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Rarefaction Wave Interaction and Shock-Rarefaction
Composite Wave Interaction for a Two-Dimensional
Nonlinear Wave System*
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Abstract In order to construct global solutions to two-dimensional (2D for short) Rie-
mann problems for nonlinear hyperbolic systems of conservation laws, it is important to
study various types of wave interactions. This paper deals with two types of wave inter-
actions for a 2D nonlinear wave system with a nonconvex equation of state: Rarefaction
wave interaction and shock-rarefaction composite wave interaction. In order to construct
solutions to these wave interactions, the authors consider two types of Goursat problems,
including standard Goursat problem and discontinuous Goursat problem, for a 2D self-
similar nonlinear wave system. Global classical solutions to these Goursat problems are
obtained by the method of characteristics. The solutions constructed in the paper may be
used as building blocks of solutions of 2D Riemann problems.
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1 Introduction

The 2D nonlinear wave system takes the form

pt + (pu)z + (pv)y =0,
(pu)t + pz =0, (1.1)
(p’U)t +py = 07

where p represents the density, (u,v) represents the velocity, and p = p(p) is the pressure.
This system is derived from the compressible Euler system by neglecting the quadratic terms
in the velocity, or by writing the nonlinear wave system as a first order system (see [5] for more
details). This system is similar to the pressure gradient system which is also derived from the
compressible Euler system (see [1, 38]).

The global existence of solution to the Cauchy problem for multi-dimensional nonlinear
hyperbolic systems of conservation laws is still a complicated open problem. Thus it has been
profitable to consider some special problems, such as 2D Riemann problems, which refer to
Cauchy problems with special initial data that are constant along each ray from the origin.
Recently, several types of 2D Riemann problems for the compressible Euler system and system
(1.1) have been studied by many researchers, see [3, 6, 8-11, 18, 20, 37, 39] for shock reflection
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problems; [7] for shock diffraction problem; [4, 15] for supersonic flows around a convex wedge;
[19] for the interaction of transonic shock and rarefaction wave; and [2, 14, 16-17, 21, 27-29,
31, 36] for the interactions of rarefaction waves.

y
Vacuum p:p0
\9 m=n=0
0 X
t=0

Figure 1 Initial data of the expansion of a wedge of gas to vacuum.

In this paper, we consider the system (1.1) with the following initial data:

(p0,0,0), (z,y) € {x > 0,—ztand < y < xtand};

(p,m,n)((),a:,y) = { (12)

vacuum, otherwise,
where (m,n) = (pu, pv) is the momentum, py > 0, and 0 € (0,%) (see Figure 1). Here, the
momentum in vacuum is not specified. This problem describes the expansion of a wedge of gas
at rest into vacuum. It also plays an important role in 2D Riemann problems, since it catches
several important types of wave interactions.
2D Riemann problems allow us to consider the so-called self-similar solutions, that are the
X

solutions which depend only on the self-similar variables £ = ¢ and 7 = 4. Then by self-similar
transformation, system (1.1) can be changed into the form

—&pe — npy + me +ny =0,
—&me —nmy + pe = 0, (1.3)
—&ng —nny +py =0,

which is called the 2D self-similar nonlinear wave system. The greatest feature of the system
(1.3) is that its type is a priori unknown, and the type is determined by the local Mach number

M= £i+n2, where ¢ = \/p’(p) represents the speed of sound. The system (1.3) is hyperbolic
if and only if M > 1, and elliptic-hyperbolic if and only if M < 1.

In this paper, we consider a nonconvex equation of state p = p(p) which is assumed to
satisfy:

Pp)>0 asp>0, p'(p)>0 as0<p<pe, p'(p)<0 asp>p, p'(0)=0. (14)

Nonconvex equations of state frequently appear in van der Waals gases (see [22-25]). We divide
the discussions into the following two cases: 0 < pg < p. and pg > p.. Let us briefly describe
the results of the paper.
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Figure 2 Interaction of rarefaction waves.

