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Rarefaction Wave Interaction and Shock-Rarefaction

Composite Wave Interaction for a Two-Dimensional

Nonlinear Wave System∗
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Abstract In order to construct global solutions to two-dimensional (2D for short) Rie-
mann problems for nonlinear hyperbolic systems of conservation laws, it is important to
study various types of wave interactions. This paper deals with two types of wave inter-
actions for a 2D nonlinear wave system with a nonconvex equation of state: Rarefaction
wave interaction and shock-rarefaction composite wave interaction. In order to construct
solutions to these wave interactions, the authors consider two types of Goursat problems,
including standard Goursat problem and discontinuous Goursat problem, for a 2D self-
similar nonlinear wave system. Global classical solutions to these Goursat problems are
obtained by the method of characteristics. The solutions constructed in the paper may be
used as building blocks of solutions of 2D Riemann problems.
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1 Introduction

The 2D nonlinear wave system takes the form





ρt + (ρu)x + (ρv)y = 0,

(ρu)t + px = 0,

(ρv)t + py = 0,

(1.1)

where ρ represents the density, (u, v) represents the velocity, and p = p(ρ) is the pressure.

This system is derived from the compressible Euler system by neglecting the quadratic terms

in the velocity, or by writing the nonlinear wave system as a first order system (see [5] for more

details). This system is similar to the pressure gradient system which is also derived from the

compressible Euler system (see [1, 38]).

The global existence of solution to the Cauchy problem for multi-dimensional nonlinear

hyperbolic systems of conservation laws is still a complicated open problem. Thus it has been

profitable to consider some special problems, such as 2D Riemann problems, which refer to

Cauchy problems with special initial data that are constant along each ray from the origin.

Recently, several types of 2D Riemann problems for the compressible Euler system and system

(1.1) have been studied by many researchers, see [3, 6, 8–11, 18, 20, 37, 39] for shock reflection
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problems; [7] for shock diffraction problem; [4, 15] for supersonic flows around a convex wedge;

[19] for the interaction of transonic shock and rarefaction wave; and [2, 14, 16–17, 21, 27–29,

31, 36] for the interactions of rarefaction waves.

m = n = 0

o x

y

θ

Vacuum

t = 0 

ρ = ρ
0

Figure 1 Initial data of the expansion of a wedge of gas to vacuum.

In this paper, we consider the system (1.1) with the following initial data:

(ρ,m, n)(0, x, y) =

{
(ρ0, 0, 0), (x, y) ∈ {x > 0,−x tan θ < y < x tan θ};
vacuum, otherwise,

(1.2)

where (m,n) = (ρu, ρv) is the momentum, ρ0 > 0, and θ ∈
(
0, π

2

)
(see Figure 1). Here, the

momentum in vacuum is not specified. This problem describes the expansion of a wedge of gas

at rest into vacuum. It also plays an important role in 2D Riemann problems, since it catches

several important types of wave interactions.

2D Riemann problems allow us to consider the so-called self-similar solutions, that are the

solutions which depend only on the self-similar variables ξ = x
t
and η = y

t
. Then by self-similar

transformation, system (1.1) can be changed into the form




−ξρξ − ηρη +mξ + nη = 0,

−ξmξ − ηmη + pξ = 0,

−ξnξ − ηnη + pη = 0,

(1.3)

which is called the 2D self-similar nonlinear wave system. The greatest feature of the system

(1.3) is that its type is a priori unknown, and the type is determined by the local Mach number

M =

√
ξ2+η2

c
, where c =

√
p′(ρ) represents the speed of sound. The system (1.3) is hyperbolic

if and only if M > 1, and elliptic-hyperbolic if and only if M < 1.

In this paper, we consider a nonconvex equation of state p = p(ρ) which is assumed to

satisfy:

p′(ρ) > 0 as ρ > 0, p′′(ρ) > 0 as 0 < ρ < ρc, p′′(ρ) < 0 as ρ > ρc, p′(0) = 0. (1.4)

Nonconvex equations of state frequently appear in van der Waals gases (see [22–25]). We divide

the discussions into the following two cases: 0 < ρ0 ≤ ρc and ρ0 > ρc. Let us briefly describe

the results of the paper.
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Figure 2 Interaction of rarefaction waves.

If 0 < ρ0 ≤ ρc then the gas away from the sharp corner of the wedge expands to vacuum

as two symmetrical planar rarefaction waves R1 and R2. As illustrated in Figure 2(right), the

rarefaction waves R1 and R2 meet at some point P , then interaction starts. Through P draw

a C− (C+, resp.) cross characteristic curve l− (l+, resp.) in R1 (R2, resp.). Then, by solving a

standard Goursat problem (SGP for short) for the 2D self-similar nonlinear wave system (1.3)

with l+ and l− as the characteristic boundaries (see the SGP (1.3), (3.2) in Subsection 3.2), we

can construct the solution in a region Ω bounded by characteristic curves l+, l−, and a level

curve ρ = 0, where the two rarefaction waves interact. The main result about this interaction

is stated as Theorem 3.1 where we obtain the existence of global classical solution to the SGP

(1.3), (3.2).

