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Abstract The present paper is concerned with the eigenvalue problem for cone degen-

erate p-Laplacian. First the authors introduce the corresponding weighted Sobolev s-

paces with important inequalities and embedding properties. Then by adapting Lusternik-

Schnirelman theory, they prove the existence of infinity many eigenvalues and eigenfunc-

tions. Finally, the asymptotic behavior of the eigenvalues is given.
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1 Introduction and Main Results

Write B = [0, 1)×X as a local model of stretched cone-manifold (i.e., manifold with conical
singularities) with dimension N ≥ 3. Here X ⊂ SN−1 is a bounded set in the unit sphere of

R
N , and x′ = (x2, · · · , xN ) ∈ X . Let intB be the interior of B and ∂B := {0} × X be the

boundary of B. The cone degenerate p-Laplacian is defined as follows:

−∆pB := −x−p
1 divB(|∇B · |p−2∇B·), (1.1)

where ∇B = (x1∂x1
, ∂x2

, · · · , ∂xN
) is cone gradient operator and for F = (Fx1

, Fx2
, · · · , FxN

),

the cone divergence operator divB is defined by divB F = ∇B · F = x1∂x1
Fx1

+ ∂x2
Fx2

+ · · ·+
∂xN

FxN
.

The present paper is devoted to the following Dirichlet eigenvalue problem for the cone

degenerate p-Laplacian, i.e.,

{
−∆pB u := −x−p

1 divB(|∇Bu|
p−2∇Bu) = λ|u|p−2u in intB,

u = 0 on ∂B,
(1.2)

where λ > 0, 2 < p < N . We call the problem (1.2) to be typical Dirichlet eigenvalue problem,

because if (u, λ) is a solution of (1.2), (αu, λ) is also a solution for all α ∈ R. Hence it is

different from the following problem

{
−∆pB u = λ|u|q−2u in intB,
u = 0 on ∂B

(1.3)
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with p 6= q. In fact, the problem (1.3) with different homogeneity of the right hand side preserves
a curve of solution, namely, if u 6= 0 verifies the problem (1.3) with λ = 1, then for α > 0, αu is

a solution of (1.3) with λ = αp−q. That is why we need different ways to construct Palais-Smale

sequence in these two problems. The existence of multiple solutions for problem (1.3) has been

studied in [9].

Here we are looking for non-trivial solutions (u, λ) ∈ H
1,N

p

p,0 (B)×R+ with u 6= 0, which verify

the problem (1.2) in the following weak sense (the definition of H1,γ
p,0(B), please see Definition

2.4 below), we say u ∈ H
1,N

p

p,0 (B) is a weak solution, if

∫

B

|∇Bu|
p−2∇Bu · ∇Bϕ

dx1
x1

dx′ = λ

∫

B

xp1|u|
p−2uϕ

dx1
x1

dx′ (1.4)

holds for any ϕ ∈ C∞
0 (intB). The weak solutions to the eigenvalue problem (1.2) are critical

points of the following energy functional

J(u) =
1

p

∫

B

|∇Bu|
pdx1
x1

dx′ −
λ

p

∫

B

xp1|u|
p dx1
x1

dx′. (1.5)

Then we have the following results.

Theorem 1.1 For 2 < p < N , the Dirichet eigenvalue problem (1.2) processes infinitely

many non-trivial weak solutions {(uk, λk)}k≥1 in the sense of (1.4) in H
1,N

p

p,0 (B)× R+.

Here if the eigenvalues λk 6= λj , then the corresponding eigenfunctions are not equivalent,

i.e., uk 6= uj . Furthermore, the limit of the sequence of eigenvalues {λk}k≥1 is infinity.

Corollary 1.1 The eigenvalues λk for the problem (1.2) turn to infinity as k → ∞.

The existence of solutions to nonlinear elliptic equations involving the p-Laplacian

−∆pu := −div(|∇u|p−2∇u)

have been widely studied, see [2, 4–5, 12], etc. The motivation for the cone degenerate p-

Laplacian (1.1) comes from the calculus on manifolds with conical singularities, as follows.

A finite dimensional manifold B with conical singularities is a topological space with a finite
subset B0 = {b1, · · · , bM} ⊂ B of conical singularities, having the two following properties:

1. B \B0 is a C∞ manifold.

2. Every b ∈ B0 has an open neighborhood U in B, such that there is a homeomorphism

ϕ : U → X∆

and ϕ restricts a diffeomorphism

ϕ′ : U \ {b} → X∧.

Here X is a bounded subset of the unit sphere SN−1 of RN , and set

X∆ = R+ ×X/({0} ×X).

This local model is interpreted as a cone with the base X . Since the analysis is formulated off

the singularity, it makes sense to pass to

X∧ = R+ ×X,
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which is the open stretched cone with the base X . Here we take the simplest case that

B = [0, 1)×X, ∂B = {0} ×X.

The typical linear differential operators on a manifold with conical singularities are called

Fuchs type, if the operators in a neighborhood of x1 = 0 are of the following form

A = x−m
1

m∑

k=0

ak(x1)
(
− x1

∂

∂x1

)k

(1.6)

with the coefficients ak(x1) ∈ C∞(R+,Diffm−k(X)). More examples of this kind of operators

are expressed in [18]. Furthermore, in [11, 13, 15, 19] and references therein, one can find more
information about operators on manifolds with singularites.

This paper is organized as follows. In Section 2, some preliminaries are given here, including

the definitions and properties of weighted Sobolev spaces, such as inequalities and embedding

properties, more details can be found in [6–8, 10]. Afterward, we introduce the idea of genus

as a tool to give the categories of the sets in a convenient way, see [16] for more information.
In Section 3, by adapting the idea of Lusternik-Schnirelman theory in [1], we prove the main

result Theorem 1.1. After the deformation result achieved, the existence of eigenvalues and

eigenfunctions of the present problem (1.2) is obtained by applying the min-max argument.

Finally, the asymptotic behavior of the sequence of eigenvalues is given in Section 4.

2 Preliminaries

In order to express the weak solutions for Dirichlet problem (1.2), we need the adequate

distribution spaces. To define the weighted Sobolev spaces on the stretched cone B, we first

introduce the weighted Sobolev spaces and weighted Lp spaces on R
N
+ .

Definition 2.1 For the weight data γ ∈ R, we say u(x) ∈ Lγ
p(R

N
+ ) for x ∈ R

N
+ := R+ ×

R
N−1, if u ∈ D′(RN

+ ) and

‖u‖Lγ
p(R

N
+
) =

( ∫

R+

∫

RN−1

|x
N
p
−γ

1 u(x)|pdσ
) 1

p

< +∞

hold here and after we simplify the notation as dσ = dx1

x1
dx′.

