
Chin. Ann. Math. Ser. B

42(2), 2021, 199–216
DOI: 10.1007/s11401-021-0253-x

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2021

Gradient Convergence of Deep Learning-Based Numerical

Methods for BSDEs∗

Zixuan WANG1 Shanjian TANG2

Abstract The authors prove the gradient convergence of the deep learning-based nu-
merical method for high dimensional parabolic partial differential equations and backward
stochastic differential equations, which is based on time discretization of stochastic differ-
ential equations (SDEs for short) and the stochastic approximation method for noncon-
vex stochastic programming problem. They take the stochastic gradient decent method,
quadratic loss function, and sigmoid activation function in the setting of the neural net-
work. Combining classical techniques of randomized stochastic gradients, Euler scheme

for SDEs, and convergence of neural networks, they obtain the O(K−
1
4) rate of gradient

convergence with K being the total number of iterative steps.

Keywords PDEs, BSDEs, Deep learning, Nonconvex stochastic programming,
Convergence result

2020 MR Subject Classification 62L20,90C26

1 Introduction

Deep learning has recently sparked academic interest due to its great success in many appli-

cation fields like image identification, voice recognition, natural language processing, and instant

machine translation. The success of deep learning also leads to the deep learning-based algo-

rithm in ordinary differential equations (ODEs for short), partial differential equations (PDEs

for short) and stochastic control problems. Malek and Beidokhti [18] reported a novel hybrid

method based on optimization techniques and neural networks for the solution of high ODEs.

Sirignano et al. [24] proposed a deep Galerkin method, since it is similar in spirit to Galerkin

methods, with the solution approximated by a neural network instead of a linear combination

of basis functions. Beck et al. [1] delivered a numerical approximation of the Kolmogorov

PDE on an entire region without suffering from the curse of dimensionality by means of deep

learning. Rudd [21] presented a method for solving PDEs using neural networks, which us-

es a constrained-backpropagation approach for preserving prior knowledge during incremental

training for solving nonlinear elliptic and parabolic PDEs adaptively in non-stationary environ-

ments. Han and E [13] developed a deep learning approach that directly solves high-dimensional

stochastic control problems based on Monte-Carlo sampling, and the objective function for the

control problem plays the role of the loss function for the deep neural network. E, Han and

Manuscript received January 7, 2020. Revised May 14, 2020.
1Corresponding author. Department of Finance and Control Sciences, Shanghai Center for Mathematical
Science, Fudan University, Shanghai 200433, China. E-mail: 15110840014@fudan.edu.cn

2Department of Finance and Control Sciences, School of Mathematical Sciences, Fudan University,
Shanghai 200433, China. E-mail: sjtang@fudan.edu.cn

∗This work was supported by the National Key R&D Program of China (No. 2018YFA0703900) and the
National Natural Science Foundation of China (No. 11631004).

200 Z. X. Wang and S. J. Tang

Jentzen [8] presented a deep learning-based numerical method for solving parabolic PDEs and

backward stochastic differential equations (BSDEs for short) in high dimension and demon-

strated its success, and we shall prove its gradient convergence result here.

The reason why deep networks work well in the above fields has been remaining to be a

mystery, as it generally underlies a highly nonconvex optimization problem. Recently, there is

a growing interest in the mathematical properties of these algorithms. E [10] used continuous

dynamical systems to model nonlinear functions for machine learning in high-dimensional case.

Furthermore, the continuous dynamical system approach to deep learning was explored by Li

et al. [16], who proposed a framework for training algorithms. The convergence on the deep

networks can be traced back to the study of nonconvex stochastic programming by Ghadimi and

Lan [11], who focused on the theoretical development of stochastic approximation type methods.

The methods can solve nonconvex stochastic programming problems which can be used to

establish a theoretical framework on neural networks. Ithapu et al. [15] analyzed mini-batch

stochastic gradients on multi-layer deep networks, and proved a gradient convergence on neural

networks. The convergence of a new back-propagation algorithm with adaptive momentum

(instead of stochastic gradient decent) was also studied (see [23, 28]). There are also many

other ways in studying this problem. Carreira and Wang [4] proposed the method of auxiliary

coordinates, which replaces original deeply nested problem with a constrained problem involving

a different function in an augmented space without nesting, then the constrained problem can

be solved with penalty-based methods using alternating optimization over the parameters and

the auxiliary coordinates. E et al. [9] gave “a posteriori” error estimates for two-layer neural

networks. The convergence of block coordinate descent type algorithms to a critical point of

objective functions under natural conditions of neural network was considered (see [26, 27]).

Zou et al. [29] studied the binary classification problem and showed that with a proper random

weight initialization, the stochastic gradient descent method can find the global minima of the

training loss for an over-parameterized deep ReLU (Rectified Linear Unit) network, under mild

assumption on the training data.

The study of numerical methods for forward backward stochastic differential equations (F-

BSDEs for short) can be dated back to Douglas et al. [7] and Ma et al. [17], who proposed the

four steps scheme to get the relation between the FBSDEs and their corresponding parabolic

PDEs. Their work is based on the nonlinear Feynman-kac formulation (see [20, 25]). Bouchard

and Touzi [3] as well as Delarue and Menozzi [6] studied a time-space discretization scheme for

FBSDEs and provided an efficient probabilistic representation of this type of equations. Bender

and Zhang [2] proved the convergence through a time discretization and a Markovian iteration.

Cvitanic and Zhang [5] transformed the FBSDE to a control problem and proposed the steepest

descent method to solve the latter one. The Fourier method to solve quite general FBSDEs

with second-order accuracy was also developed (see [14, 22]).

There are numerous studies (see [7, 18, 27, 30–32]) on the convergence of neural networks,

but few of them deal with the convergence of neural networks compound with stochastic system

especially BSDEs. To the best of our knowledge, [12] is the only paper dealing with the

convergence of deep BSDE method, but the work is quite different from us. They proved that

as long as the objective function is optimized to be close to zero under fine time discretization,

the approximate solution is close to the true solution. We focus on the convergence through

the deep learning update steps. In other words, they proved that the deep BSDE method has

abilities to get the true solution, and we obtain that the deep BSDERSG algorithm (we propose

in Section 4) can get gradient convergence in the actual update method. On the other side,

the mainstream research direction of neural networks’ convergence remains on the gradient

convergence, only several papers for example Zou et al. [29] study the global convergence

Gradient Convergence of Deep Learning-Based Numerical Methods for BSDEs 201

of neural networks. But their result depends on large number of neurons, which is far from

using in practice. The main contribution of this work is as follows: We give the gradient

convergence of the model raised by E, Han and Jentzen [8] of deep learning-based numerical

methods for BSDEs, and we take the stochastic gradient decent method, quadratic loss function,

and sigmoid activation function in our neural network settings. For sake of the nonconvexity

of neural network, we get the gradient convergence, which can give some theoretical directions

for this method, such as the choice of learning rate and how many iterative steps we need.

