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On a Logarithmic Type Nonlocal Plane Curve Flow∗
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Abstract In this paper the author devotes to studying a logarithmic type nonlocal plane

curve flow. Along this flow, the convexity of evolving curve is preserved, the perimeter

decreases, while the enclosed area expands. The flow is proved to exist globally and

converge to a finite circle in the C
∞ metric as time goes to infinity.
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1 Introduction

The curve evolution problems have received much attention during the last few decades (see

[1–4,17,24]). In particular, the popular curve shortening flow in the plane studied by Gage [8–

10], Gage and Hamilton [11] and Grayson [12], etc., is a very interesting and subtle case which,

except for its own significance, provides a background for understanding the mean curvature

flow [26] and other geometric evolution problems in higher dimensions. The book by Chou

(Tso) and Zhu [6] provides an excellent and unified account of many results related to flowing

curves by curvature.

Recently, there has been some interest in the nonlocal flow of convex closed plane curves,

for example, the area-preserving flows are studied by Gage [11], Ma-Cheng [18] and Mao-Pan-

Wang [20], the perimeter-preserving flows are investigated by Ma-Zhu [19] and Pan-Yang [23].

In [16], Lin and Tsai summarized previous nonlocal curve flows to the following general form:





∂X

∂t
(u, t) = [F (k(u, t))− λ(t)]Nin(u, t),

X(u, 0) = X0(u),

where X0(u) ⊂ R
2 is a given smooth closed strictly convex curve, parametrized by u ∈ S1,

and X(u, t) : S1 × [0, T ) → R
2 is a family of closed planar curves moving along its inward

normal direction Nin(u, t) with given speed function F (k(u, t)) − λ(t). F (k) is a function of

curvature k(u, t) of the evolution curve X(u, t) satisfying the parabolic condition F ′(z) > 0 for

all z in its domain, and λ(t) is a function of time which depends on certain global quantities

of X(u, t), say its length L(t), enclosed area A(t), or other possible global quantities of the

integral of curvature over the entire curve in certain ways. In such a case the flow has nonlocal
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character. In the paper [25], Tsai-Wang gave a systematical study of area-preserving flows and

perimeter-preserving flows if F (k) = kα, α > 0.

Different from the previous models, the purpose of this paper is to investigate a logarithmic

type nonlocal curve flow which takes the form:





∂X

∂t
(u, t) =

[
ln
(L(t)

2π
k(u, t)

)]
Nin(u, t),

X(u, 0) = X0(u),

(1.1)

where X0(u) is a smooth closed strictly convex curve in the plane, L(t) is the perimeter of the

evolution curve at time t and k is its relative curvature. Most previous papers in the topic of

nonlocal curve flow considered the flows with velocity of kα + λ(t) (α ∈ R, α 6= 0), λ(t) being

a constraint term. The velocity in the flow (1.1) has a different form, that is, a logarithmic

form. The nonlocal flow (1.1) is not suitable for non-convex simple closed curves. The circle

will be stable under this flow. If the initial curve is not circle, the points on the part where

curvature is large will move inwards and the points on the part where curvature is small will

move outwards.

The main result of the present paper is as follows.

Main Theorem A closed convex planar curve X0(u) which evolves according to (1.1)

remains convex, decreases its length but enlarges its enclosed area, becomes more and more

circular during the evolution process, and finally converges to a finite circle in the C∞ metric

as t goes to infinity.

To obtain the main theorem, we follow the classical proof steps for the study of curve flows.

The first step is to show that the convexity of evolving curve is preserved along the flow via

maximum principle. The second step is to obtain the local existence of flow by converting the

problem to an equivalent parabolic type PDE. Then by showing that the curvature of evolving

curve does not blow up (surely, a time-independent upper bound estimate on curvature, but not

necessary, implies this), we can obtain the long time existence of the flow. Combining with the

structure of the flow, we can employ Bonnesen inequality to prove that a globally existing flow

converges to a circle in Hausdorff metric as time goes to infinity. Furthermore, by establishing a

time-independent upper bound on curvature and its derivatives, we can finally show the smooth

convergence of the flow.

Though the proof steps are standard, we have to overcome some difficulties which are caused

by the logarithmic form velocity. To this end, we establish two new type integral inequalities

(see Theorem 2.1), in order to show the monotonicity of perimeter and enclosed area of the

evolving curve. The upper bound of curvature is obtained via Tso’s support function method

(see [5]). The gradient estimate of curvature is obtained via energy method. After a delicate

combination of various new and classical techniques, the main theorem is proved finally.

