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1 Introduction

In 1976, Morris [1], by using Moser’s twist theorem, proved that all solutions of the equation

ẍ+ 2x3 = p(t)

are bounded when p is periodic and piecewise continuous. Since then, KAM theory has been

the most powerful tool to study Littlewood’s boundedness problem for Duffing type equations

ẍ+ ψ(x, t) = 0, (1.1)

where ψ is periodic in t. And fruitful achievements have been made by many authors (see for

examples [2–6] and references therein).

In 1999, Küpper-You [7] proved that all solutions of the equation

ẍ+ |x|α−1x = p(t)

are bounded, where 0 < α < 1 and p ∈ C∞(T).

In 2001, Liu [8] investigated the sublinear equation in the more general form

ẍ+ ϕ(x) = p(t),
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and concluded that all solutions of the equation are bounded with p ∈ C5(T) and ϕ ∈ C6(R)

satisfying the sublinear condition:

sign(x) · ϕ(x) → +∞,
ϕ(x)

x
→ 0 as |x| → ∞.

In 2009, Wang [9] studied the sublinear equation

ẍ+ e(t)|x|α−1x = p(t), (1.2)

where 0 < α < 1, e, p ∈ C5(T),
∫ 1

0
e(s)ds 6= 0. He proved that the necessary and sufficient

condition that the equation posses the Lagrangian stability is
∫ 1

0 e(s)ds > 0.

In the dynamical point of view, it is natural to study Littlewood’s boundedness problem for

(1.1) with ψ quasi-periodic in t.

In 2000, Zharnitsky [10] proved an invariant curve theorem for a quasi-periodic planar map-

ping and applied it to answering a question asked by Levi-Zehnder [11], that is the boundedness

of solutions of the Fermi-Ulam model.

In 2005, Liu [12] established some invariant curve theorems for some planar reversible map-

pings with quasi-periodic perturbations. As an application, he proved the existence of quasi-

periodic solutions and the boundedness of all solutions of an asymmetric oscillation

ẍ+ âx+ − b̂x− = p(t), (1.3)

when p is a real analytic, even and quasi-periodic function with the frequency ω satisfying the

Diophantine condition.

Recently Huang-Li-Liu [13–14] proved the existence of invariant curves for quasi-periodic

smooth mappings and used the theory to get the existence of quasi-periodic solutions and

the boundedness of all solutions of (1.3) when p is a smooth quasi-periodic function with the

frequency satisfying the Diophantine condition (see the results in Appendix).

Motivated by the above references, especially by Wang [9] and Huang-Li-Liu [13–14], we are

going to investigate the boundedness problem of the special quasi-periodic subilinear Duffing

equations

ẍ+ e(t)|x|α−1x = p(t) (1.4)

with 0 < α < 1, where e and p are real analytic quasi-periodic functions and their frequency

ω = (ω1, ω2, · · · , ωn) satisfies the Diophantine condition

|〈k, ω〉| ≥
c̃

|k|σ̃
, k ∈ Z

n\{0} (1.5)

for two positive constants c̃, σ̃.

It is well known that for any quasi-periodic function f , its mean value lim
T→∞

1
T

∫ T

0 f(t)dt

always exists. Denote it by [f ].

Our main result is the following theorem.
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Theorem 1.1 Assume that e, p are real analytic quasi-periodic functions with the frequency

ω = (ω1, · · · , ωn) satisfying the Diophantine condition (1.5). If [e] > 0, then (1.4) has quasi-

periodic solutions and all the solutions of (1.4) are bounded, i.e., every solution x(t) of (1.4)

exists for t ∈ R and sup
t∈R

(|x(t)| + |ẋ(t)|) < +∞.

Remark 1.1 The main idea of the proof of Theorem 1.1 is similar to the one in [9]. But

here, due to the quasi-periodicity of e and p, we meet the so called “small divisor” problems,

so we need much more regularity estimates and introducing new function class Fω(r0, l0) of

quasi-periodic functions as a tool. To meet the requirements of the invariant curve theorem

established by Huang-Li-Liu in [13], we must suppose that e and p are analytic quasi-periodic

functions. It seems an interesting question to consider the smooth case.

The rest of our paper is organized as follows. In Section 2, we will give some definitions

and proprieties and the integral proposition of quasi-periodic functions. In Section 3, we will

introduce the action-angle variables and the new function class Fω(r0, l0) of quasi-periodic

functions, then change action-angle variables. In Section 4, we will make further canonical

transformations and obtain a new transformed Hamiltonian system. In Section 5, we will prove

the existence of quasi-periodic solutions and the boundedness of all solutions for (1.4). Here

we point out that though our proof appears a simple variant of [9], there is a huge difference

between our quasi-periodic case and the periodic case in [9]. In fact, in our proof we use the

integral proposition of quasi-periodic functions in Section 2 and the proprieties of the new

function class Fω(r0, l0) in Section 3.

2 Preliminaries

We first recall some basic knowledge on the analytic quasi-periodic functions. For further

contents, one can refer to [15, Chapter 3].

Definition 2.1 (see [15]) A function f : R → R is called a real analytic quasi-periodic

function with the frequency ω, if it can be represented by a Fourier series

f(t) =
∑

k∈Zn

fke
2πi〈k,ω〉t,

where k = (k1, k2, · · · , kn), 〈k, ω〉 = k1ω1+k2ω2+ · · ·+knωn 6= 0 if k 6= 0, and fk exponentially

decays with |k|, where |k| = |k1|+ |k2|+ · · ·+ |kn|.

The set of all such functions is denoted by Q(ω).

It is not difficult to see f0 = [f ].

For each f ∈ Q(ω), there is a real analytic function F (θ) = F (θ1, θ2, · · · , θn) : Rn → R

which is 1-periodic in each variable θj (1 ≤ j ≤ n) and bounded in a complex neighborhood

Πn
r = {(θ1, θ2, · · · , θn) ∈ Cn : |Im θj| ≤ r, j = 1, 2, · · · , n} of Rn for some r > 0 such that

f(t) = F (ω1t, ω2t, · · · , ωnt), ∀ t ∈ R.
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Then F has a Fourier expansion

F (θ) =
∑

k∈Zn

fke
2πi〈k,θ〉.

This F is called the shell function of f .

Let Qr(ω) ⊆ Q(ω) be the set of real analytic quasi-periodic function f such that the cor-

responding shell functions F is bounded on the subset Πn
r = {(θ1, θ2, · · · , θn) ∈ Cn : |Im θj | ≤

r, j = 1, 2, · · · , n} with the supremum norm

|F |r = sup
θ∈Πn

r

|F (θ)| = sup
θ∈Πn

r

∣∣∣
∑

k

fke
2πi〈k,θ〉

∣∣∣ < +∞.

Define |f |r = |F |r.