The rest of the paper is organized as the following five sections.

In Section 2 we give a brief introduction to the deep learning-based numerical method.

In Section 3 we introduce the stochastic approximation type methods to solve the nonconvex

stochastic programming problems with randomized stochastic gradient (RSG for short) method.

In Section 4, we give the proof of the gradient convergence on the neural network first, and

then prove the main result (Theorem 4.2) of this paper. In Section 5 we give the numerical

experiment to explain our gradient convergence. Section 6 is the Appendix.

2 Deep Learning-Based Algorithm

This section focuses on giving the details of deep learning-based algorithm for a fairly general

class of nonlinear parabolic PDEs, which was introduced by E et al. [8]. To get a better

understanding of the proof, we state the deep learning-based algorithm in its general case.

The main steps of the algorithm are as follows: Through the nonlinear Feynman-Kac for-

mula, we can formulate the PDEs associated to the FBSDEs. The FBSDE is viewed as a

stochastic control problem with the gradient of the solution being the policy function (control).

The policy function can then be approximated by a deep neural network.

We consider the setup of a system of parabolic PDEs with terminal conditions since this

facilitates making connections with BSDEs. Terminal value problems can obviously be trans-

formed into initial value problems.

2.1 The formulation of the problem

First, we introduce the formulation of the nonlinear parabolic PDEs. Let T ∈ (0,∞), d, r, q ∈
N, the functions f : [0, T]× R

q × R
r × R

r×d → R
r and g: Rq → R

r are continuous, and (b, σ):

[0, T]× R
q → R

q × R
q×d is continuously differentiable for all variables. Let u ∈ C1,2([0, T]×

R
q,Rr) satisfy that u(T, x) = g(x) and

∂ui

∂t
(t, x) +

1

2
Trace((∆xu

i)(t, x)σ(t, x)[σ(t, x)]T) + 〈b(t, x), (∇xui)(t, x)〉

+ f i(t, x, u(t, x), (∇xu)(t, x)σ(t, x)) = 0 (2.1)

for all (t, x) ∈ ([0, T] × R
q) and i = 1, 2, · · · , r, where ui and f i are the i-th component of u

and f respectively.

Then, through the nonlinear Feynman-Kac formula, we can formulate the PDE associated to

the FBSDE. Let (Ω,F ,P) be a probability space and W be a d-dimensional standard Brownian

motion on (Ω,F ,P) with F = (Ft)t∈[0,T] being the natural filtration on (Ω,F ,P) generated by

W . Let Y : [0, T] × Ω → R
r and Z: [0, T] × Ω → R

r×d be F-adapted continuous stochastic

processes such that for all t ∈ [0, T], it holds P-a.s. that




Xt = x0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs,

Yt = g(XT) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs.

(2.2)

202 Z. X. Wang and S. J. Tang

Under suitable additional regularity assumptions on the nonlinear function f , the nonlinear

PDE (2.1) is associated to the FBSDE (2.2) in the following sense: For all t ∈ [0, T], it holds

P-a.s. that

Yt = u(t,Xt), Zt = (∇xu)σ(t, x). (2.3)

We now solve the PDE via solution of a suitable stochastic control problem, and associate

the solution u ∈ C1,2([0, T] × R
q,Rr) of (2.1) and its gradient to the solution of a stochastic

control problem associated with (2.2). More precisely, under suitable regularity on the nonlinear

function f and ξ ∈ R
q, the pair (u(0, x0), (∇xu)σ(t, xt)t∈[0,T]) is (up to indistinguishability) the

unique global minimum of the function

R×A ∋ (y, Z) 7→ E[|Y y,ZT − g(XT)|2] ∈ [0,∞]. (2.4)

The usual method of discretization for decoupled FBSDEs is to discretize the SDE and

BSDE, separately.

For the SDE part, let N ∈ N and let t0, t1, · · · , tN ∈ [0, T] be real numbers which satisfy

0 = t0 < t1 < · · · < tN = T (we often take tn − tn−1 = ∆t for n = 1, 2, · · · , N),

Xtn+1≈ Xtn + b(tn, Xtn)(tn+1 − tn)+〈σ(tn, Xtn),Wtn+1 −Wtn〉. (2.5)

For the BSDE part,

Ytn+1 ≈ Ytn − f(tn, Xtn , Ytn , (∇xu)σ(tn, Xtn))(tn+1 − tn)
+ 〈(∇xu)(tn, Xtn)σ(tn, Xtn),Wtn+1 −Wtn〉. (2.6)

2.2 Formulation of the algorithm

Let Υ: [0, T]2 × R
q × R

d → R
q be a function and ξ ∈ R

q, let W k, k ∈ N0, be independent

d-dimensional standard Brownian motions on (Ω,F ,P). For every θ ∈ R
ρ, let Uθ ∈ R

r, and

Vθn: Rq → R
r×d, n ∈ {0, 1, · · · , N − 1} be functions. For every k ∈ N0, let X k: {0, 1, · · · , N} ×

Ω → R
q, and Yθ,k: {0, 1, · · · , N} × Ω → R

k be stochastic processes which satisfy for all

θ ∈ R
ρ, n ∈ {0, 1, · · · , N − 1} that

X k0 = ξ, Yθ,k0 = Uθ, X kn+1 = Υ(tn, tn+1,X kn ,W k
tn+1
−W k

tn
) (2.7)

and

Yθ,kn+1 = Yθ,kn − f(tn,X kn ,Yθ,kn ,Vθn(X kn))(tn+1 − tn) + Vθn(X kn)(W k
tn+1
−W k

tn
). (2.8)

For every k ∈ N0, define the function (φk,Φk): Rρ × Ω→ R× R
ρ as

φk(θ, ω) = ‖Yθ,kN (ω)− g(X kN (ω))‖, (2.9)

Φk(θ, ω) = (∇θφk)(θ, ω) (2.10)

for all (θ, ω) ∈ R
ρ × Ω.

Define Θ: N0 × Ω→ R
ρ be a stochastic process which satisfies for all k ∈ N that

Θk = Θk−1 − γk · Φk(Θk−1), (2.11)

where Θ0 is given randomly and γk is called the learning rate at the k-th step.

Figure 1 shows the main steps of the algorithm (to simplify Figure 1, we replace (∇xu)(tn,
Xtn)σ(tn, Xtn) with (∇xu)(tn, Xtn)).

Gradient Convergence of Deep Learning-Based Numerical Methods for BSDEs 203

Figure 1 The sketch of deep BSDE algorithm (see [11, p.358]).