If ρ0 > ρc then the gas away from the sharp corner of the wedge expands to vacuum as

two symmetrical planar shock-rarefaction composite waves S1 ∪R1 and S2 ∪R2, where S and

R represent shock and rarefaction wave, respectively. Here, the shock-rarefaction composite

waves consist of a rarefaction shock from the front side state (ρ0, 0, 0) to an intermediate state

with the density ρ∗ which is defined so that p′(ρ∗) =
p(ρ0)−p(ρ∗)

ρ0−ρ∗

, followed by a rarefaction wave

from the intermediate state to the vacuum (see Figure 3). As illustrated in Figure 3(right),

these two composite waves meet at some point P , then interaction starts. Through P draw a

C− (C+, resp.) cross characteristic curve l− (l+, resp.) in R1 (R2, resp.). Then, by solving

a discontinuous Goursat problem (DGP for short) for system (1.3) with l+ and l− as the

characteristic boundaries (see the DGP (1.3), (4.1) in Subsection 4.2), we can construct the

solution in a region Ω bounded by characteristic curves l+, l−, and a level curve ρ = 0, where

the two composite waves interact. Here, the discontinuous Goursat problem means that the

boundary data is discontinuous at P . The main result about this interaction is stated as

Theorem 4.1 where we obtain the existence of global piecewise smooth solution to the DGP

(1.3), (4.1).

In [16–17, 21], the authors considered rarefaction wave interactions for the nonlinear wave

system for polytropic gases p = ργ . They used the idea of Dai and Zhang [14] to convert the

2D self-similar nonlinear wave system (1.3) into the following second order equation:

(γp
γ−1

γ − ξ2)pξξ − 2ξηpξη + (γp
γ−1

γ − η2)pηη +
γ − 1

γp
(ξpξ + ηpη)

2 − 2(ξpξ + ηpη) = 0, (1.5)

and obtained global solutions of rarefaction wave interactions by solving some standard Goursat
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Ω

Figure 3 Interaction of shock-rarefaction composite waves.

problems for (1.5). However, for the general equation of state p = p(ρ), if we still use this way to

study wave interactions then the process will become complicated. Motivated by the results of

Zheng et al. [12, 29–31] in investigating rarefaction wave interactions of the compressible Euler

equations, we derive some characteristic equations and characteristic decompositions of the

2D self-similar nonlinear wave system (1.3). These characteristic equations and characteristic

decompositions will be extensively used to establish the a priori C1 norm estimates of solutions.

Using these a priori C1 norm estimates, we construct the global solutions of the Goursat

problems. Since the main purposes of the paper is the wave interactions, we do not consider

the flow after the interactions, i.e., we do not construct a global solution to the 2D Riemann

problem (1.1)–(1.2). But, the wave structures constructed in this paper may be used as building

blocks of solutions of 2D Riemann problems.

The rest of the paper is organized as follows. Section 2 is mainly concerned with the 2D self-

similar nonlinear wave system (1.3). The concepts of C± characteristic directions, Mach angle,

and C± characteristic angles α and β are presented in Subsection 2.1. A group of characteristic

equations in terms of the variables α, β, and ρ are derived in Subsection 2.2. These equations

will be extensively used to control the hyperbolicity of the system (1.3) and to establish the

uniform a priori C0 norm estimates of solutions. Characteristic decompositions for (1.3) are

derived in Subsection 2.3. These decompositions will be used to establish the uniform a priori

gradient estimates of solutions. Section 3 is devoted to study the interaction of the rarefaction

waves. Section 4 is devoted to study the interaction of the shock-rarefaction composite waves.

2 2D Self-Similar Nonlinear Wave System

2.1 Characteristics

The eigenvalues of (1.3) are determined by
(
λ− η

ξ

)
[(η − λξ)2 − c2(1 + λ2)] = 0, (2.1)

which yields the eigenvalues

λ = λ±(ξ, η, c) =
ξη ± c

√
q2 − c2

ξ2 − c2
, λ = λ0 =

η

ξ
, (2.2)
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where q2 = ξ2 + η2. So, if and only if q2 > c2 (supersonic) system (1.3) is hyperbolic and has

two families of wave characteristics C± defined as the integral curves of dη
dξ = λ± and a family

of stream lines C0 defined as the integral curves of dη
dξ = η

ξ
.

Figure 4 Characteristic directions and characteristic angles.

See Figure 4. The direction of the wave characteristics is defined as the tangent direction

that forms an acute angle A with the vector (−ξ,−η). By simple computation, we see that the

C+ characteristic direction forms with the direction (−ξ,−η) the angle A from C+ to (−ξ,−η)

in the clockwise direction, and the C− characteristic direction forms with the direction (−ξ,−η)

the angle A from C− to (−ξ,−η) in the counterclockwise direction. By computation, we have

c2 = q2 sin2 A. (2.3)

The angle A is called the Mach angle.