Definition 2.2 For m ∈ N and γ ∈ R, the spaces

Hm,γ
p (RN

+ ) := {u ∈ D′(RN
+ ) : (x1∂x1

)α∂βx′u ∈ Lγ
p(R

N
+ )}

for arbitrary α ∈ N, β ∈ N
N−1 and α + |β| ≤ m. Moreover, let Hm,γ

p,0 (RN
+ ) denote the closure

of C∞
0 (RN

+ ) in Hm,γ
p (RN

+ ).

According to [18, Section 2.1], we can generalize the definitions of the weighted Sobolev

spaces on R
N
+ to X∧.

Definition 2.3 Let U = {U1, · · · , UM} be an open covering of X by coordinate neigh-

borhoods. Fix a subordinate partition of unity {ϕ1, · · · , ϕM} and charts χj : Uj → R
N−1,

j = 1, · · · ,M , then u(x) ∈ Hm,γ
p (X∧) if and only if u ∈ D′(X∧) and satisfies the following

‖u‖Hm,γ
p (X∧) =

{ M∑

j=1

‖ (1× χ∗
j )

−1ϕju ‖p
Hs,γ

p (RN
+
)

} 1
p

< +∞.
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Here 1 × χ∗
j : C∞

0 (R+ × R
N−1) → C∞

0 (R+ × Uj) is the pull-back function with respect to

1×χj : R+ ×Uj → R+ ×R
N−1. Moreover, we denote Hm,γ

p,0 (X∧) as the closure of C∞
0 (X∧) in

Hm,γ
p (X∧).

Definition 2.4 Let Wm,p
loc (intB) denote the classical local Sobolev space (here intB is the

interior of B). For 1 ≤ p < ∞, m ∈ N and the weighted data γ ∈ R, Hm,γ
p (B) denotes the

subspace of all u ∈Wm,p
loc (intB), such that

Hm,γ
p (B) = {u ∈Wm,p

loc (intB) | ωu ∈ Hm,γ
p (X∧)}

for any cut-off function ω supported by a collar neighborhood of [0, 1) × ∂B. Moreover, the

subspace Hm,γ
p,0 (B) of Hm,γ

p (B) can be defined by the following deformation

Hm,γ
p,0 (B) := [ω]Hm,γ

p,0 (X∧) + [1− ω]Wm,p
0 (intB),

where the cut-off functions ω are defined as before, and Wm,p
0 (intB) denotes the closure of

C∞
0 (intB) in Sobolev space Wm,p(X̃) when X̃ is a closed compact C∞ manifold of dimension

N containing B as a submanifold with boundary. Also, we have

Lγ
p(B) := H0,γ

p (B), xγ1

1 Hm,γ2

p (B) = Hm,γ1+γ2

p (B).

For the proof of the main result, the following inequalities and embeddings are necessary.

Proposition 2.1 (Cone Type Poincaré Inequality) Let 1 ≤ p < ∞ and γ ∈ R. If u(x) ∈
H1,γ

p,0(B), then

‖u(x)‖Lγ
p(B) ≤ c‖∇Bu(x)‖Lγ

p(B), (2.1)

where the constant c depends only on B and p.

Proof Follow the same process of [7, Theorem 2.5].

Remark 2.1 The cone type Poincaré inequality implies that the norm ‖u‖H1,γ
p,0(B)

is equiv-

alent to the norm ‖∇Bu‖Lγ
p(B).

Lemma 2.1 For 1 < p2 < N and 1 ≤ p1 < p∗2 = Np2

N−p2
, the embedding

H1,γ2

p2,0
(B) →֒ Lγ1

p1
(B)

is compact, provided that N
p1

− γ1 >
N
p2

− γ2.

Proof According to Definition 2.4, we write

H1,γ2

p2,0
(B) := [ω]H1,γ2

p2,0
(X∧) + [1− ω]W 1,p2

0 (intB),

H0,γ1

p1,0
(B) = [ω]H0,γ1

p1,0
(X∧) + [1− ω]W 0,p1

0 (intB),

and observe that the embedding H0,γ1

p1,0
(B) →֒ Lγ1

p1
(B) is continuous. To verify this result, we

employ the classical compact embedding (see details in [14, Chapter 5]) as follows

[1− ω]W 1,p2

0 (intB) →֒ [1− ω]W 0,p1

0 (intB)

is compact for 1 ≤ p1 < p∗2. It remains to prove that the embedding

[ω]H1,γ2

p2,0
(X∧) →֒ [ω]H0,γ1

p1,0
(X∧)
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is compact.

To this end, we introduce a map as follows. Set 1 ≤ q <∞. For any v(x) ∈ Hm,γ
q,0 (X∧), we

define

(SN
q
,γv)(x1, x

′) = e−r(N
q
−γ)v(e−r , x′).

Then SN
q
,γ induces an isomorphism as follows:

SN
q
,γ : [ω]Hm,γ

q,0 (X∧) → [ω̃]Wm,q
0 (R×X)

with ω̃(r) = ω(e−r), where Wm,q
0 (R×X) is the classical Sobolev space.

For u1(x) ∈ H0,γ1

p1,0
(X∧), one has

S N
p1

,γ1
(ω(x1)u1(x)) = ω(e−r)e

−r( N
p1

−γ1)u1(e
−r, x′),

and it induces an isomorphism

S N
p1

,γ1
: [ω]H0,γ1

p1,0
(X∧) → [ω̃]W 0,p1

0 (R×X)

On the other hand, for u2(x) ∈ H1,γ2

p2,0
(X∧),

S N
p1

,γ1
(ω(x1)u2(x)) = ω(e−r)e−r( N

p1
−γ1)u2(e

−r, x′)

= e−r(( N
p1

−γ1)−( N
p2

−γ2))ω(e−r)e−r( N
p2

−γ2)u2(e
−r, x′),

and it also induces an isomorphism

S N
p1

,γ1
: [ω]H1,γ2

p2,0
(X∧) → [ω̃]e−rδW 1,p2

0 (R×X)

with δ :=
(
N
p1

− γ1
)
−
(
N
p2

− γ2
)
> 0. The following embedding

[ω̃]e−rδW 1,p2

0 (R×X) →֒ [ω̃]W 0,p1

0 (R×X)

is compact, since the function ϕ(r) = e−rδ · rs and all derivatives in r are uniformly bounded
on supp ω̃ for every s > 0. This completes the proof.