This paper is organized as follows. In Section 2, two integral inequalities are proved to help

us understand the final shape of the evolving curve under the flow (1.1). Section 3 is devoted

to prove that if the evolving curve does not develop singularities then it converges to a circle in

the Hausdorff metric as t goes to infinity. In Section 4, the long time existence of the evolving

curve is proved. In Section 5, it is shown that the limiting curve of the flow (1.1) is a finite

circle in the C∞ metric.
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2 Two Integral Inequalities

In this section, if a convex curve evolving under (1.1) remains convex, we will prove two

integral inequalities to help us obtain the monotonicity of the perimeter L(t) and the area A(t)

bounded by the evolving curve.

Lemma 2.1 (Entropy Inequality for Curvature, see [13, Theorem 0.2]) For a C2 closed and

strictly convex curve γ, let L and A be the perimeter of γ and the area it encloses respectively.

One gets that

∮

γ

k ln
(
k

√
A

π

)
ds ≥ 0. (2.1)

The equality in (2.1) holds if and only if γ is a circle.

Theorem 2.1 For a C2 closed and strictly convex curve γ, one gets
∮

γ

k(ln k)ds+ 2π ln
L

2π
≥ 0, (2.2)

∮

γ

ln kds+ L ln
L

2π
≤ 0, (2.3)

and moreover, the equality in (2.2) or (2.3) holds if and only if the curve is a circle.

Proof From the classical isoperimetric inequality L2 ≥ 4πA, we have

0 ≤
∮

γ

k ln
(
k

√
A

π

)
ds ≤

∮

γ

k ln
(
k

√
1

π
· L

2

4π

)
ds =

∮

γ

k(ln k)ds+ 2π ln
L

2π
.

So (2.2) is proved and the equality holds if and only if the curve is a circle. It remains to prove

(2.3).

Inspired by the method of the paper [15, Lemma 18], we use the monotonicity formula for

convex parallel curves to prove (2.3). Suppose that γβ is a convex curve outer parallel to the

curve γ with distance r > 0. Their perimeter, enclosed area, and curvature are related by (see

[7, p. 47])

Lβ = L+ 2πr, Aβ = A+ rL + πr2, kβ(s) =
k(s)

1 + rk(s)
, (2.4)

where s is an arc length parameter of γ. As a consequence, we have the infinitesimal identities

dLβ

dr
= 2π,

dAβ

dr
= Lβ,

dkβ
dr

(s) = −k2β(s). (2.5)

Let H(r) =
∮
γβ

ln(kβ)dsβ + Lβ ln
Lβ

2π . Then from (2.3)–(2.5), we have

dH(r)

dr
=

d

dr

[ ∮

γβ

ln(kβ)dsβ + Lβ ln
(Lβ

2π

)]
=

d

dr

[ ∫ 2π

0

ln(kβ)

kβ
dθ + Lβ ln

(Lβ

2π

)]

=

∫ 2π

0

kβ · 1

kβ
(−k2β)− ln(kβ) · (−k2β)

k2β
dθ + (Lβ)r · ln

Lβ

2π
+ Lβ · 2π

Lβ

· (Lβ)r

=

∮

γβ

kβ · ln(kβ)dsβ + 2π ln
(Lβ

2π

)
≥ 0.
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From (2.4), we also note that

lim
r→+∞

H(r) = lim
r→+∞

[ ∮

γβ

ln(kβ)dsβ + Lβ ln
(Lβ

2π

)]

= lim
r→+∞

∮

γβ

[
ln
(
kβ · Lβ

2π

)]
dsβ

= lim
r→+∞

∮

γβ

ln
(kL+ 2πkr

2π + 2πkr

)
dsβ = 0.

So we have H(r) ≤ 0 for all r ≥ 0. Specially, when r = 0,

H(0) =

∮

γ

ln kds+ L ln
( L

2π

)
≤ 0.

The equality holds if and only if γ is a circle.

3 The Final Shape of the Evolving Curve

Let X0(u) : S
1 → R

2 be a convex closed curve in the plane and X(u, t) = (x(u, t), y(u, t)) :

S1 × [0, T ) → R
2 be a family of closed planar curves which evolve under the flow (1.1).