It is well known that indefinite integral of a periodic function is still a periodic function if

the mean value of the function is zero. It is easy to prove that this conclusion is not valid for a

quasi-periodic function. However we have the following result for a real analytic quasi-periodic

function.

Proposition 2.1 If f ∈ Q(ω) with the frequency ω satisfing the Diophantine condition

(1.5), and

g(t) :=

∫ t

0

(f(s)− [f ])ds,

then g ∈ Q(ω).

Proof From Definition 2.1,

f(t)− [f ] =
∑

k∈Zn\{0}

fke
2πi〈k,θ〉t.

Suppose |fk| ≤ |f |re
−̺|k| for some r > 0 and ̺ > 0. Then from (1.5), we have

g(t) =

∫ t

0

(f(s)− [f ])ds =

∫ t

0

∑

k∈Zn\{0}

fke
2πi〈k,ω〉sds =

∑

k∈Zn\{0}

fk
i〈k, ω〉

(e2πi〈k,ω〉t − 1).

So

|g(t)| ≤
∣∣∣2

∑

k∈Zn\{0}

|f |re
−̺|k|

( c̃

|k|σ̃

)−1∣∣∣ ≤ C
∑

k∈Zn\{0}

|f |r · e
−̺|k| · |k|σ̃ < +∞,

which implies that the function g is well defined, where C is a positive constant. Since g(t) =
∑

k∈Zn

gke
2πi〈k,ω〉t with g0 =

∑
k∈Zn\{0}

fk
i〈k,ω〉 and gk = fk

i〈k,ω〉 for k 6= 0, noting the fact that fk decay

exponentially, we see g ∈ Q(ω).

Lemma 2.1 (see [13]) The set Q(ω) has the following properties:

(1) If f, g ∈ Q(ω), then f ± g, g(·+ f(·)) ∈ Q(ω).

(2) If ω satisfies Diophantine condition, f ∈ Q(ω) and τ = βt+ f(t) with β + f ′ > 0, then

the inverse relation is given by t = β−1τ + g(τ) where g ∈ Q
(
ω
β

)
. In particular, if β = 1, then

g ∈ Q(ω).
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Lemma 2.2 If f, g ∈ Q(ω), then f · g ∈ Q(ω).

Proof Since f, g ∈ Q(ω), we denote f, g respectively as

f(t) =
∑

k∈Zn

fke
2πi〈k,ω〉t, g(t) =

∑

k∈Zn

gke
2πi〈k,ω〉t,

where fk, gk satisfy |fk| ≤M1e
−|k|ρ1 , |gk| ≤M2e

−|k|ρ2 for positive constants M1, M2, ρ1, ρ2.

Let ζ(t) = f(t)g(t). Then

ζ(t) =
∑

k∈Zn

ζke
2πi〈k,ω〉t,

where ζk =
∑

m∈Zn

fk−mgm or ζk =
∑

m∈Zn

fmgk−m.

(i) Consider the case ρ2 > ρ1 > 0. We have

|ζk| =
∣∣∣
∑

m∈Zn

fk−mgm

∣∣∣ ≤
∑

m∈Zn

M1e
−|k−m|ρ1M2e

−|m|ρ2

=
∑

m∈Zn

M1e
−|k−m|ρ1M2e

−|m|ρ1e−|m|(ρ2−ρ1)

≤
∑

m∈Zn

M1M2e
−|k|ρ1e−|m|(ρ2−ρ1)

=M1M2e
−|k|ρ1

∑

m∈Zn

e−|m|(ρ2−ρ1)

≤ M̂M1M2e
−|k|ρ1 ≤Me−|k|ρ1 ,

therefore, ζ ∈ Q(ω).

(ii) Consider the case ρ1 > ρ2 > 0. We have

|ζk| =
∣∣∣
∑

m∈Zn

fmgk−m

∣∣∣ ≤
∑

m∈Zn

M1e
−|m|ρ1M2e

−|k−m|ρ2

=
∑

m∈Zn

M1e
−|m|ρ2e−|m|(ρ1−ρ2)M2e

−|k−m|ρ2

≤
∑

m∈Zn

M1M2e
−|k|ρ2e−|m|(ρ1−ρ2)

=M1M2e
−|k|ρ2

∑

m∈Zn

e−|m|(ρ1−ρ2)

≤ M̂M1M2e
−|k|ρ2 ≤Me−|k|ρ2 ,

therefore, ζ ∈ Q(ω).

(iii) Consider the case ρ1 = ρ2 and choose a constant 0 < ρ < ρ1 = ρ2. We have

|ζk| =
∣∣∣
∑

m∈Zn

fk−mgm

∣∣∣ ≤
∑

m∈Zn

M1e
−|k−m|ρ1M2e

−|m|ρ2 ≤
∑

m∈Zn

M1e
−|k−m|ρM2e

−|m|ρ2

=
∑

m∈Zn

M1e
−|k−m|ρM2e

−|m|ρe−|m|(ρ2−ρ)

≤
∑

m∈Zn

M1M2e
−|k|ρe−|m|(ρ2−ρ)



90 Y. Q. Peng, X. L. Zhang and D. X. Piao

≤M1M2e
−|k|ρ

∑

m∈Zn

e−|m|(ρ2−ρ) ≤ M̂M1M2e
−|k|ρ ≤Me−|k|ρ,

therefore, ζ ∈ Q(ω). We complete the proof now.

3 Action-Angle Variables

We will first introduce the action-angle variables after two canonical transformations and

then change action-angle variables in this section. Moreover, we give the definition and prop-

erties of a new function class Fω(r0, l0) of quasi-periodic functions in order to estimate the

Hamiltonian.

3.1 A canonical transformation

(1.4) can be written as a Hamiltonian system

ẋ =
∂H

∂y
= y + q(t), ẏ = −

∂H

∂x
= −e(t)x|x|α−1 + [p]. (3.1)

The corresponding Hamiltonian is

H(x, y, t) =
1

2
y2 + q(t)y +

e(t)

α+ 1
|x|α+1 − [p]x

=
1

2
y2 +

[e]

α+ 1
|x|α+1 + q(t)y +

e1(t)

α+ 1
|x|α+1 − [p]x, (3.2)

where e1, q are as the following:

e1(t) := e(t)− [e], q(t) :=

∫ t

0

(p(s)− [p])ds.

Since e, p ∈ Q(ω), from Proposition 2.1, q is well defined and q ∈ Q(ω).

To make the Hamiltonian system simple, we introduce a transformation

Φ1 : x = x, y = z +
∂G1

∂x
(x, t),

where G1(x, t) will be determined later. Under Φ1, Hamiltonian function (3.2) is transformed

to

H(x, z, t) =
1

2

(
z +

∂G1

∂x

)2

+
[e]

α+ 1
|x|α+1 + q(t) ·

(
z +

∂G1

∂x

)
+
e1(t)

α+ 1
|x|α+1 − [p]x+

∂G1

∂t

=
1

2
z2 +

[e]

α+ 1
|x|α+1 + z

∂G1

∂x
+

1

2

(∂G1

∂x

)2

+ q(t)
(
z +

∂G1

∂x

)
+
e1(t)

α+ 1
|x|α+1

+
∂G1

∂t
− [p]x.