If 0 < po < p. then the gas away from the sharp corner of the wedge expands to vacuum
as two symmetrical planar rarefaction waves R; and Rp. As illustrated in Figure 2(right), the
rarefaction waves R; and R, meet at some point P, then interaction starts. Through P draw
a C_ (Cy, resp.) cross characteristic curve [_ (I4, resp.) in Ry (Rg, resp.). Then, by solving a
standard Goursat problem (SGP for short) for the 2D self-similar nonlinear wave system (1.3)
with I and [_ as the characteristic boundaries (see the SGP (1.3),(3.2) in Subsection 3.2), we
can construct the solution in a region {2 bounded by characteristic curves [, [_, and a level
curve p = 0, where the two rarefaction waves interact. The main result about this interaction
is stated as Theorem 3.1 where we obtain the existence of global classical solution to the SGP
(1.3),(3.2).

If po > pc then the gas away from the sharp corner of the wedge expands to vacuum as
two symmetrical planar shock-rarefaction composite waves S; U Ry and Ss U Ro, where S and
R represent shock and rarefaction wave, respectively. Here, the shock-rarefaction composite
waves consist of a rarefaction shock from the front side state (pg,0,0) to an intermediate state
with the density p, which is defined so that p/(p.) = %, followed by a rarefaction wave
from the intermediate state to the vacuum (see Figure 3). As illustrated in Figure 3(right),
these two composite waves meet at some point P, then interaction starts. Through P draw a
C_ (Cy, resp.) cross characteristic curve I_ (I, resp.) in Ry (R2, resp.). Then, by solving
a discontinuous Goursat problem (DGP for short) for system (1.3) with I, and [_ as the
characteristic boundaries (see the DGP (1.3),(4.1) in Subsection 4.2), we can construct the
solution in a region 2 bounded by characteristic curves [, [, and a level curve p = 0, where
the two composite waves interact. Here, the discontinuous Goursat problem means that the
boundary data is discontinuous at P. The main result about this interaction is stated as
Theorem 4.1 where we obtain the existence of global piecewise smooth solution to the DGP
(1.3),(4.1).

In [16-17, 21], the authors considered rarefaction wave interactions for the nonlinear wave
system for polytropic gases p = p”. They used the idea of Dai and Zhang [14] to convert the
2D self-similar nonlinear wave system (1.3) into the following second order equation:

a1 a1 v—1
(vp 7 = &)pee — 26npen + (0 7 — 17 )Py + W(fpg +npy)? = 2(Epe +1py) =0, (1.5)

and obtained global solutions of rarefaction wave interactions by solving some standard Goursat



138 G. Lai and S. S. Xie

R,

p

Figure 3 Interaction of shock-rarefaction composite waves.

problems for (1.5). However, for the general equation of state p = p(p), if we still use this way to
study wave interactions then the process will become complicated. Motivated by the results of
Zheng et al. [12, 29-31] in investigating rarefaction wave interactions of the compressible Euler
equations, we derive some characteristic equations and characteristic decompositions of the
2D self-similar nonlinear wave system (1.3). These characteristic equations and characteristic
decompositions will be extensively used to establish the a priori C'* norm estimates of solutions.
Using these a priori C! norm estimates, we construct the global solutions of the Goursat
problems. Since the main purposes of the paper is the wave interactions, we do not consider
the flow after the interactions, i.e., we do not construct a global solution to the 2D Riemann
problem (1.1)—(1.2). But, the wave structures constructed in this paper may be used as building
blocks of solutions of 2D Riemann problems.

The rest of the paper is organized as follows. Section 2 is mainly concerned with the 2D self-
similar nonlinear wave system (1.3). The concepts of Cy characteristic directions, Mach angle,
and Cy characteristic angles o and 3 are presented in Subsection 2.1. A group of characteristic
equations in terms of the variables «, 8, and p are derived in Subsection 2.2. These equations
will be extensively used to control the hyperbolicity of the system (1.3) and to establish the
uniform a priori CY norm estimates of solutions. Characteristic decompositions for (1.3) are
derived in Subsection 2.3. These decompositions will be used to establish the uniform a priori
gradient estimates of solutions. Section 3 is devoted to study the interaction of the rarefaction
waves. Section 4 is devoted to study the interaction of the shock-rarefaction composite waves.