Let g(u, t) = |Xu| = (x2
u + y2u)

1

2 denote the metric along the curve. Then the arc-length

element is given by ds = g(u, t)du, or formally

∂

∂s
=

1

g

∂

∂u
,

∂s

∂u
= g.

The tangent T, normal N, tangent angle θ, curvature k and perimeter L of the curve and area

A it bounds are defined in the standard way:

T =
∂X

∂s
=

1

g

∂X

∂u
, k =

∂θ

∂s
=

1

g

∂θ

∂u
, N =

1

k

∂T

∂s
=

1

kg

∂T

∂u
,

L(t) =

∫ b

a

g(u, t)du =

∮
ds, A(t) =

1

2

∮
xdy − ydx = −1

2

∮
〈X,N〉ds.

Since changing the tangential components of the velocity vectorXt affects only the parametri-

zation, not the geometric shape of the evolving curve (see [6, 11, 22]), we can choose a suitable

tangential component α = − ∂
∂θ

(
ln
(

L
2πk

))
which makes θ independent of t, such that the ge-

ometric analysis of the evolving curve can be simplified, i.e., we may consider the following

evolution problem which is equivalent to flow (1.1):





∂X

∂t
(u, t) = αT +

[
ln
(L(t)

2π
k(u, t)

)]
Nin(u, t),

X(u, 0) = X0(u).

(3.1)

Just as Gage, Hamilton and others have done, we can derive the evolution equations of the

perimeter L(t), the enclosed area A(t) and the curvature k of the evolving curve as follows.
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Lemma 3.1 Under the flow (3.1) the geometric quantities of the evolving curve evolve as

dL

dt
= −

∮
k
(
ln
( L

2π
k
))

ds = −
[ ∮

k ln kds+ 2π ln
( L

2π

)]
, (3.2)

dA

dt
= −

∮ (
ln
( L

2π
k
))

ds = −
[ ∮

ln kds+ L · ln L

2π

]
, (3.3)

∂k

∂t
= k2

[ ∂2

∂θ2

(
ln
( L

2π
k
))

+ ln
( L

2π
k
)]

. (3.4)

In the following, suppose that the flow (3.1) exists on time interval [0,∞). It is first proved

that the evolving curve is convex, i.e., the curvature k = 1
ρ
(ρ is the curvature radius of the

evolution curve) is always positive. Then the Hausdorff convergence of the evolving curve is

proved by showing that the isoperimetric ratio L(t)2

A(t) converges to 4π as t → ∞.

Theorem 3.1 The flow (3.1) keeps the convexity of the curve during the evolution process.

Proof From the evolution equation (3.4), it follows that

1

k2
∂k

∂t
=

∂2

∂θ2

(
ln

L

2π
− ln ρ

)
− ln

(2π
L

ρ
)
,

namely,

∂ρ

∂t
= (ln ρ)θθ + ln

(2π
L

ρ
)
=

ρθθ

ρ
−
(ρθ
ρ

)2

+ ln
(2π
L

ρ
)
≤ ρθθ

ρ
−
(ρθ
ρ

)2

+
2π

L
ρ.

Let ρmax(t) , max{ρ(θ, t) | θ ∈ [0, 2π]}. The maximum principle implies that

∂ρmax

∂t
≤ 2π

L
ρmax ≤

√
π

A0
ρmax,

and

ρmax(t) ≤ ρmax(0)e
√

π
A0

t
.

Thus the curvature

k(θ, t) ≥ kmin(θ, t) ≥ kmin(θ, 0)e
−
√

π
A0

t
> 0.

We get that the evolving curve is convex during the evolution process.

Theorem 3.2 Under the flow (3.1) with an initial convex curve, the perimeter L(t) of the

evolving curve decreases and its enclosed area A(t) increases. Furthermore, the isoperimet-

ric ratio L2

A
is decreasing to 4π which means that the evolving curve becomes more and more

circular.

Proof From (2.2)–(2.3) of Theorem 2.2, we can see that Lt ≤ 0 and At ≥ 0. So the

perimeter L(t) decreases and the enclosed area A(t) increases during the evolution process.

Since L ≤ L0 and A ≥ A0, together with the classical isoperimetric inequality, we can get

4πA0 ≤ 4πA ≤ L2 ≤ L2
0.