Let
e1(t)

α+ 1
|x|α+1 +

∂G1

∂t
= 0,

then

G1(x, t) = −
1

α+ 1
|x|α+1

∫ t

0

e1(s)ds.
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Define

E(t) = −

∫ t

0

e1(s)ds = −

∫ t

0

(e(s)− [e])ds.

From Proposition 2.1, we see E ∈ Q(ω). From Lemma 2.2, E2 ∈ Q(ω). Therefore, G1(x, ·) ∈

Q(ω) for every x ∈ R. Then the Hamiltonian function (3.2) becomes

H(x, z, t) =
1

2
z2 +

[e]

α+ 1
|x|α+1 + z|x|α−1xE(t) +

1

2
|x|2αE(t)2

+ q(t)(z + |x|α−1xE(t)) − [p]x, (3.3)

and the corresponding Hamiltonian system is

ẋ = z + |x|α−1xE(t) + q(t),

ż = −[e]|x|α−1x− α|x|2α−2xE(t)2 − α|x|α−2x(q(t) + z)E(t) + [p].
(3.4)

3.2 Introducing action-angle variables

In order to introduce the action-angle variables, firstly consider the corresponding au-

tonomous Hamiltonian system of (3.4),

ẋ = z, ż = −[e]|x|α−1x (3.5)

with the Hamiltonian h0(x, z) =
1
2z

2 + [e]
α+1 |x|

α+1.

Let (x0(t), z0(t)) be the periodic solution of (3.5) satisfying the initial value

(x0(0), z0(0)) = (1, 0)

and T0 > 0 be its minimal period. Introduce the functions C and S by

(C(t), S(t)) =
(
x0

( t

T0

)
, z0

( t

T0

))
.

The functions C, S satisfy

(1) C ∈ C2(T), S ∈ C1(T), C(0) = 1, S(0) = 0;

(2) C(−t) = C(t), S(−t) = −S(t), C
(
1
2 − t

)
= −C(t), S

(
1
2 − t

)
= S(t);

(3) C(t) = 0 ⇔ t
(
mod 1

2

)
= 1

4 ;

(4) Ċ = 1
T0
S, Ṡ = − [e]

T0
|C|α−1

C;

(5) 1
2S(t)

2 + [e]
α+1 |C(t)|

α+1 = [e]
α+1 .

The action and angle variables are introduced by the canonical transformation

Φ2 : x = dbIbC(θ), z = d
a
2 I

a
2 S(θ),

where b = 2
α+3 , a = 2 − 2b = 2(α+1)

α+3 and d = b[e]T0. It is obvious that 1
2 < b < 2

3 < a < 1 if

0 < α < 1. We claim that Φ2 is a symplectic diffeomorphism from R+ ×T onto R2/{0} for the

following reason. (C, S) is a solution of (3.5) with the minimal period T0, so Φ2 is one to one

and onto. Moreover, Φ2 is measure preserving.
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Under Φ2, the Hamiltonian (3.3) is transformed into

H(θ, I, t) = d0I
a + (d

a
2 S(θ)I

a
2 + q(t))(dbC(θ))αE(t)Ibα +

1

2
(dbC(θ))2αE(t)2I2bα

+ d
a
2 S(θ)q(t)I

a
2 − [p]dbC(θ)Ib, (3.6)

where d0 = [e]
α+1d

b.

We introduce the quasi-periodic function space Fω(r0, l0) as follows.

3.3 A function class Fω(r0, l0)

Given r0 ∈ R, l0 ≥ 0, denote Fω(r0, l0) the set of functions in (λ, θ, t) ∈ R+ × T × R: f is

C∞ in λ, Cl0 in θ, f(λ, θ, ·) ∈ Q(ω) for all (λ, θ) ∈ R+ × T and satisfies

sup
(λ,θ,t)∈R+×T×R

(λj−r0 |Dj
λD

k
tD

l
θf(λ, θ, t)|) <∞, l ≤ l0.

Lemma 3.1 Fω(r0, l0) has the following properties:

(i) If r1 < r2, then Fω(r1, l0) ⊂ Fω(r2, l0).

(ii) If f ∈ Fω(r0, l0), then D
j0
λ f ∈ Fω(r0 − j0, l0).

(iii) If f1 ∈ Fω(r1, l1) and f2 ∈ Fω(r2, l2), then f1 · f2 ∈ Fω(r1 + r2,min{l1, l2}).

(iv) If f ∈ Fω(r0, l0) satisfies |f(λ, ·, ·)| ≥ cλr0 for λ > λ0, then
1
f
∈ Fω(−r0, l0).

Proof (i) f ∈ Fω(r1, l0), r1 < r2, then

sup
(λ,θ,t)∈R+×T×R

(λj−r2 |Dj
λD

k
tD

l
θf(λ, θ, t)|)

= sup
(λ,θ,t)∈R+×T×R

(λj−r1λr1−r2 |Dj
λD

k
tD

l
θf(λ, θ, t)|) <∞, l ≤ l0.

(ii) f ∈ Fω(r0, l0), then

sup
(λ,θ,t)∈R+×T×R

(λj−(r0−j0)|Dj
λD

k
tD

l
θ(D

j0
λ f(λ, θ, t))|)

= sup
(λ,θ,t)∈R+×T×R

(λj+j0−r0 |Dj+j0
λ Dk

tD
l
θf(λ, θ, t)|) <∞, l ≤ l0.

(iii) f1 ∈ Fω(r1, l1) and f2 ∈ Fω(r2, l2), from Lemma 2.2, f1 · f2 ∈ Q(ω).

sup
(λ,θ,t)∈R+×T×R

(λj−(r1+r2)|Dj
λD

k
tD

l
θ(f1f2)(λ, θ, t)|)

= sup
(λ,θ,t)∈R+×T×R

∑

j1 + j2 = j,

k1 + k2 = k,

l01 + l02 = l

2∏

i=1

(λji−ri |Dji
λ D

ki

t D
l0i
θ fi(λ, θ, t)|) <∞, l ≤ min{l1, l2}.

(iv) f ∈ Fω(r0, l0), then

sup
(λ,θ,t)∈R+×T×R, λ>λ0

(
λj−(−r0)

∣∣∣Dj
λD

k
tD

l
θ

1

f(λ, θ, t)

∣∣∣
)
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≤ sup
(λ,θ,t)∈R+×T×R, λ>λ0

(λj+r0 |Dj
λD

k
tD

l
θ(c

−1λ−r0)|) <∞, l ≤ l0.