2 2D Self-Similar Nonlinear Wave System

2.1 Characteristics
The eigenvalues of (1.3) are determined by

n
()\ - 2) [(n— A2 — (1 4+ A%)] = 0, (2.1)

which yields the eigenvalues

2 _ o2
_nEeve - A=Ag =2 (2.2)

A= )\i(fﬂ% C) 52 — CQ 5
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where ¢? = 2 + 7% So, if and only if ¢> > ¢ (supersonic) system (1.3) is hyperbolic and has
two families of wave characteristics C't. defined as the integral curves of 3—2’ = A1 and a family

of stream lines Cj defined as the integral curves of g—g = g

n

.

Figure 4 Characteristic directions and characteristic angles.

See Figure 4. The direction of the wave characteristics is defined as the tangent direction
that forms an acute angle A with the vector (—¢, —n). By simple computation, we see that the
(' characteristic direction forms with the direction (—&, —n) the angle A from Cy to (=&, —n)
in the clockwise direction, and the C_ characteristic direction forms with the direction (—¢§, —7)
the angle A from C_ to (=&, —n) in the counterclockwise direction. By computation, we have

¢ = ¢*sin® A. (2.3)

The angle A is called the Mach angle.

From (2.1), we have ¢ = W which implies that the component of the vector (=&, —n)
normal to the direction of a characteristic C5 (or C_) is equal to the sound speed. Equivalently,
it can be stated as that the tangent line of a Cy (or C_) characteristic at a point is tangent
to the sonic circle of the state £2 + 72 = p’(u) at that point. Furthermore, a Cy (or C_)
characteristic must be straight if u is constant along it.

Following [13] and [31], we use the concept of characteristic angles. The C; (C_) charac-
teristic angle is defined as the counterclockwise angle from the positive £-axis to the Cy (C_)
characteristic direction. We denote by « and f the C; and C_ characteristic angle, respec-
tively. Let o be the counterclockwise angle from the positive -axis to the direction (=&, —n).

Then, we have

Oé:()'—|—147 ﬁ:U—A, O’:Oé;—ﬂ7 A:a;B’ (24)
and
cos o sino
(&m) = (_csinA’ _csinA)' (2.5)

The first equation of (1.3) can be written as

(c* = &)me — Enne — Enmy + (¢* — n*)ny =0 (2.6)
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by the last two equations of (1.3).
Let w = m, — ng. Then by the last two equations of (1.3) we have

—Ewe — Nwy = W. (2.7)

The left eigenvectors corresponding to the eigenvalues Ay are (1, Fey/E2 4+ 12 — ¢?). Mul-

tiplying
o =& =Ly (m =& =\ (m\ _ [0
0 -1 n ). + 1 0 n/), T \w

by (1, Fey/E2 +n? —c?), we get

— — sin A cos A
3+m + /\_8+n = w,
cos 8 (2.8)
= = wsin Acos A
o_m+AI0n=——"7806#——
cos o
where
04+ = cosade +sinad,, 0_ = cos B + sin B0, (2.9)

2.2 2D self-similar nonlinear wave system with w =0

If w = 0, we can introduce a potential function ¢(&,n) such that e = m, ¢, = n. Hence,
from the last two equations of (1.3), we obtain the Bernoulli law

—nn —&m+p(p) +¢ = 0. (2.10)

Moreover, system (1.3) can be reduced to

O+m + Ax01n =0, (2.11)
supplemented by (2.10).
From (2.5) we have
COS 0 — ccosadyf — ccos fOra
s(c+ A = 2.12
cos(c £ A) + o Aaic + 5o A 0, (2.12)
. sino — csinady B — csin f0ra
+ A =0. 2.1
sin(o )+ sinAaiC + e A 0 (2.13)
From (2.12)—(2.13) we have
cOra = tan Adyc, (2.14)
c0, B = —sin2Atan A — tan A0 c, (2.15)
c0_f = —tan Ad_c, (2.16)
c0_a = sin2Atan A + tan A9_c. (2.17)
From (2.10) we have
—£0+m —nden + 01p = 0. (2.18)

Combining this with (2.11) and (2.5), we have
din = TF/p'(p)cos(o F A)d1rp, rm = +/p/(p)sin(oc F A)d1p. (2.19)
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Proposition 2.1 (Commutator Relation) We have

0_0y —0,0_ = [(cos240, 8 — 0_a)d_ — (048 — cos240_a)d4]. (2.20)

1
sin2A4
Proof See [30] and we omit the proof.

