705@qq.com

²Corresponding author. College of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China. E-mail: xuejunttt@263.net

^{*}This work was supported by the National Natural Science Foundation of China (No. 11571104) and the Hunan Provincial Innovation Foundation for Postgraduate (No. CX2018B286).

Such as, $\mu(r) = (1-r)^{\alpha} \left(\log \frac{e}{1-r}\right)^{\beta} \left(\log \log \frac{e^2}{1-r}\right)^{\gamma}$ $(\alpha > 0, \beta \text{ and } \gamma \text{ real})$ and

$$\mu_1(r) = \begin{cases} \left(\frac{(2n-2)!!}{(2n-1)!!}\right)^{b-a} (1-r)^a, & 1 - \frac{1}{n} \le r < 1 - \frac{1}{2} \left(\frac{1}{n} + \frac{1}{n+1}\right), \\ \left(\frac{(2n)!!(n+1)}{(2n+1)!!}\right)^{b-a} (1-r)^b, & 1 - \frac{1}{2} \left(\frac{1}{n} + \frac{1}{n+1}\right) \le r < 1 - \frac{1}{n+1} \end{cases}$$

 $(n=1,2,\cdots,\ b>a>0)$ are the normal functions.

Without loss of generality, let $r_0 = 0$ in this paper.

Let D be the disc in complex plane ${\bf C}$. If $f\in H(D)$ and $\sup_{z\in D}(1-|z|^2)|f''(z)|<\infty$, then f is said to belong to the Zygmund space ${\mathcal Z}(D)$. In fact, the function $1-|z|^2$ may be regarded as a kind of weight function. Later, the space is called as the Zygmund type space ${\mathcal Z}^p(D)$ if the weight function $1-|z|^2$ is generalized to $(1-|z|^2)^p$ (p>0). In this paper, we generalize the weight function $1-|z|^2$ to the normal function $\mu(|z|)$, and generalize the variable from one complex variable to several complex variables.

Definition 1.2 Let μ be a normal function on [0,1). A function f is said to belong to the normal weight Zygmund space $\mathcal{Z}_{\mu}(B)$ if $f \in H(B)$ and

$$||f||_{\mu} = \sup_{z \in B} \mu(|z|) \sum_{k=1}^{n} \sum_{j=1}^{n} \left| \frac{\partial^2 f}{\partial z_j \partial z_k}(z) \right| < \infty.$$

It is easy to prove that $\mathcal{Z}_{\mu}(B)$ is a Banach space under the norm

$$||f||_{\mathcal{Z}_{\mu}} = |f(0)| + \sum_{l=1}^{n} \left| \frac{\partial f}{\partial z_{l}}(0) \right| + ||f||_{\mu}.$$

In particular, it is just the Zygmund space $\mathcal{Z}(B)$ when $\mu(r) = 1 - r^2$ or the Zygmund type space $\mathcal{Z}^p(B)$ when $\mu(r) = (1 - r^2)^p \ (0 .$

When n > 1, we gave several equivalent norms of $\mathcal{Z}_{\mu}(B)$ in [1]. About various Zygmund type spaces, there have been a lot of work for examples see [1–27].

Definition 1.3 Let μ be a normal function on [0,1). $f \in H(B)$ is said to belong to the normal weight Bloch space $\mathcal{B}_{\mu}(B)$ if $f \in H(B)$ and

$$||f||_{\mathcal{B}_{\mu}} = |f(0)| + \sup_{z \in B} \mu(|z|) |\nabla f(z)| < \infty.$$

In particular, it is just the Bloch space $\mathcal{B}(B)$ when $\mu(r) = 1 - r^2$.

In the complex plane, the Cesàro operator is defined by

$$C(f)(z) = \sum_{j=0}^{\infty} \left(\frac{a_0 + a_1 + \dots + a_j}{j+1}\right) z^j, \quad \text{where } f(z) = \sum_{j=0}^{\infty} a_j z^j \in H(D).$$

It is known that $C(f)(z) = \frac{1}{z} \int_0^z f(t) \left(\log \frac{1}{1-t}\right)' dt$. Therefore, the Cesàro operator $C(\cdot)$ is extended to the weighted Cesàro operator as follows:

$$T_g(f)(z) = \int_0^z f(t)g'(t)dt, \quad f \in H(D),$$

where g is a given analytic function.

In several complex variables, the extended Cesàro operator is defined by

$$T_g(f)(z) = \int_0^1 f(tz)Rg(tz)\frac{\mathrm{d}t}{t}, \quad f \in H(B),$$

where g is a given holomorphic function on B with g(0) = 0.

No matter one complex variables or several complex variables, many mathematicians have done a lot of research on various Cesàro type operators. For example, see [2–4, 6–7, 9–10, 17, 24–25, 28–42]. In practical applications, we often encounter the combination of Cesàro type operator and composition operator. In this paper, we consider the following composition Cesàro type operator.

Definition 1.4 Let $\varphi = (\varphi_1, \dots, \varphi_n)$ be a holomorphic self-map of B and $\psi \in H(B)$ with $\psi(0) = 0$. The composition Cesàro type operator is defined by

$$T_{\varphi,\psi}(f)(z) = \int_0^1 f[\varphi(tz)]R\psi(tz)\frac{\mathrm{d}t}{t}, \quad f \in H(B), \ z \in B.$$

If $\varphi(z) = z$, then $T_{\varphi,\psi}$ is just the extended Cesàro operator T_{ψ} . The purpose of this paper is to characterize the conditions that the composition Cesàro type operator $T_{\varphi,\psi}$ is bounded or compact on $\mathcal{Z}_{\mu}(B)$ when n > 1, and to give the sufficient and necessary conditions for all cases. Ultimately, this problem can be transformed into a kinds of weighted composition operator problem from the normal weight Zygmund space to the normal weight Bloch space in high dimensions. Many scholars have discussed similar problems (see [4, 16, 18, 26–27] etc.). However, so far, for abstract normal weight μ , especially in high dimensions, the sufficient and necessary conditions for $T_{\varphi,\psi}$ to be bounded or compact on $\mathcal{Z}_{\mu}(B)$ have not been given.

In this paper, we use the symbols c, c_1, c_2, c_3, c_4 to denote positive constants independent of variables z, w. But they may depend on some parameters or fixed values, with different values in different cases. We say that two quantities E and F are equivalent (denoted by " $E \times F$ " in the following) if there exist two positive constants A_1 and A_2 such that $A_1E \leq F \leq A_2E$.

2 Some Lemmas

Let μ be a normal function on [0,1) and

$$\frac{1}{\sigma_{\mu}(t)} = \frac{1}{\mu(0)} + \int_{0}^{t} \frac{\mathrm{d}\rho}{\mu(\rho)\sqrt{1-\rho}}, \quad 0 \le t < 1.$$

For any $u \in \mathbf{C}^{\mathbf{n}}$, let $G_0^{\mu}(u) = \frac{|u|^2}{\mu^2(0)}$. When $0 \neq z \in B$, let

$$G_z^\mu(u) = \frac{1}{\mu^2(|z|)} \Big\{ \frac{\mu^2(|z|)}{\sigma_u^2(|z|)} \; |u|^2 + \Big(1 - \frac{\mu^2(|z|)}{\sigma_u^2(|z|)}\Big) \; \frac{|\langle z, u \rangle|^2}{|z|^2} \Big\}.$$

When $z \neq 0$, we may decompose u to $u = u_1 \frac{z}{|z|} + u_2 \xi$ with $\langle z, \xi \rangle = 0$ and $\xi \in \partial B$. By computation, it is clear that

$$u_{1} = \frac{\langle u, z \rangle}{|z|}, \quad u_{2} = \langle u, \xi \rangle, \quad |u|^{2} = |u_{1}|^{2} + |u_{2}|^{2}, \quad G_{z}^{\mu}(u) = \frac{|u_{1}|^{2}}{\mu^{2}(|z|)} + \frac{|u_{2}|^{2}}{\sigma_{\mu}^{2}(|z|)},$$

$$(1-t)^{b} \left(1 + \int_{0}^{t} \frac{d\tau}{(1-\tau)^{b+\frac{1}{2}}}\right) \leq \frac{\mu(t)}{\sigma_{\mu}(t)} \leq (1-t)^{a} \left(1 + \int_{0}^{t} \frac{d\tau}{(1-\tau)^{a+\frac{1}{2}}}\right). \tag{2.1}$$

Therefore, there is a constant c > 0 such that $\frac{1}{\sigma_{c}(t)} \le \frac{c}{u(t)}$ for all $0 \le t < 1$.