So we can conclude that there exists a positive number R such that

lim
t→∞

L(t) = 2πR , L(∞), lim
t→∞

A(t) = πR2 , A(∞). (3.5)
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By the evolution equations of (3.2)–(3.3), and the inequality x
1+x

≤ ln(1 + x), x > 0, the

isoperimetric ratio L2

A
of the evolving curve evolves according to

d

dt

(L2

A

)
=

d

dt

(L2

A
− 4π

)
=

2LALt − L2At

A2

≤ 2LALt

A2
=

2L

A

[
−
∮

k ln kds− 2π ln
( L

2π

)]

≤ 2L

A

[
π ln

(A
π

)
− 2π

( L

2π

)]
= −2πL

A

[
ln
(
1 +

L2

4πA
− 1

)]

≤ −2πL

A

L2

4πA − 1

1 + L2

4πA − 1
= −2π

L

(L2

A
− 4π

)

≤ −2π

L0

(L2

A
− 4π

)
.

So d
dt

(
L2

A
− 4π

)
≤ 0. Moreover, we have

0 ≤ L2

A
− 4π ≤

(L2(0)

A(0)
− 4π

)
e−

2π
L0

t
.

As t → ∞ we have the decay of the isoperimetric ratio L2

A
− 4π → 0, i.e., L2

A
→ 4π.

Employing Theorem 3.2 and the Bonnesen inequality (see [21]), we can get the following

Theorem 3.3. We omit the details of the proof (which are similar to that of [11, Corollary 2.5])

here.

Theorem 3.3 If an evolving curve under the flow (3.1) does not develop singularities, then

it converges to a circle in the Hausdorff metric.

4 The Long Time Existence

Following the standard method of curve flows (see [11, 14, 23]), we study the long time

behavior of the flow (1.1) which is equivalent to a Cauchy problem of curvature.

Lemma 4.1 The nonlocal flow (1.1) is equivalent to the following Cauchy problem:





∂k

∂t
= k2(ln k)θθ + k2

(
ln

L

2π
k
)
,

dL

dt
= −

∫ 2π

0

ln
( L

2π
k
)
dθ,

k(θ, 0) = k0(θ) > 0,

L(0) =

∫ 2π

0

1

k0(θ)
dθ > 0,

(4.1)

where (θ, t) ∈ [0, 2π]× [0, T ).

The local existence of the flow (1.1) is an application of the classical theory of parabolic

equations. In this section, we will use the method in the paper [25] to obtain a time-independent

upper bound of the curvature. Then the flow (1.1) can be extended on time interval [0,+∞).
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Theorem 4.1 Under the flow (1.1), the curvature k has a uniform upper bound for all

(θ, t) ∈ [0, 2π]× [0,∞).

Proof Given a convex curve in the plane, the Bonnesen inequality (see [21]) says

rL−A− πr2 ≥ 0

for all rin ≤ r ≤ rout where rin, rout are the inradius and the outradius of the given convex

curve. So

0 <
L−

√
L2 − 4πA

2π
≤ rin ≤ rout ≤

L+
√
L2 − 4πA

2π
. (4.2)

Let I = L2

4πA . It follows from (4.2) that

I ≤ rout

rin
≤ L+

√
L2 − 4πA

L−
√
L2 − 4πA

= (
√
I +

√
I + 1)2.

Since the isoperimetric ratio I(t) of X(θ, t) is decreasing as well as the isoperimetric deficit

under the flow (1.1), we have 1 ≤ I(t) ≤ I(0) for all t ∈ [0, ̟). Let rin(t) and rout(t) denote the

inradius and the outradius of X(θ, t) respectively. Let σ = (
√
I(0) +

√
I(0) + 1)2. Therefore

rout(t) ≤ σrin(t).

Since A(0) ≤ A(t) ≤ πr2out(t), we get

rin(t) ≥ σ−1

√
A(0)

π
, ∀ t ∈ [0, ̟].

Both the inradius and the outradius have time-independent positive bounds.

Let E(0) be the inscribed circle of X(θ, 0) with radius rin(0). Let E(0) shrink according to

Xt =
(
L(0)
2π k

)
Nin, where L(0) is the length of X(θ, 0). Then E(t) is enclosed by X(θ, t) for all

t ∈ [0,min{̟, t1}) by the maximum principle, where t1 = 4π
L(0)σ

−1

√
A(0)
π

. The radius r(t) of

E(t) is given by

r(t) =
(
r2(0)− L(0)

4π
t
) 1

2

.