Proposition 2.2 For the variable p, we have the following characteristic decompositions:
/!
c0,0_p=sin249_p + ]37[(5_17)2 + (2sin® A — 1)0_pd, p),

4ccos? A
/!

4ecos? A

(2.21)
c0_04p=sin249.p+ [(01p)? + (2sin® A — 1)9_pd. p).

Proof We apply the commutator relation (2.19) for n and use dic = %Ei p to obtain

B) 2—plcos d_c| +0_ 2—plc0855
+{p” @ C} {p” / +C}

1 — — 2 —
= "Sn9A {(cos 24040 — B_Q)p—l/)/ cosad_c

/
+ (048 — cos 2A5_a)2% cos ﬁ5+c} . (2.22)
p

Hence, we have

/

1/2p
(cosa + cosﬁ)z (F

—_ - _
) 04c0_c+ cosady0_c+ cos fO_04c

— ﬁ [(cos 8048 — cos Bcos2A0_a — sin Bsin249_3)04.c
sin

— (cosad_a — cosacos 2401 3 + sinasin 240, a)d_c]. (2.23)
Applying the commutator relation (2.20) for ¢, we get

0_0yc—0,0_c= [(cos 240, 8 — 0_a)d_c — (048 — cos240_a)d. c|.

1
sin 24
Inserting this into (2.23) and using (2.14)—(2.17) we can get

S . 1 = 1 20'\"\= 1=
c<9+8_c = {SIDZA + ma_C—F (m - (F) )8+C}8_C,
- , 1 1 20\\5 =
c8_8+c = {sm2A + m6+0+ (m - (F) )6_0}6+C.

Combining this with dc = QLcﬂgip we can get (2.21).

3 Interaction of Rarefaction Waves

3.1 Planar rarefaction waves

If 0 < po < p. then the gas away from the sharp corner of the wedge expands to vacuum
as two symmetrical planar rarefaction waves Ry and Rs (see Figure 2). In the (£,7) plane, R,
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and Ry can be represented by

p1(§,m) = p(§sind — ncosb),
p1(&m)
ml(fﬂ?) :Sina Vp/(p) dp7
Rl . PO
p1(&m)
ni(§n) = —6089/ VP (p) dp,
PO
0 < ¢&sinf —ncosl < (o,

. (3.1)
p2(&;m) = p(§sind + ncosb),
p2(&m)
ma(€,m) = sin g V() dp,
RQ . Po
p2(&,m)

na(§,m) = cos b VP (p) dp,
PO

0 < &sinf + ncosb < (o,

where (o = \/P'(po) and the function p(¢) (0 < ¢ < (p) is defined so that /p'(p(¢)) = ¢.
Here, Ry and Ry are obtained by solving a one-dimensional Riemann problem. Since it is very
classical, we omit the details.

3.2 Goursat problem

Referring to Figure 2, the rarefaction waves Ry and Ry start to interact from the point
P=(0,¢) = ( So ). Through P draw a C_ (C4, resp.) cross characteristic curve [_ (14,

’ sin 6
resp.) in Ry (Rg, resp.). Using (2.2) and (3.1), we know that {_ and /4 can be determined by
dn
I d_é.:A—(gvnacl(gan))a ’I](é-P):O, O<§<€P7
dn
l+: d_é.:)‘+(€777702(€777))7 n(gp):()a O<§<€P7

where ¢;(&,1) = /D' (pi(&,n)) (¢ =1,2). In order to construct the solution to the interaction of
R; and Rs, we counsider system (1.3) with the boundary data

(p1,m1,n1)(§,m) on l_,
(pvmvn)(gan) = { (32)

(p2,m2,n2)(&,m) on ly.