It is known that $\frac{a_1^{\frac{1}{2}} + a_2^{\frac{1}{2}}}{2} \le (a_1 + a_2)^{\frac{1}{2}} \le a_1^{\frac{1}{2}} + a_2^{\frac{1}{2}}$ for all $a_1 \ge 0$ and $a_2 \ge 0$. Therefore,

$$\sqrt{G_z^\mu(u)} \; \asymp \; \frac{|\langle u,z\rangle|}{|z|\mu(|z|)} + \frac{|\langle u,\xi\rangle|}{\sigma_\mu(|z|)}.$$

Further, by (2.1), there exists $\frac{1}{2} < t_0 < 1$ such that

$$\frac{1}{4} \left(\frac{|\langle z, u \rangle|}{\mu(|z|)} + \frac{|u|}{\sigma_{\mu}(|z|)} \right) \le \sqrt{G_z^{\mu}(u)} \le \frac{3}{2} \left(\frac{|\langle z, u \rangle|}{\mu(|z|)} + \frac{|u|}{\sigma_{\mu}(|z|)} \right) \quad \text{when} \quad t_0 < |z| < 1. \tag{2.2}$$

For more information on this metric, see [20-21, 43-44]. In order to prove the main results, we first give some lemmas.

Lemma 2.1 Let μ be a normal function on [0,1) and $f \in H(B)$. Then the following conditions are equivalent:

- (1) $f \in \mathcal{Z}_{\mu}(B)$.
- (2) $I_1 = |f(0)| + \sup_{z \in B} \mu(|z|)|R^{(2)}f(z)| < \infty$, where $R^{(2)}f = R(Rf)$. (3) $I_2 = |f(0)| + \sup_{z \in B} \mu(|z|) |\nabla(Rf)(z)| < \infty$.
- (4) $I_3 = |f(0)| + \sum_{i=1}^{n} \left| \frac{\partial f}{\partial z_j}(0) \right| + \sup_{z \in B} W_f^{\mu}(z) < \infty$, where

$$W_f^{\mu}(z) = \sup_{u \in \mathbf{C}^{\mathbf{n}} - \{0\}} \sum_{l=1}^n \frac{|\langle \nabla (D_l f)(z), \overline{u} \rangle|}{\sqrt{G_z^{\mu}(u)}}, \quad D_l = \frac{\partial}{\partial z_l}.$$

Further, $I_1 \approx I_2 \approx I_3 \approx ||f||_{\mathcal{Z}_{\mu}}$, and the controlling constants are independent of f. In particular, $I_1 \leq ||f||_{\mathcal{Z}_{\mu}}$.

Proof These results come from [1, Theorem 3.1] and [20, Lemma 2.1].

Lemma 2.2 Let μ be a normal function on [0,1). If $f \in \mathcal{Z}_{\mu}(B)$, then

$$|Rf(z)| \le c \left(\int_0^{|z|} \frac{1}{\mu(t)} dt \right) ||f||_{\mathcal{Z}_{\mu}},$$

$$|\nabla f(z)| \le c \left(1 + \int_0^{|z|} \frac{1}{\mu(t)} dt \right) ||f||_{\mathcal{Z}_{\mu}},$$

$$|f(z)| \le c \left\{ 1 + \int_0^{|z|} \left(\int_0^{\rho} \frac{1}{\mu(t)} dt \right) d\rho \right\} ||f||_{\mathcal{Z}_{\mu}}, \quad z \in B.$$

Proof These results comes from [2].

Lemma 2.3 Let μ be a normal function on [0,1) and

$$g(\xi) = 1 + \sum_{s=1}^{\infty} 2^s \ \xi^{n_s}, \quad \xi \in D.$$

Then g(r) is strictly increasing on [0,1) and

$$\inf_{r \in [0,1)} \mu(r)g(r) = N_0 > 0, \quad \sup_{\xi \in D} \mu(|\xi|)|g(\xi)| = M_0 < \infty,$$

where n_s is the integer part of $(1-r_s)^{-1}$, $r_0 = 0$, $\mu(r_s) = 2^{-s}$ $(s = 1, 2, \cdots)$.

Proof These results come from [45, Theorem 1].

Lemma 2.4 Let μ be a normal function on [0,1). Suppose that k is a positive integer. Let $0 < r_0 < 1$ be a fixed number. Then

$$\begin{split} & \int_0^{|w|} \frac{\mathrm{d}t}{\mu(t)} \asymp \int_0^{|w|^k} \frac{\mathrm{d}t}{\mu(t)}, \\ & \int_0^{|w|} \frac{\mathrm{d}t}{\sqrt{1-t}\mu(t)} \asymp \int_0^{|w|^k} \frac{\mathrm{d}t}{\sqrt{1-t}\mu(t)}, \\ & \int_0^{|w|} \Big(\int_0^\rho \frac{\mathrm{d}t}{\mu(t)} \Big) \mathrm{d}\rho \asymp \int_0^{|w|^k} \Big(\int_0^\rho \frac{\mathrm{d}t}{\mu(t)} \Big) \mathrm{d}\rho \end{split}$$

when $r_0 < |w| < 1$.

Proof The first two results come from [19, Lemma 2.5]. Notice that

$$\int_{0}^{|w|^{k}} \left(\int_{0}^{\rho} \frac{\mathrm{d}t}{\mu(t)} \right) \mathrm{d}\rho
= \int_{0}^{|w|} \left(\int_{0}^{x} \frac{\mathrm{d}y}{\mu(|w|^{k-1}y)} \right) |w|^{2k-2} \, \mathrm{d}x
\ge \int_{0}^{|w|} \left(\int_{0}^{x} \left(\frac{1-y}{1-|w|^{k-1}y} \right)^{b} \frac{\mathrm{d}y}{\mu(y)} \right) |w|^{2k-2} \, \mathrm{d}x
\ge \frac{r_{0}^{2k-2}}{k^{b}} \int_{0}^{|w|} \left(\int_{0}^{x} \frac{\mathrm{d}y}{\mu(y)} \right) \mathrm{d}x.$$

This shows that the third result also holds.

Lemma 2.5 Let μ be normal on [0,1). If the sequence $\{f_j(z)\}$ is bounded on $\mathcal{Z}_{\mu}(B)$ and converges to 0 uniformly on any compact subset of B.

(1) If
$$\int_0^1 \frac{\mathrm{d}t}{\mu(t)} < \infty$$
, then $\lim_{j \to \infty} \sup_{z \in B} |\nabla f_j(z)| = 0 = \lim_{j \to \infty} \sup_{z \in B} |f_j(z)|$.

(2) If
$$\int_0^1 \left(\int_0^\rho \frac{\mathrm{d}t}{\mu(t)} \right) \mathrm{d}\rho < \infty$$
, then $\lim_{j \to \infty} \sup_{z \in B} |f_j(z)| = 0$.

Proof These results comes from [2].

Lemma 2.6 Let μ be normal on [0,1) such that

$$\int_0^1 \left(\int_0^\rho \frac{\mathrm{d}t}{\mu(t)\sqrt{1-t}} \right) \mathrm{d}\rho < \infty.$$

For $0 < r_0 < 1$ and $f \in \mathcal{Z}_{\mu}(B)$, if $|\nabla f(z)| \le m$ when $|z| \le r_0$, then there exists constant c > 0 such that

$$|\langle \nabla f(z), \overline{\xi} \rangle| \le m + c||f||_{\mathcal{Z}_{\mu}} \int_{r_0}^1 \left(\int_0^{\rho} \frac{\mathrm{d}t}{\mu(t)\sqrt{1-t}} \right) \mathrm{d}\rho$$

for all $r_0 < |z| < 1$, where $\xi \in \partial B$ with $\langle z, \xi \rangle = 0$.