From (2.1), we have c = |(ξ,η)·(λ,−1)|
|(λ,−1)| which implies that the component of the vector (−ξ,−η)

normal to the direction of a characteristic C+ (or C−) is equal to the sound speed. Equivalently,

it can be stated as that the tangent line of a C+ (or C−) characteristic at a point is tangent

to the sonic circle of the state ξ2 + η2 = p′(u) at that point. Furthermore, a C+ (or C−)
characteristic must be straight if u is constant along it.

Following [13] and [31], we use the concept of characteristic angles. The C+ (C−) charac-

teristic angle is defined as the counterclockwise angle from the positive ξ-axis to the C+ (C−)
characteristic direction. We denote by α and β the C+ and C− characteristic angle, respec-

tively. Let σ be the counterclockwise angle from the positive ξ-axis to the direction (−ξ,−η).

Then, we have

α = σ +A, β = σ −A, σ =
α+ β

2
, A =

α− β

2
, (2.4)

and

(ξ, η) =
(
− c

cosσ

sinA
, −c

sinσ

sinA

)
. (2.5)

The first equation of (1.3) can be written as

(c2 − ξ2)mξ − ξηnξ − ξηmη + (c2 − η2)nη = 0 (2.6)
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by the last two equations of (1.3).

Let ω = mη − nξ. Then by the last two equations of (1.3) we have

−ξωξ − ηωη = ω. (2.7)

The left eigenvectors corresponding to the eigenvalues λ± are (1, ∓ c
√
ξ2 + η2 − c2). Mul-

tiplying (
c2 − ξ2 −ξη

0 −1

)(
m

n

)

ξ

+

(
−ξη c2 − η2

1 0

)(
m

n

)

η

=

(
0
ω

)

by (1, ∓ c
√
ξ2 + η2 − c2), we get





∂+m+ λ−∂+n =
ω sinA cosA

cosβ
,

∂−m+ λ+∂−n = −ω sinA cosA

cosα
,

(2.8)

where

∂+ = cosα∂ξ + sinα∂η, ∂− = cosβ∂ξ + sinβ∂η. (2.9)

2.2 2D self-similar nonlinear wave system with ω ≡ 0

If ω ≡ 0, we can introduce a potential function ϕ(ξ, η) such that ϕξ = m, ϕη = n. Hence,

from the last two equations of (1.3), we obtain the Bernoulli law

−ηn− ξm+ p(ρ) + ϕ = 0. (2.10)

Moreover, system (1.3) can be reduced to

∂±m+ λ∓∂±n = 0, (2.11)

supplemented by (2.10).

From (2.5) we have

cos(σ ±A) +
cosσ

sinA
∂±c+

c cosα∂±β − c cosβ∂±α

2 sin2 A
= 0, (2.12)

sin(σ ±A) +
sinσ

sinA
∂±c+

c sinα∂±β − c sinβ∂±α

2 sin2 A
= 0. (2.13)

From (2.12)–(2.13) we have

c∂+α = tanA∂+c, (2.14)

c∂+β = − sin 2A tanA− tanA∂+c, (2.15)

c∂−β = − tanA∂−c, (2.16)

c∂−α = sin 2A tanA+ tanA∂−c. (2.17)

From (2.10) we have

−ξ∂±m− η∂±n+ ∂±p = 0. (2.18)

Combining this with (2.11) and (2.5), we have

∂±n = ∓
√
p′(ρ) cos(σ ∓A)∂±ρ, ∂±m = ±

√
p′(ρ) sin(σ ∓A)∂±ρ. (2.19)
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Proposition 2.1 (Commutator Relation) We have

∂−∂+ − ∂+∂− =
1

sin 2A
[(cos 2A∂+β − ∂−α)∂− − (∂+β − cos 2A∂−α)∂+]. (2.20)

Proof See [30] and we omit the proof.

Proposition 2.2 For the variable ρ, we have the following characteristic decompositions:





c∂+∂−ρ = sin 2A∂−ρ+
p′′

4c cos2 A
[(∂−ρ)

2 + (2 sin2 A− 1)∂−ρ∂+ρ],

c∂−∂+ρ = sin 2A∂+ρ+
p′′

4c cos2 A
[(∂+ρ)

2 + (2 sin2 A− 1)∂−ρ∂+ρ].

(2.21)

Proof We apply the commutator relation (2.19) for n and use ∂±c =
p′′

2c ∂±ρ to obtain

∂+

[2p′
p′′

cosα∂−c
]
+ ∂−

[2p′
p′′

cosβ∂+c
]

= − 1

sin 2A

[
(cos 2A∂+β − ∂−α)

2p′

p′′
cosα∂−c

+ (∂+β − cos 2A∂−α)
2p′

p′′
cosβ∂+c

]
. (2.22)

Hence, we have

(cosα+ cosβ)
1

c

(2p′
p′′

)′
∂+c∂−c+ cosα∂+∂−c+ cosβ∂−∂+c

= − 1

sin 2A
[(cosβ∂+β − cosβ cos 2A∂−α− sinβ sin 2A∂−β)∂+c

− (cosα∂−α− cosα cos 2A∂+β + sinα sin 2A∂+α)∂−c]. (2.23)

Applying the commutator relation (2.20) for c, we get

∂−∂+c− ∂+∂−c =
1

sin 2A
[(cos 2A∂+β − ∂−α)∂−c− (∂+β − cos 2A∂−α)∂+c].