For f ∈ Fω(r0, l0), denote the mean value over t-variables by [f ]:

[f ](λ, θ) = lim
T→∞

1

T

∫ T

0

f(λ, θ, t)dt > 0.

Define C1(θ) = (dbC(θ))α. It is obvious that C1 ∈ C0 for 0 < α < 1. Rewrite (3.6) as

H(θ, I, t) = d0I
a + (d

a
2 S(θ)I

a
2 + q(t))C1(θ)E(t)Ibα +

1

2
C1(θ)

2E(t)2I2bα

+ d
a
2 S(θ)q(t)I

a
2 − [p]dbC(θ)Ib. (3.7)

Denote

Ĥ0(I) = d0I
a,

Ĥ1(I, C1(θ), S(θ), t) = (d
a
2 S(θ)I

a
2 + q(t))C1(θ)E(t)Ibα +

1

2
C1(θ)

2E(t)2I2bα,

Ĥ2(I, S(θ), t) = d
a
2 S(θ)q(t)I

a
2 ,

Ĥ3(I, C(θ)) = −[p]dbC(θ)Ib.

From the definition of the function space Fω(r0, l0) and Lemma 3.1, we have

Ĥ0 ∈ Fω(a,+∞), Ĥ1 ∈ Fω(2a− 1, 0), Ĥ2 ∈ Fω

(a
2
, 1
)
, Ĥ3 ∈ Fω(b, 2). (3.8)

Define

H0(I, C(θ)) = Ĥ0(I) + Ĥ3(I, C(θ)), H1(I, C1(θ), S(θ), t) = Ĥ1(I, C1(θ), S(θ), t) + Ĥ2(I, S(θ), t).

Then the Hamiltonian (3.7) becomes

H(θ, I, t) = H0(I, C(θ)) +H1(I, C1(θ), S(θ), t), (3.9)

where

H0 ∈ Fω(a, 2), H1 ∈ Fω(2a− 1, 0). (3.10)

Since the Hamiltonian (3.9) is only C0 on θ, we cannot guarantee that the Poincaré map

of (3.9) is smooth enough as required in the quasi-periodic invariant curve theorem obtained

by Huang-Li-Liu in [13]. To solve this probelm, we will exchange the role of θ and t in the

following part.

3.4 Changing action-angle variables

From (3.8), Ĥ0 ∈ Fω(a,+∞), Ĥ3 ∈ Fω(b, 2), it is obvious that ∂H0

∂I
= ∂(Ĥ0+Ĥ3)

∂I
6= 0 for

large enough I > 0, then there exists a function I0(σ, C(θ)) which is C∞ on C such that

σ = H0(I0(σ, C(θ)), C(θ)). (3.11)
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Similarly, from (3.10), H0 ∈ Fω(a, 2), H1 ∈ Fω(2a− 1, 0), ∂H
∂I

= ∂(H0+H1)
∂I

6= 0 for large enough

I > 0, so there exists a function I(H, t, θ) such that

H = H0(I(H, t, θ), C(θ)) +H1(I(H, t, θ), C1(θ), S(θ), t), (3.12)

which can be rewritten as

H −H1(I(H, t, θ), C1(θ), S(θ), t) = H0(I(H, t, θ), C(θ)). (3.13)

From (3.11) and (3.13), it is obvious that

I(H, t, θ) = I0(H −H1(I(H, t, θ), C1(θ), S(θ), t), C(θ)). (3.14)

Consider the function

H(I, C1, C, S, t) = H0(I, C) +H1(I, C1, S, t).

From (3.10) and ∂H
∂I

= ∂(H0+H1)
∂I

6= 0 for large enough I > 0, there exists a function Ĩ(H, t, C, C1, S)

with Ĩ being C∞ on C, C1, S such that

H = H0(Ĩ(H, t, C, C1, S), C) +H1(Ĩ(H, t, C, C1, S), C1, S, t). (3.15)

From these definitions, I(H, t, θ) = Ĩ(H, t, C(θ), C1(θ), S(θ)).

Let

I1(H, t, C, C1, S) = −

∫ 1

0

∂I0
∂σ

(H − µH1(Ĩ(H, t, C, C1, S), t, C, C1, S), C)

·H1(Ĩ(H, t, C, C1, S), C1, S, t)dµ. (3.16)

It is easy to deduce that I1 is C∞ on C, C1 and S respectively. From the definition of H1, I0

and Lemmas 2.1–2.2, I1 ∈ Q(ω).

The Hamiltonian (3.9) becomes

I(H, t, θ) = I0(H, C(θ)) + I1(H, t, C(θ), C1(θ), S(θ)) (3.17)

with θ, t, H being the new time variables, new angle variables and new action variables respec-

tively. From the proprieties of the function space Fω(r0, l0) (see Lemma 3.1), we have

I0 ∈ Fω

(1
a
, 2
)
, I1 ∈ Fω(1, 0). (3.18)

Furthermore, for a positive constant C0,

∂iHI0 ≥ C0H
1
a
−i. (3.19)
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4 More Transformations

We will make more transformations since the Poincaré mapping of the Hamiltonian system

(3.17) is not a small perturbation of a stand quasi-periodic twist mapping. Notice that all these

transformations are quasi-periodic in the time variable. We will discuss the quasi-periodicity

after every transformation.

It should be noticed that C1 ∈ C0. In order to make more transformations, we will improve

the smoothness of C1 by constructing a smooth approximation function C2 of C1. Denote

S1(θ) = S
′(θ) = − [e]

T0
C(θ) · |C(θ)|α−1. For the same reason, we also find a smooth approximation

function S2 of S1. The method can be found in [9], so we state the two conclusion in the following

Lemma 4.1 without detail proof for simplicity. Here we point out that though our proof appears

a simple variant of [9], there is a big difference between our quasi-periodic case and the periodic

case in [9]. In fact, in our proof we use the integral proposition of quasi-periodic functions in

Section 2 and the proprieties of the new function class Fω(r0, l0) in Section 3.

Lemma 4.1 (see [9]) For any ε > 0, there exist C1 periodic functions C2, S2 such that

|C2(θ)− C1(θ)| ≤ D1 · ε
α, |C′

2
(θ)| ≤ D1 · ε

α−1, (4.1)

C2(θ) = C1(θ) if
∣∣∣θ

(
mod

1

2

)
−

1

4

∣∣∣ ≥ D · ε, (4.2)

and

|S2(θ)− S1(θ)| ≤ D2 · ε
α, |S′

2
(θ)| ≤ D2 · ε

α−1, (4.3)

where constants D1, D2 > 0 are independent of ε.