Proof By a unitary transformation, we may let $z = (|z|, 0, \dots, 0)$ with |z| < 1 and $\xi = (0, 1, 0, \dots, 0)$. For fixed $0 \le \rho < 1$, we let $h(\eta) = D_1(Rf)(\rho, \eta, 0, \dots, 0)$. If $f \in \mathcal{Z}_{\mu}(B)$, then by Lemma 2.1 we have

$$|h(z_2)| \le \frac{c_1||f||_{\mathcal{Z}_{\mu}}}{\mu(\sqrt{\rho^2 + |z_2|^2})} \le \frac{c_1||f||_{\mathcal{Z}_{\mu}}}{\mu(\sqrt{\frac{\rho^2 + 1}{2}})} \le \frac{c_1 4^b ||f||_{\mathcal{Z}_{\mu}}}{\mu(\rho)}$$

for all $|z_2|^2 \le \frac{1-\rho^2}{2}$.

Therefore, for any $r_0 < |z| < 1$ and $0 \le t \le |z|$, we may obtain

$$|D_2(Rf)(t,0,\cdots,0) - D_2(Rf)(0,0,\cdots,0)|$$

$$= \left| \int_0^t h'(0) \, d\rho \right|$$

$$= \frac{1}{2\pi} \left| \int_0^t \left(\int_{|w| = \sqrt{\frac{1-\rho^2}{2}}} \frac{h(w) \, dw}{w^2} \right) d\rho \right|$$

$$\leq c_2 ||f||_{\mathcal{Z}_\mu} \int_0^t \frac{d\rho}{\sqrt{1-\rho} \, \mu(\rho)}.$$

When $r_0 < |z| < 1$, we have

$$\begin{aligned} |\langle \nabla f(z), \overline{\xi} \rangle| &= |D_2 f(|z|, 0, \dots, 0)| \\ &= \frac{1}{|z|} \Big| r_0 D_2 f(r_0, 0, \dots, 0) + \int_{r_0}^{|z|} D_2 (Rf)(t, 0, \dots, 0) \, dt \Big| \\ &\leq m + c||f||_{\mathcal{Z}_{\mu}} \int_{r_0}^1 \Big(\int_0^{\rho} \frac{dt}{\mu(t)\sqrt{1-t}} \Big) d\rho. \end{aligned}$$

3 Boundedness of $T_{\varphi,\psi}$

Theorem 3.1 Let μ be a normal function on [0,1). For n>1, suppose that $\varphi=(\varphi_1,\cdots,\varphi_n)$ is a holomorphic self-map of B and $\psi\in H(B)$ with $\psi(0)=0$. Then $T_{\varphi,\psi}$ is a bounded operator

on $\mathcal{Z}_{\mu}(B)$ if and only if the following results hold:

$$\sup_{z \in B} \mu(|z|) |R\psi(z)| |\langle R\varphi(z), \varphi(z) \rangle| \int_{0}^{|\varphi(z)|} \frac{\mathrm{d}\rho}{\mu(\rho)} < \infty, \tag{3.1}$$

$$\sup_{z \in B} \mu(|z|)|R\psi(z)||R\varphi(z)| \left\{ 1 + \int_0^{|\varphi(z)|} \left(\int_0^\rho \frac{\mathrm{d}t}{\mu(t)\sqrt{1-t}} \right) \mathrm{d}\rho \right\} < \infty, \tag{3.2}$$

$$\sup_{z \in B} \mu(|z|)|R^{(2)}\psi(z)|\left\{1 + \int_0^{|\varphi(z)|} \left(\int_0^\rho \frac{\mathrm{d}t}{\mu(t)}\right) \mathrm{d}\rho\right\} < \infty,\tag{3.3}$$

where $R\varphi(z) = (R\varphi_1(z), \cdots, R\varphi_n(z)).$

Proof First, we prove sufficiency.

For any $f \in \mathcal{Z}_{\mu}(B)$, we have

$$\langle (\nabla f)[\varphi(z)], \overline{R\varphi(z)} \rangle - \langle (\nabla f)(0), \overline{R\varphi(z)} \rangle$$

$$= \sum_{l=1}^{n} R\varphi_{l}(z) \int_{0}^{1} \frac{\mathrm{d}}{\mathrm{d}t} \{ D_{l}f[t\varphi(z)] \} \, \mathrm{d}t$$

$$= \sum_{l=1}^{n} \varphi_{l}(z) \int_{0}^{1} \langle \nabla (D_{l}f)[t\varphi(z)], \overline{R\varphi(z)} \rangle \, \mathrm{d}t.$$

By Lemmas 2.1-2.2 and (2.2), we may obtain

$$\mu(|z|)|R\psi(z)||\langle(\nabla f)[\varphi(z)], \overline{R\varphi(z)}\rangle|$$

$$\leq \{\mu(|z|)|R\psi(z)||R\varphi(z)|\}||f||_{\mathcal{Z}_{\mu}}$$

$$+ |\varphi(z)|\mu(|z|)|R\psi(z)| \int_{0}^{1} \left(\sum_{l=1}^{n} |\langle\nabla(D_{l}f)[t\varphi(z)], \overline{R\varphi(z)}\rangle|\right) dt$$

$$\leq \{\mu(|z|)|R\psi(z)||R\varphi(z)|\}||f||_{\mathcal{Z}_{\mu}}$$

$$+ c_{1}|\varphi(z)|\mu(|z|)|R\psi(z)| \left(\int_{0}^{1} \sqrt{G_{t\varphi(z)}^{\mu}[R\varphi(z)]} dt\right)||f||_{\mathcal{Z}_{\mu}}$$

$$\leq c_{2}\mu(|z|)|R\psi(z)| \left\{|R\varphi(z)| + \int_{0}^{|\varphi(z)|} \left(\frac{|\langle R\varphi(z), \varphi(z)\rangle|}{\mu(t)} + \frac{|R\varphi(z)|}{\sigma_{\mu}(t)}\right) dt\right\}||f||_{\mathcal{Z}_{\mu}}. \tag{3.4}$$

If (3.1)–(3.3) hold, then by Lemma 2.2 and (3.4) we have

$$\mu(|z|)|R^{(2)}[T_{\varphi,\psi}(f)(z)]| = \mu(|z|)|R[f \circ \varphi(z)R\psi(z)]|$$

$$=\mu(|z|)|R^{(2)}\psi(z)f[\varphi(z)] + R\psi(z)\langle(\nabla f)[\varphi(z)], \overline{R\varphi(z)}\rangle|$$

$$\leq \mu(|z|)|R^{(2)}\psi(z)|\Big\{1 + \int_0^{|\varphi(z)|} \Big(\int_0^\rho \frac{\mathrm{d}t}{\mu(t)}\Big)\mathrm{d}\rho\Big\}||f||_{\mathcal{Z}_\mu}$$

$$+ c\mu(|z|)|R\psi(z)|\Big\{|R\varphi(z)| + \int_0^{|\varphi(z)|} \Big(\frac{|\langle R\varphi(z), \varphi(z)\rangle|}{\mu(t)} + \frac{|R\varphi(z)|}{\sigma_\mu(t)}\Big)\mathrm{d}t\Big\}||f||_{\mathcal{Z}_\mu}$$

$$\leq c_1||f||_{\mathcal{Z}_\mu}.$$

This shows that $T_{\varphi,\psi}$ is bounded on $\mathcal{Z}_{\mu}(B)$ by Lemma 2.1.

Conversely, if $T_{\varphi,\psi}$ is a bounded operator on $\mathcal{Z}_{\mu}(B)$, then $\psi \in \mathcal{Z}_{\mu}(B)$ by taking $f_0(z) = 1 \in \mathcal{Z}_{\mu}(B)$. At the same time, we have

$$\mu(|z|)|R\psi(z)||R\varphi(z)|$$

$$\leq \sum_{l=1}^{n} \mu(|z|)|R\psi(z)R\varphi_{l}(z)| = \sum_{l=1}^{n} \mu(|z|)|R[\varphi_{l}(z)R\psi(z)] - \varphi_{l}(z)R^{(2)}\psi(z)|$$

$$\leq c \sum_{l=1}^{n} ||T_{\varphi,\psi}(f_{0,l})||_{\mathcal{Z}_{\mu}} + n||\psi||_{\mathcal{Z}_{\mu}}$$
(3.5)

by taking $f_{0,l}(z) = z_l \in \mathcal{Z}_{\mu}(B)$ for any $l \in \{1, 2, \dots, n\}$ and Lemma 2.1.