Remark 2.2 With the same idea, for 1 < p2 < N and 1 ≤ p1 < p∗2, the embedding

H1,γ2

p2,0
(B) →֒ Lγ1

p1
(B)

is continuous, provided that N
p1

− γ1 ≥ N
p2

− γ2.

Now we verify the following Breizis-Lieb type result in the weighted Sobolev spaces.

Lemma 2.2 (Breizis-Lieb Type Result) Let 1 ≤ p <∞ and {uk} ⊂ Lγ
p(B). If the following

conditions are satisfied

(i) {uk} is bounded in Lγ
p(B),

(ii) uk → u a.e. in intB as k → ∞,

then

lim
k→∞

(‖uk‖
p

L
γ
p(B)

− ‖uk − u‖p
L

γ
p(B)

) = ‖u‖p
L

γ
p(B)

. (2.2)
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Proof Due to Fatou lemma, it yields

‖u‖p
L

γ
p
=

∫
|x

N
p
−γ

1 u|pdσ

≤ lim inf
k→∞

∫
|x

N
p
−γ

1 uk|
pdσ

= lim inf
k→∞

‖uk‖
p

L
γ
p
<∞.

For simplicity, we set here ũk = x
N
p
−γ

1 uk and ũ = x
N
p
−γ

1 u. Since p > 1, j(t) = tp is convex. For

any fixed ε > 0, there exists a constant cε, such that

||ũk − ũ+ ũ|p + |ũk − ũ|p| ≤ ε|ũk − ũ|p + cε|ũ|
p,

and then

||ũk − ũ+ ũ|p − |ũk − ũ|p − |ũ|p| ≤ ε|ũk − ũ|p + (1 + cε)|ũ|
p.

Therefore, we obtain that

f ε
k := (||ũk|

p − |ũk − ũ|p − |ũ|p| − ε|ũk − ũ|p)+ ≤ (1 + cε)|ũ|
p.

Then Lebesgue dominate theorem induces

lim
k→∞

∫

B

f ε
k(x)dσ =

∫

B

lim
k→∞

f ε
k(x)dσ = 0.

Since

||x
N
p
−γ

1 uk|
p − |x

N
p
−γ

1 uk − x
N
p
−γ

1 u|p − |x
N
p
−γ

1 u|p| ≤ f ε
k + ε|x

N
p
−γ

1 uk − x
N
p
−γ

1 u|p,

it follows that

lim sup
k→∞

∫

B

||x
N
p
−γ

1 uk|
p − |x

N
p
−γ

1 (uk − u)|p − |x
N
p
−γ

1 u|p|dσ ≤ cε

where

c := sup

∫

B

|x
N
p
−γ

1 (uk − u)|pdσ.

Let ε→ 0, then it verifies the result.

For investigating the existence of solutions to the Dirichlet problem (1.2), some important
concepts in variational methods are presented in the following. Let E be a Banach space. Define

the class in E as

Σ(E) = {A ⊂ E | A is closed, and A = −A}.

Definition 2.5 For A ∈ Σ(E), define the genus of A, denoted by γ(A), as

γ(A) =





0, if A = ∅,
∞, if {m ∈ N+; ∃h ∈ C(A,Rm \ {0}), h(−x) = −h(x)} = ∅,
inf{m ∈ N+; ∃h ∈ C(A,Rm \ {0}), h(−x) = −h(x)}.

Proposition 2.2 Let A,B ∈ Σ(E), the genus γ possesses the following properties

(1) If ψ ∈ C(A,B) is odd, then γ(A) ≤ γ(B).

(2) If ψ ∈ C(A,B) is an odd homeomorphism, then γ(A) = γ(B) = γ(ψ(A)).
(3) If A ⊂ B, then γ(A) ≤ γ(B).
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(4) If γ(B) <∞, γ(A−B) ≥ γ(A)− γ(B).
(5) γ(A ∪B) ≤ γ(A) + γ(B).

(6) If Sn−1 is the sphere in R
n, then γ(Sn−1) = n.

(7) If A is compact, then γ(A) <∞.

(8) If A is compact, there exists δ > 0 such that for Nδ(A) = {x ∈ X : d(x,A) < δ}, we
have γ(A) = γ(Nδ(A)).

Proof The proof can be found in [16, Section 3].

3 Proof of Theorem 1.1

The idea of Lusternik-Schnirelman theory in [1] is adapted here for the proof. Consider the
following two operators

B(u) =
1

p

∫

B

xp1|u|
pdσ : H

1,N
p

p,0 (B) → R (3.1)

and

b(u) = xp1|u|
p−2u : H

1,N
p

p,0 (B) → H
−1,−N

p
p (B), (3.2)

where H
−1,−N

p
p (B) is the dual space of H

1,N
p

p,0 (B) with the norm as follows

‖g‖
H

−1,−N
p

p

= sup

ϕ∈H
1, N

p
p,0

|〈g, ϕ〉|

‖ϕ‖
H

1,N
p

p,0

.

Lemma 3.1 We have the following properties of the above two operators.

(i) The operator b defined in (3.2) is odd, compact and uniformly continuous on bounded

sets.

(ii) The operator B defined in (3.1) is even and compact.

Proof It is obvious that B is even and b is odd. First we verify the uniformly continuity of

b on bounded set. Let u1, u0 be in a bounded set in H
1,N

p

p,0 (B), and set δ := u1 − u0 ∈ H
1,N

p

p,0 (B),

then for any ϕ ∈ H
1,N

p

p,0 (B), we have that

|〈b(u1)− b(u0), ϕ〉|

=
∣∣∣
∫

B

(xp1|u1|
p−2u1 − xp1|u0|

p−2u0)ϕdσ
∣∣∣

=
∣∣∣
∫

B

xp1(|u0 + δ|p−2(u0 + δ)− |u0|
p−2u0)ϕdσ

∣∣∣,

where

|u0 + δ|p−2(u0 + δ)− |u0|
p−2u0

=
∣∣∣
p−2∑

l=1

Cl
p−2u

p−2−l
0 δl + up−2

0

∣∣∣(u0 + δ)− |u0|
p−2u0

≤
∣∣∣
p−2∑

l=1

Cl
p−2u

p−1−l
0 δl

∣∣∣+
∣∣∣
p−2∑

l=1

Cl
p−2u

p−2−l
0 δl+1

∣∣∣+ |up−2
0 δ|

≤ C

p−1∑

l=1

|up−1−l
0 δl|.
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Hence, it implies that

|〈b(u1)− b(u0), ϕ〉| = C

p−1∑

l=1

∫

B

|xp1u
p−1−l
0 δϕ|dσ.