From (3.17),

I(H, t, θ) = I0(H, C(θ)) + I1(H, t, C(θ), C1(θ), S(θ))

= I0(H, C(θ)) + I1(H, t, C(θ), C2(θ), S(θ)) + I1(H, t, C(θ), C1(θ), S(θ))

− I1(H, t, C(θ), C2(θ), S(θ))

= I0(H, C(θ)) + I1(H, t, C(θ), C2(θ), S(θ))

+

∫ 1

0

∂I1
∂C1

(H, t, C(θ), µ(C1(θ) − C2(θ)), S(θ)) · (C1(θ)− C2(θ))dµ.

Let

I2(H, t, θ) =

∫ 1

0

∂I1
∂C1

(H, t, C(θ), µ(C1(θ)− C2(θ)), S(θ)) · (C1(θ)− C2(θ))dµ. (4.4)

Then (3.17) is rewritten as

I = I0(H, C(θ)) + I1(H, t, C(θ), C2(θ), S(θ)) + I2(H, t, θ). (4.5)

Lemma 4.2 For the initial action variable H0 > 0 large enough, there exists a canonical

transformation such that the Hamiltonian (4.5) is transformed into

I = J0(λ, θ, C2(θ)) + J1(λ, τ, θ, C2(θ), S2(θ)) + J2(λ, τ, θ, C2(θ)) · C
′
2
(θ) + J3(λ, τ, θ), (4.6)
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where

J0 ∈ Fω

(1
a
, 2
)
, J1, J2 ∈ Fω

(
2−

1

a
, 0
)
, H

1
a
−1+c0

0 J3 ∈ Fω(1, 0). (4.7)

Moreover, for a positive constant C0,

∂iHJ0 ≥ C0λ
1
a
−i. (4.8)

Proof Let ε = H
−( 1

a
−1+c0)

1
α

0 be the parameter in Lemma 4.1 with the constant 0 < c0 < 1.

From (3.18), (4.4) and Lemma 4.1,

|I2| ≤ D1H
−( 1

a
−1+c0)

0 , (4.9)

where D1 is a constant independent of H0 denoted in Lemma 4.1, so

H
−( 1

a
−1+c0)

0 I2 ∈ Fω(1, 0). (4.10)

Introduce a canonical transformation

Φ3 : H = λ+
∂G2

∂t
(λ, t, θ), τ = t+

∂G2

∂λ
(λ, t, θ),

where the function G2(λ, t, θ) will be determined later. Under Φ3, the Hamiltonian (4.5) is

transformed into

I = I0

(
λ+

∂G2

∂t
, C(θ)

)
+ I1

(
λ+

∂G2

∂t
, t, C(θ), C2(θ), S(θ)

)
+ I2

(
λ+

∂G2

∂t
, t, θ

)
+
∂G2

∂θ

= I0(λ, C(θ)) + [I1](λ, C(θ), C2(θ), S(θ)) +
∂I0
∂H

(λ, C(θ)) ·
∂G2

∂t
+ I1(λ, t, C(θ), C2(θ), S(θ))

− [I1](λ, C(θ), C2(θ), S(θ)) +

∫ 1

0

∂2I0
∂H2

(
λ+ µ

∂G2

∂t
, C(θ)

)
·
(∂G2

∂t

)2

dµ

+

∫ 1

0

∂I1
∂H

(
λ+ µ

∂G2

∂t
, t, C(θ), C2(θ), S(θ)

)
·
∂G2

∂t
dµ+ I2

(
λ+

∂G2

∂t
, t, θ

)
+
∂G2

∂θ
, (4.11)

where [I1](λ, C(θ), C2(θ), S(θ)) = lim
T→∞

1
T

∫ T

0 I1(λ, t, C(θ), C2(θ), S(θ))dt.

Let

∂I0
∂H

(λ, C(θ)) ·
∂G2

∂t
+ I1(λ, t, C(θ), C2(θ), S(θ)) − [I1](λ, C(θ), C2(θ), S(θ)) = 0,

then

G2(λ, t, C(θ), C2(θ), S(θ))

= −
(∂I0
∂H

)−1

(λ, C(θ))

∫ t

0

(I1(λ, t, C(θ), C2(θ), S(θ)) − [I1](λ, C(θ), C2(θ), S(θ)))dt.

I1 is C
∞ in C, C2, S respectively and I1 ∈ Q(ω) with the frequency ω satisfying the Diophantine

condition (1.5). According to Proposition 2.1,
∫ t

0
(I1 − [I1])dt ∈ Q(ω) and C∞ in C, C2, S

respectively. Thus G2(λ, ·, C(θ), C2(θ), S(θ)) ∈ Q(ω) and C∞ in C, C2, S respectively. It is

obvious that

∂G2

∂θ
(λ, t, θ) = −

(∂I0
∂H

)−1
∫ t

0

∂(I1 − [I1])

∂C
dt · S(θ)−

(∂I0
∂H

)−1
∫ t

0

∂(I1 − [I1])

∂S
dt · S1(θ)
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−
(∂I0
∂H

)−1
∫ t

0

∂(I1 − [I1])

∂C2
dt · C′

2
(θ)

−
(∂I0
∂H

)−2

·
∂2I0
∂H∂C

∫ t

0

(I1 − [I1])dt · S(θ). (4.12)

Denote

J11(λ, τ, C(θ), C2(θ), S(θ)) = −
(∂I0
∂H

)−1
∫ t

0

∂(I1 − [I1])

∂C
dt · S(θ),

J12(λ, τ, C(θ), C2(θ), S(θ), S1(θ)) = −
(∂I0
∂H

)−1
∫ t

0

∂(I1 − [I1])

∂S
dt · S1(θ),

J13(λ, τ, C(θ), C2(θ), S(θ)) = −
(∂I0
∂H

)−2

·
∂2I0
∂H∂C

∫ t

0

(I1 − [I1])dt · S(θ),

J2(λ, τ, C(θ), C2(θ), S(θ)) = −
(∂I0
∂H

)−1
∫ t

0

∂(I1 − [I1])

∂C2
dt.

Then (4.12) can be rewritten as

∂G2

∂θ
= J11 + J12 + J13 + J2 · C

′
2
.

Define

J0(λ, θ, C2(θ)) = I0(λ, C(θ)) + [I1](λ, C(θ), C2(θ), S(θ)),

J1(λ, τ, C(θ), C2(θ), S(θ), S1(θ)) = J11(λ, t, C(θ), C2(θ), S(θ)) + J12(λ, t, C(θ), C2(θ), S(θ), S1(θ))

+ J13(λ, t, C(θ), C2(θ), S(θ))

+

∫ 1

0

∂2I0
∂H2

(
λ+ µ

∂G2

∂t
, C(θ)

)
·
(∂G2

∂t

)2

dµ

+

∫ 1

0

∂I1
∂H

(
λ+ µ

∂G2

∂t
, t, C(θ), C2(θ), S(θ)

)
·
∂G2

∂t
dµ,

Ĵ1(λ, τ, θ) = J2

(
λ+

∂G2

∂t
, t, θ

)
.

In the above denotation, t = t(λ, τ, C(θ), C2(θ), S(θ)).