Let p(θ, t) = −〈X(θ, t),Nin(θ, t)〉 be the support function of X(θ, t). If the center of E(0) is

chosen to be the origin O, then p(θ, t) (with respective to O) of X(θ, t) is defined on [0, 2π]×
[0,min{̟, t1}) and

p(θ, t) ≥
(
r2(0)− L(0)

4π
t
) 1

2

. (4.3)

Set T0 = 1
2 min(̟, t1). It follows from (4.3) and r(0) ≥ σ−1

√
A(0)
π

that p(θ, t) ≥ 2β holds

on [0, 2π]× [0, T0], where β > 0 is a constant only depending on the initial curve X(θ, 0). And β

can be explicitly given by β = 1
2
√
2
σ−1

√
A(0)
π

. Since L(t) is decreasing, we have an upper bound

of the support function p(θ, t) ≤ L(t)
2 ≤ L(0)

2 . So there is a constant C = L(0)
2 > 0 depending

only on X(θ, 0) such that p(θ, t) ≤ C on S1 × [0, T0]. We can get

0 < 2β ≤ p(θ, t) ≤ C on S1 × [0, T0). (4.4)
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Define

Q(θ, t) =
ln k(θ, t)

p(θ, t)− β
, (θ, t) ∈ S1 × [0, T0).

The first and the second derivations of Q with respect to θ are

Qθ =
(ln k)θ
p− β

− pθ · ln k
(p− β)2

,

Qθθ =
(ln k)θθ
p− β

− 2pθ · (ln k)θ
(p− β)2

+
[ 2p2θ
(p− β)3

− pθθ

(p− θ)2

]
· ln k.

Under the nonlocal flow (1.1), the evolution of the support function is

∂p

∂t
= − ln

( L

2π
k
)
.

We compute the evolution of Q on S1 × [0, T0) to get

Qt =
(ln k)t(p− β)− ln k · pt

(p− β)2

=
k
[
(ln k)θθ + ln

( L

2π
k
)]

p− β
−

ln k
(
− ln

( L

2π
k
))

(p− β)2

= kQθθ +
2pθk

p− β
Qθ −

β

p− β
Qe(p−β)Q +

ln
( L

2π

)

p− β
e(p−β)Q

+Q2 +
( 1

p− β
+ ln

( L

2π

))
Q.

Apparently, there is a large enough constant Q∗ independent of θ and t, such that when Q > Q∗,

we have

− β

p− β
Qe(p−β)Q +

ln
L

2π
p− β

e(p−β)Q +Q2 +
( 1

p− β
+ ln

L

2π

)
Q < 0.

Let Qmax(t) = max{Q(θ, t) | θ ∈ [0, 2π]}. Then Qmax(t) is decreasing if Q > Q∗. By the

maximum principle, there exists a positive constant Φ = max{Qmax(0), Q
∗} such that Q(θ, t) ≤

Φ for (θ, t) ∈ [0, 2π] × [0, T0). Combining with (4.4), we can get that the curvature k has a

uniform upper bound k(θ, t) ≤ eΦ(C−β) , C for t ∈ [0, T0). Using the above method, we can

prove that k(θ, t) ≤ C holds on time intervals [T0, 2T0], [3T0, 4T0], · · · , where C is a constant

depending on the initial curve X0. So the proof is done.

Corollary 4.1 The solution to the flow (1.1) exists for t ∈ [0,∞).

Proof By Theorem 3.1, the evolving curve is convex under the flow (1.1). (4.1) is uniformly

parabolic in any finite time interval. Theorem 4.1 tells us that the curvature has a uniform upper

bound for all t ≥ 0. The regularity theory of parabolic equations ensures that all derivatives of

k are bounded. So the flow can be extended to the time interval [0,∞).

5 C
∞ Convergence

It is shown that the evolving curve converges to a circle in the C0 sense (Hausdorff conver-

gence). And C∞ convergence means all the derivatives of curvature k (or curvature radius ρ)
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converge to 0 as t → ∞. In this section, we investigate convergence of the flow (1.1) and finish

the proof of Main Theorem by showing that the evolving curve converges to a circle in the C∞

metric.

Lemma 5.1 Under the flow (1.1), we have

∫ 2π

0

(∂k
∂θ

)2

dθ ≤ M1, (5.1)

where M1 is a positive constant independent of θ and t.

