
Chin. Ann. Math. Ser. B

42(2), 2021, 163–172
DOI: 10.1007/s11401-021-0251-z

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2021

A Quasilinear System Related with the

Asymptotic Equation of the Nematic

Liquid Crystal’s Director Field∗

João-Paulo DIAS1

Abstract In this paper, the author studies the local existence of strong solutions and
their possible blow-up in time for a quasilinear system describing the interaction of a
short wave induced by an electron field with a long wave representing an extension of the
motion of the director field in a nematic liquid crystal’s asymptotic model introduced in
[Saxton, R. A., Dynamic instability of the liquid crystal director. In: Current Progress
in Hyperbolic Systems (Lindquist, W. B., ed.), Contemp. Math., Vol.100, Amer. Math.
Soc., Providence, RI, 1989, pp.325–330] and [Hunter, J. K. and Saxton, R. A., Dynamics
of director fields, SIAM J. Appl. Math., 51, 1991, 1498–1521] and studied in [Hunter, J. K.
and Zheng, Y., On a nonlinear hyperbolic variational equation I, Arch. Rat. Mech. Anal.,
129, 1995, 305–353], [Hunter, J. K. and Zheng, Y., On a nonlinear hyperbolic variational
equation II, Arch. Rat. Mech. Anal., 129, 1995, 355–383] and in [Zhang, P. and Zheng,
Y., On oscillation of an asymptotic equation of a nonlinear variational wave equation,
Asymptotic Anal., 18, 1998, 307–327] and, more recently, in [Bressan, A., Zhang, P. and
Zheng, Y., Asymptotic variational wave equations, Arch. Rat. Mech. Anal., 183, 2007,
163–185].

Keywords Benney system, Conservation law, Schrödinger equation, Nematic liquid
crystal, Director field

2020 MR Subject Classification 35L50, 35L67, 35Q35, 35Q55, 35Q65

1 Introduction and Main Results

Motivated by the study of an asymptotic equation for the director field in a simplified model

of a nematic liquid crystal, introduced by Saxton, R. A. and Hunter, J. K. in [10, 14] and studied

by Hunter, J. K., Zheng, Y. and Zhang, P. in [11–12, 15], we study the interaction with a short

wave induced by an electron beam (cf. also [3]).

This interaction can be described by the following coupled time dependent system of the

Benney type (cf. [2, 5–8] for some previous examples):





iut + uxx = α|u|2u+ bvu,

vt +
1

2
(v2)x = ah(x)

∫ x

0

(vx)
2dy − b(|u|2r)x

(1.1)
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for x ≥ 0 and t ≥ 0, where α > 0, b ∈ R and a ∈ R are given constants, h ∈ C∞([0,+∞) is a

non-negative function with compact support, i =
√
−1, u(x, t) ∈ C represents the short wave

(electron field) and v(x, t) ∈ R represents the long wave (the director field in [10], where b = 0,

a = 1
2 and h(x) ≡ 1).

We will consider the IBV (initial and boundary value) problem for (1.1) with null boundary

condition and with given initial data

u(x, 0) = u0(x) ∈ H1
0 (R+) ∩H4(R+), v(x, 0) = v0(x) ∈ H1

0 (R+) ∩H3(R+). (1.2)

In [15] the equation

vt +
1

2
(v2)x = a

∫ x

0

(vx)
2dy, x ≥ 0, t ≥ 0 (1.3)

is studied with a = 1
2 . By setting w = vx, we derive

wt + vwx = (a− 1)w2 (1.4)

and with a = 1
2 , a1 = a − 1 = − 1

2 , w0(x) = w(x, 0) ≥ 0, w0 ∈ C∞
c (R+), they obtain by the

method of characteristics, with






dφt(x)

dt
= v(t, φt(x)) =

∫ φt(x)

0

w(t, y)dy,

φ0(x) = x,

the solution

w(t, x) =
2w0(φ

−1
t (x))

2 + w0(φ
−1
t (x))t

,

and so

v(t, x) =

∫ x

0

2w0(φ
−1
t (y))

2 + w0(φ
−1
t (y))t

dy ≥ 0.