It is obvious that J0(λ, θ, C2(θ)) is C
∞ on C2 and C1 on θ. From Lemma 2.2, J1 is C∞ in

C, C2, S and C1 on θ respectively and J1(λ, ·, C(θ), C2(θ), S(θ), S1(θ)) ∈ Q(ω). From Lemma 2.1,

Ĵ1 is C1 on θ and Ĵ1(λ, ·, θ) ∈ Q(ω).

Moreover, from (4.9),

J1, J2 ∈ Fω

(
2−

1

a
, 0
)
, H

1
a
−1+c0

0 Ĵ1 ∈ Fω(1, 0).

From the definition of G2, rewrite (4.11) as

I = J0(λ, θ, C2(θ)) + J1(λ, τ, θ, C2(θ), S1(θ)) + J2(λ, τ, θ, C2(θ)) · C
′
2
(θ) + Ĵ1(λ, τ, θ)

= J0(λ, θ, C2(θ)) + J1(λ, τ, θ, C2(θ), S2(θ)) + J2(λ, τ, θ, C2(θ)) · C
′
2
(θ)

+ J1(λ, τ, θ, C2(θ), S1(θ))− J1(λ, τ, θ, C2(θ), S2(θ)) + Ĵ1(λ, τ, θ). (4.13)
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Define

Ĵ2(λ, τ, θ) = J1(λ, τ, θ, C2(θ), S1(θ)) − J1(λ, τ, θ, C2(θ), S2(θ)).

From (4.7),

H
1
a
−1+c0

0 Ĵ2 ∈ Fω

(
2−

1

a
, 0
)
. (4.14)

Define

J3(λ, τ, θ) = Ĵ1 + Ĵ2.

Rewrite (4.13) as

I = J0(λ, θ, C2(θ)) + J1(λ, τ, θ, C2(θ), S2(θ)) + J2(λ, τ, θ, C2(θ)) · C
′
2
(θ) + J3(λ, τ, θ).

However, the Poincaré map of the Hamiltonian system corresponding to (4.5) does not have

the form of the Poincaré mapping in [14], therefore we should make another transformation.

In the above proof, C′
2
is only C0 on θ. To satisfy the smoothness requirements, we establish a

C1 function C3 which is an approximation of C′
2
similar as in Lemma 4.1. Then we can use the

quasi-periodic twist theorem in [14] to the Poincaré mapping. From [9], we have the following

lemma.

Lemma 4.3 (see [9]) For any H0 > 0 and 0 < ε0 < c0, there exists a C1 function C3(θ)

such that

∫ 1

0

|C′
2
(θ)− C3(θ)|dθ ≤ D ·H−ε0

0 , (4.15)

∫ 1

0

|C′
3
(θ)|dθ ≤ D ·H

ε0(1−α)
0 , (4.16)

max |C3(θ)| ≤ D ·H
ε0(1−α)
0 , (4.17)

where D is a constant independent of H0.

From the above results, the Hamiltonian (4.6) is

I = J0(λ, θ, C2(θ)) + J1(λ, τ, θ, C2(θ), S2(θ)) + J2(λ, τ, θ, C2(θ)) · C3(θ)

+ J3(λ, τ, θ) + J2(λ, τ, θ, C2(θ)) · (C
′
2
(θ)− C3(θ)), (4.18)

where J0, J1, J2 are C1 on θ, C∞ on C2 and S2 respectively and J1(λ, ·, θ, C2(θ), S2(θ)) ∈ Q(ω),

J2(λ, ·, θ, C2(θ)) ∈ Q(ω), J3(λ, ·, θ) ∈ Q(ω).

Lemma 4.4 For the initial action variable H0 > 0 large enough (which implies that new

initial action variable λ0 large enough), there exists a canonical transformation which transforms

the Hamiltonian (4.18) into

I = L0(ρ, θ) + L1(ρ, ς, θ) + L2(ρ, ς, θ) + L3(ρ, ς, θ) + L4(ρ, ς, θ) · (C
′
2
(θ) − C3(θ))
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+ L5(ρ, ς, θ) · C
′
2
(θ) + L6(ρ, ς, θ) · S

′
2
(θ). (4.19)

Moreover, we have

L0 ∈ Fω

(1
a
, 2
)
, L1 ∈ Fω

(
3−

2

a
+ c1ε0, 0

)
, L2 ∈ Fω

(
3−

2

a
, 0
)
, L3 ∈ H

1− 1
a
−c0

0 Fω(1, 0),

L4 ∈ Fω

(
2−

1

a
, 0
)
, L5 ∈ Fω

(
3−

2

a
, 0
)
, L6 ∈ Fω

(
3−

2

a
, 0
)
, (4.20)

where c0 > 0 and c1 = 2−α
α

are constants independent of ε0.

Proof Introduce the canonical transformation

Φ4 : λ = ρ+
∂G3

∂τ
(ρ, τ, θ), ς = τ +

∂G3

∂ρ
(ρ, τ, θ),

where the function G3(ρ, τ, θ) will be determined later. Under Φ4, the Hamiltonian (4.18) is

transformed into

I =J0

(
ρ+

∂G3

∂τ
, θ, C2(θ)

)
+ J1

(
ρ+

∂G3

∂τ
, τ, θ, C2(θ), S2(θ)

)
+ J2

(
ρ+

∂G3

∂τ
, τ, θ, C2(θ)

)
· C3(θ)

+J3

(
ρ+

∂G3

∂τ
, τ, θ

)
+
∂G3

∂θ
+ J2

(
ρ+

∂G3

∂τ
, τ, θ, C2(θ)

)
· (C′

2
(θ)− C3(θ))

=J0(ρ, θ, C2(θ)) + [J1] + [J2] · C3(θ) +
∂J0

∂ρ
(ρ, C(θ)) ·

∂G3

∂τ
+ J1(ρ, τ, θ, C2(θ), S2(θ))− [J1]

+ J2(ρ, τ, θ, C2(θ)) · C3(θ) − [J2] · C3(θ) + J3(ρ, τ, θ) +
∂G3

∂θ

+ J2(ρ, τ, θ, C2(θ)) · (C
′
2
(θ)− C3(θ)) +

∫ 1

0

∂2J0

∂λ2

(
ρ+ µ

∂G3

∂τ
, C(θ)

)
·
(∂G3

∂τ

)2

dµ

+

∫ 1

0

∂[J1]

∂λ

(
ρ+ µ

∂G3

∂τ
, θ, C2(θ), S(θ)

)
·
∂G3

∂τ
dµ

+

∫ 1

0

∂J1

∂λ

(
ρ+ µ

∂G3

∂τ
, τ, θ, C2(θ)

)
·
∂G3

∂τ
dµ

+

∫ 1

0

∂J2

∂λ

(
ρ+ µ

∂G3

∂τ
, τ, θ, C2(θ)

)
·
∂G3

∂τ
dµ · C3(θ),

where

[J1] = [J1](ρ, θ, C2(θ), S2(θ)) = lim
T→∞

1

T

∫ T

0

J1(ρ, τ, θ, C2(θ), S2(θ))dτ,

[J2] = [J2](ρ, θ, C2(θ)) = lim
T→∞

1

T

∫ T

0

J2(ρ, τ, θ, C2(θ))dτ.