Inserting this into (2.23) and using (2.14)–(2.17) we can get





c∂+∂−c =
{
sin 2A+

1

2 cos2 A
∂−c+

( 1

2 cos2 A
−
(2p′
p′′

)′)
∂+c

}
∂−c,

c∂−∂+c =
{
sin 2A+

1

2 cos2 A
∂+c+

( 1

2 cos2 A
−
(2p′
p′′

)′)
∂−c

}
∂+c.

(2.24)

Combining this with ∂±c =
p′′

2c ∂±ρ we can get (2.21).

3 Interaction of Rarefaction Waves

3.1 Planar rarefaction waves

If 0 < ρ0 ≤ ρc then the gas away from the sharp corner of the wedge expands to vacuum

as two symmetrical planar rarefaction waves R1 and R2 (see Figure 2). In the (ξ, η) plane, R1
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and R2 can be represented by

R1 :





ρ1(ξ, η) = ρ̂(ξ sin θ − η cos θ),

m1(ξ, η) = sin θ

∫ ρ1(ξ,η)

ρ0

√
p′(ρ) dρ,

n1(ξ, η) = − cos θ

∫ ρ1(ξ,η)

ρ0

√
p′(ρ) dρ,

0 < ξ sin θ − η cos θ ≤ ζ0,

R2 :





ρ2(ξ, η) = ρ̂(ξ sin θ + η cos θ),

m2(ξ, η) = sin θ

∫ ρ2(ξ,η)

ρ0

√
p′(ρ) dρ,

n2(ξ, η) = cos θ

∫ ρ2(ξ,η)

ρ0

√
p′(ρ) dρ,

0 < ξ sin θ + η cos θ ≤ ζ0,

(3.1)

where ζ0 =
√
p′(ρ0) and the function ρ̂(ζ) (0 ≤ ζ ≤ ζ0) is defined so that

√
p′(ρ̂(ζ)) = ζ.

Here, R1 and R2 are obtained by solving a one-dimensional Riemann problem. Since it is very

classical, we omit the details.

3.2 Goursat problem

Referring to Figure 2, the rarefaction waves R1 and R2 start to interact from the point

P = (0, ξ
P
) =

(
0, ζ0

sin θ

)
. Through P draw a C− (C+, resp.) cross characteristic curve l− (l+,

resp.) in R1 (R2, resp.). Using (2.2) and (3.1), we know that l− and l+ can be determined by





l− :
dη

dξ
= λ−(ξ, η, c1(ξ, η)), η(ξ

P
) = 0, 0 < ξ < ξ

P
,

l+ :
dη

dξ
= λ+(ξ, η, c2(ξ, η)), η(ξ

P
) = 0, 0 < ξ < ξ

P
,

where ci(ξ, η) =
√
p′(ρi(ξ, η)) (i = 1, 2). In order to construct the solution to the interaction of

R1 and R2, we consider system (1.3) with the boundary data

(ρ,m, n)(ξ, η) =

{
(ρ1,m1, n1)(ξ, η) on l−,

(ρ2,m2, n2)(ξ, η) on l+.
(3.2)

Problem (1.3), (3.2) is a standard Goursat problem (SGP for short). By the definition of

characteristic angle, we can set

α |l−= π + θ, β |l+= π − θ.

3.3 Global classical solution to the SGP (1.3), (3.2)

Lemma 3.1 (Local Solution) When ε > 0 is sufficiently small, the SGP (1.3), (3.2) admits

a unique C1 solution on a triangle domain Ωε closed by l−, l+, and a level curve ρ = ρ0 − ε.

Moreover, this solution satisfies

ω = 0, ∂−ρ < 0, ∂+ρ < 0, ∂−β > 0, ∂+α < 0. (3.3)
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Proof The local classical solution can be obtained by the classical theory for boundary

value problems for quasilinear hyperbolic system (see for example Li and Yu [33]).

By computation, we have ω = 0 in the rarefaction waves R1 and R2. Then by (2.8) we have

ω = 0 on l− ∪ l+. (3.4)

Combining this with (2.7) we have that the solution satisfies ω = 0.

By (2.15) and (2.17) we have





∂−ρ = −2c sin 2A

p′′(ρ)
< 0 on l−,

∂+ρ = −2c sin 2A

p′′(ρ)
< 0 on l+.