Problem (1.3),(3.2) is a standard Goursat problem (SGP for short). By the definition of
characteristic angle, we can set

ali=n+6, Bli,=7—0.

3.3 Global classical solution to the SGP (1.3),(3.2)

Lemma 3.1 (Local Solution) When e > 0 is sufficiently small, the SGP (1.3), (3.2) admits
a unique C' solution on a triangle domain Q. closed by l_, I, and a level curve p = pg — €.
Moreover, this solution satisfies

w=0, 0_p<0, Jdyip<0, 0_-B>0, Jdya<0. (3.3)
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Proof The local classical solution can be obtained by the classical theory for boundary
value problems for quasilinear hyperbolic system (see for example Li and Yu [33]).
By computation, we have w = 0 in the rarefaction waves Ry and Rs. Then by (2.8) we have

w=0 onl_Ul;. (3.4)

Combining this with (2.7) we have that the solution satisfies w = 0.
By (2.15) and (2.17) we have

— 2¢csin2A
B_p:—%<0 onl_,

p"(p) (3.5)
— 2csin2A ’
6+p:—//7 <O on l+.

p"(p)

Combining this with (2.21) we have that the solution satisfies 9_p < 0 and d4p < 0. Conse-
quently, by (2.14) and (2.16) we have dya < 0 and 0_3 > 0, respectively. We then have this
lemma.

Lemma 3.2 (Hyperbolicity) Assume that the SGP (1.3), (3.2) admits a C' solution on
Q. where 0 < € < pg. Then the solution satisfies

. S
aresin (S2OVP 0 =y g qn 3.6
G
0

Proof From d_f3 >0 and d1a < 0 we have
a<m+0, B>m—0 in ..

It is easy to check by dpq = —1 that ¢ <

foe in Q.. Thus, by A = arcsing and p” > 0 as

si

(M) in Q.. We then have this lemma.

o

Lemma 3.3 (A priori C° Norm Estimate) Assume that the SGP (1.3),(3.2) admits a C*
solution on . where 0 < € < pg. Then there exists a positive constant Hy independent of ¢,
such that

p < po we have A > arcsin

[ (m,n,p) |lco.)< Ho- (3.7)

Proof This lemma can be proved by integrating (2.19) along Cy characteristic curves.

Lemma 3.4 Assume that the SGP (1.3),(3.2) admits a unique C' solution on . where
0 < e < po. Then the solution satisfies

(01p,0-p) € (=M(e), 0) x (=M(e), 0) in Q, (3.8)
where
B 4v/2¢o { p’(p)}
= . max .
sin0\/p'(po —e) relpo—c.00l L P (p)
___Proof By (3.5) we have that d_p € (—=M(e),0) along PB. and 94p € (—M(e),0) along
PD., where B. and D, are the points on [_ and [, respectively, such that p(B:) = p(D;) =

Po — €.
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Let E be an arbitrary point in Q.. If 9_p(E) = —M(e) and d4p(E) € [-M(g),0), then by
the first equation of (2.21) we have

/!

c0,0_p=sin249_p+ J)ﬁ[@_py + (2sin* A — 1)0_ pd. p)
"2
> —M(e)sin2A4 + %MQ(&‘)
. " (p) V2(psin A v (p)
>2MsinA( — 1+ . - max >0
( VP (p) sind\/p'(po —¢€) rElpo—s.po) { " (p) })

at the point E. Similarly, if 0, p(E) = —M(e) and 0_p(E) € [-M(¢),0), then by (3.6) and
the second equation of (2.21) we have cd_d,p > 0 at the point E. Therefore, by an argument
of continuity we can get (3.8). We then have this lemma.

Lemma 3.5 (A priori Gradient Estimate) Assume that the SGP (1.3),(3.2) admits a C*
solution on Q. where 0 < € < pg. Then there exists a positive constant Hq depending on €,
such that

| (Dm, Dn, Dp) ||co(a.)< Ha. (3.9)
Proof By computation, we get

_ sin 04 — sin ad_ _cos O — cosad_

O = sin 24 O = sin 24

Then the lemma can be obtained by (2.19) and Lemmas 3.2 and 3.4.