Let

∂J0

∂λ
(ρ, C(θ)) ·

∂G3

∂τ
+ J1(ρ, τ, θ, C2(θ), S2(θ)) − [J1] + J2(ρ, τ, θ, C2(θ)) · C3(θ)− [J2] · C3(θ) = 0,

then

G3 = −
(∂J0

∂λ

)−1
∫ τ

0

(J1 − [J1] + (J2 − [J2]) · C3(θ))dτ.
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From the definition of J1, J2 and Proposition 2.1, G3(ρ, ·, θ) ∈ Q(ω). We can calculate that

∂G3

∂θ
= −

(∂J0

∂λ

)−1
∫ τ

0

(∂(J1 − [J1])

∂C2
· C′

2
(θ) +

∂(J1 − [J1])

∂S2
· S′

2
(θ) +

∂(J1 − [J1])

∂θ

)
dτ

−
(∂J0

∂λ

)−1
∫ τ

0

(∂(J2 − [J2])

∂C2
· C′

2
(θ)C3(θ) +

∂(J2 − [J2])

∂θ
C3(θ)

+ (J2 − [J2]) · C
′
3
(θ)

)
dτ +

(∂J0

∂λ

)−2

·
∂2J0

∂λ∂θ

∫ τ

0

(J1 − [J1] + (J2 − [J2]))dτ · C3(θ).

Define

L0(ρ, θ) = J0(ρ, θ, C2(θ)) + [J1] + [J2] · C3(θ),

L1(ρ, τ, θ) =
(∂J0

∂λ

)−2

·
∂2J0

∂λ∂θ

∫ τ

0

(J2 − [J2])dτ · C3(θ)−
(∂J0

∂λ

)−1
∫ τ

0

∂(J2 − [J2])

∂θ
dτ · C3(θ)

−
(∂J0

∂λ

)−1
∫ τ

0

∂(J2 − [J2])

∂C2
dτ · C3(θ) · C

′
2
(θ) −

(∂J0

∂λ

)−1
∫ τ

0

(J2 − [J2])dτ · C
′
3
(θ),

L2(ρ, τ, θ) =

∫ 1

0

∂2J0

∂λ2

(
ρ+ µ

∂G3

∂τ
, C
)
·
(∂G3

∂τ

)2

dµ+

∫ 1

0

∂[J1]

∂λ

(
ρ+ µ

∂G3

∂τ
, θ, C2, S

)
·
∂G3

∂τ
dµ

+

∫ 1

0

∂J1

∂λ

(
ρ+ µ

∂G3

∂τ
, τ, θ, C2

)
·
∂G3

∂τ
dµ

+

∫ 1

0

∂J2

∂λ

(
ρ+ µ

∂G3

∂τ
, τ, θ, C2

)
·
∂G3

∂τ
dµ · C3(θ)

+
(∂J0

∂λ

)−2

·
∂2J0

∂λ∂θ

∫ τ

0

(J1 − [J1])dτ −
(∂J0

∂λ

)−1
∫ τ

0

∂(J1 − [J1])

∂θ
dτ,

L3(ρ, τ, θ) = J2

(
ρ+

∂G3

∂τ
, τ, θ, C2

)
,

L4(ρ, τ, θ) = J3

(
ρ+

∂G3

∂τ
, τ, θ

)
,

L5(ρ, τ, θ) = −
(∂J0

∂λ

)−1
∫ τ

0

∂(J1 − [J1])

∂C2
dτ,

L6(ρ, τ, θ) = −
(∂J0

∂λ

)−1
∫ τ

0

∂(J1 − [J1])

∂S2
dτ,

where τ = τ(ρ, ς, θ, C3(θ)). Then, the Hamiltonian (4.18) is rewritten as

I = L0(ρ, θ) + L1(ρ, ς, θ) + L2(ρ, ς, θ) + L3(̺, ς, θ) + L4(ρ, ς, θ) · (C
′
2
(θ)− C3(θ))

+ L5(ρ, ς, θ) · C
′
2
(θ) + L6(ρ, ς, θ) · S

′
2
(θ).

From Proportion 2.1, L1(ρ, ·, θ), L2(ρ, ·, θ), L3(̺, ·, θ), L4(ρ, ·, θ), L5(ρ, ·, θ), L6(ρ, ·, θ) ∈ Q(ω).

Let θ∗ be the number such that
∫ 1

4
+θ∗

1
4
−θ∗

dθ = 2|C2(θ)| = H−ε0
0 . Note that C3(θ) = 0 for∣∣θ

(
mod 1

2

)
− 1

4

∣∣ ≤ θ∗ and there are similar results for C
′
3
and C

′
2
· C3. From the estimate

on J2 in (4.7) and C3 in (4.3),

L1 ∈ Fω

(
3−

2

a
+ c1ε0, 0

)
.

From (4.7) and for the reason that
∫ 1

0 |C3(θ)|dθ is bounded, we can also prove other parts of

(4.20).
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5 Proof of Main Result

It is obvious that the solution (H(θ), t(θ)) of (3.17) with the initial condition H(0) =

H0, t(0) = t0 satisfies

c ·H0 ≤ |H(θ)| ≤ C ·H0, ∀ θ ∈ [0, 1],

where c, C > 0 are two positive constants. As a consequence, for the solution (ρ(θ), ς(θ)) of

(4.19) with the initial condition (ρ(0), ς(0)) = (ρ(H0, t0, 0), ς(H0, t0, 0)), we have

c ·H0 ≤ |ρ(θ)| ≤ C ·H0, ∀ θ ∈ [0, 1].

Consider the Hamiltonian (4.19),

I = L0(ρ, θ) + L1(ρ, ς, θ) + L2(ρ, ς, θ) + L3(ρ, ς, θ) + L4(ρ, ς, θ) · (C
′
2
(θ) − C3(θ))

+ L5(ρ, ς, θ) · C
′
2
(θ) + L6(ρ, ς, θ) · S

′
2
(θ).

The corresponding Hamiltonian system is




dρ

dθ
= −

∂I

∂ς
= −

∂L1

∂ς
−
∂L2

∂ς
−
∂L3

∂ς
−
∂L4

∂ς
· (C′

2
− C3)−

∂L5

∂ς
· C′

2
−
∂L6

∂ς
· S′

2
,

dς

dθ
=

∂I

∂ρ
=
∂L0

∂ρ
+
∂L1

∂ρ
+
∂L2

∂ρ
+
∂L3

∂ρ
+
∂L4

∂ρ
· (C′

2
− C3) +

∂L5

∂ρ
· C′

2
+
∂L6

∂ρ
· S′

2
.

