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1 Introduction

Let Ω be a plane domain with at least two boundary points. The Teichmüller space T (Ω)

is the space of equivalence classes of quasiconformal maps f from Ω to a variable domain f(Ω).

Two quasiconformal maps f from Ω to f(Ω) and g from Ω to g(Ω) are equivalent if there is

a conformal map c from f(Ω) onto g(Ω) and a homotopy through quasiconformal maps ht

mapping Ω onto g(Ω) such that h0 = c ◦ f, h1 = g and ht(p) = c ◦ f(p) for every t ∈ [0, 1]

and every p in the boundary of Ω. Denote by [f ] the Teichmüller equivalence class of f ; also

sometimes denote the equivalence class by [µ] where µ is the Beltrami coefficient of f .

Denote by M(Ω) the open unit ball in L∞(Ω). For µ ∈ M(Ω), define

k0([µ]) = inf{‖ν‖∞ : ν ∈ [µ]}.

We say that µ is extremal in [µ] if ‖µ‖∞ = k0([µ]), and uniquely extremal if ‖ν‖∞ > k0(µ) for

any other ν ∈ [µ]. The corresponding f is also called extremal or uniquely extremal.

A quasiconformal mapping f will be said to be of Teichmüller type if its Beltrami cofficient

µ is of Teichmüller type, i.e.,

µ(z) =
fz(z)

fz(z)
= k

ϕ0(z)

|ϕ0(z)|
, z ∈ Ω, (1.1)

where k ∈ (0, 1) is a constant and ϕ0(z) 6= 0 a.e. is a measurable function in Ω. In particular, if

ϕ0 is holomorphic in Ω, we call f a Teichmüller mapping and the corresponding µ a Teichmüller

differential.
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Let B(Ω) be the Banach space consisting of holomorphic functions ϕ(z) belonging to L1(Ω),

with norm

‖ϕ‖ =

∫∫

Ω

|ϕ(z)|dxdy < ∞.

For µ ∈ M(Ω) and ϕ ∈ B(Ω), set

δ[ϕ] = k‖ϕ‖ − Re

∫∫

Ω

µ(z)ϕ(z)dxdy.

In [4], Reich proved the following theorem.

Theorem 1.1 (see [4]) Let µ ∈ M(Ω) be given by (1.1). Suppose that there exists a

sequence of functions ϕn ∈ B(Ω), n = 1, 2, · · · , such that

lim
n→∞

ϕn(z) = ϕ0(z) (1.2)

pointwise a.e. in Ω,

lim
n→∞

δ[ϕn] = 0. (1.3)

Then f is uniquely extremal.

In [5], Reich showed that (1.3) can be replaced by the weaker assumption of boundedness of

{δ[ϕn]}, provided that (1.2) is strengthened appropriately. This was done in his theorem which

is stated below.

Theorem 1.2 (see [5]) Let µ ∈ M(Ω) be given by (1.1). Suppose that there exists a

sequence of functions ϕn ∈ B(Ω), n = 1, 2, · · · , such that

lim
n→∞

ϕn(z) = ϕ0(z) (1.4)

pointwise a.e. in Ω, ϕ0 ∈ L1
loc(Ω),

δ[ϕn] ≤ M, n = 1, 2, · · · , (1.5)

lim
A→∞

∫∫

Ω(n,A)

|ϕn(z)|dxdy = 0 (1.6)

uniformly with respect to n, where Ω(n,A) = {z ∈ Ω : A|ϕ0(z)| < |ϕn(z)|}. Then f is uniquely

extremal.

Generally, if µ satisfies Reich’s condition above, following [3] we call {ϕn} a Reich sequence

for µ on Ω. Note that a Reich sequence {ϕn} for µ is not necessarily convergent pointwise on

Ω (see [1–2]). Therefore, if in addition ϕn converges to some ϕ0 pointwise a.e. on Ω, we call

{ϕn} a normal Reich sequence for µ on Ω.

Let µ ∈ M(Ω) be given by (1.1). We say that µ satisfies weak Reich’s condition on Ω if

there exists a sequence {ϕn} in B(Ω) such that (1.4)–(1.6) hold. If µ satisfies weak Reich’s

condition, we call {ϕn} a weak Reich sequence for µ on Ω.
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In order to show the unique extremality of f , when we cannot find the normal Reich sequence

by Theorem 1.1, we can find the weak Reich sequence by Theorem 1.2 instead. For example,

define

Ωa = {z = x+ iy : x > |y|a}, 1 < a < ∞, Ω∞ = {z = x+ iy : x > 0, |y| < 1}. (1.7)

Ever since [8], the family (1.7) has been known to possess a precise transition point a = 3.

It is known that the horizontal stretch of Ωa is uniquely extremal if and only if 3 ≤ a ≤ ∞. It

is easy to check that

ϕn(z) = e
−z

n

provides a normal Reich sequence when 3 < a ≤ ∞, but it fails to do so for the critical case

a = 3. For a long time, in [7], Reich gave an explicit example of a normal Reich sequence for

the critical case a = 3.

In this paper, we consider another uniquely extremal quasiconformal mapping, in a border-

line case between uniqueness and non-uniqueness, a normal Reich sequence is given explicitly

in this case for the first time.