(1) Xtn → h1n → h2n → · · · → hHn → (∇xu)(tn, Xtn) is the multilayer feedforward neural

network approximating the control at time tn, whereXtn is the input, the hidden layers are given

by hln for l = 1, 2, · · · , H , and the output is (∇xu)(tn, Xtn). The weights θ of this subnetwork

are the parameters we aim to optimize.

(2) (Xtn , (∇xu)(tn, Xtn), u(tn, Xtn)) → u(tn+1, Xtn+1), where u(tn+1, Xtn+1) is the direct

contribution to the final output of the network. Their functional form is determined by the

BSDE (2.2). There are no parameters to be optimized in this type of connection.

(3) (Xtn ,Wtn −Wtn−1) → Xtn+1 is completely characterized by the SDE (2.2). There are

also no parameters to be optimized in this type of connection.

3 The Nonconvex Stochastic Programming

As we know, the deep networks generally relate to a highly nonconvex optimization prob-

lem. Before handling the deep BSDE algorithm, we first consider the stochastic approximation

type methods for solving an important class of nonconvex stochastic programming problems,

which was introduced by Ghadimi and Lan [11]. More specifically, they studied the classical

unconstrained nonlinear programming problem, which is given in the form of

f∗ := inf
x∈Rn

f(x), (3.1)

where f : R
n → R is differentiable (usually nonconvex) and is bounded from below, and its

gradient ∇f(·) is uniformly Lipschitz continuous with constant L ≥ 0:

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖, ∀x, y ∈ R
n. (3.2)

In the standard nonlinear programming problem, the problem (3.1) can be solved by iterative

algorithms which acquire the gradients of f . However, in our stochastic case, we have no full

access to f , so we assume that we can only get noisy function values or gradients about the

objective function f in (3.1). That is, at the k-th iteration of the algorithm, we can output

a stochastic gradient G(xk, ξk) by making use of the known xk, where ξk, k ≥ 1, are random

variables whose distributions Pk are supported on Ξk ⊂ Rd. The following assumptions are

made for the Borel functions G(xk, ξk).

Assumptions A For any k ≥ 1, we have

(a) E[G(xk, ξk)] = ∇f(xk), (3.3)

204 Z. X. Wang and S. J. Tang

(b) E[‖G(xk, ξk)−∇f(xk)‖2] ≤ σ2 (3.4)

for some parameter σ ≥ 0.

Observe that G(xk, ξk) is an unbiased estimator of ∇f(xk) and the variance of the random

variable G(xk, ξk) − ∇f(xk) is bounded. In the standard setting for stochastic programming,

we can always assume that the random vectors ξk, k = 1, 2, · · · , are independent of each other

(and also of xk).

To solve the aforementioned nonconvex stochastic programming problem, Ghadimi and Lan

gave the following RSG method in [11].

Algorithm 0: RSG Method
Input: Initial point x1, iteration limit N , learning rates γk, k ≥ 1,
probability mass function PR(·) supported on {1, · · · , N}.
Step 0 Let R be a random variable with probability mass function PR.
Step k. Get the noisy gradients function G(xk, ξk) and set

xk+1 = xk − γkG(xk, ξk), k = 1, · · · , R.
Output: xR.

Theorem 3.1 Suppose that the learning rates {γk} and the probability mass function PR(·)
in the RSG method are chosen such that γk ≤ 2

L
and

PR(k) := Prob{R = k} = 2γk − Lγ2k
N∑
k=1

(2γk − Lγ2k)
, k = 1, · · · , N. (3.5)

Then, under Assumption A and the Lipschitz continuity of ∇f : For any N ≥ 1, we have

1

L
E[‖∇f(xR)‖2] ≤

D2
f + σ2

N∑
k=1

γ2k

N∑
k=1

(2γk − Lγ2k)
, (3.6)

where the expectation is taken with respect to R and ξ[N] := (ξ1, · · · , ξN).

Df :=
[2(f(x1)− f∗)

L

] 1
2

, (3.7)

where f∗ denotes the optimal value of problem (3.1).

The proof of Theorem 3.1 is given in the Appendix.

Remark 3.1 Suppose that the learning rates {γk} are set to

γk = min
{ 1

L
,

D̃

σ
√
N

}
, k = 1, · · · , N (3.8)

for some D̃ > 0. Under the same assumption in Theorem 3.1, we have

1

L
E[‖∇f(xR)‖2] ≤

LD2
f

N
+
(
D̃ +

D2
f

D̃

) σ√
N
. (3.9)

So, this allows us to obtain the O(
√
N

−1
) rate of convergence in terms of E[‖∇f(xR)‖2].

If, in addition, problem (3.1) is convex and x∗ is an optimal solution, then, we further have

the convergence of E[f(xR) − f∗], and the details are referred to Ghadimi and Lan [11] and

Nemirovski et al. [19]. Due to the nonconvexity of our neural network, the convergence of ∇f
will be discussed in the next section.

Gradient Convergence of Deep Learning-Based Numerical Methods for BSDEs 205

4 Gradient Convergence on Deep Learning-Based Algorithm

We shall give the gradient convergence result for the deep learning-based algorithm in this

section. First, note that BSDEs are solved from terminal time T to 0. However, in the underly-

ing algorithm, the initial value y0 is to be chosen as a parameter of the corresponding forward

SDE, so that the terminal value will be satisfied. In this way, the BSDE is solved as an SDE,

which is easy to be approximated and can also be updated by the back-propagate algorithm

(the update algorithm in neural network). In order to make our proof more briefly, we take y0
(or u(t0, Xt0)) as an output of neural network. In summary, as one system, the inputs of the

neural network are Xt0 , Xt1 , · · · , XtN (that is, Xt0 ,Wt1 −Wt0 ,Wt2 −Wt1 , · · · ,WtN −WtN−1

with functions b and σ), and the outputs are

u(t0, Xt0), (∇xu)σ(t0, Xt0), (∇xu)σ(t1, Xt1), · · · , (∇xu)σ(tN , XtN).

Our main idea follows the nonconvex stochastic approximation methods which are intro-

duced in Section 3. In the next subsection, we give the setting and proof only for a simple

neural network.

4.1 Convergence on neural network

Denote by the pair (x, y) ∈ X ⊂ R
dx × R

dy the input feature vector and the corresponding

output (or label), respectively. The mapping from the input unit x to the output unit y after

L hidden layers h1, · · · , hL is called L-layer neural network (L-NN for short). The dimensions

of these L+ 2 layers are d0 = dx, d1, d2, · · · , dL, dL+1 = dy, respectively.

The transformation between two adjacent layers is the composition of a non-linear mapping

(in general, nonconvex and not necessarily point-wise) and an affine transform. That is, the

input and hidden layers are given by h0 := x, hl = σ(Wl, h
l−1) for l = 1, · · · , L. The output

layer is y = WL+1h
L, where Wl ∈ R

dl×dl−1 for l = 1, · · · , L + 1 are parameters. Notice that

the output layer is just a linear transformation which makes sure that the output is not restrict

on some area (especially for some bounded σ where σ(·) represents the non-linear mapping

between layers).