Set p1 = p
p−1−l

, p2 = p
l
, p3 = p and choose γ1 = γ2 = γ3 = N

p
− 1 such that

(
N
p
− γ1

)
(p− 1−

l) +
(
N
p
− γ2)l + (N

p
− γ3

)
= p with N

p
− γi > 0 for i = 1, 2, 3, then by Hölder inequality, we

have

|〈b(u1)− b(u0), ϕ〉|

≤ C

p−1∑

l=1

( ∫

B

|x
N
p
−γ1

1 u0|
(p−1−l)p1dσ

) 1
p1

(∫

B

|x
N
p
−γ2

1 δ|l p2dσ
) 1

p2

(∫

B

|x
N
p
−γ3

1 ϕ|p3dσ
) 1

p3

= C

p−1∑

l=1

‖u0‖
p−1−l

L
γ1
p

‖δ‖l
L

γ2
p
‖ϕ‖Lγ3

p
.

According to Lemma 2.1 and the conditions N
p
− γi > 0 for i = 1, 2, 3, we have

|〈b(u1)− b(u0), ϕ〉| ≤ C
( p−1∑

l=1

‖u0‖
p−1−l

H
1, N

p
p,0

‖δ‖l

H
1,N

p
p,0

)
‖ϕ‖

H
1,N

p
p,0

.

Due to the assumption that u1, u2 are in a bounded set and δ = u1 − u0, we have

‖b(u1)− b(u2)‖
H

−1,−N
p

p

:= sup

ϕ∈H
1, N

p
p,0

|〈b(u1)− b(u0), ϕ〉|

‖ϕ‖
H

1, N
p

p,0

≤ C

p−1∑

l=1

‖u1 − u0‖
l

H
1, N

p
p,0

,

which verifies the uniformly continuity of b in bounded sets.

Now we show that b is a compact operator. For {uk} bounded in H
1,N

p

p,0 (B), there exists a

subsequence of {uk} (here and after the subsequence is denoted by the same notation) such

that

uk ⇀ u in H
1,N

p

p,0 (B) as k → ∞,

and by Lemma 2.1,

uk → u in Lγ1

p (B) as k → ∞

for choosing a proper γ1 such that N
p
− γ1 > 0. As a consequence of convergence in Lγ1

p (B), we

claim that there exists a subsequence holding that

x
N
p
−γ1

1 uk → x
N
p
−γ1

1 u a.e. in intB. (3.3)

In fact, there is a subsequence {ukj
} of {uk} such that

‖ukj+1
− ukj

‖Lγ1
p

≤
1

2j
, j = 1, 2, · · · .

Let x
N
p
−γ1

1 vk =
k∑

j=1

|x
N
p
−γ1

1 ukj+1
− x

N
p
−γ1

1 ukj
|, then by Minkowski inequality, we get

‖vk‖Lγ1
p

≤
k∑

j=1

‖ukj+1
− ukj

‖Lγ1
p

≤ 1.
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We set x
N
p
−γ1

1 v(x) = lim
k→∞

x
N
p
−γ1

1 vk(x). By Fatou lemma, it follows that

∫

B

|x
N
p
−γ1

1 v(x)|pdσ ≤ lim inf
k→∞

∫

B

|x
N
p
−γ1

1 vk(x)|
pdσ ≤ 1.

The absolutely convergence implies that

x
N
p
−γ1

1 uk1
+

k∑

j=1

(x
N
p
−γ1

1 ukj+1
− x

N
p
−γ1

1 ukj
) → x

N
p
−γ1

1 u(x) a.e in intB,

which verifies the claim (3.3).

Then for any v ∈ H
1,N

p

p,0 (B) and 0 < γ < p, it implies that

|〈b(uk)− b(u), v〉|

≤
( ∫

B

|xγ(|uk|
p−2uk − |u|p−2u)|

p
p−1dσ

) p−1

p
(∫

B

|xp−γ
1 v|pdσ

) 1
p

:= I1 · I2.

Together with Lemma 2.1, by taking N
p
− γ2 = p− γ > 0, we have

I2 = ‖v‖Lγ2
p

≤ C‖v‖
H

1, N
p

p,0

.

Due to x
N
p
−γ1

1 uk → x
N
p
−γ1

1 u a.e in intB as k → ∞, we apply Lebesgue dominate convergence

theory to I1, and obtain that I1 → 0 as k → ∞. This implies that

b(uk) → b(u) in H
−1,−N

p
p (B) as k → ∞.

For the compactness of B, we take a bounded sequence {uk} in H
1,N

p

p,0 (B), then, as before,
up to a subsequence, we have

uk → u in Lγ1

p (B) as k → ∞,

here taking γ1 = N
p
− 1. Then

B(uk) =
1

p

∫

B

xp1|u|
pdσ =

1

p

∫

B

|x1u|
pdσ =

1

p
‖uk‖

p

L
N
p

−1

p

→
1

p
‖u‖p

L
N
p

−1

p

= B(u) as k → ∞.

The main idea of the proof is to obtain the critical points of B(u) on the manifold

M =
{
u ∈ H

1,N
p

p,0 (B)
∣∣∣
1

p

∫

B

|∇Bu|
pdσ = α

}
, (3.4)

here α > 0 is fixed. For each u ∈ H
1,N

p

p,0 (B) \ {0}, we can find λ(u) > 0 such that λ(u)u ∈M in

the following way

λ(u) =
( pα∫

B
|∇Bu|pdσ

) 1
p

. (3.5)
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Hence λ : H
1,N

p

p,0 (B)\{0} → (0,+∞). It is obvious that λ(u) is uniformly continuous on manifold

M . By direct computation, the derivative of λ is as follows

〈λ′(u), ϕ〉 = −(pα)
1
p

(∫

B

|∇Bu|
pdσ

)− p+1

p

∫

B

|∇Bu|
p−2∇Bu · ∇Bϕdσ (3.6)

for any ϕ ∈ H
1,N

p

p,0 (B). Therefore,
∫
B
|∇Bu|p−2∇Bu · ∇Bϕdσ = 0 implies 〈λ′(u), ϕ〉 = 0.

Lemma 3.2 The functional λ′(·) is uniformly continuous on M .