(3.5)

Combining this with (2.21) we have that the solution satisfies ∂−ρ < 0 and ∂+ρ < 0. Conse-

quently, by (2.14) and (2.16) we have ∂+α < 0 and ∂−β > 0, respectively. We then have this

lemma.

Lemma 3.2 (Hyperbolicity) Assume that the SGP (1.3), (3.2) admits a C1 solution on

Ωε where 0 < ε < ρ0. Then the solution satisfies

arcsin
(sin θ

√
p′(ρ0 − ε)

ζ0

)
< A < θ in Ωε. (3.6)

Proof From ∂−β > 0 and ∂+α < 0 we have

α < π + θ, β > π − θ in Ωε.

It is easy to check by ∂0q = −1 that q < ζ0
sin θ

in Ωε. Thus, by A = arcsin c
q
and p′′ > 0 as

ρ < ρ0 we have A > arcsin
( sin θ

√
p′(ρ0−ε)

ζ0

)
in Ωε. We then have this lemma.

Lemma 3.3 (A priori C0 Norm Estimate) Assume that the SGP (1.3), (3.2) admits a C1

solution on Ωε where 0 < ε < ρ0. Then there exists a positive constant H0 independent of ε,

such that

‖ (m,n, ρ) ‖C0(Ωε)< H0. (3.7)

Proof This lemma can be proved by integrating (2.19) along C± characteristic curves.

Lemma 3.4 Assume that the SGP (1.3), (3.2) admits a unique C1 solution on Ωε where

0 < ε < ρ0. Then the solution satisfies

(∂+ρ, ∂−ρ) ∈ (−M(ε), 0)× (−M(ε), 0) in Ωε, (3.8)

where

M(ε) =
4
√
2ζ0

sin θ
√
p′(ρ0 − ε)

· max
ρ∈[ρ0−ε,ρ0]

{√
p′(ρ)

p′′(ρ)

}
.

Proof By (3.5) we have that ∂−ρ ∈ (−M(ε), 0) along P̃Bε and ∂+ρ ∈ (−M(ε), 0) along

P̃Dε, where Bε and Dε are the points on l− and l+, respectively, such that ρ(Bε) = ρ(Dε) =

ρ0 − ε.
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Let E be an arbitrary point in Ωε. If ∂−ρ(E) = −M(ε) and ∂+ρ(E) ∈ [−M(ε), 0), then by

the first equation of (2.21) we have

c∂+∂−ρ = sin 2A∂−ρ+
p′′

4c cos2 A
[(∂−ρ)

2 + (2 sin2 A− 1)∂−ρ∂+ρ]

> −M(ε) sin 2A+
p′′ sin2 A

2c cos2 A
M2(ε)

> 2M sinA
(
− 1 +

p′′(ρ)√
p′(ρ)

·
√
2ζ0 sinA

sin θ
√
p′(ρ0 − ε)

· max
ρ∈[ρ0−ε,ρ0]

{√
p′(ρ)

p′′(ρ)

})
> 0

at the point E. Similarly, if ∂+ρ(E) = −M(ε) and ∂−ρ(E) ∈ [−M(ε), 0), then by (3.6) and

the second equation of (2.21) we have c∂−∂+ρ > 0 at the point E. Therefore, by an argument

of continuity we can get (3.8). We then have this lemma.

Lemma 3.5 (A priori Gradient Estimate) Assume that the SGP (1.3), (3.2) admits a C1

solution on Ωε where 0 < ε < ρ0. Then there exists a positive constant H1 depending on ε,

such that

‖ (Dm,Dn,Dρ) ‖C0(Ωε)< H1. (3.9)

Proof By computation, we get

∂ξ = − sinβ∂+ − sinα∂−
sin 2A

, ∂η =
cosβ∂+ − cosα∂−

sin 2A
.

Then the lemma can be obtained by (2.19) and Lemmas 3.2 and 3.4.

Theorem 3.1 The SGP (1.3), (3.2) admits a C1 solution on the domain Ω =
⋃

ε∈(0,ρ0)

Ωε.

Proof It is easy to check by ∂±ρ < 0 that the level curves of ρ are non-characteristic.

Using Lemmas 3.3 and 3.5, and the standard extension method of [32], we can prove that for

any ε ∈ (0, ρ0), if the SGP (1.3), (3.2) admits a C1 solution on Ωε then there exists a e > 0

which depends on ε, such that the solution can be extend to Ωε+e. We then have this theorem.

Remark 3.1 Hu and Wang [17, Section 5] studied the level curve ρ(ξ, η) = 0. They proved

that the level curve ρ(ξ, η) = 0 is not a point but a closed curve.

4 Interaction of Shock-Rarefaction Composite Waves

4.1 Planar shock-rarefaction composite waves

If ρ0 > ρc then the gas away from the sharp corner of the wedge expands to vacuum as

two symmetrical planar shock-rarefaction composite waves S1 ∪ R1 and S2 ∪ R2 (see Figure

3(right)). Since ρ0 > ρc and p′(0) = 0, there exists a 0 < ρ∗ < ρc such that

p′(ρ∗) =
p(ρ0)− p(ρ∗)

ρ0 − ρ∗
.