If there is always $|\varphi(z)| \le t_0$ (t_0 is the number in (2.2)), then (3.1)–(3.3) hold by (3.5) and $\psi \in \mathcal{Z}_{\mu}(B)$. If $||\varphi||_{\infty} = \sup_{z \in B} |\varphi(z)| > t_0$, then for any $0 \ne w \in B$ with $|\varphi(w)| > t_0$ we take

$$f_w(z) = 2 \int_0^{|\varphi(w)|^2 \langle z, \varphi(w) \rangle} \left(\int_0^{\rho} g(t) \, dt \right) d\rho - \int_0^{\langle z, \varphi(w) \rangle^2} \left(\int_0^{\rho} g(t) \, dt \right) d\rho,$$

where g is the function in Lemma 2.3.

By Lemmas 2.3–2.4, it is clear that $(\nabla f_w)[\varphi(w)] = (0,0,\cdots,0)$ and

$$f_w[\varphi(w)] = \int_0^{|\varphi(w)|^4} \left(\int_0^{\rho} g(t) \, dt \right) d\rho \approx \int_0^{|\varphi(w)|} \left(\int_0^{\rho} \frac{dt}{\mu(t)} \right) d\rho. \tag{3.6}$$

By Lemma 2.3 and the definitions of μ and g, we have

$$\mu(|z|)|R^{(2)}f_w(z)|$$

$$= \mu(|z|) \Big| 2|\varphi(w)|^4 \langle z, \varphi(w) \rangle^2 g(|\varphi(w)|^2 \langle z, \varphi(w) \rangle) - 4\langle z, \varphi(w) \rangle^4 g(\langle z, \varphi(w) \rangle^2)$$

$$+ 2|\varphi(w)|^2 \langle z, \varphi(w) \rangle \int_0^{|\varphi(w)|^2 \langle z, \varphi(w) \rangle} g(\rho) \, d\rho - 4\langle z, \varphi(w) \rangle^2 \int_0^{\langle z, \varphi(w) \rangle^2} g(\rho) \, d\rho \Big|$$

$$\leq 6\mu(|z|)g(|z|) + 6\mu(|z|) \int_0^{|z|} g(\rho) \, d\rho \leq 12M_0.$$

This shows that $||f_w||_{\mathcal{Z}_{\mu}} \leq c$ by Lemma 2.1.

By the boundedness of $T_{\varphi,\psi}$, Lemma 2.1 and (3.6), we have

$$c||T_{\varphi,\psi}|| \ge ||T_{\varphi,\psi}|| ||f_{w}||_{\mathcal{Z}_{\mu}} \ge ||T_{\varphi,\psi}(f_{w})||_{\mathcal{Z}_{\mu}}$$

$$\ge \mu(|w|)|R^{(2)}[T_{\varphi,\psi}(f_{w})](w)|$$

$$= \mu(|w|)|R^{(2)}\psi(w)f_{w}[\varphi(w)]|$$

$$\ge c_{1}\mu(|w|)|R^{(2)}\psi(w)|\int_{0}^{|\varphi(w)|} \left(\int_{0}^{\rho} \frac{\mathrm{d}t}{\mu(t)}\right) \mathrm{d}\rho. \tag{3.7}$$

(3.7) and $\psi \in \mathcal{Z}_{\mu}(B)$ show that (3.3) holds.

Similarly, if we take

$$f_w(z) = \int_0^{\langle z, \varphi(w) \rangle^2} \left(\int_0^\rho g(t) \, dt \right) d\rho - \int_0^{|\varphi(w)|^2 \langle z, \varphi(w) \rangle} \left(\int_0^\rho g(t) \, dt \right) d\rho,$$

then we may obtain

$$\mu(|w|)|R\psi(w)||\langle R\varphi(w), \varphi(w)\rangle| \int_0^{|\varphi(w)|} \frac{\mathrm{d}\rho}{\mu(\rho)} \le c||T_{\varphi,\psi}||.$$

This shows that (3.1) holds.

We write $R\varphi(w) = \frac{u_1\varphi(w)}{|\varphi(w)|} + u_2\xi$, where $\langle \varphi(w), \xi \rangle = 0$ with $\xi \in \partial B$. Take

$$f_w(z) = \langle z, \xi \rangle \int_0^{\langle z, \varphi(w) \rangle} \left(\int_0^{\rho} \frac{g(t) dt}{\sqrt{1-t}} \right) d\rho.$$

It is clear that $f_w[\varphi(w)] = 0$ and

$$(\nabla f_w)[\varphi(w)] = \overline{\xi} \int_0^{|\varphi(w)|^2} \left(\int_0^{\rho} \frac{g(t) \, \mathrm{d}t}{\sqrt{1-t}} \right) \mathrm{d}\rho. \tag{3.8}$$

Since $|\langle z, \xi \rangle|^2 + |\langle z, z_0 \rangle|^2 \le |z|^2 < 1$ and $|\varphi(w)| > t_0 > \frac{1}{2}$, then

$$|\langle z, \xi \rangle| \le \frac{\sqrt{(|z| + |\langle z, z_0 \rangle|)(|\varphi(w)||z| - |\langle z, \varphi(w) \rangle|)}}{\sqrt{|\varphi(w)|}} < 2\sqrt{1 - |\langle z, \varphi(w) \rangle|}. \tag{3.9}$$

Therefore, by Lemma 2.3 and (3.9), we have

$$\begin{split} \mu(|z|)|R^{(2)}f_w(z)| &= \mu(|z|) \Big| \langle z, \xi \rangle \int_0^{\langle z, \varphi(w) \rangle} \Big(\int_0^\rho \frac{g(t) \, \mathrm{d}t}{\sqrt{1-t}} \Big) \mathrm{d}\rho \\ &+ 3 \langle z, \xi \rangle \langle z, \varphi(w) \rangle \int_0^{\langle z, \varphi(w) \rangle} \frac{g(\rho) \, \mathrm{d}\rho}{\sqrt{1-\rho}} + \frac{\langle z, \xi \rangle \langle z, \varphi(w) \rangle^2 g(\langle z, \varphi(w) \rangle)}{\sqrt{1-\langle z, \varphi(w) \rangle}} \Big| \\ &\leq 2 \mu(|z|) \sqrt{1-|\langle z, \varphi(w) \rangle|} \int_0^{|\langle z, \varphi(w) \rangle|} \Big(\int_0^\rho \frac{g(t) \, \mathrm{d}t}{\sqrt{1-t}} \Big) \mathrm{d}\rho \\ &+ 6 \mu(|z|) \sqrt{1-|\langle z, \varphi(w) \rangle|} \int_0^{|\langle z, \varphi(w) \rangle|} \frac{g(\rho) \, \mathrm{d}\rho}{\sqrt{1-\rho}} \\ &+ \frac{2 \mu(|z|) \sqrt{1-|\langle z, \varphi(w) \rangle|} g(|\langle z, \varphi(w) \rangle|)}{\sqrt{|1-\langle z, \varphi(w) \rangle|}} \leq 10 M_0. \end{split}$$

This means that $||f_w||_{\mathcal{Z}_{\mu}} \leq c$ by Lemma 2.1.