Replacing a = 1
2 by a < 1 and so a1 = a− 1 < 0, we derive, by the same method,

v(t, x) =

∫ x

0

w0(φ
−1
t (y))

1− a1w0(φ
−1
t (y))t

dy ≥ 0. (1.5)

In Section 2, we study the local in time existence (and uniqueness) of a strong solution for

the problem (1.1)–(1.2) with

h ∈ C∞([0,+∞)), h ≥ 0 and with compact support,

by applying a variant of T. Kato’s theorem in [13], after making a suitable transformation of

the system to avoid some limited smoothing properties of the Schrödinger kernel and following

the ideas introduced in [7–8]. We will prove the following result:

Theorem 1.1 Assume that (u0, v0) verifies (1.2). Then there exist T > 0 and a unique

strong solution (u, v) of the IBV problem (1.1)–(1.2) with

(u, v) ∈ (Cj([0, T ];H4−2j(R+))× Cj([0, T ];H3−j(R+)) ∩ (Cj([0, T ];H1
0 (R+)))

2, j = 0, 1.



A System Related with the Asymptotic Equation of the Nematic Liquid Crystal’s Director Field 165

In Section 3, we start by deducing some identities for the flow (1.1) and, with some additional

requirements on the initial data, and in particular for v ≥ 0 and a < 0, we derive a blow-up in

time result for the local strong solution of the IBV problem (1.1)–(1.2) obtained in Theorem

1.1. We will apply a virial technique developed in the seminal work of R. T. Glassey (cf. [9])

concerning nonlinear Schrödinger equations (see [8] for a related result and [10–12], for blow-up

results concerning the equation (1.3)). The function

t →
∫
x2|u(x, t)|2dx, where

∫
=

∫

R+

used in [9] for the Schrödinger equation will be replaced by

φ(t) =
1

2

∫
x2|u|2dx+

∫ t

0

∫
xv2dxdτ + c0

∫ t

0

∫
x|u|2dxdτ (1.6)

for a convenient constant c0 > 0 depending of α, b and the initial data (u0, v0) verifying

M(0) =

∫
v20dx− 2 Im

∫
u0u0xdx < 0. (1.7)

We will prove the following result:

Theorem 1.2 Under the hypothesis of Theorem 1.1, let us assume a<0, b>0, xu0, x
1
2 v0 ∈

L2(R+), u0 ∈ H2
0 (R+) and (1.7). With

E(0) =
1

2

∫
|u0x|2dx+

α

4

∫
|u0|4dx+

b

2

∫
v0|u0|2dx+

1

12

∫
v30dx, (1.8)

let c0 be a positive constant such that

c0 >
b2

α
, 8E(0) + c0M(0) < 0. (1.9)

Then there is no global in time solution (u, v) for the IBV problem (1.1)–(1.2) such that

v(x, t) ≥ 0 for x ≥ 0 and t ≥ 0.

2 Local Existence and Uniqueness

Following [7–8], for u0 ∈ H1
0 (R+)∩H4(R+) and v0 ∈ H1

0 (R+)∩H3(R+), let us take (u, v) as

a possible solution in R+× [0, T ), T > 0, of the IBV problem (1.1)–(1.2) and make the following

formal computations.

By setting F = ut, we derive from (1.1) that

iF + uxx − u = α|u|2u+ bvu− u

and so, with ∆ = ∂2

∂x2 ,

u = (∆− 1)−1(α|u|2u+ u(bv − 1)− iF ). (2.1)

Differentiating the first equation in (1.1) with respect to t, we obtain

iFt + Fxx = 2α|u|2F + αu2F + bFv + buvt,
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and using the second equation in (1.2), we get

iFt + Fxx = 2α|u|2F + αu2F + bFv − b2u(|u|2)x − b

2
u(v2)x + abuh

∫ x

0

(vx)
2dy.

These formal computations suggest us to consider the following IBV problem with null

boundary condition:






iFt + Fxx = 2α|u|2F + αu2F + bFv − b2u
(
|ũ|2

)
x

− b

2
u(v2)x + abuh

∫ x

0

(vx)
2dy,

vt +
1

2
(v2)x = ah

∫ x

0

(vx)
2dy − b(|ũ|2)x,

(2.2)

F (x, 0) = F0(x) ∈ H2(R+) ∩H1
0 (R+), v(x, 0) = v0(x) ∈ H3(R+) ∩H1

0 (R+), (2.3)

where u and ũ are given by






u(x, t) = u0(x) +

∫ t

0

F (x, τ)dτ,

ũ(x, t) = (∆− 1)−1(α|u|2u+ u(bv − 1)− iF ).

(2.4)

The regularization provided by the operator (∆−1)−1 implies ũ ∈ H4∩H1
0 and this prevents

the derivative losing in the right hand side of the first equation in (2.2).

The following lemma will be proved using a variant of the T. Kato’s result, Theorem 6 in

[13], on quasilinear systems.