(5.1)

The Poincaré map P of (5.1) is of the form

P :





ρ1 = ρ0 + f1(ρ0, ς0),

ς1 = ς0 +

∫ 1

0

∂L0

∂ρ
dθ + f2(ρ0, ς0),

(5.2)

where

f1(ρ0, ς0) = −

∫ 1

0

(∂L1

∂ς
+
∂L2

∂ς
+
∂L3

∂ς
+
∂L4

∂ς
· (C′

2
− C3) +

∂L5

∂ς
· C′

2
+
∂L6

∂ς
· S′

2

)
dθ, (5.3)

f2(ρ0, ς0) =

∫ 1

0

(∂L1

∂ρ
+
∂L2

∂ρ
+
∂L3

∂ρ
+
∂L4

∂ρ
· (C′

2
− C3) +

∂L5

∂ρ
· C′

2
+
∂L6

∂ρ
· S′

2

)
dθ. (5.4)

Define

r(ρ) =

∫ 1

0

∂L0

∂ρ
(ρ, θ)dθ.

From (4.20),

r ∈ Fω

(1
a
− 1, 2

)
. (5.5)

Moreover, for ρ large enough, ∂r
∂ρ

6= 0.

Then the Poincaré map is expressed as P1 : {r | r > r∗, r∗ ≫ 1} × R → R2 of the following

form

P1 :

{
r1 = r0 + g1(r0, ς0),

ς1 = ς0 + r0 + g2(r0, ς0),
(5.6)
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where

r1 = r(ρ1) = r(ρ0) +

∫ 1

0

∂r

∂ρ
(ρ0 + sf1(ρ0, ς0)) · f1(ρ0, ς0)ds,

r0 = r(ρ0).

From (5.5) and (5.6),
∫ 1

0 |C′
2
(θ)|dθ and

∫ 1

0 |S′
2
(θ)|dθ are bounded by a constant, therefore,

|∂ir0∂
j
ς0
gk(r0, ς0)| ≤ D · r−ε0

0 , k = 1, 2, (5.7)

when ε0 in Lemma 4.1 is chosen small enough to make it smaller than the positive number

which is dependent on c0, c1 and a and make the Poincaré map P1 satisfy (6.1) in Theorem

6.1.

Define the quasi-periodic mapping M as

M :

{
θ1 = θ + r + f(θ, r),

r1 = r + g(θ, r),
(θ, r) ∈ R× [a0, b0], (5.8)

where the function f(θ, ·), g(θ, ·) are quasi-periodic in θ with the frequency ω = (ω1, ω2, · · · , ωn).

Definition 5.1 (see [13]) Let M be a mapping defined as (5.8). If M : R × [a0, b0] → R2

is symplectic with respect to the usual symplectic structure dr ∧ dθ and for every curve Γ : θ =

ξ + ϕ(ξ), r = ψ(ξ), where the continuous functions ϕ and ψ are quasi-periodic in ξ with the

frequency ω, there is

lim
T→+∞

1

2T

∫ T

−T

rdθ = lim
T→+∞

1

2T

∫ T

−T

r1dθ1,

we say that M is an exact symplectic map.

Lemma 5.1 (see [13]) If the mapping (5.8) is an exact symplectic map, then it has inter-

section property.

Proof of Theorem 1.1 Since all the transformations are canonical, the Poincaré map P1 is

an exact symplectic. For all the detail above, the Poincaré map P1 satisfies all the requirements

in Theorem 6.1. For any rotation number ̟ satisfying (6.3), we can obtain a quasi-periodic

invariant curve of P1 with the form (6.4). Let (x, ẋ) be the solution of (1.4) staying in the

interior of some quasi-periodic invariant curves with appropriate rotation number ̟ satisfying

(6.3). Since all the transformations are canonical, every solution starting from (x, ẋ) is confined

in the interior of the time quasi-periodic cylinder whose boundary is one of the quasi-periodic

invariant curves and thus this solution is bounded. Notice that the initial value can be chosen

large enough, thus, all the solutions are bounded.

6 Appendix

Assume that f : R2 → R is a Cm smooth function. Define

|x| = max{|θ|, |r|} for x = (θ, r) ∈ R
2,
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|f |R2 = sup
R2

|f(x)|,

‖f‖m =
∑

|k|≤m

sup
x∈R2

|Dkh(x)| for m ∈ N
+.

In 2017, Huang-Li-Liu [13] established the twist theorem of the following smooth quasi-

periodic mapping.

Theorem 6.1 (see [13]) The quasi-periodic mapping M given as (5.8),

M :

{
θ1 = θ + r + f(θ, r),

r1 = r + g(θ, r),
(θ, r) ∈ R× [a0, b0],

is of class Cm (m > 2τ + 1 > 2n + 1) and satisfies the intersection property. The functions

f(θ, r), g(θ, r) are quasi-periodic in θ with the frequency ω = (ω1, ω2, · · · , ωn) satisfying the

following conditions:
{

|f |R2 + |g|R2 ≤ o1(m,Γ, γ, τ),

‖f‖m + ‖g‖m ≤ o2(m,Γ, γ, τ),
(6.1)

where Γ is the Gamma function, γ, τ are constants satisfying

0 < γ <
1

2
min{1, 123(b0 − a0)}, τ > n (6.2)

and o1(m,Γ, γ, τ), o2(m,Γ, γ, τ) are sufficiently small functions of m, Γ, γ, τ and a0, b0 > 0

are two constants.

Then for any rotation number ̟ satisfying the inequalities



a0 + 12−3γ ≤ ̟ ≤ b0 − 12−3γ,∣∣∣〈k, w〉 ̟

2π
− j

∣∣∣ ≥ γ

| k |τ
for all k ∈ Z

n\{0}, j ∈ Z,
(6.3)

the quasi-periodic mapping M has an invariant curve Γ0 with the form

θ = θ′ + φ(θ′), r = ψ(θ′), (6.4)

where φ, ψ are quasi-periodic with the frequency ω = (ω1, · · · , ωn) and the invariant curve Γ0

is continuous and quasi-periodic with the frequency ω. Moreover, the restriction of M onto Γ0

is

M |Γ0
: θ′1 = θ′ +̟.

Remark 6.1 (see [13]) If all conditions of Theorem 6.1 hold, then the mapping M has

many invariant curves Γ0, which can be labeled by the form

M |Γ0
: θ′1 = θ′ +̟

of the restriction ofM onto Γ0. In fact, given any̟ satisfying the inequalities (6.3), there exists

an invariant curve Γ0 of M which is quasi-periodic with the frequency ω, and the restriction of

M onto Γ0 has the form

M |Γ0
: θ′1 = θ′ +̟.
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