Proof Indeed, let u1, u0 be inM , and set u1−u0 =: δ ∈ H
1,N

p

p,0 (B), then for any ϕ ∈ H
1,N

p

p,0 (B),
we have

|〈λ′(u1)− λ′(u0), ϕ〉|

= C
∣∣∣
( ∫

B

|∇Bu1|
pdσ

)− p+1

p

∫

B

|∇Bu1|
p−2∇Bu1 · ∇Bϕdσ

−
(∫

B

|∇Bu0|
pdσ

)− p+1

p

∫

B

|∇Bu0|
p−2∇Bu0 · ∇Bϕdσ

∣∣∣

= C
∣∣∣
∫

B

(|∇Bu1|
p−2∇Bu1 − |∇Bu0|

p−2∇Bu0) · ∇Bϕdσ
∣∣∣,

here, as in Lemma 3.1, we have

|∇Bu1|
p−2∇Bu1 − |∇Bu0|

p−2∇Bu0

= |∇Bu0 +∇Bδ|
p−2(∇Bu0 +∇Bδ)− |∇Bu0|

p−2∇Bu0

≤ C

p−1∑

l=1

|∇Bu0|
p−1−l|∇Bδ|

l.

Hence, by setting p1 = p
p−1−l

, p2 = p
l
and p3 = p, it implies that

|〈λ′(u1)− λ′(u0), ϕ〉|

≤ C

p−1∑

l=1

∫

B

|∇Bu0|
p−1−l|∇Bδ|

l|∇Bϕ|dσ

≤ C

p−1∑

l=1

( ∫

B

|∇Bu0|
pdσ

) 1
p1

( ∫

B

|∇Bδ|
pdσ

) 1
p2

(∫

B

|∇Bϕ|
pdσ

) 1
p

= C

p−1∑

l=1

‖u0‖
p−1−l

H
1,N

p
p,0

‖δ‖l

H
1,N

p
p,0

‖ϕ‖
H

1, N
p

p,0

,

which leads to the uniformly continuity of λ′(·) on M , i.e.,

‖λ′(u1)− λ′(u0)‖
H

−1,−N
p

p

≤ C

p−1∑

l=1

‖u1 − u0‖
l

H
1, N

p
p,0

.

The next step is to construct a flow on M related to the functional B(u) and the corre-

sponding deformation result allows us to apply the min-max theory, see [17]. Let D(u) denote

the derivative of B(λ(u)u) for u ∈ H
1,N

p

p,0 (B) \ {0}, then we have

D(u) =
pα∫

B
|∇Bu|pdσ

(
b(u)−

〈b(u), u〉∫
B
|∇Bu|pdσ

(−xp1∆pBu)
)
∈ H

−1,−N
p

p (B),
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i.e., for any v ∈ H
1,N

p

p,0 (B),

〈D(u), v〉 =
pα∫

B
|∇Bu|pdσ

(
〈b(u), v〉 −

〈b(u), u〉∫
B
|∇Bu|pdσ

∫

B

|∇Bu|
p−2∇Bu · ∇Bvdσ

)
.

If u ∈M , then

D(u) = b(u)−
〈b(u), u〉∫

B
|∇Bu|pdσ

(−xp1∆pBu).

We claim that D(u) is uniformly continuous on M . Since b(u) and −xp1∆pBu are uniformly

continuous on M as proved in Lemmas 3.1–3.2, it is sufficient to verify that 〈b(u), u〉 hold this

property on M . In fact, let u1, u0 ∈M , and set δ := u1 − u0 ∈ H
1,N

p

p,0 (B), then we have

|〈b(u1), u1〉 − 〈b(u0), u0〉|

=

∫

B

xp1(|u0 + δ|p − |u0|
p)dσ

≤ C

p∑

l=1

∫

B

xp1|u0|
p−lδldσ = C

p∑

l=1

∫

B

|x
N
p
−γ1

1 u0|
p−l|x

N
p
−γ2

1 δ|ldσ

≤ C

p∑

l=1

(∫

B

|x
N
p
−γ1

1 u0|
(p−l)p1dσ

) 1
p1

( ∫

B

|x
N
p
−γ2

1 δ|lp2dσ
) 1

p2

= C

p∑

l=1

‖u0‖
p−l

L
γ1
p
‖δ‖l

L
γ2
p

≤ C

p∑

l=1

‖u0‖
p−1

H
1, N

p
p,0

‖u1 − u0‖
l

H
1,N

p
p,0

≤ C

p∑

l=1

‖u1 − u0‖
l

H
1, N

p
p,0

,

where the compact embedding Lemma 2.1 is employed, and p1 = p
p−l

, p2 = p
l
, the proper γ1

and γ2 are chosen here, such that
(
N
p
− γ1

)
(p− l)+

(
N
p
− γ2

)
l = p with N

p
− γi > 0 for i = 1, 2.

Recall the definition of duality map.

Definition 3.1 Let E be normed vector space, E∗ be the dual space of E. We set for every

x0 ∈ E,

J (x0) = {f0 ∈ E∗; ‖f0‖E∗ = ‖x0‖E and 〈f0, x0〉 = ‖x0‖
2}.

The map x0 7→ J (x0) is called the duality map from E into E∗.

According to the information of duality map in [3, Chapter 1], here we define the duality

map

J : H
−1,−N

p
p (B) → H

1,N
p

p,0 (B)

for all f ∈ H
−1,−N

p
p (B), such that J verifies

(i) ‖J (f)‖
H

1,N
p

p,0 (B)
= ‖f‖

H
−1,−N

p
p (B)

,

(ii) 〈f,J (f)〉 = ‖f‖2

H
−1,−N

p
p (B)

,

(iii) J (·) is uniformly continuous on bounded sets.

For each u ∈M , we define the tangent component as follows

T (u) = J (D(u))−
〈−xp1∆pBu,J (D(u))〉

〈−xp1∆pBu, u〉
u,

such that

T :M → H
1,N

p

p,0 (B)
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and
〈−xp1∆pBu, T (u)〉 = 0

hold, which implies that if u ∈M, then

〈λ′(u), T (u)〉 = 0.

Lemma 3.3 The tangent component T (u) processes the following properties

(i) T (u) is odd,

(ii) T (u) is uniformly continuous on M ,

(iii) T (u) is bounded on M .

Proof According to the definition of duality map and the fact that D(u) is odd, we arrive

that T (u) is odd. Since both D(·) and J (·) are uniformly continuous on bounded sets, one can
deduce that T (u) is uniformly continuous on M by applying the very similar procedure as in

Lemma 3.2.

On the manifold M , the norm of T (u) is estimated as follows:

‖T (u)‖
H

1,N
p

p,0

≤ ‖J (D(u))‖
H

1, N
p

p,0

+
|〈−xp1∆pBu,J (D(u))〉|

|〈−xp1∆pBu, u〉|
‖u‖

H
1,N

p
p,0

:= I1 + I2.