Theorem 3.1 The SGP (1.3),(3.2) admits a C solution on the domain Q= |J Q..
e€(0,p0)

Proof It is easy to check by d1p < 0 that the level curves of p are non-characteristic.
Using Lemmas 3.3 and 3.5, and the standard extension method of [32], we can prove that for
any ¢ € (0,pp), if the SGP (1.3),(3.2) admits a C! solution on 2. then there exists a e > 0
which depends on ¢, such that the solution can be extend to ... We then have this theorem.

Remark 3.1 Hu and Wang [17, Section 5] studied the level curve p(£,n) = 0. They proved
that the level curve p(&,n) = 0 is not a point but a closed curve.

4 Interaction of Shock-Rarefaction Composite Waves

4.1 Planar shock-rarefaction composite waves

If po > pc then the gas away from the sharp corner of the wedge expands to vacuum as
two symmetrical planar shock-rarefaction composite waves S; U Ry and Sy U Ry (see Figure
3(right)). Since pg > p. and p/(0) = 0, there exists a 0 < p. < p. such that

plpo) = p(p<)

/
D \p«) =
(p) PO — Px

Then by Rankine-Hugoniot conditions for nonclassical shocks (see [26]) we know that S; and
Sy are located at £sinf —ncos@ = /p'(ps«) and £sin@+ncosd = /p’'(p«), respectively. Define

x =V (p(po) — p(p:))(po — pu).
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Then, the (p, m,n) at the backsides of S; and S are (p., —x siné, x cosf) and (p., —x sin 8, —x cos 0),
respectively.
The rarefaction waves R; and Rs can be represented by

p1(€777) = ﬁ(& sinf — ncose)7

mi(§,mn) = Sin9(/pl(£m) V' (p) dp — x),

ni(€,m) = cos@(x - /m(w VP (p) dp),

0<¢&sind —ncosh < (,

Ry :

and ~
p2(&,m) = p(§sinf 41 cosb),

p2(&m)
mz(é,n)=sin9(/ Vo' (p) dp—x),
X p2(&m)
nz(i,n)=6089(/ V' (p) dp—x),
0 < &sind +ncosh < (4,
respectively, where (. = +/p'(p«), and the function p(¢) (0 < ¢ < () is defined so that

VP (p(C) = ¢

4.2 Discontinuous Goursat problem

Referring to Figure 3, the rarefaction waves S; and Sy start to interact from the point
P=(0,¢):=(0 G ). Through P draw a C_ (C, resp.) cross characteristic curve [_ (I,

7 sin @

resp.) in Ry (Rg, resp.). Similarly, [_ and [} can be represented by

dn
-
d

Ly : d—Z=A+(€m,cz(€,n)), n€) =0, 0<E<E,.

I_: /\—(577%01(5777)), ’I](é-P)ZO, O<§<€P7

In order to construct the solution to the interaction of S; U Ry and S2 U Rs, we consider system
(1.3) with the boundary data

(pr,mi,n1)(§m)  onl,
(p,m,n)(&n) = { (4.1)

(p23m27n2)(€777) on l+.
Problem (1.3), (4.1) is a discontinuous Goursat problem (DGP for short), since the data at P

is discontinuous.

4.3 Centered waves for the system (1.3)

In order to solve the DGP (1.3), (4.1), we fist give the definition of centered waves for the
system (1.3).

Definition 4.1 (see Figure 5) Let U(t) be an angular domain with curved boundaries:

() :={(n) [ & —t < <&, mA) <n<m(&)}, (4.2)
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where 1 (£,) = n2(&,) = & and n{(€,) < n5(&,). A function (p,m,n)(&,n) is called a C— (Cy,
resp.) centered wave for the system (1.3) with P as the center point if the following properties

are satisfied (see [33, pp. 188-190] ):

(1) (p,m,n) can be implicitly determined by the functions n = g(§,v) and (p,m,n)(&,n) =
(p,m,n)(& v) ((p,m,n)(&n) = (p,m,7)(, V), resp.) defined on a rectangular domain T(t) :=
(6 16 —t < €< € n(E,) < v < 1b(E,)}. Moreover, g and (5, 1m,7) ((7,7m,7), resp.)
belong to C1(T'(t)), and for any (&,v) € T(t) \ {£ =&, } there holds g, (¢,v) <0

(2) The function (p,m,n)(&,n) defined above satisfies (1.3) on W(t)\ {(¢,,0)}.