Consider the case with two hidden layers. We shall restrict ourselves to the point-wise

sigmoid function, i.e.,

σ(v) =
1

1 + exp(−v) for any v ∈ R
d.

In the proof of BSDE deep learning-based methods, we only consider the case of sigmoid function

(bounded derivative in general).

Consider the following unconstrained minimization problem

min
W

f(W) := Ex,yL(x, y;W), (4.1)

where L(·) is the loss function parameterized by W and (x, y) is the sample of data. In this

network, we choose quadratic loss function,

h0 = x, hl = σ(Wlh
l−1), L(x, y;W) = ‖y −WL+1h

L‖2, (4.2)

where ‖ · ‖ denotes the Euclidean norm.

In the 2-NN, we can simply denote as

L(x, y;W) = ‖y −W2(σ(W1σ(W0x)))‖2. (4.3)

206 Z. X. Wang and S. J. Tang

The stochastic gradient (update using B samples η1, · · · , ηB) isW ←W −γG(η;W), where

γ is the learning rate, and G(η;W) computed at W is given by

G(η;W) =
1

B

B∑

i=1

∇WL(ηi;W). (4.4)

Consider a 2-NN with the corresponding loss function (4.3). We use the random stopping

stochastic gradients (R ∼ PR(k), k = 1, · · · , N). This learning procedure is summarized in

Algorithm 1. W 1 andWR are the initial and final estimates respectively, and γk is the learning

rate at the k-th iteration. Then we have the following theorem.

Algorithm 1: Two Layers Neural Network Randomized Stochastic Gradients

Input: dx, dy, B,N, γ
k,PR(·),X ,W 1.

R ∼ PR(·), I = 1dk×dv ,
for k = 1, · · · , R− 1, do

(xi, yi) ∼ X , i = 1, · · · , B, ηi:= (xi, yi),

W k+1 ←W k − I ∗
(
γk

B

B∑
i=1

∇WL(ηi;W k)
)
,

end for.
Output: WR ∈ R

dy×dx .

Theorem 4.1 Consider a 2-NN with constant learning rate γk = γ, ∀ k. Let esγ =
(
1− 13

16γ
)
,

es =
13dxdy
256 . We assume that x, y,W are bounded by M (without loss of generality we set

M = 1). The expected gradients are estimated as follows:

ER,η(‖∇W f(WR)‖2) ≤ 1

esγ

(Df

Nγ
+
esγ

B

)
, (4.5)

where Df := f(W 1)− f∗, and the optimal constant learning rate is γo =
√

Bf(W 1)
esN

.

The proof is sketched as follows (the details are given in the Appendix).

Step One Verify that ∇W f(W) satisfies Lipschitz condition, i.e.,

‖∇W f(W)−∇W f(Ŵ)‖ ≤ L‖W − Ŵ‖. (4.6)

Step Two Define δ := G(η;W) − ∇W f(W). Then we have Eηδ = 0, and it remains to

prove Eηδ
2 ≤ K.

Step Three Following the methods used in Theorem 3.1, we can get the convergence of

ER,η‖∇W f(W k)‖2.

4.2 Convergence on deep learning-based algorithm

In this subsection, we prove the convergence of deep learning-based algorithm, under the

formulation of the algorithm introduced in Subsection 2.2. We first propose our BSDE Ran-

domized Stochastic Gradients algorithm.

Gradient Convergence of Deep Learning-Based Numerical Methods for BSDEs 207

Algorithm 2: BSDE Randomized Stochastic Gradients
Input: T ∈ (0,∞), d, ρ,K ∈ N, ξ ∈ R

q,Θ0,

0 = t0 < t1 < · · · < tN = T, PR(·) supported on {1, 2, · · · ,K},
X k0 = ξ, Yθ,k0 = Uθ, Xmn+1 = Υ(tn, tn+1,X kn ,W k

tn+1
−W k

tn
),

R ∼ PR(·).
for k = 1, · · · , R, do
Yθ,kn+1 = Yθ,kn − f(tn,X kn ,Yθ,kn ,Vθn(X kn))(tn+1 − tn) + Vθn(X kn)(W k

tn+1
−W k

tn
),

φk(θ, ω) = ‖Yθ,kN (ω)− g(X kN (ω))‖2, Φk(θ, ω) = (∇θφk)(θ, ω),
Θk = Θk−1 − γk · Φk(Θk−1),

end for.
Output: ΘR.

Then we have the following convergence result of this algorithm. The main idea of the proof

is as follows: We consider the whole problem as a nonconvex problem, and if we can prove our

problem satisfies Assumptions A and condition (3.2), then using Theorem 3.1, we can finish the

proof. Since the algorithm is combining stochastic differential equations with neural network,

the results we get in Subsection 4.1 and the Euler scheme of SDE will help us.

We first give our assumptions.

Assumptions B

(i) The SDE (2.2) has a unique strong solution.

(ii) The derivative of f in BSDE (2.2) is bounded with respect to Y, Z.

(iii) Function f is Lipschitz continuous with respect to all parameters, i.e.,

|f(t, x, y, z)− f(t, x, y, z)| ≤ L(|t− t|+ |x− x|+ |y − y|+ |z − z|).

(iv) The parameters θ (the layer-wise transformations) in neural network are bounded. This

is a common assumption for the proof of the convergence on neural network.

(v) The learning rates {γk} and the probability mass function PR(·) in the RSG method are

chosen such that γk ≤ 2
M

(where M is the Lipschitz constant of ∇θψ(θR) given in Lemma 4.2)

and

PR(k) := Prob{R = k} = 2γk −Mγ2k
N∑
k=1

(2γk −Mγ2k)

, k = 1, · · · ,K.

Before giving the main theorem, we need two more lemmas.

By definition φ(θ, ω) = ‖yθN − g(xN)‖2, let

ψ(θ) = E[φ(θ, ω)] = E‖yθN − g(xN)‖2, Φ(θ, ω) = ∇θφ(θ, ωt) = 2‖yθN − g(xN)‖∇θyθN .

Lemma 4.1 We have Eδ2k ≤ D, where δk := ∇θψ(θk)−Φ(θk, ω), and D is a given constant.

Proof Notice that Eδk = 0, so

Eδ2k = E‖Φ2(θk, ω)‖ − (E‖Φ(θk, ω)‖)2. (4.7)

By Cauchy-Schwarz inequality,

E‖Φ2(θk, ω)‖ = 4E‖(yθN − g(xN)2(∇θyθN)2‖
≤ 4E(‖yθN − g(xN)‖4) 1

2E(‖∇θyθN‖4)
1
2 ,

E‖Φ(θk, ω)‖2 = 4E‖(yθN − g(xN))∇θyθN‖2

≤ 4E‖yθN − g(xN)‖2E‖∇θyθN‖2.