By applying Hölder inequality, we obtain that

I1 = ‖J (D(u))‖
H

1, N
p

p,0

= ‖D(u)‖
H

−1,−N
p

p

≤ C‖u‖p−1

H
1,N

p
p,0

and

I2 ≤

‖u‖p−1

H
1,N

p
p,0

‖J (Du)‖
H

1, N
p

p,0

‖u‖p

H
1,N

p
p,0

‖u‖
H

1,N
p

p,0

= ‖J (Du)‖
H

1, N
p

p,0

= ‖D(u)‖
H

−1,−N
p

p

≤ C‖u‖p−1

H
1,N

p
p,0

.

Then we have

‖T (u)‖
H

1,N
p

p,0

≤ C‖u‖p−1

H
1,N

p
p,0

,

which implies that T (u) is bounded on M .

For all u ∈M , there exist γ0 > 0 and t0 > 0 such that for all (u, t) ∈M × [−t0, t0], it holds

‖u+ tT (u)‖
H

1,N
p

p,0

≥ γ0 > 0.

As a consequence, we define the flow

σ(u, t) : M × [−t0, t0] →M (3.7)

by

(u, t) 7→ σ(u, t) = λ(u + tT (u))(u+ tT (u)).

Then σ(u, t) verifies the following properties:

(i) σ(u, t) is odd with respect to u for fixed t,
(ii) σ(u, t) is uniformly continuous with respect to u on M,

(iii) σ(u, 0) = u for u ∈M .

Indeed, it is obvious that the properties (i) and (iii) of σ(u, t) hold. The uniformly continuity

of σ(u, t) can be induced from the uniformly continuity of both λ(·) and T (·).
In order to obtain the deformation result, we first discover the relation between the functional

B(u) and the flow σ(u, t) on M .
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Lemma 3.4 Let σ(u, t) be defined in (3.7). Then there exists

r : M × [−t0, t0] → R

such that

lim
τ→0

r(u, τ) = 0

uniformly on M and

B(σ(u, t))−B(u) =

∫ t

0

(‖D(u)‖2

H
−1,−N

p
p

+ r(u, s))ds

for all u ∈M and t ∈ [−t0, t0].

Proof Since σ(u, 0) = u, B(u) = B(σ(u, 0)). By the definitions of functional B in (3.1)

and the operator b in (3.2), we have that for any v ∈ H
1,N

p

p,0 (B),

〈B′(u), v〉 = 〈b(u), v〉.

Hence,

B(σ(u, t))−B(u) =

∫ t

0

〈b(σ(u, s)), ∂sσ(u, s)〉ds.

Due to the fact that 〈λ′(u), T (u)〉 = 0 and λ(u) = 1 on M , one can derive

∂sσ(u, s)

= ∂s(λ(u + sT (u))(u+ sT (u)))

= 〈λ′(u+ sT (u)), T (u)〉(u+ sT (u)) + λ(u + sT (u))T (u)

= 〈λ′(u+ sT (u))− λ′(u), T (u)〉(u+ sT (u)) + (λ(u + sT (u))− λ(u))T (u) + T (u)

:= R(u, s) + T (u),

where

R(u, s) = 〈λ′(u + sT (u))− λ′(u), T (u)〉(u+ sT (u)) + (λ(u + sT (u))− λ(u))T (u).

Because T is bounded on M , and both λ(u) and λ′(u) are uniformly continuous, we have

lim
s→0

R(u, s) = 0

uniformly on M . Therefore,

B(σ(u, t))−B(u) =

∫ t

0

〈b(σ(u, s)), R(u, s) + T (u)〉ds

:=

∫ t

0

〈b(u), T (u)〉+ r(u, s)ds,

where

r(u, s) = 〈b(σ(u, s))− b(u), R(u, s) + T (u)〉+ 〈b(u), R(u, s)〉.

Since b is uniformly continuous as proved in Lemma 3.1, the properties that lim
s→0

σ(u, s) = u

and lim
s→0

R(u, s) = 0 leads to that

lim
s→0

r(u, s) = 0
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uniformly on M . Moreover, a direct computation implies that

〈b(u), T (u)〉

=
〈
b(u),J (D(u))−

〈−xp1∆pBu,J (D(u))〉

〈−xp1∆pBu, u〉
u
〉

= 〈b(u),J (D(u))〉 −
〈b(u), u〉〈−xp1∆pBu,J (D(u))〉

〈−xp1∆pBu, u〉

= 〈D(u),J (D(u))〉 = ‖D(u)‖2

H
−1,−N

p
p

,

which completes the proof.

Consider the level set, for β > 0,

Φβ = {u ∈M | B(u) ≥ β}.

Then we have the following deformation result

Lemma 3.5 Let β > 0 be fixed. Assume that there exists an open set U ⊂M such that for

some constants δ > 0 and 0 < ρ < β, it holds that

‖D(u)‖
H

−1,−N
p

p

≥ δ if u ∈ Vρ = {u ∈M | u /∈ U, |B(u)− β| ≤ ρ}.

Then there exist ε > 0 and an operator ηε such that

(i) ηε is odd and continuous,

(ii) ηε(Φβ−ε − U) ⊂ Φβ+ε.

Proof Take t0 and r(u, s) as in Lemma 3.4. Consider t1 ∈ [0, t0], such that for s ∈ [−t1, t1],

|r(u, s)| ≤
1

2
δ2

for all u ∈M . Then for u ∈ Vρ and t ∈ [0, t1], we have

B(σ(u, t))−B(u) =

∫ t

0

(‖D(u)‖2

H
−1−N

p
p

+ r(u, s))ds ≥

∫ t

0

(δ2 −
1

2
δ2)ds =

1

2
δ2t. (3.8)

Choosing ε = min{ρ, 14δ
2t1}. If u ∈ Vρ ∩ Φβ−ε, then

|B(u)− β| ≤ ρ,

and from (3.8) we have

B(σ(u, t1)) ≥ B(u) +
1

2
δ2t1 ≥ β + ε. (3.9)

By Lemma 3.4, fixing u ∈ Vρ, the functional B(σ(u, ·)) is increasing in some interval [0, s0) ⊂
[0, t1). Then for

u ∈ Vε = {u ∈M | u /∈ U, |B(u)− β| ≤ ε},

the functional

tε(u) = min{t ≥ 0 | B(σ(u, t)) = β + ε}

is well defined and verifies that
(i) 0 < tε(u) ≤ t1,
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(ii) tε(u) is continuous in Vε.