By the boundedness of $T_{\varphi,\psi}$ and (3.8), Lemmas 2.3–2.4, we have

$$c||T_{\varphi,\psi}|| \ge \mu(|w|)|R\psi(w)||\langle(\nabla f_w)[\varphi(w)], \overline{R\varphi(w)}\rangle|$$

$$= \mu(|w|)|R\psi(w)||\langle R\varphi(w), \xi\rangle| \int_0^{|\varphi(w)|^2} \left(\int_0^{\rho} \frac{g(t) dt}{\sqrt{1-t}}\right) d\rho$$

$$\ge c_1 \mu(|w|)|R\psi(w)||u_2| \int_0^{|\varphi(w)|} \left(\int_0^{\rho} \frac{dt}{\mu(t)\sqrt{1-t}}\right) d\rho$$

$$= c_1 \mu(|w|)|R\psi(w)|\sqrt{|R\varphi(z)|^2 - \frac{|\langle R\varphi(w), \varphi(w)\rangle|^2}{|\varphi(w)|^2}} \int_0^{|\varphi(w)|} \left(\int_0^{\rho} \frac{dt}{\mu(t)\sqrt{1-t}}\right) d\rho$$

$$\ge c_1 \mu(|w|)|R\psi(w)|\left(|R\varphi(z)| - \frac{|\langle R\varphi(w), \varphi(w)\rangle|}{|\varphi(w)|}\right) \int_0^{|\varphi(w)|} \left(\int_0^{\rho} \frac{dt}{\mu(t)\sqrt{1-t}}\right) d\rho$$

$$\Rightarrow \mu(|w|)|R\psi(w)||R\varphi(w)| \int_{0}^{|\varphi(w)|} \left(\int_{0}^{\rho} \frac{\mathrm{d}t}{\mu(t)\sqrt{1-t}} \right) \mathrm{d}\rho$$

$$\leq c_{2}||T_{\varphi,\psi}|| + c_{3}\mu(|w|)|R\psi(w)||\langle R\varphi(w), \varphi(w)\rangle| \int_{0}^{|\varphi(w)|} \frac{\mathrm{d}\rho}{\sigma_{\mu}(\rho)}. \tag{3.10}$$

By (2.1), (3.1), (3.5) and (3.10), this means that (3.2) holds.

The proof is completed.

Corollary 3.1 Let μ be a normal function on [0,1). For n > 1, suppose $\psi \in H(B)$ with $\psi(0) = 0$. Then the extended Cesàro operator T_{ψ} is a bounded operator on $\mathcal{Z}_{\mu}(B)$ if and only if

$$\begin{split} \sup_{z \in B} \mu(|z|) |R\psi(z)| & \int_0^{|z|} \frac{\mathrm{d}\rho}{\mu(\rho)} < \infty, \\ \sup_{z \in B} \mu(|z|) |R^{(2)}\psi(z)| & \int_0^{|z|} \Big(\int_0^\rho \frac{\mathrm{d}t}{\mu(t)} \Big) \mathrm{d}\rho < \infty. \end{split}$$

Proof By (2.1), it is clear that

$$\int_0^\rho \frac{\mathrm{d}t}{\mu(t)\sqrt{1-t}} \le \frac{1}{\mu(\rho)} \quad \text{for all } 0 \le \rho < 1.$$

Therefore, if $\varphi(z) = z$, then (3.2) is redundant in Theorem 3.1.

Note 3.1 In general, the above two conditions in Corollary 3.1 are not independent. Let a be the parameter in the definition of μ . If $|z| \to 1^-$, then we have

$$\int_0^{|z|} \frac{\mu(|z|) \, dt}{\mu(t)} \approx 1 - |z|, \quad a > 1, \qquad \int_0^{|z|} \left(\int_0^{\rho} \frac{\mu(|z|)}{\mu(t)} \, dt \right) d\rho \approx (1 - |z|)^2, \quad a > 2.$$

This means that T_{ψ} is bounded on $\mathcal{Z}_{\mu}(B)$ if and only if $\psi \in \mathcal{B}(B)$ when a > 2. Otherwise, it is clear that T_{ψ} is bounded on $\mathcal{Z}_{\mu}(B)$ if and only if $\psi \in \mathcal{Z}_{\mu}(B)$ when $\int_{0}^{1} \frac{\mathrm{d}t}{u(t)} < \infty$.

4 Compactness of $T_{\varphi,\psi}$

Theorem 4.1 Let μ be a normal function on [0,1). For n > 1, suppose that φ is a holomorphic self-map of B and $\psi \in H(B)$ with $\psi(0) = 0$.

(1) If $||\varphi||_{\infty} < 1$ or $\int_0^1 \frac{dt}{\mu(t)} < \infty$, then $T_{\varphi,\psi}$ is a compact operator on $\mathcal{Z}_{\mu}(B)$ if and only if $\psi \in \mathcal{Z}_{\mu}(B)$ and

$$M = \sup_{z \in R} \mu(|z|)|R\psi(z)||R\varphi(z)| < \infty. \tag{4.1}$$

(2) If $||\varphi||_{\infty} = 1$ and $\int_0^1 \left(\int_0^{\rho} \frac{dt}{\mu(t)\sqrt{1-t}} \right) d\rho < \infty = \int_0^1 \frac{dt}{\mu(t)}$, then $T_{\varphi,\psi}$ is a compact operator on $\mathcal{Z}_{\mu}(B)$ if and only if $\psi \in \mathcal{Z}_{\mu}(B)$, (4.1) holds and

$$\lim_{|\varphi(z)| \to 1^{-}} \mu(|z|) |R\psi(z)| |\langle R\varphi(z), \varphi(z) \rangle| \int_{0}^{|\varphi(z)|} \frac{\mathrm{d}t}{\mu(t)} = 0. \tag{4.2}$$

(3) If $||\varphi||_{\infty} = 1$ and $\int_0^1 \left(\int_0^{\rho} \frac{dt}{\mu(t)} \right) d\rho < \infty = \int_0^1 \left(\int_0^{\rho} \frac{dt}{\mu(t)\sqrt{1-t}} \right) d\rho$, then $T_{\varphi,\psi}$ is a compact operator on $\mathcal{Z}_{\mu}(B)$ if and only if $\psi \in \mathcal{Z}_{\mu}(B)$, (4.1)-(4.2) hold and

$$\lim_{|\varphi(z)| \to 1^{-}} \mu(|z|) |R\psi(z)| |R\varphi(z)| \int_{0}^{|\varphi(z)|} \left(\int_{0}^{\rho} \frac{\mathrm{d}t}{\mu(t)\sqrt{1-t}} \right) \mathrm{d}\rho = 0. \tag{4.3}$$

(4) If $||\varphi||_{\infty} = 1$ and $\int_0^1 \left(\int_0^{\rho} \frac{dt}{\mu(t)} \right) d\rho = \infty$, then $T_{\varphi,\psi}$ is a compact operator on $\mathcal{Z}_{\mu}(B)$ if and only if $\psi \in \mathcal{Z}_{\mu}(B)$, (4.1)-(4.3) hold and

$$\lim_{|\varphi(z)| \to 1^{-}} \mu(|z|) |R^{(2)}\psi(z)| \int_{0}^{|\varphi(z)|} \left(\int_{0}^{\rho} \frac{\mathrm{d}t}{\mu(t)} \right) \mathrm{d}\rho = 0.$$
 (4.4)

Proof First, we prove sufficiency.

Let $\{f_j(z)\}$ be a sequence which converges to 0 uniformly on any compact subset of B and $||f_j||_{\mathcal{Z}_{\mu}} \leq 1$. Then $\{|\nabla f_j(z)|\}$ has the same uniformly convergence.

(1) (i) Case $||\varphi||_{\infty} < 1$.

If $\psi \in \mathcal{Z}_{\mu}(B)$ and (4.1) holds, then by Lemma 2.1 we have

$$||T_{\varphi,\psi}(f_j)||_{\mathcal{Z}_{\mu}} \approx |T_{\varphi,\psi}(f_j)(0)| + \sup_{z \in B} \mu(|z|)|R^{(2)}[T_{\varphi,\psi}(f_j)](z)|$$

$$\leq \sup_{z \in B} \mu(|z|)|R^{(2)}\psi(z)||f_j[\varphi(z)]| + \sup_{z \in B} \mu(|z|)|R\psi(z)||\langle (\nabla f_j)[\varphi(z)], \overline{R\varphi(z)}\rangle|$$

$$\leq ||\psi||_{\mathcal{Z}_{\mu}} \sup_{|w| \leq ||\varphi||_{\infty}} |f_j(w)| + M \sup_{|w| \leq ||\varphi||_{\infty}} |\nabla f_j(w)| \to 0, \quad j \to \infty.$$

(ii) Case $\int_0^1 \frac{dt}{\mu(t)} < \infty$.