(3) For any fized v € [n1(&,),n5(&0)], m = g(&,v) gives the C— (Cy, resp.) characteristic
line passing through P with the slope v at P, i.e.,

ge = A~ (A, resp.),  g(&pov) =0, ge(&p,v) =1 (4.3)

(4) v=n1(&,) and v =n4(E,) correspond to n = m(§) and n = n2(E), respectively.

Let (ﬁ_,ﬁ”b_,ﬁ )(V) ( m, ﬁ)(fp, ) ((ﬁ+7m+7ﬁ+)(’/) = (ﬁvmvﬁ)(&:v’/); Tesp.), 77/1(519) <
v<n4(&). Then (p—,m_,n_)(v) ((p3, m4,n4)(v), resp.) is called the principal part of this
C_ (Cy, resp.) centered wave, and n5(¢,.) —n1(€,) the amplitude of the centered wave.

n v
n (&)
¢ Cp _@M A 7 r ¢ K 10 ~ The principal part
\ il : :
n, (&)
0 Ep—t P

Figure 5 A Cj centered wave, where v; = n;(£,) (1 = 1,2).

4.4 Principal parts of the CL centered waves

We first consider the principal part of the C'_ centered wave. From the transformation & = £
and n = g(&,v), we have the relations

0 0 89(89) 19 0 (89) 0

o ¢ v’ an ov)  ov

8_5 T (4.4)

Thus, in the (£, v)-plane (1.3) can be written in the form
— &p¢ +£9¢9,  pv — 99, o + 1 — gegy i + gy, = 0,
— &g + £geg,, 'y — gg;lmy e 959 " pv =0, (4.5)
— &g +€geg, M — 99, T + gy P = 0.
From (4.3) we have that for the C_ centered wave,

v £ . 3(&, v
WED) [ see? e L ae (46)

SP
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Therefore, using (4.5) and letting £ — £,, we have that the principal part of the C_ centered
waves satisfies

V29 (v v (v —v
L) = ) = S ()

p'(p_ ()

since v = A_ = —W
Lemma 4.1 Consider the initial value problem

RRZA0

- B ~ _
n_(v)= R n_(—tanf) = y cos6. (4.8)

There exists a py, > pe where py, depends on 0, such that if p. < po < pm then there exists a
—tanf < v, < 0 such that the solution of (4.8) satisfies n_(v.) = 0.

Proof By integration, we have

—vE
(=)
ﬁ_(u):xcosﬁ—i-/ 1+v

—tan 6 (1+V2)%

So, when y is not large there exists —tanf < v, < 0 such that the solution of (4.8) satisfies
n_(v.) = 0. We then have this lemma.

In what follows we shall confine ourselves to the case of p. < po < ppm.

4.5 Global piecewise smooth solution to the SGP (1.3), (4.1)

Centered wave problems for general first order quasilinear hyperbolic systems were first
proposed and studied by Li and Yu [33-35]. They obtained local centered wave solutions with
small amplitude (see [33, Theorem 7.1, p.210]). Zhou [40-41] obtained local centered wave
solutions with large amplitude for general first order quasilinear hyperbolic systems. In what
follows, we shall use the result of Zhou [40].