Proof Set Φ =
(
∂k
∂θ

)2
+ αk, where α is a constant to be chosen later. It follows from (4.1)

that

∂

∂t

(∂k
∂θ

)2

= 2k
∂k

∂θ

∂3k

∂θ3
− 2

(∂k
∂θ

)2 ∂2k

∂θ2
+ 2k

(∂k
∂θ

)2(
2 ln

( L

2π
k
)
+ 1

)

= k
∂2

∂θ2

(∂k
∂θ

)2

− 2k
(∂2k

∂θ2

)2

− ∂k

∂θ

∂

∂θ

(∂k
∂θ

)2

+ 2k
(∂k
∂θ

)2(
2 ln

( L

2π
k
)
+ 1

)
,

and

d

dt

∫ 2π

0

kdθ = −2

∫ 2π

0

(∂k
∂θ

)2

dθ +

∫ 2π

0

k2 ln
( L

2π
k
)
dθ,

d

dt

∫ 2π

0

Φdθ =

∫ 2π

0

[
k
∂2

∂θ2

(∂k
∂θ

)2

− 2k
(∂2k

∂θ2

)2

− ∂k

∂θ

∂

∂θ

(∂k
∂θ

)2]
dθ

+

∫ 2π

0

2k
(∂k
∂θ

)2(
2 ln

( L

2π
k
)
+ 1

)
dθ

− 2α

∫ 2π

0

(∂k
∂θ

)2

dθ + α

∫ 2π

0

k2 ln
( L

2π
k + 1

)
dθ

≤ 2

∫ 2π

0

(∂k
∂θ

)2 ∂2k

∂θ2
dθ +

∫ 2π

0

2k
(∂k
∂θ

)2(
2 ln

( L

2π
k
)
+ 1

)
dθ

− 2α

∫ 2π

0

(∂k
∂θ

)2

dθ + α

∫ 2π

0

k2 ln
( L

2π
k
)
dθ.

By Theorem 4.1, k has a uniform upper bound, and the length L(t) has an upper bound

L0 which is independent of time. So there exists a constant C̃ independent of time such that

2k
(
2 ln

(
L
2πk

)
+ 1

)
≤ C̃. Now we choose α = C̃,

d

dt

∫ 2π

0

Φdθ ≤ C̃

∫ 2π

0

(∂k
∂θ

)2

dθ − 2α

∫ 2π

0

(∂k
∂θ

)2

dθ + M̃

≤ −α

∫ 2π

0

Φdθ + α2

∫ 2π

0

kdθ + M̃

≤ −α

∫ 2π

0

Φdθ + C(α),

where M̃ and C(α) are independent of t and θ. Hence
∫ 2π

0 Φdθ is bounded above by a constant

independent of t and θ.
∫ 2π

0

(
∂k
∂θ

)2
dθ is also bounded above by a constant independent of t and

θ. We have completed the proof.



160 Q. F. Xing

Since k(θ, t) is uniformly bounded and
∫ 2π

0
(∂k
∂θ

)2dθ is also uniformly bounded, k(θ, t) is equi-

continuous. So for any sequence k(θ, ti), we can choose a subsequence k(θ, tin) converging

uniformly to a function k∞(θ). We know that the curve converges to a circle in the Hausdorff

sense, so k∞(θ) = 1
R
, where R is a positive constant mentioned in (3.5). Since every subsequence

converges to 1
R
, we get that k(θ, t) converges to 1

R
. We can obtain the following C∞ convergence.

Theorem 5.1 Under the flow (1.1), we have

lim
t→∞

∥∥∥k(θ, t)− 1

R

∥∥∥
Cn(S1)

= 0, n = 0, 1, 2, · · · . (5.2)

Proof Evidently, the curvature equation is uniformly parabolic and the regularity theory

ensures that all the space and time derivatives of k are bounded by constants depending only

on the order of differentiations. By induction and the Ascoli-Arzelá theorem, we obtain (5.2).

Next, we can imitate the method in [8, Subsections 5.7.6–5.7.14] to estimate the convergence

of derivatives of the radius curvature.

By (4.1), the evolution equation of the curvature radius ρ(θ, t) is

∂ρ

∂t
=

ρθθ

ρ
−
(ρθ
ρ

)2

+ ln
( L

2π
ρ
)
.

Lemma 5.2 Let ρ(i) denote the ith derivative of ρ(θ, t) with respect to θ. We have

∫ 2π

0

(ρ(i+1))2dθ ≥ 4

∫ 2π

0

(ρ(i))2dθ, i = 1, 2, 3, · · · . (5.3)

Proof In fact, this is just a special version of the Wirtinger inequality.