(4.8)

208 Z. X. Wang and S. J. Tang

We split the proof into two steps.

Step One First consider the terms E‖yθN − g(xN)‖2 and E‖yθN − g(xN)‖4.
Denote f1 = ∇Y f(t,X, Y, Z) and f2 = ∇Zf(t,X, Y, Z). By Assumptions B(ii), f1 and f2

are bounded by C1.

Recall that yθ0 and V θn (Xn), n = 1, · · · , N, are the outputs of neural network, for the acti-

vation function is bounded and has bounded derivative. Then under Assumptions B(iv) and

(6.10) in Theorem 4.1, we have that yθ0 , V
θ
n (Xn), E‖∇θyθ0‖2 and E‖∇θV θn (Xn)‖2, n = 1, · · · , N,

are also bounded by C2, where C1 and C2 are some given constants.

The discrete iterative equation is as (2.8). Taking the derivative with respect to θ, we have

∇θyθN = ∇θyθN−1 − (∇θyθN−1f1∆t+∇θV θN−1(XN−1)f2∆t) +∇θV θN−1(XN−1)f2∆WtN

= · · · · · · (iterate through ∇θyN , · · · ,∇θy1)

= ∇θyθ0 −
(
f1∆t(1 + f1∆t)

N∇θyθ0 +
N∑

n=1

1− (f1∆t)
N−n+1

1− f1∆t
f2∆t∇θV θn (Xn)

)

+

N∑

n=1

1− (f1∆tt)
N−n+1

1− f1∆t
∇θV θn (Xn)∆Wtn

≤ ∇θyθ0 − C1C2
T

N
+ C1

N∑

n=1

T

N
∇θV θn (Xn) + C1

N∑

n=1

∇θV θn (Xn)∆Wtn

≤ C +∇θyθ0 + C1

N∑

n=1

∇θV θn (Xn)∆Wtn , (4.9)

where C is only depend on C1, C2, T.

With E
∥∥ N∑
n=1
∇θV θn (Xn)∆Wtn

∥∥2 ≤ N
(
C2

T
N

)
= C2T, then it is easy to know that E‖∇θyθN‖2

is bounded and so is E‖∇θyθN‖4.
Step Two We assert that E‖yθN − g(xN)‖2 and E‖yθN − g(xN)‖4 are bounded. From (2.8),

we have

yθk+1 = yθk − f(tk, Xk, y
θ
k, V

θ
k (Xk))(tk+1 − tk)

+ V θk (Xk)(Wtk+1
−Wtk), k = 0, 1, · · · , N − 1, (4.10)

then we can generate {yt} from {yk} by

yθt = yθk − f(tk, Xk, y
θ
k, V

θ
k (Xk))(t− tk) + V θk (Xk)(Wt −Wtk)

= yθk −
∫ t

tk

f(tk, Xk, y
θ
k, V

θ
k (Xk))ds+

∫ t

tk

V θk (Xk)dWs, t ∈ (tk, tk+1]. (4.11)

Denote nt = max{k | tk ≤ t} and π(t) = tnt
. So

yθT = yθ0 −
∫ T

0

f(π(s), Xπ(s), y
θ
π(s), V

θ
π(s)(Xπ(s)))ds+

∫ T

0

V θπ(s)(Xπ(s))dWs. (4.12)

We transform the BSDE (2.2) from backward to forward and replace Zt with V
∗
t (Xt), and

denote y∗0 as the initial value. Then we have

g(XN) = y∗0 −
∫ T

0

f(s,Xs, ys, V
∗
s (Xs))ds+

∫ T

0

V ∗
s (Xs)dWs. (4.13)

Gradient Convergence of Deep Learning-Based Numerical Methods for BSDEs 209

Its Euler scheme is

yT = y∗0 −
∫ T

0

f(π(s), Xπ(s), yπ(s), V
∗
π(s)(Xπ(s)))ds+

∫ T

0

V ∗
π(s)(Xπ(s))dWs. (4.14)

So ‖yθN − g(xN)‖ = ‖yθT − yT + yT − g(xN)‖ (notice that yN = yT). Using Lipschitz continuity

of f , we have

|yT − g(xN)| =
∫ T

0

|f(s,Xs, ys, V
∗
s (Xs))− f(π(s), Xπ(s), yπ(s), V

∗
π(s)(Xπ(s)))|ds

+

∫ T

0

|V ∗
π(s)(Xπ(s))− V ∗

s (Xs)|dWs

≤
∫ T

0

L|ys − yπ(s)|ds+
∫ T

0

|V ∗
s (Xs)− V ∗

π(s)(Xπ(s))|dWs

+

∫ T

0

L(|s− π(s)|+ |Xs −Xπ(s)|+ |V ∗
s (Xs)− V ∗

π(s)(Xπ(s))|)ds

≤
∫ T

0

L|ys − ys|ds+
∫ T

0

CL∆tds+

∫ T

0

C∆tdWs. (4.15)

Squaring and taking expectation on each side and by BDG inequality, we have

E‖yT − g(xN)‖2 ≤ 2TL

∫ T

0

E‖|ys − ys|‖ds+ 2C. (4.16)

Using Gronwall’s inequality, we get the boundedness of E‖yT − g(xN)‖2. In the same way, we

have the bound of E‖yT − g(xN)‖4.
With the Lipschitz continuity of f , we have

yθT − yT = (y0 − y0) +
∫ T

0

(V θπ(s)(Xπ(s))− V ∗
π(s)(Xπ(s)))dWs

−
∫ T

0

(f(π(s), Xπ(s), y
θ
π(s), V

θ
π(s)(Xπ(s)))

− f(π(s), Xπ(s), yπ(s), V
∗
π(s)(Xπ(s))))ds. (4.17)

Following the same method, we can get the boundedness of E‖yθT − yT ‖2 and E‖yθT − yT t‖4.
Combining Steps One, Two and (4.8), we have proved that Eδ2k ≤ D.

Lemma 4.2 We assert that ∇θψ(θ, ω) := E[∇θφ(θ, ω)] is Lipschitz continuous with respect

to θ, i.e.,

‖∇θψ(θ̂, ω)−∇θψ(θ, ω)‖ ≤M‖θ̂ − θ‖, ∀ θ, θ̂ ∈ R
n.