Lemma 2.1 Let (F0, v0) ∈ (H2(R+) ∩ H1
0 (R+))

2. Then, there exist T > 0 and a unique

strong solution (F, v) of the IBV problem (2.2), with

(F, v) ∈ (Cj([0, T ];H2−2j(R+))× Cj([0, T ];H3−j(R+))) ∩ (C([0, T ];H1
0 (R+)))

2, j = 0, 1.

This lemma implies Theorem 1.1. Indeed, if (F, v) is a solution of the IBV problem (2.2)

we obtain ut = F and u(x, 0) = u0(x). We derive

(iut + uxx)t

= iFt + Fxx

= 2α|u|2F + αu2F + bFv − b2u(|ũ|2)x − b

2
u(v2)x + abuh

∫ x

0

(vx)
2dy

= 2α|u|2ut + αu2ut + butv + buvt.

Hence,

(iut + uxx − α|u|2u− bvu)t = 0

and so

iut + uxx − α|u|2u− bvu = φ0(x),

where

φ0 = iF0 + (u0)xx − α|u0|2u0 − bv0u0.
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If we set

F0 = i((u0)xx − α|u0|2u0 − bv0u0),

we obtain φ0 = 0 and (u, v) satisfies the first equation in (1.1). In addition,

u = (∆− 1)−1(α|u|2u+ u(bv − 1)− iut) (2.5)

and so ũ = u and (u, v) satisfies the second equation in (1.1). Finally, we observe that ut =

F ∈ C([0, T ]; (H2 ∩H1
0 )(R+)) and so by (2.5) we obtain u ∈ C([0, T ]; (H4 ∩H1

0 )(R+)).

We now pass to sketch the proof of Lemma 2.1. In order to apply a variant of the Theorem 6

in [13], we follow the ideas developed in [7] and introduce the new real variables F1 = ReF ,

F2 = ImF , u1 = Reu, u2 = Imu, U = (F1, F2, v), F10 = ReF0, F20 = ImF0. The IBV problem

(2.2)–(2.3) can be written as follows:

{
Ut +A(U)U = g(t, U),

U(x, 0) = (F10, F20, v0) ∈ (H2(R+) ∩H1
0 (R+))

2,
(2.6)

where

A(U) =




0 ∆ 0
−∆ 0 0
0 0 v ∂

∂x




and

g(t, U) =




2α|u|2F2 − α(u2

1 − u
2

2)F2 + 2αu1u2F1 + bvF2 − b
2
u2(|ũ|

2)x − bu2vvx + abu2h

∫
x

0

(vx)
2dy

2α|u|2F1 − α(u2

1 − u
2

2)F1 + 2αu1u2F2 − bvF1 + b
2
u1(|ũ|

2)x + bu1vvx − abu1h

∫
x

0

(vx)
2dy

ah

∫
x

0

(vx)
2dy − b

(
|ũ|2

)
x



.

Note that g(t, U) is nonlocal.

We now set X = (L2(R+))
2 × H1(R+), Y = ((H2 ∩ H1

0 )(R+))
2 × (H3 ∩ H1

0 )(R+), and

introduce the isomorphism S = I−∆: Y → X . Moreover, A : U= (F1, F2, v) ∈ W→ G(X, 1, β),

where W is an open ball in Y centered at the origin and with radius R, and G(X, 1, β) denotes

the set of all linear operators D in X , such that −D generates a C0-semigroup {e−tD} with

‖e−tD‖ ≤ eβt, t ∈ [0,+∞), β ≤ 1
2 sup
x∈R+

|vx(x)| ≤ cR, (F1, F2, v) ∈ W . For fixed T > 0, it is easy

to see that ‖g(t, U)‖Y ≤ λ, for t ∈ [0, T ] and U ∈ C
(
[0, T ];W

)
. Now, with B0(v) ∈ L(H1), v

in a ball W1 in (H3 ∩H1
0 )(R+), defined by (8.7) in [13]

B0(v) = −vxx
∂

∂x
(1−∆)−1 − vvx

∂2

∂x2
(1−∆)−1

(which verifies [S,A(v)]S−1 = B0(v), following (8.7) in [13]), we introduce an operator B(U) ∈
L(X), U = (F1, F2, v) ∈ W , defined by

B(U) =




0 0 0
0 0 0
0 0 B0(v)



 .
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In [13, §8], Kato proved that, for v ∈ W1, (1−∆)(vvx)(1 −∆)−1 = v ∂v
∂x

+B0(v), and hence

SA(U)S−1 = A(U) +B(U), for U ∈ W.