Lemma 5.3 There exists a positive constant C1 depending on the initial curve such that

‖ρ(1)‖2 ≤
√
C1e

− t
2R (5.4)

holds for sufficiently large t.

Proof By direct computation

d

dt

∫ 2π

0

(ρ(1))2dθ = 2

∫ 2π

0

ρ(1)
(ρ(2)

ρ
−
(ρ(1)

ρ

)2

+ ln ρ+ ln
( L

2π

))(1)

dθ

= −2

∫ 2π

0

(ρ(2))2

ρ
dθ + 2

∫ 2π

0

(ρ(1))2ρ(2)

ρ2
dθ + 2

∫ 2π

0

(ρ(1))2

ρ
dθ

≤ −2

∫ 2π

0

(ρ(2))2

ρ
dθ +

∫ 2π

0

( (ρ(1))4
ρ3

+
(ρ(2))2

ρ

)
dθ + 2

∫ 2π

0

(ρ(1))2

ρ
dθ.

Since
∥∥∂k
∂θ

∥∥ → 0 as t → ∞, 1
R
− ε ≤ k ≤ 1

R
+ ε if t is sufficiently large. Set 0 < ε < 1

8R . By

Lemma 5.2, we have

d

dt

∫ 2π

0

(ρ(1))2dθ ≤ −4
( 1

R
− ε

)∫ 2π

0

(ρ(1))2dθ + 2ε

∫ 2π

0

(ρ(1))2dθ

+ 2
( 1

R
+ ε

)∫ 2π

0

(ρ(1))2dθ ≤ − 1

R

∫ 2π

0

(ρ(1))2dθ.
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So integrating with respect to t yields

∫ 2π

0

(ρ(1))2dθ ≤ C1e
− t

R , where C1 =

∫ 2π

0

(ρ(1)(θ, 0))2dθ.

Lemma 5.4 For any 0 < µ < 1, we can find a constant C2, such that

‖ρ(2)‖2 ≤ C2e
− µt

2R .

Proof Compute that

d

dt

∫ 2π

0

(ρ(2))2dθ = 2

∫ 2π

0

ρ(2)
(ρ(2)

ρ
−
(ρ(1)

ρ

)2

+ ln ρ+ ln
( L

2π

))(2)

dθ

= −2

∫ 2π

0

(ρ(3))2

ρ
dθ + 2

∫ 2π

0

ρ(3)
(3ρ(1))ρ(2)

ρ2
dθ − 2

∫ 2π

0

(ρ(1))3

ρ3
dθ

+ 2

∫ 2π

0

(ρ(2))2

ρ
dθ − 2

∫ 2π

0

(ρ(1))2ρ(2)

ρ2
dθ.

By the above estimate of ρ(1) and since ‖∂k
∂θ

‖∞ → 0 as t → ∞, we have

d

dt

∫ 2π

0

(ρ(2))2dθ ≤ − 1

R

∫ 2π

0

(ρ(2))2dθ + C2e
− 1

R
t.

Denote
∫ 2π

0 (ρ(2))2dθ by f . Then

∂f

∂t
≤ − 1

R
f + C2e

− 1

R
t.

By [11, Lemma 5.7.6], we complete the proof.

Corollary 5.1 Under the flow (1.1), for any 0 < µ < 1, ‖ρ(1)‖∞ ≤ C3e
−µt

R .

Proof In one-dimensional case

max |f |2 ≤ Ĉ

∫
max |f ′|2 + f2,

and we apply this to ρ(1).

Next, we can follow the routine of [11] and use a similar method as in the proof of Lemma

5.4 and Corollary 5.1 to obtain the estimates of higher order derivatives of ρ.

Corollary 5.2 Under the flow (1.1), for any 0 < µ < 1, ‖ρ(k)‖2 ≤ Cke
− µt

2R and ‖ρ(k−1)‖∞ ≤
Ck−1e

− µt
2R , k = 2, 3, · · · .

Since ρ is exponentially convergent to a constant, both L(t) and k also exponentially con-

verge. Integrating (1.1) shows that the evolving curve X(·, t) converges to a fixed limit X∞.

Therefore combining with Theorems 3.1–3.3, Corollaries 4.1 and 5.2 and Theorem 5.1, we can

get the proof of Main Theorem.
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