Proof Since E‖∇θφ(θ, ω)‖ = 2E‖(yθN − g(xN))∇θyθN‖, we need to prove the Lipschitz

continuity of E[yθN] and E[∇θyθN]:

|yθT − yθ̂T | = |yθ0 − yθ̂0 |+
∫ T

0

|V θπ(s)(Xπ(s))− V θ̂π(s)(Xπ(s))|dWs

+

∫ T

0

|f(π(s), Xπ(s), y
θ
π(s), V

θ
π(s)(Xπ(s)))− f(π(s), Xπ(s), y

θ̂
π(s), V

θ̂
π(s)(Xπ(s)))|ds

≤ |yθ0 − yθ̂0 |+
∫ T

0

L|yθπ(s) − yθ̂π(s)|ds+
∫ T

0

L|V θπ(s)(Xπ(s))− V θ̂π(s)(Xπ(s))|ds

210 Z. X. Wang and S. J. Tang

+

∫ T

0

|V θπ(s)(Xπ(s))− V θ̂π(s)(Xπ(s))|dWs. (4.18)

Since yθ0 , and V θn (Xn), n = 1, · · · , N, are the outputs of neural network, using the Lipschitz

continuity of V θ
π(s)(Xπ(s)) in Theorem 4.1, and taking expectation on both sides of the last

inequality, we have

E|yθT − yθ̂T | ≤
∫ T

0

LE|yθπ(s) − yθ̂π(s)|ds+D|θ − θ̂|+ LDT |θ − θ̂|. (4.19)

Further more, using Gronwall’s inequality, we have

E|yθT − yθ̂T | ≤M |θ − θ̂|. (4.20)

On the other side, from the third equation in (4.9), we can also get the Lipschitz continuity of

E[∇θyθN]. Combining the boundedness of E‖(yθN − g(xN))‖ and E‖∇θyθN‖, we finally get the

Lipschitz continuity of ∇θψ(θ).
With this two lemmas, we can finally give the proof of Theorem 4.2.

Theorem 4.2 Following the algorithm introduced in Subsection 2.2, we use stochastic gra-

dient decent method, quadratic loss function and sigmoid function as activation function in our

neural network. Under Assumptions B and Algorithm 2, we have that

ER[‖∇θψ(θR)‖2] ≤
M

N∑
k=1

(2γk −Mγ2k)

[2(ψ(θ1)− ψ∗)

M
+D

N∑

k=1

γ2k

]
,

where D is the bound of Eδ2k introduced in Lemma 4.1.

Proof Using the Lipschitz continuity of ∇ψ(θ), we have

ψ(θk+1) ≤ ψ(θk) + 〈∇θψ(θk), θk+1 − θk〉+
M

2
γ2k‖Φ(θk, ω)‖2

= ψ(θk)− γk〈∇θψ(θk),Φ(θk, ω)〉+
M

2
γ2k‖Φ(θk, ω)‖2

= ψ(θk)− γk‖∇θψ(θk)‖2 + γk〈∇θψ(θk), δk〉

+
M

2
γ2k[‖∇θψ(θk)‖2 + 2〈∇θψ(θk), δk〉+ ‖δk‖2]

= ψ(θk)−
(
γk −

M

2
γ2k

)
‖∇θψ(θk)‖2

− (γk −Mγ2k)〈∇θψ(θk), δk〉+
M

2
γ2k‖δk‖2. (4.21)

Further, we obtain

N∑

k=1

(
γk −

M

2
γ2k

)
‖∇θψ(θk)‖2

≤ ψ(θ1)− ψ(θN+1)−
N∑

k=1

(γk −Mγ2k)〈∇θψ(θk), δk〉+
M

2

N∑

k=1

γ2k‖δk‖2

≤ ψ(θ1)− ψ∗ −
N∑

k=1

(γk −Mγ2k)〈∇θψ(θk), δk〉+
M

2

N∑

k=1

γ2k‖δk‖2, (4.22)

Gradient Convergence of Deep Learning-Based Numerical Methods for BSDEs 211

where ψ∗ is the lower bound of ψ. Then from Eδk = 0 and Eδ2k ≤ D, we obtain

N∑

k=1

(
γk −

M

2
γ2k

)
E‖∇θψ(θk)‖2 ≤ ψ(θ1)− ψ∗ +

MD

2

N∑

k=1

γ2k. (4.23)

Dividing both sides of the above inequality by M
N∑
k=1

(
γk −M γ2

k

2

)
and noting that

ER[‖∇θψ(θR)‖2] =

N∑
k=1

(2γk −Mγ2k)E‖∇θψ(θk)‖2

N∑
k=1

(2γk −Mγ2k)

, (4.24)

we conclude

ER[‖∇θψ(θR)‖2] ≤
M

N∑
k=1

(2γk −Mγ2k)

[2(ψ(θ1)− ψ∗)

M
+D

K∑

k=1

γ2k

]
. (4.25)

Remark 4.1 Suppose that the learning rates {γk} are set to

γk = min
{ 1

M
,

C√
DMK

}
, k = 1, · · · ,K (4.26)

for some C > 0. Then, we have

1

M
ER[‖∇θψ(θR)‖2] ≤

MA

K
+
(
C +

A

C

)√DM√
K

, (4.27)

where A = 2(ψ(θ1−ψ∗))
M

.

So, we have arrived at the O(
√
K

−1
) rate of convergence in terms of ER[‖∇θψ(θRt)‖2].

We have get the gradient convergence result. First, since our problem is nonconvex, we can

only get the gradient convergence results even if in simple nonconvex stochastic programming

problem. Second, in the numerical experiment, we can observe that when we change hidden

layers from two to three, the experiment result (see in Section 5) may not convergence.

5 Numerical Experiment

We now give a numerical example to explain why we can only get the gradient convergence

for deep BSDE algorithm.

We test the deep BSDE algorithm in the case of Allen-Cahn PDE (see (5.1)). Let x,w ∈
R
d, y ∈ R, z ∈ R

1×d, k ∈ N that γk = 5 · 10−4, d = 100, T = 3
10 , N = 20, µ(t, x) =

0, σ(t, x)w =
√
2w, ξ = (0, 0, · · · , 0) ∈ R

d, f(t, x, y, z) = y − y3, and g(x) =
[
2 + 2

5‖x‖2Rd

]−1
.

Let u ∈ C1,2([0, T]× R
d,R), satisfy that u(T, x) = g(x) and

∂u

∂t
(t, x) + u(t, x)− [u(t, x)]3 + (∆xu)(t, x) = 0 (5.1)

for all (t, x) ∈ ([0, T]× R
d).

The following results (see in Figure 2) show the difference between the two and three hidden

layers. The results show that the approximation error and the gradient approximation error are

convergence when the number of hidden layers is two. But when the number of hidden layers

changes to three, the approximation error fails to converge while the gradient approximation

error still does.

212 Z. X. Wang and S. J. Tang

Figure 2 Numerical results for Allen-Cahn PDE (5.1).

6 Appendix

We first give the proof of Theorem 3.1 (see [14, Theorem 2.1]).