In fact, (3.9) implies (i). The continuity of σ(·, s) and the continuity of B(·) induce (ii).

Define

ηε(u) =

{
σ(u, tε(u)) if u ∈ Vε,
u if u ∈ Φβ−ε − (U ∪ Vε)

(3.10)

such that

ηε : Φβ−ε − U → Φβ+ε.

Indeed, since σ(u, t) is odd and uniformly continuous with respect to u, then we have ηε(u) is

odd and continuous.

We now prove the existence of a sequence of critical values and critical points by applying

a min-max argument. For each k ∈ N, consider the class

Ak = {A ⊂M | A is closed, A = −A, γ(A) ≥ k}, (3.11)

where γ is the genus as in Definition 2.5.

Lemma 3.6 Let Ak be defined in (3.11), define βk as follows

βk = sup
A∈Ak

min
u∈A

B(u), (3.12)

then for each k and βk > 0, there exists a sequence {ukj
} ⊂ M such that as j → ∞ it holds

that

{
(i) B(ukj

) → βk,
(ii) D(ukj

) → 0.
(3.13)

Proof By Definition 2.5, for the manifoldM given as in (3.4), we have γ(M) = +∞. Hence

it holds that Ak 6= ∅ for all k > 0. For each k, given A ∈ Ak, we have

min
u∈A

B(u) > 0,

which implies that βk > 0 for all k. Assume that there is no sequence in M verifying the

conditions (3.13), then there must exist constants δ > 0 and ρ > 0 such that

‖D(u)‖
H

−1,−N
p

p

≥ δ if u ∈ {u ∈M | |B(u)− βk| ≤ ρ}.

Without loss of generality, assume that δ < βk. Applying Lemma 3.5 with U = ∅, there exist

ε > 0 and an odd continuous mapping ηε such that

ηε(Φβk−ε) ⊂ Φβk+ε.

By the definition of βk in (3.12), there exists a set Aε ∈ Ak such that

B(u) ≥ βk − ε in Aε,

namely, Aε ⊂ Φβk−ε. Then B(u) ≥ βk+ε in ηε(Aε). Since Aε ∈ Ak, we have γ(Aε) ≥ k. By

Proposition 2.2 and the fact that ηε is odd and continuous, we get

γ(ηε(Aε)) ≥ k,
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which implies that

ηε(Aε) ∈ Ak.

This is a contradiction with the definition of βk in (3.12). In this way, for each k, we obtain

the sequence {ukj
} ⊂M verifying the conditions (3.13).

To the end, we need the following local (PS) condition.

Lemma 3.7 Let {uj} ⊂M and β > 0 such that as j → ∞,

{
(i) B(uj) → β,

(ii) D(uj) → 0 in H
−1,−N

p
p (B).

(3.14)

Then there exists a convergent subsequence of {uj} in M .

Proof Since {uj} ⊂M , then {uj} is bounded in H
1,N

p

p,0 (B). Hence, it holds that

uj ⇀ u in H
1,N

p

p,0 (B) as j → ∞.

According to the compact embedding stated in Lemma 2.1, it follows that up to a subsequence,

uj → u in L
N
p
−1

p (B) as j → ∞,

which implies that B(u) = β, in fact

B(uj) = ‖uj‖
L

N
p

−1

p

→ ‖u‖
L

N
p

−1

p

= B(u) as j → ∞.

The second condition in (3.14) indicates that for any v ∈ H
1,N

p

p,0 (B),

〈D(uj), v〉 = 〈b(uj), v〉 −
〈b(uj), uj〉∫
B
|∇Buj |pdσ

∫

B

|∇Buj|
p−2∇Buj · ∇Bvdσ → 0 as j → ∞.

This implies that, by setting λ = α
β
, the functional J(·) in (1.5) satisfies that for any v ∈

H
1,N

p

p,0 (B),

〈J ′(uj), v〉 =

∫

B

|∇Bu|
p−2∇Bu · ∇Bvdσ − λ

∫

B

xp1|u|
p−2uvdσ → 0 as j → ∞.

Since uj ⇀ u in H
1,N

p

p,0 (B), we obtain that

〈J ′(uj)− J ′(u), uj − u〉 → 0 as j → ∞.

A direct computation gives that

o(1) = 〈J ′(uj)− J ′(u), uj − u〉

=

∫

B

(|∇Buj|
p−2∇Buj − |∇Bu|

p−2∇Bu)(∇Buj −∇Bu)dσ

− λ

∫

B

xp1(|uj |
p−2uj − |u|p−2u)(uj − u)dσ

=: I1 − I2.
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Choose some γ1 such that N
p
− p < γ1 <

N
p
. Due to Hölder inequality, we can derive that

I2 = λ

∫

B

xp1(|uj|
p−2uj − |u|p−2u)(uj − u)dσ

≤ λ
(∫

B

|x
N
p
−γ1

1 (uj − u)|pdσ
) 1

p
(∫

B

|x
p−(N

p
−γ1)

1 (|uj |
p−2uj − |u|p−2u)|

p
p−1dσ

) p−1

p

:= λT1 · T2.

Combining Lemma 2.1 and the fact that {uj} is bounded in H
1,N

p

p,0 (B), we derive that T1 → 0

and T2 is bounded, which implies

I2 → 0 as j → ∞.

Set Pj(x) = (|∇Buj |p−2∇Buj − |∇Bu|p−2∇Bu)(x)(∇Buj −∇Bu)(x), then we arrive that

I1 =

∫

B

Pj(x)dσ → 0 as j → ∞. (3.15)

Here, denote the ith component of ∇Bu by (∇Bu)i. We have the following ellipticity conditions

that

Pj(x) ≥ 0, Pj(x) > 0, if ∇Buj 6= ∇Bu. (3.16)

In fact, for any x0 ∈ intB, without loss of generality, we assume (∇Buj)i(x0) > (∇Bu)i(x0).

In the case of (∇Buj)i(x0) > (∇Bu)i(x0) ≥ 0, (∇Buj)i(x0) ≥ 0 > (∇Bu)i(x0) and 0 >
(∇Buj)i(x0) > (∇Bu)i(x0), we have

(|∇Buj |
p−2∇Buj − |∇Bu|

p−2∇Bu)i(x0)(∇Buj −∇Bu)i(x0) > 0.