Then by Rankine-Hugoniot conditions for nonclassical shocks (see [26]) we know that S1 and

S2 are located at ξ sin θ− η cos θ =
√
p′(ρ∗) and ξ sin θ+ η cos θ =

√
p′(ρ∗), respectively. Define

χ :=
√
(p(ρ0)− p(ρ∗))(ρ0 − ρ∗).
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Then, the (ρ,m, n) at the backsides of S1 and S2 are (ρ∗,−χ sin θ, χ cos θ) and (ρ∗,−χ sin θ,−χ cos θ),

respectively.

The rarefaction waves R1 and R2 can be represented by

R1 :





ρ1(ξ, η) = ρ̂(ξ sin θ − η cos θ),

m1(ξ, η) = sin θ
( ∫ ρ1(ξ,η)

ρ∗

√
p′(ρ) dρ− χ

)
,

n1(ξ, η) = cos θ
(
χ−

∫ ρ1(ξ,η)

ρ∗

√
p′(ρ) dρ

)
,

0 < ξ sin θ − η cos θ ≤ ζ∗,

and

R2 :





ρ2(ξ, η) = ρ̂(ξ sin θ + η cos θ),

m2(ξ, η) = sin θ
( ∫ ρ2(ξ,η)

ρ∗

√
p′(ρ) dρ− χ

)
,

n2(ξ, η) = cos θ
( ∫ ρ2(ξ,η)

ρ∗

√
p′(ρ) dρ− χ

)
,

0 < ξ sin θ + η cos θ ≤ ζ∗,

respectively, where ζ∗ =
√
p′(ρ∗), and the function ρ̂(ζ) (0 ≤ ζ ≤ ζ∗) is defined so that√

p′(ρ̂(ζ)) = ζ.

4.2 Discontinuous Goursat problem

Referring to Figure 3, the rarefaction waves S1 and S2 start to interact from the point

P = (0, ξ
P
) :=

(
0, ζ∗

sin θ

)
. Through P draw a C− (C+, resp.) cross characteristic curve l− (l+,

resp.) in R1 (R2, resp.). Similarly, l− and l+ can be represented by





l− :
dη

dξ
= λ−(ξ, η, c1(ξ, η)), η(ξ

P
) = 0, 0 < ξ < ξ

P
,

l+ :
dη

dξ
= λ+(ξ, η, c2(ξ, η)), η(ξ

P
) = 0, 0 < ξ < ξ

P
.

In order to construct the solution to the interaction of S1∪R1 and S2∪R2, we consider system

(1.3) with the boundary data

(ρ,m, n)(ξ, η) =

{
(ρ1,m1, n1)(ξ, η) on l−,

(ρ2,m2, n2)(ξ, η) on l+.
(4.1)

Problem (1.3), (4.1) is a discontinuous Goursat problem (DGP for short), since the data at P

is discontinuous.

4.3 Centered waves for the system (1.3)

In order to solve the DGP (1.3), (4.1), we fist give the definition of centered waves for the

system (1.3).

Definition 4.1 (see Figure 5) Let Ψ(t) be an angular domain with curved boundaries:

Ψ(t) := {(ξ, η) | ξ
P
− t ≤ ξ ≤ ξ

P
, η2(ξ) ≤ η ≤ η1(ξ)}, (4.2)
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where η1(ξP ) = η2(ξP ) = ξ
P
and η′1(ξP ) < η′2(ξP ). A function (ρ,m, n)(ξ, η) is called a C−

(
C+,

resp.
)
centered wave for the system (1.3) with P as the center point if the following properties

are satisfied (see [33, pp. 188–190] ):

(1) (ρ,m, n) can be implicitly determined by the functions η = g(ξ, ν) and (ρ,m, n)(ξ, η) =

(ρ̌, m̌, ň)(ξ, ν) ((ρ,m, n)(ξ, η) = (ρ,m, n)(ξ, ν), resp.) defined on a rectangular domain T (t) :=

{(ξ, ν) | ξ
P
− t ≤ ξ ≤ ξ

P
, η′1(ξP ) ≤ ν ≤ η′2(ξP )}. Moreover, g and (ρ̌, m̌, ň) ((ρ,m, n), resp.)

belong to C1(T (t)), and for any (ξ, ν) ∈ T (t) \ {ξ = ξ
P
} there holds gν(ξ, ν) < 0.

(2) The function (ρ,m, n)(ξ, η) defined above satisfies (1.3) on Ψ(t) \ {(ξ
P
, 0)}.

(3) For any fixed ν ∈ [η′1(ξP ), η
′
2(ξP )], η = g(ξ, ν) gives the C− (C+, resp.) characteristic

line passing through P with the slope ν at P , i.e.,

gξ = λ− (λ+, resp.), g(ξ
P
, ν) = 0, gξ(ξP , ν) = ν. (4.3)

(4) ν = η′1(ξP ) and ν = η′2(ξP ) correspond to η = η1(ξ) and η = η2(ξ), respectively.