Proof of Theorem 3.1 First, from the Lipschitz continuity of ∇f , we have

|f(y)− f(x)− 〈∇f(x), y − x〉| ≤ L

2
‖y − x‖2, ∀x, y ∈ R

n. (6.1)

Define δk ≡ G(xk, ξk)−∇f(xk), k ≥ 1. We have for any k = 1, · · · , N,

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
γ2k‖G(xk, ξk)‖2

= f(xk)− γk〈∇f(xk), G(xk, ξk)〉+
L

2
γ2k‖G(xk, ξk)‖2

= f(xk)− γk‖∇f(xk)‖2 − γk〈∇f(xk), δk〉

+
L

2
γ2k[‖∇f(xk)‖2 + 2〈∇f(xk), δk〉+ ‖δk‖2]

= f(xk)−
(
γk −

L

2
γ2k

)
‖∇f(xk)‖2 − (γk − Lγ2k)〈∇f(xk), δk〉+

L

2
γ2k‖δk‖2. (6.2)

Further, we obtain

N∑

k=1

(
γk −

L

2
γ2k

)
‖∇f(xk)‖2

≤ f(x1)− f(xN+1)−
N∑

k=1

(γk − Lγ2k)〈∇f(xk), δk〉+
L

2

N∑

k=1

γ2k‖δk‖2

≤ f(x1)− f∗ −
N∑

k=1

(γk − Lγ2k)〈∇f(xk), δk〉+
L

2

N∑

k=1

γ2k‖δk‖2, (6.3)

Gradient Convergence of Deep Learning-Based Numerical Methods for BSDEs 213

where the last inequality follows from the fact that f(xN+1) ≥ f∗. Note that the search point xk
is random because of depending on the generated random process by ξ[k−1]. Under Assumption

A, E[‖δk‖2] ≤ σ2, and

E[〈∇f(xk), δk〉|ξ[k−1]] = 0. (6.4)

We take expectations (with respect to ξ[N]) on both sides of (6.3), and obtain

N∑

k=1

(
γk −

L

2
γ2k

)
Eξ[N]

‖∇f(xk)‖2 ≤ f(x1)− f∗ +
Lσ2

2

N∑

k=1

γ2k. (6.5)

Dividing both sides of the last inequality by L
N∑
k=1

(
γk − Lγ2

k

2

)
,

E[‖∇f(xR)‖2] = ER,ξ[N]
[‖∇f(xR)‖2] =

N∑
k=1

(2γk − Lγ2k)Eξ[N]
‖∇f(xk)‖2

N∑
k=1

(2γk − Lγ2k)
. (6.6)

We conclude

1

L
E[‖∇f(xR)‖2] ≤

1
N∑
k=1

(2γk − Lγ2k)

[2(f(x1)− f∗)

L
+ σ2

N∑

k=1

γ2k

]
, (6.7)

which together with (3.7) implies (3.6).

In the proof of Theorem 4.1, we adapt the proof of [15], from the case of no hidden layer to

our case of two hidden layers.

Proof of Theorem 4.1 Let δ = G(η;W)−∇W f(W), by definition

f(W) = EηL(η;W), G(η;W) =
1

B

B∑

i=1

g(η;W) with g(η;W) = ∇WL(η;W). (6.8)

It is easy to know that the Lipschitz constant of the activation function σ(·) is 1
4 . Denote δ

to be the vector with length dx ∗ dy, and each component δij is gij(η;W)−∇Wij
f(W), where

i = 1, · · · , dy and j = 1, · · · , dx. Hence

Eη‖δ‖2 = Eη

∑

ij

|δij |2 =
∑

ij

Eη(g
ij(η;W)−∇Wij

f(W))2, (6.9)

where gij(η;W) are the noisy gradients with respect to Wij .

gij(η;W) = ∇ijWL(η;W) = −2W2(yi −W2A)(A +W2(A(1 −A)(B +W1W0B(1−B))))xj ,

where A = σi(W1σi(W0x)) and B = σi(W0x).

Since x, y,W are bounded and |gij(η;W)| ≤ 1,

Varη(g
ij(η;W)) = Eη(g

ij(η;W))2 − (Eηg
ij(η;W))2

≤ Eηg
ij(η;W)

(1
2
− Eηg

ij(η;W)
)
≤ 1

16
⇒ Eη‖δ‖2 ≤

dxdy

16
, (6.10)

214 Z. X. Wang and S. J. Tang

and we also have

|∇ijWL(η;W)−∇ijWL(η; Ŵ)| ≤ 25

2
|σi(Wx)− σi(Ŵx)| ≤ 25

8
|Wij − Ŵij |. (6.11)

Using ∇W f(W) = Eη∇WL(η;W), we have

‖∇W f(W)−∇W f(Ŵ)‖ ≤
√∑

ij

(25
8

)2

|Wij − Ŵij |2 =
25

8
‖W − Ŵ‖. (6.12)

Following the method used in Theorem 3.1, we have

f(W k+1) ≤ f(W k)− γk〈∇W f(W k), G(ηk;W k)〉+ 25

16
(γk)2‖G(ηk;W k)‖2

≤ f(W k)− γk

B

B∑

b=1

〈∇W f(W k), g(ηb,k;W k)〉+ 25

16B2
(γk)2

∥∥∥
B∑

b=1

g(ηb,k;W k)
∥∥∥
2

= f(W k)−
(
γk − 25

16
(γk)2

)
‖∇W f(W k)‖2

− 1

B

(
γk − 25

8
(γk)2

) B∑

b=1

〈∇W f(W k), δb,k〉+ 25

16B2
(γk)2

∥∥∥
B∑

b=1

δb,k
∥∥∥
2

, (6.13)

where ηb,k denotes the sample used for the b-th noisy gradient computation at the k-th iteration.

Adding up the above inequalities over N iterations

N∑

k=1

(
γk − 25

16
(γk)2

)
‖∇W f(W k)‖2

≤ f(W 1)− f∗ − 1

B

N∑

k=1

B∑

b=1

(
γk − 25

8
(γk)2

)
〈∇W f(W k), δb,k〉

+
25

16B2

N∑

k=1

(γk)2
∥∥∥

B∑

b=1

δb,k
∥∥∥
2

. (6.14)

Taking expectations with respect to the random samples η, the second term from the right

hand side will be 0. And it is easy to know

Eη

∥∥∥
B∑

b=1

δb,k
∥∥∥
2

= Eη

∥∥∥
B∑

b=1

δb,k
∥∥∥
2

+ Eη‖δB,k‖2 =

B∑

b=1

Eη‖δb,k‖2. (6.15)

This becomes

Eη

[25

16B2

N∑

k=1

(γk)2
∥∥∥

B∑

b=1

δb,k
∥∥∥
2]

=
25

16B2

N∑

k=1

(γk)2Eη

∥∥∥
B∑

b=1

δb,k
∥∥∥
2

≤ 25dxdy
256B

N∑

k=1

(γk)2. (6.16)