Lemma 4.2 (Local Solution) There exists a sufficiently small € > 0, such that the SGP
(1.3),(4.1) admits a solution on a triangle domain A closed by Ly, l—, and the straight line
& =&, — €. Moreover, the solution satisfies

w=0, 9_.p<0, 9:p<0, 0_-f>0, 0 a<0, B>71—0, a<a+0 inA. (4.9)

Proof According to Lemma 4.1, the local existence of solution to the DGP (1.3), (4.1) can
be obtained by Zhou [40, Theorem 2.1]. The solution contains a C centered wave Ay closed
by I+, £ =&, — ¢, and a (' characteristic curve passing through P with the slope v, at P,
and a C_ centered wave A_ closed by I_, £ = £, — ¢, and a C; characteristic curve passing
through P with the slope —v, at P. The principal part of the C'_ centered wave is

e ()

—tan @ (1+22)3
e () B
T <1+V12>+%U2 v ’A’(% =)

(m_,n_,p_)(v) = (—xsin@— dv, xcos@
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where —tanf < v < v,. The principal part of the C'; centered wave is

(Mg, g, pi) (V)
v§ 73
v 512:V2ﬁ/(713) v 52 Vﬁ/( = )
. \/1—|—I/2 / F 1+1/2 ~ Vgp
=(- S1n9+/ 5 dv,—x cos 0+ = dv, p| ——=—) ),
( * tan 6 (1+V2)§ X tan 6 (1—|—y2)§ p(\/1+y2))

where —v, <v < tan@. (Lemma 4.1 implies that (m_,n_, p_)(vi) = (M4, 04, py)(—vs).)
By a method which is similar to that of Lemma 3.3, we have w = 0 in A.
By (2.15) and (2.17) we have

- 2¢sin2A

o_p= —ﬁ <0 alongl_,
v (4.10)
— 2csin2A
0ip=——75—<0 alongl,.
?"(p)
By computation, we obtain
= dg\~l(/0 in2A
O04+p = cosape + sinap, = (B_Z) {(a—i) cos apg + SCHSSB p},} (4.11)

in A_. Since p(§,,v) = p_(v) = ﬁ(%), we have p,(§,,v) < 0. Thus, by (4.11) we have
that if € is sufficiently small then d1p < 0 in A_. From (2.21) and (4.10) we have that the
solution satisfies d_p < 0 in A_. Using (2.14) and (2.16), we also have ;o < 0 and d_3 > 0
in A_. Usinga|,_= 7486, |,=m—0, and B_(v) = m+ arctanv (—tanf < v < v, < 0),
we further have o < 7+ 6 and 8 > 7 — 6 in A_. By symmetry we have d.p < 0, d_p < 0,
0,a<0,0_>0,a<m+0,and f>m—0in A,.

The C characteristic curve passing through P with the slope —v, at P intersects with the
straight line £ = £, — ¢ at a point G; the C_ characteristic curve passing through P with the
slope v, at P intersects with the straight line & = ¢, — ¢ at a point F. Using 0_p l5a< 0,
01p |pp< 0, a |pp< m+ 0, and B |[5> m — 0, we can get d1p < 0, d_p < 0, o < 0,
0_f>0,a<m+6,and 8 >7—01in Ag:=A\ (A_UAL).

We then have this lemma.

We are now ready to construct a global solution to the DGP (1.3), (4.1). See Figure 6. The
C characteristic curve through F intersects with [_ at a point E; the C_ characteristic curve
through G intersects with [} at a point H. By solving a SGP for the system (1.3) with EF
and [_ as the characteristic boundaries, we can find a solution in a curved quadrilateral domain
closed by [_, EF , FI , and IB, where FI is a C_ characteristic curve passing through F' and
10 is a level curve p(&,m) = 0. Similarly, by solving a SGP for the system (1.3) with HG and I+
as the characteristic boundaries we can find a solution in a curved quadrilateral domain closed
by Iy, EI\(/?, GJ , and fé, where GJ is a C characteristic curve passing through G and JO is
a level curve p(¢,7) = 0. In the end, by solving a SGP for the system (1.3) with PI and PJ as
the characteristic boundaries, we can find a solution in a triangle domain closed by PI , PJ and
1J , where 1J is a level curve p(&,m) = 0. The existence of global classical solutions to these
SGPs can be obtained by the same method as in Section 3, since d1p < 0 are satisfied on the
C4 characteristic boundaries. We omit the details. Therefore, we have the following theorem.

Theorem 4.1 The DGP (1.3), (4.1) admits a piecewise smooth solution on a region € closed
by Ly, l—, and a level curve p(§,n) = 0.
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Figure 6 Global piecewise smooth solution to the SGP (1.3), (4.1).
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