Let (ρ̃−, m̃−, ñ−)(ν) = (ǔ, m̌, ň)(ξ
P
, ν) ((ρ̃+, m̃+, ñ+)(ν) = (ρ,m, n)(ξ

P
, ν), resp.), η′1(ξP ) ≤

ν ≤ η′2(ξP ). Then (ρ̃−, m̃−, ñ−)(ν) ((ρ̃+, m̃+, ñ+)(ν), resp.) is called the principal part of this

C− (C+, resp.) centered wave, and η′2(ξP )− η′1(ξP ) the amplitude of the centered wave.

ν

ν

ν

(t)

  

 

−

−

Figure 5 A C+ centered wave, where νi = η′

i(ξP ) (i = 1, 2).

4.4 Principal parts of the C± centered waves

We first consider the principal part of the C− centered wave. From the transformation ξ = ξ

and η = g(ξ, ν), we have the relations

∂

∂ξ
=

∂

∂ξ
− ∂g

∂ξ

(∂g
∂ν

)−1 ∂

∂ν
,

∂

∂η
=

(∂g
∂ν

)−1 ∂

∂ν
. (4.4)

Thus, in the (ξ, ν)-plane (1.3) can be written in the form





− ξρ̌ξ + ξgξg
−1
ν ρ̌ν − gg−1

ν ρ̌ν + m̌ξ − gξg
−1
ν m̌ν + g−1

ν ňν = 0,

− ξm̌ξ + ξgξg
−1
ν m̌ν − gg−1

ν m̌ν + p̌ξ − gξg
−1
ν p̌ν = 0,

− ξňξ + ξgξg
−1
ν ňν − gg−1

ν ňν + g−1
ν p̌ν = 0.

(4.5)

From (4.3) we have that for the C− centered wave,

∂g(ξ, ν)

∂ν
=

∫ ξ

ξ
P

sec2 β̌(ξ, ν)
∂β̌(ξ, ν)

∂ν
dξ. (4.6)
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Therefore, using (4.5) and letting ξ → ξ
P
, we have that the principal part of the C− centered

waves satisfies

m̃′
−(ν) =

ξ
P
ν2ρ̃′−(ν)

1 + ν2
, ñ′

−(ν) = −ξ
P
νρ̃′−(ν)

1 + ν2
, ρ̃−(ν) = ρ̂

( −νξ
P√

1 + ν2

)
, (4.7)

since ν = λ− = −
√

p′(ρ̃′

−
(ν))√

ξ2
P
−ρ̃′

−
(ν)

.

Lemma 4.1 Consider the initial value problem

ñ′
−(ν) = −ξ

P
νρ̃′−(ν)

1 + ν2
, ñ−(− tan θ) = χ cos θ. (4.8)

There exists a ρm > ρc where ρm depends on θ, such that if ρc < ρ0 < ρm then there exists a

− tan θ < ν∗ < 0 such that the solution of (4.8) satisfies ñ−(ν∗) = 0.

Proof By integration, we have

ñ−(ν) = χ cos θ +

∫ ν

− tan θ

ξ2
P
νρ̂′

( −νξ
P√

1 + ν2

)

(1 + ν2)
5
2

dν.

So, when χ is not large there exists − tan θ < ν∗ < 0 such that the solution of (4.8) satisfies

ñ−(ν∗) = 0. We then have this lemma.

In what follows we shall confine ourselves to the case of ρc < ρ0 < ρm.

4.5 Global piecewise smooth solution to the SGP (1.3), (4.1)

Centered wave problems for general first order quasilinear hyperbolic systems were first

proposed and studied by Li and Yu [33–35]. They obtained local centered wave solutions with

small amplitude (see [33, Theorem 7.1, p. 210]). Zhou [40–41] obtained local centered wave

solutions with large amplitude for general first order quasilinear hyperbolic systems. In what

follows, we shall use the result of Zhou [40].

Lemma 4.2 (Local Solution) There exists a sufficiently small ε > 0, such that the SGP

(1.3), (4.1) admits a solution on a triangle domain ∆ closed by l+, l−, and the straight line

ξ = ξ
P
− ε. Moreover, the solution satisfies

ω = 0, ∂−ρ < 0, ∂+ρ < 0, ∂−β > 0, ∂+α < 0, β > π − θ, α < π + θ in ∆. (4.9)

Proof According to Lemma 4.1, the local existence of solution to the DGP (1.3), (4.1) can

be obtained by Zhou [40, Theorem 2.1]. The solution contains a C+ centered wave ∆+ closed

by l+, ξ = ξ
P
− ε, and a C+ characteristic curve passing through P with the slope ν∗ at P ,

and a C− centered wave ∆− closed by l−, ξ = ξ
P
− ε, and a C+ characteristic curve passing

through P with the slope −ν∗ at P . The principal part of the C− centered wave is