Combining (6.13)–(6.14) and (6.16), we get

N∑

k=1

(
γk − 25

16
(γk)2

)
Eη‖∇W f(W k)‖2 ≤ f(W 1)− f∗ +

es

B

N∑

k=1

(γk)2. (6.17)

Gradient Convergence of Deep Learning-Based Numerical Methods for BSDEs 215

Let pkR = γk − 25
16 (γ

k)2 and ER,η‖∇W f(W k)‖2 :=

N∑
k=1

pkR(Eη‖∇W f(Wk)‖2)

N∑
k=1

pk
R

. So we have

ER,η‖∇W f(W k)‖2 ≤
f(W 1)− f∗ + es

B

N∑
k=1

(γk)2

N∑
k=1

(
γk − 25

16 (γ
k)2

) . (6.18)

Let γk = γ,

ER,η‖∇W f(W k)‖2 :=
1

Nγesγ

(
f(W 1)− f∗ +

esNγ2

B

)
≤ 1

esγ

(Df

Nγ
+
esγ

B

)
. (6.19)

Balancing the two terms in the bound, the optimal constant learning rate is

γo =

√
BDf

esN
≈

√
Bf(W 1)

esN
. (6.20)

Acknowledgement The authors would like to thank the anonymous reviewers for their

careful work and many useful comments.

References

[1] Beck, C., Becker, S., Grohs, P., et al., Solving stochastic differential equations and Kolmogorov equations
by means of deep learning. arXiv: 1806.00421, 2018

[2] Bender, C. and Zhang, J., Time discretization and Markovian iteration for coupled FBSDEs, The Annals

of Applied Probability, 18(1), 2008, 143–177.

[3] Bouchard, B. and Touzi, N., Discrete-time approximation and Monte-Carlo simulation of backward s-
tochastic differential equations, Stochastic Processes and their applications, 111(2), 2004, 175–206.

[4] Carreira-Perpinan, M. and Wang, W., Distributed optimization of deeply nested systems, Appearing in
Proceedings of the 17th International Conference on Artificial Intelligence and Statistics (AISTATS) 2014,
Reykjavik, Iceland. JMLR: W&CP volume 33.

[5] Cvitanic, J. and Zhang, J., The steepest descent method for forward-backward SDEs, Electronic Journal

of Probability, 10, 2005, 1468–1495.

[6] Delarue, F. and Menozzi, S., A forward-backward stochastic algorithm for quasi-linear PDEs, The Annals

of Applied Probability, 16(1), 2006, 140–184.

[7] Douglas, J., Ma, J. and Protter, P., Numerical methods for forward-backward stochastic differential equa-
tions, The Annals of Applied Probability, 6(3), 1996, 940–968.

[8] E, W., Han, J. and Jentzen A., Deep learning-based numerical methods for high-dimensional parabolic par-
tial differential equations and backward stochastic differential equations, Communications in Mathematics

and Statistics, 5(4), 2017, 349–380.

[9] E, W., Ma, C. and Wu, L., A priori estimates of the generalization error for two-layer neural networks.
arXiv:1810.06397, 2018

[10] E, W., A proposal on machine learning via dynamical systems, Communications in Mathematics and

Statistics, 5(1), 2017, 1–11.

[11] Ghadimi, S. and Lan, G., Stochastic first- and zeroth-order methods for nonconvex stochastic programming,
SIAM Journal on Optimization, 23(4), 2013, 2341–2368.

[12] Han, J. and Long, J., Convergence of the deep BSDE method for coupled FBSDEs. arXiv: 1811.01165,
2018

[13] Han, J. and E, W., Deep learning approximation for stochastic control problems. arXiv: 1611.07422, 2016

216 Z. X. Wang and S. J. Tang

[14] Huijskens, T. P., Ruijter, M. J. and Oosterlee, C. W., Efficient numerical Fourier methods for coupled
forward-backward SDEs, Journal of Computational and Applied Mathematics, 296, 2016, 593–612.

[15] Ithapu, V. K., Ravi, S. N. and Singh, V., On the interplay of network structure and gradient convergence
in deep learning, 2016 54th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), IEEE, 2016, 488–495

[16] Li, Q., Chen, L., Tai, C. and E, W., Maximum principle based algorithms for deep learning, Journal of

Machine Learning Research, 18(165), 2017, 1–29.

[17] Ma, J., Shen, J. and Zhao, Y., On numerical approximations of forward-backward stochastic differential
equations, SIAM Journal on Numerical Analysis, 46(5), 2008, 2636–2661.

[18] Malek, A. and Beidokhti, R., Numerical solution for high order differential equations using a hybrid neural
network-optimization method, Appl. Math. Comput., 183(1), 2006 ,260–271.

[19] Nemirovski, A., Juditsky, A., Lan, G. and Shapiro, A., Robust stochastic approximation approach to
stochastic programming, SIAM Journal on Optimization, 19(4), 2009, 1574–1609.

[20] Pardoux, E. and Peng, S., Backward stochastic differential equations and quasilinear parabolic partial
differential equations, Stochastic Partial Differential Equations and Their Applications, Springer-Verlag,
Berlin, Heidelberg, 1992, 200–217.

[21] Rudd, K., Solving Partial Differential Equations Using Artificial Neural Networks, Ph.D. Thesis, Duke
University, 2013.

[22] Ruijter, M. J. and Oosterlee, C. W., Numerical Fourier method and second-order Taylor scheme for
backward SDEs in finance, Applied Numerical Mathematics, 103, 2016, 1–26.

[23] Shao, H. and Zheng, G., Convergence analysis of a back-propagation algorithm with adaptive momentum,
Neurocomputing, 74(5), 2011, 749–752.

[24] Sirignano, J. and Spiliopoulos, K., DGM: A deep learning algorithm for solving partial differential equa-
tions, Journal of Computational Physics, 375, 2018, 1339–1364.

[25] Pardoux, E. and Tang, S., Forward-backward stochastic differential equations and quasilinear parabolic
PDEs, Probability Theory and Related Fields, 114(2), 1999, 123–150.

[26] Xu, Y. and Yin, W., A globally convergent algorithm for nonconvex optimization based on block coordinate
update, Journal of Scientific Computing, 72(2), 2017, 700–734.

[27] Zeng, J., Ouyang, S., Lau, T. T. K., et al., Global convergence in deep learning with variable splitting via
the Kurdyka- lojasiewicz property. arXiv: 1803.00225, 2018

[28] Zhang, X. and Zhang, N., A study on the convergence of gradient method with momentum for sigma-pi-
sigma neural networks, Journal of Applied Mathematics and Physics, 6(04), 2018, 880–887.

[29] Zou, D., Cao, Y., Zhou, D. and Gu, Q., Stochastic gradient descent optimizes over-parameterized deep
ReLU networks. arXiv: 1811.08888, 2018