Moreover, for each pair (U,U∗), U = (F1, F2, v), U
∗ = (F ∗

1 , F
∗
2 , v

∗) in W , it is not hard to prove

that, for each T ′ ≤ T ,

‖g(t, U)− g(t, U∗)‖L1(0,T ′;X) ≤ c(T ′) sup
0≤t≤T ′

‖U(t)− U∗(t)‖X ,

where c(T ′) is a continuous increasing function such that c(0) = 0.

For example, it is easy to obtain, denoting by ‖ · ‖p the Lp norm,

‖h[(vx)2 − (v∗x)
2]‖2 ≤ c‖vx + v∗x‖∞‖vx − v∗x‖2 ≤ c(R)‖v − v∗‖H1 ,

∥∥∥h′

∫ x

0

[(vx)
2 − (v∗x)

2]dy
∥∥∥
2
≤ c‖h′‖2

∫ ∞

0

|vx + v∗x||vx − v∗x|dx ≤ c(R)‖v − v∗‖H1 ,

and similar estimates for the remainder terms (cf. [7] for details). Finally, it is also easy to

prove that

‖A(U)−A(U∗)‖L(Y,X) ≤ c1‖U − U∗‖X ,

c1 not depending on t ∈ [0, T ], and this achieves the proof of Lemma 2.1.

3 A Blow-up Result

We start with the proof of some important identities for the strong solutions of the IBV

problem (1.1)–(1.2).

Proposition 3.1 Let (u, v) be a local solution of the IBV problem (1.1)–(1.2) under the

conditions obtained in Theorem 1.1. Then we have that, for t ∈ [0, T ],
∫

|u(x, t)|2dx =

∫
|u0(x)|2dx, (3.1)

E(t)− a

4

∫ t

0

∫
v2h

(∫ x

0

(vx)
2dy

)
dxdτ − ab

2

∫ t

0

∫
|u|2h

(∫ x

0

(ux)
2dy

)
dxdτ = E(0), (3.2)

where

E(t) =
1

2

∫
|ux|2dx+

α

4

∫
|u|4dx+

b

2

∫
v|u|2dx+

1

12

∫
v3dx (3.3)

and, assuming that u0 ∈ H2
0 (R+),

M(t)− 2a

∫ t

0

∫
vh

( ∫ x

0

(vx)
2dy

)
dxdτ = M(0), (3.4)

where

M(t) =

∫
v2dx− 2 Im

∫
uuxdx. (3.5)

Proof The first identity is trivially obtained by multiplying the first equation in (1.1) by

u, integrating and taking the imaginary part to obtain d
dt

∫
|u|2dx = 0.

Now, we derive by (1.1),

iutut + uxxut = α|u|2uut + bvut
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and so, taking the real part and integrating, we obtain

1

2

d

dt

∫
|ux|2dx+

α

4

d

dt

∫
|u|4dx+

b

2

d

dt

∫
v|u|2dx− b

2

∫
∂v

∂t
|u|2dx = 0 (3.6)

and

− b

2

∫
∂v

∂t
|u|2dx =

b

4

∫
|u|2(v2)xdx− ab

2

∫
|u|2h

(∫ x

0

(vx)
2dy

)
dx.

Moreover,

b

4

∫
|u|2(v2)xdx

= − b

4

∫
(|u|2)xv2dx

=
1

4

∫
v2
[
vt +

1

2
(v2)x − ah

(∫ x

0

(vx)
2dy

)]
dx

=
1

12

d

dt

∫
v3dx− a

4

∫
v2h

( ∫ x

0

(vx)
2dy

)
dx.

Hence, we derive by (3.6),

d

dt
E(t)− a

4

∫
v2h

( ∫ x

0

(vx)
2dy

)
dx− ab

2

∫
|u|2h

(∫ x

0

(vx)
2dy

)
dx = 0

and so we obtain (3.2) by integrating in t. Similarly, we derive

1

2

d

dt

∫
v2dx

=

∫
v
(
− 1

2
(v2)x + ah

∫ x

0

(vx)
2dy − b(|u|2)x

)
dx

= a

∫
vh

(∫ x

0

(vx)
2dy

)
dx+ b

∫
vx|u|2dx

(3.7)

and, assuming that u0 ∈ H2
0 (R+),

d

dt
Im

∫
uuxdx

= 2 Im

∫
utuxdx = −2Re

∫
iutuxdx

= −2Re

∫
(−uxx + α|u|2u+ bvu)uxdx

= −b

∫
v(|u|2)xdx = b

∫
vx|u|2dx.

Hence, by (3.7) we derive

1

2

d

dt

∫
v2dx− d

dt
Im

∫
uuxdx = a

∫
vh

(∫ x

0

(vx)
2dy

)
dx

and so we obtain (3.4) by integrating in t.