If $\psi \in \mathcal{Z}_{\mu}(B)$ and (4.1) holds, then by Lemmas 2.1 and 2.5 we have

$$||T_{\varphi,\psi}(f_j)||_{\mathcal{Z}_{\mu}} \le c||\psi||_{\mathcal{Z}_{\mu}} \sup_{z \in B} |f_j[\varphi(z)]| + cM \sup_{z \in B} |(\nabla f_j)[\varphi(z)]|$$

$$\le c||\psi||_{\mathcal{Z}_{\mu}} \sup_{w \in B} |f_j(w)| + cM \sup_{w \in B} |\nabla f_j(w)| \to 0, \quad j \to \infty.$$

(2) If (4.2) holds, then for any $\varepsilon > 0$, there exists $\frac{1}{2} < \delta < 1$ such that

$$\mu(|z|)|R\psi(z)||\langle R\varphi(z), \varphi(z)\rangle| \int_0^{|\varphi(z)|} \frac{\mathrm{d}t}{\mu(t)} < \varepsilon \quad \text{when } |\varphi(z)| > \delta. \tag{4.5}$$

By $\int_0^1 \left(\int_0^\rho \frac{dt}{\mu(t)\sqrt{1-t}} \right) d\rho < \infty$ and Lemma 2.6, there is a $\delta < r_0 < 1$ such that

$$|\langle (\nabla f_j)[\varphi(z)], \overline{\xi} \rangle| \le \sup_{|w| \le r_0} |\nabla f_j(w)| + c||f_j||_{\mathcal{Z}_{\mu}} \varepsilon \le \sup_{|w| \le r_0} |\nabla f_j(w)| + c\varepsilon, \tag{4.6}$$

where $\xi \in \partial B$ with $\langle \varphi(z), \xi \rangle = 0$.

If $\psi \in \mathcal{Z}_{\mu}(B)$ and (4.1)–(4.2) hold, then by Lemmas 2.1–2.2, (4.5)–(4.6) and

$$R\varphi(z) = \frac{\langle R\varphi(z), \varphi(z) \rangle}{|\varphi(z)|^2} \ \varphi(z) + \langle R\varphi(z), \xi \rangle \ \xi,$$

we have

$$\begin{split} ||T_{\varphi,\psi}(f_{j})||_{\mathcal{Z}_{\mu}} & \leq c||\psi||_{\mathcal{Z}_{\mu}} \sup_{z \in B} |f_{j}[\varphi(z)]| + c \sup_{z \in B} \mu(|z|)|R\psi(z)||\langle(\nabla f_{j})[\varphi(z)], \overline{R\varphi(z)}\rangle| \\ & \leq c||\psi||_{\mathcal{Z}_{\mu}} \sup_{z \in B} |f_{j}[\varphi(z)]| + cM \sup_{|w| \leq \delta} |\nabla f_{j}(w)| \\ & + c_{1} \sup_{|\varphi(z)| > \delta} \mu(|z|)|R\psi(z)||\langle R\varphi(z), \varphi(z)\rangle| \int_{0}^{|\varphi(z)|} \frac{\mathrm{d}t}{\mu(t)} \\ & + cM \sup_{|\varphi(z)| > \delta} |\langle(\nabla f_{j})[\varphi(z)], \overline{\xi}\rangle| \\ & \leq c||\psi||_{\mathcal{Z}_{\mu}} \sup_{w \in B} |f_{j}(w)| + c_{2}M \sup_{|w| \leq \delta} |\nabla f_{j}(w)| + (c_{3}M + c_{1})\varepsilon. \end{split}$$

This shows that $\limsup_{j\to\infty}||T_{\varphi,\psi}(f_j)||_{\mathcal{Z}_{\mu}}\leq (c_3M+c_1)\varepsilon$ by Lemma 2.5. Therefore, it implies that $\lim_{j\to\infty}||T_{\varphi,\psi}(f_j)||_{\mathcal{Z}_{\mu}}=0$ by the arbitrariness of ε .

(3) If $\psi \in \mathcal{Z}_{\mu}(B)$, (4.1)–(4.3) hold, then by the proof in (2), Lemma 2.5, (3.4) and

$$\begin{split} ||T_{\varphi,\psi}(f_j)||_{\mathcal{Z}_{\mu}} &\leq c||\psi||_{\mathcal{Z}_{\mu}} \sup_{z \in B} |f_j[\varphi(z)]| + c_1 M \sup_{|w| \leq \delta} |\nabla f_j(w)| \\ &+ c_2 \sup_{|\varphi(z)| > \delta} \mu(|z|)|R\psi(z)||\langle R\varphi(z), \varphi(z)\rangle| \int_0^{|\varphi(z)|} \frac{\mathrm{d}t}{\mu(t)} \\ &+ c_3 \sup_{|\varphi(z)| > \delta} \mu(|z|)|R\psi(z)||R\varphi(z)| \int_0^{|\varphi(z)|} \left(\int_0^{\rho} \frac{\mathrm{d}t}{\mu(t)\sqrt{1-t}}\right) \mathrm{d}\rho, \end{split}$$

we have $\lim_{j\to\infty} ||T_{\varphi,\psi}(f_j)||_{\mathcal{Z}_{\mu}} = 0.$

(4) If $\psi \in \mathcal{Z}_{\mu}(B)$, (4.1)–(4.4) hold, then by the method of proof in (2), (3.4) and

$$\begin{split} ||T_{\varphi,\psi}(f_j)||_{\mathcal{Z}_{\mu}} & \leq c||\psi||_{\mathcal{Z}_{\mu}} \sup_{|w| \leq \delta} |f_j(w)| + c_1 M \sup_{|w| \leq \delta} |\nabla f_j(w)| \\ & + c_2 \sup_{|\varphi(z)| > \delta} \mu(|z|)|R^{(2)}\psi(z)| \int_0^{|\varphi(z)|} \left(\int_0^{\rho} \frac{\mathrm{d}t}{\mu(t)}\right) \mathrm{d}\rho \\ & + c_3 \sup_{|\varphi(z)| > \delta} \mu(|z|)|R\psi(z)||\langle R\varphi(z), \varphi(z)\rangle| \int_0^{|\varphi(z)|} \frac{\mathrm{d}t}{\mu(t)} \\ & + c_4 \sup_{|\varphi(z)| > \delta} \mu(|z|)|R\psi(z)||R\varphi(z)| \int_0^{|\varphi(z)|} \left(\int_0^{\rho} \frac{\mathrm{d}t}{\mu(t)\sqrt{1-t}}\right) \mathrm{d}\rho, \end{split}$$

we have $\lim_{j\to\infty} ||T_{\varphi,\psi}(f_j)||_{\mathcal{Z}_{\mu}} = 0.$

In a word, we have $\lim_{j\to\infty} ||T_{\varphi,\psi}(f_j)||_{\mathcal{Z}_{\mu}} = 0$ for all cases. This means that $T_{\varphi,\psi}$ is a compact operator on $\mathcal{Z}_{\mu}(B)$ by the basic theory of functional analysis.

Conversely, if $T_{\varphi,\psi}$ is a compact operator on $\mathcal{Z}_{\mu}(B)$, then $T_{\varphi,\psi}$ is bounded on $\mathcal{Z}_{\mu}(B)$. By Theorem 3.1, it is clear that $\psi \in \mathcal{Z}_{\mu}(B)$ and (4.1) holds.

This means that (1) is true.

Let $\{z^j\}\subset B$ is a sequence with $\lim_{j\to\infty}|\varphi(z^j)|=1$ and $|\varphi(z^j)|>t_0$ $(j=1,2,\cdots)$.