This shows (3.16). In the following, we verify that

(∇Buj)i → (∇Bu)i for 1 ≤ i ≤ N as j → ∞

a.e. in intB, which can be deduced by contradiction. Assume, there exist a point x1 ∈ intB
and its neighborhood Ux1

, such that for any x0 ∈ Ux1
,

lim
k→∞

∇Buj(x0) 6= ∇Bu(x0).

The convergence of (3.15) implies that (∇Buj |p−2∇Buj−|∇Bu|p−2∇Bu)(∇Buj−∇Bu) is bound-

ed, then it holds

(|∇Buj |
p−2∇Buj − |∇Bu|

p−2∇Bu)i(x0)(∇Buj −∇Bu)i(x0) ≤ c.

It follows that

(|∇Buj |
p−2∇Buj)i(x0)(∇Buj)i(x0)

≤ c+ (|∇Buj|
p−2∇Buj)i(x0)(∇Bu)i(x0) + (|∇Bu|

p−2∇Bu)i(x0)(∇Buj −∇Bu)i(x0)

≤ c+ (|∇Buj|
p−2 + |∇Bu|

p−2)(x0)(∇Buj)i(x0)(∇Bu)i(x0),

which indicates that |∇Buj(x0)|p =
N∑
i=1

(|∇Buj |p−2∇Buj)i(x0)(∇Buj)i(x0) is bounded. There

exists a subsequence, here still denoted by {uj} such that

(∇Buj)(x0) → ξ′ 6= ξ = ∇Bu(x0) as j → ∞.
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This induces that

Pj(x0) = (|∇Buj |
p−2∇Buj − |∇Bu|

p−2∇Bu)(x0)(∇Buj −∇Bu)(x0) → c0 > 0

for any x0 ∈ Ux1
as j → ∞. It follows that

I1 =

∫

B

Pj(x)dσ → c 6= 0 as j → ∞,

which contradicts to (3.15).
Applying Lemma 2.2 to (∇Buj)i for 1 ≤ i ≤ N , we have

lim
j→∞

(‖∇Buj‖
p

L
N
p

−1

p (B)

− ‖∇Buj −∇Bu‖
p

L
N
p

−1

p (B)

) = ‖∇Bu‖
p

L
N
p

−1

p (B)

. (3.17)

What left is to show that
∫

B

|∇Buj |
pdσ →

∫

B

|∇Bu|
pdσ as j → ∞.

Due to Egorov theorem, we obtain that for any δ > 0, there exists a subset E ⊂ intB with the
measure m(E) < δ, such that

(∇Buj)i → (∇Bu)i for 1 ≤ i ≤ N as j → ∞

uniformly on intB \ E. It follows that
∫

B\E

|∇Buj |
pdσ →

∫

B\E

|∇Bu|
pdσ as j → ∞. (3.18)

Now we claim that for any ε > 0, there are δ(ε) > 0 and a subset E ⊂ B with the measure

m(E) < δ(ε), such that
∫

E

|∇Buj |
pdσ < ε. (3.19)

In fact,

o(1) = I1 =

∫

B

(|∇Buj|
p−2∇Buj − |∇Bu|

p−2∇Bu)(∇Buj −∇Bu)dσ,

which implies that
∫

B

|∇Buj|
pdσ =

∫

B

(|∇Buj|
p−2 + |∇Bu|

p−2)(∇Buj · ∇Bu)dσ −

∫

B

|∇Bu|
pdσ + o(1).

For any E ⊂ B, we have
∫

E

|∇Buj |
pdσ ≤

∫

E

|∇Buj|
p−1|∇Bu|dσ +

∫

E

|∇Bu|
p−1|∇Buj|dσ +

∫

E

|∇Buj |
pdσ.

According to Hölder inequality, it follows

∫

E

|∇Buj |
pdσ ≤

( ∫

E

|∇Buj|
pdσ

) p−1

p
(∫

E

|∇u|pdσ
) 1

p

+
( ∫

E

|∇Buj|
pdσ

) 1
p
(∫

E

|∇u|pdσ
) p−1

p

+

∫

E

|∇Bu|
pdσ,
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which verifies (3.19). Hence, for any ε > 0, there exist δ(ε) > 0 and a subset E ⊂ intB, such
that both (3.18) and (3.19) hold, then we have

∫

B

|∇Buj |
pdσ →

∫

B

|∇Bu|
pdσ as j → ∞.

This finishes the proof.

Combining Lemmas 3.6 and 3.7, then for each k, we have a sequence ukj
⊂M such that

ukj
→ uk in M,

which gives that uk ∈ M with B(uk) = βk and D(uk) = 0. This induces that for any ϕ ∈

H
1,N

p

p,0 (B) and for each k ∈ N,

∫

B

|∇Buk|
p−2∇Buk · ∇Bϕdσ = λk

∫

B

xp1|uk|
p−2ukϕdσ

by setting λk = α
βk

. This completes the proof of Theorem 1.1.

Remark 3.1 For the case p = 2 in (1.2), the problem involving the linear Fuchs type

operator −x−2
1 divB (∇Bu) turns to be linear, which is a simpler and similar case of (1.2).

4 Proof of Corollary 1.1

Consider {Ek} to be a sequence of linear subspaces of H
1,N

p

p,0 (B), such that

(i) Ek ⊂ Ek+1,

(ii) L(∪Ek) = H
1,N

p

p,0 (B),

(iii) dimEk = k.

Define

β̃k = sup
A∈Ak

inf
u∈A∩Ec

k−1

B(u),

where Ec
k is the linear and topological complementary of Ek. It is obvious that

β̃k ≥ βk > 0.

Hence, it is sufficient to show that lim
k→∞

β̃k = 0, which will be verified by contradiction as

follows. Assume that for some positive constant γ > 0, we have β̃k > γ > 0 for all k ∈ N. Then

for each k ∈ N, there exists Ak ∈ Ak such that

β̃k ≥ inf
u∈Ak∩Ec

k−1

B(u) > γ.

Then there exists u ∈ Ak ∩Ec
k−1 such that

β̃k ≥ B(uk) > γ.

In this way, we have formed a sequence {uk} ⊂ M , such that B(uk) > γ for all k ∈ N. Since

{uk} ⊂M , as before we know that {uk} is bounded in H
1,N

p

p,0 (B), which implies that

uk ⇀ v in H
1,N

p

p,0 (B) as k → ∞,

uk → v in L
N
p
−1

p (B) as k → ∞.
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Hence we have

B(v) =
1

p
‖v‖p

L
N
p

−1

p

> γ. (4.1)

But the fact that uk ∈ Ec
k−1 implies v = 0, which induces the contradiction with (4.1), and

then we finish the proof.
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