(m̃−, ñ−, ρ̃−)(ν) =
(
− χ sin θ −

∫ ν

− tan θ

ξ2
P
ν2ρ̂′

( −νξ
P√

1 + ν2

)

(1 + ν2)
5
2

dν, χ cos θ

+

∫ ν

− tan θ

ξ2
P
νρ̂′

( −νξ
P√

1 + ν2

)

(1 + ν2)
5
2

dν, ρ̂
( −νξ

P√
1 + ν2

))
,
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where − tan θ ≤ ν ≤ ν∗. The principal part of the C+ centered wave is

(m̃+, ñ+, ρ̃+)(ν)

=
(
− χ sin θ+

∫ ν

tan θ

ξ2
P
ν2ρ̂′

( νξ
P√

1 + ν2

)

(1 + ν2)
5
2

dν,−χ cos θ+

∫ ν

tan θ

ξ2
P
νρ̂′

( νξ
P√

1 + ν2

)

(1 + ν2)
5
2

dν, ρ̂
( νξ

P√
1 + ν2

))
,

where −ν∗ ≤ ν ≤ tan θ. (Lemma 4.1 implies that (m̃−, ñ−, ρ̃−)(ν∗) = (m̃+, ñ+, ρ̃+)(−ν∗).)
By a method which is similar to that of Lemma 3.3, we have ω ≡ 0 in ∆.

By (2.15) and (2.17) we have





∂−ρ = −2c sin 2A

p′′(ρ)
< 0 along l−,

∂+ρ = −2c sin 2A

p′′(ρ)
< 0 along l+.

(4.10)

By computation, we obtain

∂+ρ = cosαρξ + sinαρη =
(∂g
∂ν

)−1{(∂g
∂ν

)
cosαρ̌ξ +

sin 2A

cosβ
ρ̌ν

}
(4.11)

in ∆−. Since ρ̌(ξ
P
, ν) = ρ̃−(ν) = ρ̂

( −νξ
P√

1+ν2

)
, we have ρ̌ν(ξP , ν) < 0. Thus, by (4.11) we have

that if ε is sufficiently small then ∂+ρ < 0 in ∆−. From (2.21) and (4.10) we have that the

solution satisfies ∂−ρ < 0 in ∆−. Using (2.14) and (2.16), we also have ∂+α < 0 and ∂−β > 0

in ∆−. Using α |l−= π + θ, β |l+= π − θ, and β̃−(ν) = π + arctanν (− tan θ < ν < ν∗ < 0),

we further have α < π + θ and β > π − θ in ∆−. By symmetry we have ∂+ρ < 0, ∂−ρ < 0,

∂+α < 0, ∂−β > 0, α < π + θ, and β > π − θ in ∆+.

The C+ characteristic curve passing through P with the slope −ν∗ at P intersects with the

straight line ξ = ξ
P
− ε at a point G; the C− characteristic curve passing through P with the

slope ν∗ at P intersects with the straight line ξ = ξ
P
− ε at a point F . Using ∂−ρ |

P̃G
< 0,

∂+ρ |
P̃F

< 0, α |
P̃F

< π + θ, and β |
P̃G

> π − θ, we can get ∂+ρ < 0, ∂−ρ < 0, ∂+α < 0,

∂−β > 0, α < π + θ, and β > π − θ in ∆0 := ∆ \ (∆− ∪∆+).

We then have this lemma.

We are now ready to construct a global solution to the DGP (1.3), (4.1). See Figure 6. The

C+ characteristic curve through F intersects with l− at a point E; the C− characteristic curve

through G intersects with l+ at a point H . By solving a SGP for the system (1.3) with ẼF

and l− as the characteristic boundaries, we can find a solution in a curved quadrilateral domain

closed by l−, ẼF , F̃ I, and ĨO, where F̃ I is a C− characteristic curve passing through F and

ĨO is a level curve ρ(ξ, η) = 0. Similarly, by solving a SGP for the system (1.3) with H̃G and l+
as the characteristic boundaries we can find a solution in a curved quadrilateral domain closed

by l+, H̃G, G̃J , and J̃O, where G̃J is a C+ characteristic curve passing through G and J̃O is

a level curve ρ(ξ, η) = 0. In the end, by solving a SGP for the system (1.3) with P̃ I and P̃ J as

the characteristic boundaries, we can find a solution in a triangle domain closed by P̃ I, P̃ J and

ĨJ , where ĨJ is a level curve ρ(ξ, η) = 0. The existence of global classical solutions to these

SGPs can be obtained by the same method as in Section 3, since ∂±ρ < 0 are satisfied on the

C± characteristic boundaries. We omit the details. Therefore, we have the following theorem.

Theorem 4.1 The DGP (1.3), (4.1) admits a piecewise smooth solution on a region Ω closed

by l+, l−, and a level curve ρ(ξ, η) = 0.
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∆

∆
∆

Figure 6 Global piecewise smooth solution to the SGP (1.3), (4.1).
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