(2) We just need to prove that (4.2) holds. Let g be the function in Lemma 2.3. We choose function sequence as follows:

$$f_j(z) = \frac{\int_0^1 \frac{F_j(\rho z)}{\rho} \, \mathrm{d}\rho}{\int_0^{|\varphi(z^j)|^2} g(t) \, \mathrm{d}t}, \quad \text{where } F_j(z) = \Big(\int_0^{\langle z, \varphi(z^j) \rangle} g(t) \, \mathrm{d}t\Big)^2.$$

It is clear that $Rf_j(z) = \frac{F_j(z)}{\int_0^{|\varphi(z^j)|^2} g(t) dt}$. Therefore, it is easy to prove that $||f_j||_{\mathcal{Z}_{\mu}} \leq c$ and $\{f_j(z)\}$ converges to 0 uniformly on any compact subset of B by Lemmas 2.1 and 2.3. At the same time, we have

$$R[f_j \circ \varphi](z^j) = \frac{\langle R\varphi(z^j), \varphi(z^j) \rangle}{|\varphi(z^j)|^2} \int_0^{|\varphi(z^j)|^2} g(t) dt.$$
 (4.7)

By Lemma 2.1 and $\psi \in \mathcal{Z}_{\mu}(B)$, (4.7) and Lemmas 2.3–2.5, the compactness of $T_{\varphi,\psi}$, we have

$$0 \leftarrow ||T_{\varphi,\psi}(f_j)||_{\mathcal{Z}_{\mu}} + ||\psi||_{\mathcal{Z}_{\mu}} \sup_{w \in B} |f_j(w)|$$

$$\geq \mu(|z^j|)|R\psi(z^j)||R[f_j \circ \varphi](z^j)|$$

$$\geq c\mu(|z^j|)|R\psi(z^j)||\langle R\varphi(z^j), \varphi(z^j)\rangle| \int_0^{|\varphi(z^j)|} \frac{\mathrm{d}t}{\mu(t)}, \quad j \to \infty.$$

This shows that (4.2) holds.

(3) We just need to prove (4.3). Let $R\varphi(z^j) = \frac{u_1^j \varphi(z^j)}{|\varphi(z^j)|} + u_2^j \xi^j$ with $\langle \varphi(z^j), \xi^j \rangle = 0$ and $\xi^j \in \partial B$ $(j = 1, 2, \cdots)$. We take function sequence

$$f_j(z) = \langle z, \xi^j \rangle \frac{\left\{ \int_0^{\langle z, \varphi(z^j) \rangle} \left(\int_0^{\rho} \frac{g(t) \, dt}{\sqrt{1-t}} \right) d\rho \right\}^2}{\int_0^{|\varphi(z^j)|^2} \left(\int_0^{\rho} \frac{g(t) \, dt}{\sqrt{1-t}} \right) d\rho}.$$

It is easy to prove that $||f_j||_{\mathcal{Z}_{\mu}} \leq c$ and $\{f_j(z)\}$ converges to 0 uniformly on any compact subset of B by (3.9), Lemmas 2.1 and 2.3–2.4. Otherwise, we have

$$R[f_j \circ \varphi](z^j) = \langle R\varphi(z^j), \xi^j \rangle \int_0^{|\varphi(z^j)|^2} \left(\int_0^\rho \frac{g(t) \, \mathrm{d}t}{\sqrt{1-t}} \right) \mathrm{d}\rho. \tag{4.8}$$

By Lemma 2.1 and (4.8), $\psi \in \mathcal{Z}_{\mu}(B)$ and Lemmas 2.3–2.5, the compactness of $T_{\varphi,\psi}$, we have

$$\lim_{|\varphi(z)| \to 1^{-}} \mu(|z|) |R\psi(z)| |\langle R\varphi(z), \xi \rangle| \int_{0}^{|\varphi(z)|} \left(\int_{0}^{\rho} \frac{\mathrm{d}t}{\mu(t)\sqrt{1-t}} \right) \mathrm{d}\rho = 0 \tag{4.9}$$

with $\langle \varphi(z), \xi \rangle = 0$ and $\xi \in \partial B$.

By (2.1), (4.2), (4.9) and $|R\varphi(z)| \approx |\langle R\varphi(z), \varphi(z)\rangle| + |\langle R\varphi(z), \xi\rangle|$ ($|\varphi(z)| > t_0$), it is clear that (4.3) holds.

(4) All that remains is to prove (4.4). We take function sequence

$$f_j(z) = \frac{\left\{ \int_0^{\langle z, \varphi(z^j) \rangle} \left(\int_0^{\rho} g(t) \, \mathrm{d}t \right) \mathrm{d}\rho \right\}^2}{\int_0^{|\varphi(z^j)|^2} \left(\int_0^{\rho} g(t) \, \mathrm{d}t \right) \mathrm{d}\rho}.$$

Then $||f_j||_{\mathcal{Z}_{\mu}} \leq c$ and $\{f_j(z)\}$ converges to 0 uniformly on any compact subset of B by simple calculation. At the same time, we have

$$R[f_j \circ \varphi](z^j) = 2\langle R\varphi(z^j), \varphi(z^j)\rangle \int_0^{|\varphi(z^j)|^2} g(t) dt.$$
 (4.10)

By Lemmas 2.1, 2.3 –2.4, $\psi \in \mathcal{Z}_{\mu}(B)$, (4.2), (4.10) and the compactness of $T_{\varphi,\psi}$, it is clear that

$$0 \leftarrow ||T_{\varphi,\psi}(f_{j})||_{\mathcal{Z}_{\mu}} + c_{1}\mu(|z^{j}|)|R\psi(z^{j})||\langle R\varphi(z^{j}), \varphi(z^{j})\rangle| \int_{0}^{|\varphi(z^{j})|} \frac{\mathrm{d}t}{\mu(t)}$$

$$\geq ||T_{\varphi,\psi}(f_{j})||_{\mathcal{Z}_{\mu}} + 2\mu(|z^{j}|)|R\psi(z^{j})||\langle R\varphi(z^{j}), \varphi(z^{j})\rangle| \int_{0}^{|\varphi(z^{j})|^{2}} g(\rho) \, \mathrm{d}\rho$$

$$\geq \mu(|z^{j}|)|R^{(2)}\psi(z^{j})| \int_{0}^{|\varphi(z^{j})|^{2}} \left(\int_{0}^{\rho} g(t) \, \mathrm{d}t\right) \mathrm{d}\rho$$

$$\geq c_{2}\mu(|z^{j}|)|R^{(2)}\psi(z^{j})| \int_{0}^{|\varphi(z^{j})|} \left(\int_{0}^{\rho} \frac{\mathrm{d}t}{\mu(t)}\right) \mathrm{d}\rho, \quad j \to \infty.$$

This shows that (4.4) holds.

The proof is completed.

Corollary 4.1 Let μ be normal on [0,1). For n>1, suppose $\psi \in H(B)$ with $\psi(0)=0$.

- (1) If $\int_0^1 \frac{dt}{\mu(t)} < \infty$, then T_{ψ} is compact on $\mathcal{Z}_{\mu}(B)$ if and only if $\psi \in \mathcal{Z}_{\mu}(B)$. (2) If $\int_0^1 \left(\int_0^{\rho} \frac{dt}{\mu(t)}\right) d\rho < \infty = \int_0^1 \frac{dt}{\mu(t)}$, then T_{ψ} is a compact operator on $\mathcal{Z}_{\mu}(B)$ if and only if $\psi \in \mathcal{Z}_{\mu}(B)$ and

$$\lim_{|z| \to 1^{-}} \mu(|z|) |R\psi(z)| \int_{0}^{|z|} \frac{\mathrm{d}t}{\mu(t)} = 0. \tag{4.11}$$

(3) If $\int_0^1 \left(\int_0^\rho \frac{dt}{\mu(t)} \right) d\rho = \infty$, then T_{ψ} is compact on $\mathcal{Z}_{\mu}(B)$ if and only if (4.11) holds and

$$\lim_{|z| \to 1^{-}} \mu(|z|) |R^{(2)}\psi(z)| \int_{0}^{|z|} \left(\int_{0}^{\rho} \frac{\mathrm{d}t}{\mu(t)} \right) \mathrm{d}\rho = 0. \tag{4.12}$$

Proof By taking $\varphi(z) = z$ in Theorem 4.1, it is easy to obtain these results. Otherwise, if (4.12) holds, then $\psi \in \mathcal{Z}_{\mu}(B)$.

Note 4.1 If a > 2, then T_{ψ} is a compact operator on $\mathcal{Z}_{\mu}(B)$ if and only if $\psi \in \mathcal{B}_0(B)$ (the little Bloch space on B).

Acknowledgement The authors thank the referees for their useful suggestions!

References

- [1] Zhang, X. J., Li, M. and Guan, Y., The equivalent norms and the Gleason's problem on μ -Zygmund spaces in C^n , J. Math. Anal. Appl., **419**, 2014, 185–199.
- [2] Stević, S., On an integral-type operator from Zygmund-type spaces to mixed-norm spaces on the unit ball, Abstr. Appl. Anal., 2010, Article ID 198608, 7 pages.