To prove the blow-up result Theorem 1.2, we begin to establish the following lemma.
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Lemma 3.1 Under the assumptions of Theorem 1.2, the function t →
∫
x2|u|2dx belongs

to C2([0, T ]), the functions t →
∫
xv2dx and t →

∫
x|u|2dx belong to C1([0, T ]) and, for c0 > 0,

d2

dt2

[1
2

∫
x2|u|2dx

∫ t

0

∫
xv2dxdτ + c0

∫ t

0

∫
x|u|2dxdτ

]

=8E(t)− α

∫
|u|4dx − 2

∫
v|u|2dx− c0

∫
v2dx

+ 2a

∫
xvh

( ∫ x

0

(vx)
2dy

)
dx+ c0M(t). (3.8)

Proof Using the multiplier µε(x) = e−εx and letting ε → 0+, it is easy to justify (see [4],

[1] for similar arguments) the following formal computations:

1

2

d

dt

∫
x2|u|2dx = − Im

∫
x2u

∂2u

∂x2
dx = 2 Im

∫
x
∂u

∂x
udx

and (by (1.1))

1

2

d2

dt2

∫
x2|u|2dx = 2

d

dt
Im

∫
x
∂u

∂x
udx

=2 Im

∫
x
∂2u

∂x∂t
udx+ 2 Im

∫
x
∂u

∂x

∂u

∂t
dx

=− 2 Im

∫
∂u

∂t
udx− 2 Im

∫
x
∂u

∂t

∂u

∂x
dx+ 2 Im

∫
x
∂u

∂x

∂u

∂t
dx

=− 2 Im

∫
∂u

∂t
udx− 4 Im

∫
x
∂u

∂t

∂u

∂x
dx

=− 2Re

∫
∂2u

∂x2
udx+ 2α

∫
|u|4dx+ 2b

∫
v|u|2dx

− 4Re

∫
x
∂u

∂x

(∂2u

∂x2
− α|u|2u− bvu

)
dx

=2

∫ ∣∣∣
∂u

∂x

∣∣∣
2

dx+ 2α

∫
|u|4dx+ 2b

∫
v|u|2dx

− 2

∫
x
∂

∂x
|ux|2dx+ α

∫
x
∂

∂x
|u|4dx+ 2b

∫
xv

∂

∂x
|u|2dx

=4

∫ ∣∣∣
∂u

∂x

∣∣∣
2

dx+ α

∫
|u|4dx+ 2b

∫
v|u|2dx

− 2

∫
xv

[
vt +

1

2
(v2)x − ah

(∫ x

0

(vx)
2dy

)]
dx

=4

∫ ∣∣∣
∂u

∂x

∣∣∣
2

dx+ α

∫
|u|4dx+ 2b

∫
v|u|2dx

− d

dt

∫
xv2dx −

∫
xv(v2)xdx+ 2a

∫
xvh

( ∫ x

0

(vx)
2dy

)
dx

=4

∫ ∣∣∣
∂u

∂x

∣∣∣
2

dx+ α

∫
|u|4dx+ 2b

∫
v|u|2dx

− d

dt

∫
xv2dx +

2

3

∫
v3dx+ 2a

∫
xvh

( ∫ x

0

(vx)
2dy

)
dx. (3.9)
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We also have
d

dt

∫
x|u|2dx = −2 Im

∫
u
∂u

∂x
dx = M(t)−

∫
v2dx (3.10)

by (3.5).

Hence, by (3.4)–(3.5) and with c0 > 0 and E(t) defined by (3.3), we derive, for

φ(t) =
1

2

∫
x2|u|2dx+

∫ t

0

∫
xv2dxdτ + c0

∫ t

0

∫
x|u|2dxdτ (3.11)

that φ ∈ C2([0, T ]) and

d2

dt2
φ(t) = 8E(t)− α

∫
|u|4dx− 2b

∫
v|u|2dx− c0

∫
v2dx

+ 2a

∫
xvh

( ∫ x

0

(vx)
2dy

)
dx+ c0M(t),

and Lemma 3.1 is proved.

We can now prove Theorem 1.2.

Proof of Theorem 1.2 Assuming v(x, t) ≥ 0 for x ≥ 0 and t ≥ 0 and the other hypothesis

of the theorem, namely a < 0 and c0, E(0), M(0) verifying (1.9), it is easy to verify that

φ(t) ≥ 0, φ(0) > 0 and

d2

d2
φ(t) ≤ 8E(t) + c0M(t) ≤ 8E(0) + c0M(0) < 0.

This leads to a contradiction when t tends to infinity and so the theorem is proved (classical

virial argument).
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