- [3] Li, S. X. and Stević, S., Volterra type operators on Zygmund space, J. Inequal. Appl., 2007, Article ID 32124, 10 pages.
- [4] Li, S. X. and Stević, S., Products of Volterra type operator and composition operator from H[∞] and Bloch spaces to the Zygmund space, J. Math. Anal. Appl., 345, 2008, 40–52.
- [5] Li, S. X. and Stević, S., Weighted composition operators from Zygmund spaces into Bloch spaces, Appl. Math. Comput., 206(2), 2008, 825–831.
- [6] Li, S. X. and Stević, S., Integral-type operators from Bloch-type spaces to Zygmund-type spaces, Appl. Math. Comput., 215(2), 2009, 464–473.
- [7] Li, S. X. and Stević, S., On an integral-type operator from ω -Bloch spaces to μ -Zygmund spaces, Appl. Math. Comput., **215**(12), 2010, 4385–4391.
- [8] Li, S. X. and Stević, S., Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl., 338, 2008, 1282–1295.
- [9] Stević, S., On an integral operator from the Zygmund space to the Bloch type space on the unit ball, Glasgow Math. J., 51, 2009, 275–287.
- [10] Fang, Z. S. and Zhou, Z. H., Extended Cesàro operators from generally weighted Bloch spaces to Zygmund space, J. Math. Anal. Appl., 359, 2009, 499–507.
- [11] Zhu, X., A new characterization of the generalized weighted composition operator from H^{∞} into the Zygmund space, *Math. Ineq. Appl.*, **18**, 2015, 1135–1142.
- [12] Li, S. X. and Stević, S., Products of composition and differentiation operators from Zygmund spaces to Bloch spaces and Bers spaces, Appl. Math. Comput., 217, 2010, 3144–3154.
- [13] Liu, Y. M. and Yu, Y. Y., Weighted differentiation composition operators from mixed-norm to Zygmund spaces, Numer. Funct. Anal. Optim., 31, 2010, 936–954.
- [14] Ye, S. L. and Lin, C. S., Composition followed by differentiation on the Zygmund space, Acta Math. Sin., 59, 2016, 11–20 (in Chinese).
- [15] Ye, S. L. and Hu, Q. X., Weighted composition operators on the Zygmund space, Abstr. Appl. Anal., 2012, Artical ID 462482, 18 pages.
- [16] Dai, J. N., Composition operators on Zygmund spaces of the unit ball, J. Math. Anal. Appl., 394, 2012, 696–705.
- [17] Zhang, J. F. and Xu, H. M., Weighted Cesàro operators on Zygmund type spaces on the unit ball, Acta Math. Sci., 31A(1), 2011, 188–195 (in Chinese).
- [18] Liang, Y. X., Wang, C. J. and Zhou, Z. H., Weighted composition operators from Zygmund spaces to Bloch spaces on the unit ball, *Ann. Polo. Math.*, 114(2), 2015, 101–114.
- [19] Zhang, X. J. and Xu, S., Weighted differentiation composition operators between normal weight Zygmund spaces and Bloch spaces in the unit ball of \mathbb{C}^{n} for n > 1, Complex Anal. Oper. Theory, 13(3), 2019, 859–878.
- [20] Zhang, X. J. and Li, S. L., The composition operator on the normal weight Zygmund space in high dimensions, Complex Var. and Ellip. Equ., 64(11), 2019, 1932–1953.
- [21] Li, S. L. and Zhang, X. J., Composition operators on the normal weight Zygmund spaces in high dimensions, J. Math. Anal. Appl., 487(2), 2020, 19 pages.
- [22] Li, S. L. and Zhang, X. J., Several properties on the normal weight Zygmund space in several complex variables, Acta Math. Sin., 62(5), 2019, 795–808 (in Chinese).
- [23] Guo, Y. T., Shang, Q. L. and Zhang, X. J., The pointwise multiplier on the normal weight Zygmund space in the unit ball, *Acta Math. Sci.*, **38A**(6), 2018, 1041–1048 (in Chinese).
- [24] Zhao, Y. H. and Zhang, X. J., On an integral-type operator from Dirichlet spaces to Zygmund type spaces on the unit ball, Acta Math. Sci., 37A (2), 2017, 217–227 (in Chinese).
- [25] Zhao, Y. H. and Zhang, X. J., Integral-type operators on Zygmund type spaces on the unit ball, *Math. Adv. (China)*, **45**(5), 2016, 755–766 (in Chinese).
- [26] Long, J. R., Qiu, C. H. and Wu, P. C., Weighted composition followed and proceeded by differentiation operators from Zygmund spaces to Bloch-type spaces, J. of Ineq. and Appl., 2014, 152, 12 pages.
- [27] Dai, J. N. and Ouyang C. H., Composition operators from Zygmund spaces to α-Bloch spaces in the unit ball, J. of Wuhan Uni. (Natur. Sci. Ed.), **56**(4), 2010, 961–968 (in Chinese).
- [28] Siskakis, A. G., Composition semigroups and the Cesàro operator on H^p, J. London Math. Soc., 36(2), 1987, 153–164.

- [29] Miao, J., The Cesàro operator is bounded on H^p for 0 , Proc. Amer. Math. Soc., 116, 1992, 1077–1079.
- [30] Shi, J. H. and Ren, G. B., Boundedness of the Cesàro operator on mixed norm spaces, Proc. Amer. Math. Soc., 126, 1998, 3553–3560.
- [31] Xiao, J., Cesàro operators on Hardy, BMOA and Bloch spaces, Arch. Math., 68, 1997, 398-406.
- [32] Xiao, J. and Tan, H., p-Bergman spaces, α-Bloch spaces, little α-Bloch spaces and Cesàro means, Chin. Ann. Math., 19A(2), 1998, 187–196 (in Chinese).
- [33] Aleman, A. and Siskakis, A. G., An Integral operator on H^p, Complex Variables, 28, 1995, 149–158.
- [34] Hu, Z. J., Extended Cesàro operators on the Bloch space in the ball of Cⁿ, Acta Math. Sci., 23B(4), 2003, 561–566.
- [35] Hu, Z. J., Extended Cesàro operators on mixed norm spaces, Proc. Amer. Math. Soc., 131(7), 2003, 2171–2179.
- [36] Aleman, A. and Siskakis, A. G., Integration operators on Bergman spaces, Indiana Uni. Math. J., 46, 1997, 337–356.
- [37] Zhang, X. J., Weighted Cesàro operators on Dirichlet type spaces and Bloch type spaces of Cⁿ, Chin. Ann. Math., 26A(1), 2005, 139–150 (in Chinese).
- [38] Stević, S., On a new operator from H^{∞} to the Bloch type spaces on the unit ball, *Util. Math.*, **77**, 2008, 257–263.
- [39] Stević, S. and Ueki, S., Integral-type operator acting between weighted-type spaces on the unit ball, Appl. Math. Comput., 215(7), 2009, 2464–2471.
- [40] Stević, S., On operator P_{φ}^g from the logarithmic Bloch-type spaces to the mixed-norm spaces on the unit ball, Appl. Math. Comput., **215**(12), 2010, 4248–4255.
- [41] Stević, S., On some integral-type operator between a general space and Bloch type spaces, *Appl. Math. Comput.*, **218**(6), 2011, 2600–2618.
- [42] Zhang, X. J. and Chu Y. M., Compact Cesàro operator from spaces H(p,q,u) to H(p,q,v), Acta Math. Appl. Sin. (English Series), 22(3), 2006, 437–442.
- [43] Chen, H. H. and Gauthier, P. H., Composition operators on μ-Bloch spaces, Canad. J. Math., 61, 2009, 50–75.
- [44] Zhang, X. J. and Li, J. X., Weighted composition operators between μ-Bloch spaces on the unit ball of Cⁿ, Acta Math. Sci., 29A, 2009, 573–583 (in Chinese).
- [45] Hu, Z. J., Composition operators between Bloch-type spaces in the polydisc, Sci. China, 48A(supp), 2005, 268–282.