Define ωa = {z = x+ iy : y > |x|a, z 6= ib, b > 0}, T (z) the Teichmüller mapping generated

by the quadratic differential ϕ0(z) =
i

(z−ib) . The complex dilatation is µ(z) = k z−ib
i|z−ib| , 0 < k <

1.

In [6], it was proved that if a ≥ 3
2 , then T (z) is uniquely extremal, and in the proof, the

normal Reich sequence is given when a > 3
2 , but when a = 3

2 , the normal Reich sequence is

failed to work. In this paper, we construct the normal Reich sequence for this case.

Theorem 1.3 The functions

ϕn(z) =
i · exp[−(2−n(−iz)

1
n )]

z − ib
, z ∈ ω 3

2
, n = 1, 2, · · · ,

where z
1
n denotes the branch in the right half-plane that is real on the positive y-axis, provide

a normal Reich sequence for ω 3
2
.

2 Proof of Theorem 1.3

We have

lim
n→∞

ϕn(z) = ϕ0(z),

|ϕn(z)| =
| exp[−(2−n(−iz)

1
n )]|

|z − ib|

and

δ[ϕn] = k

∫∫

ω 3
2

| exp[−(2−n(−iz)
1
n )]| − Re{exp[−(2−n(−iz)

1
n )]}

|z − ib| dxdy.
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We mainly focus on the left half part of ω 3
2
to the upper of the line Im z = N , N > max{2b, 1}

first, and denote it by Ω, i.e., Ω = {z : z ∈ ω 3
2
, Re z < 0, Im z > N}. We also let Ω̃ = {z : z ∈

ω 3
2
, Re z > 0, Im z > N}. Obviously,

k

∫∫

Ω∪Ω̃

| exp[−(2−n(−iz)
1
n )]| − Re{exp[−(2−n(−iz)

1
n )]}

|z − ib| dxdy

equals

2k

∫∫

Ω

| exp[−(2−n(−iz)
1
n )]| − Re{exp[−(2−n(−iz)

1
n )]}

|z − ib| dxdy.

Consider

k

∫∫

Ω

| exp[−(2−n(−iz)
1
n )]| − Re{exp[−(2−n(−iz)

1
n )]}

|z − ib| dxdy.

Let E(z) = | exp[−(2−n(−iz)
1
n )]|−Re{exp[−(2−n(−iz)

1
n )]}, and let θ = arg(−iz), z = x+iy,

−iz = −ix + y. Hence |z| cos θ = y, |z| sin θ = −x. It is easy to have θ < π
4 , 1 > sin θ

θ
> 2

√
2

π
.

From
sin θ

n

θ

n

< 1 < π sin θ

2
√
2θ

, we have

sin
θ

n
<

π sin θ

2
√
2n

.

From

Re{exp[−(2−n(−iz)
1
n )]} = exp

[
− |z| 1n cos θ

n

2n

]
· cos

( |z| 1
n sin θ

n

2n

)

and

cos
( |z| 1n sin θ

n

2n

)
> cos

( |z| 1
nπ sin θ

2n2
√
2n

)
= cos

( |z| 1−n

n · π|x|
2n2

√
2n

)

> cos
(y 1−n

n · πy 2
3

2n2
√
2n

)
= cos

(π · y 3−n

3n

2n2
√
2n

)

> cos
( π

2n2
√
2n

)
> 0,

when n is sufficiently large, we obtain that

Re{exp[−(2−n(−iz)
1
n )]} > 0. (2.1)

Since

|w| − Rew =
(Imw)2

|w|+Rew
<

(Imw)2

|w|
when Rew > 0, from (2.1) we have

E(z) ≤ exp
[
− |z| 1

n cos θ
n

2n

]
· sin2

( |z| 1n sin θ
n

2n

)
. (2.2)

Now we estimate the terms on the right of (2.2) when n is sufficiently large. From

cos
θ

n
≥ cos

(2 · π
3 · 4

)
=

√
3

2
, c,
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we get

exp
[
− |z| 1n cos θ

n

2n

]
≤ exp

[
− y

1
n c

2n

]
.

From ∣∣∣|z| 1
n sin

θ

n

∣∣∣ ≤ |z| 1−n

n · |z| · π| sin θ|
2
√
2n

≤ y
1−n

n · |x| · π

2
√
2n

,

we obtain that

sin2
( |z| 1

n sin θ
n

2n

)
≤ 1

22n
· y

2−2n
n · x2 · π2

8n2
.

Since N > 2b, it is easy to see |z − ib| > y
2 when z ∈ Ω, hence

∫∫

Ω

| exp[−(2−n(−iz)
1
n )]| − Re{exp[−(2−n(−iz)

1
n )]}

|z − ib| dxdy

≤
∫∫

Ω

exp
[−y

1
n c

2n

] y
2−2n

n ·x2·π2

22n·8n2

y
2

dxdy

=
2π2

22n8n2
·
∫ ∞

N

exp
(−y

1
n c

2n

)
· y 2−3n

n dy

∫ 0

−y
2
3

x2dx

<
2π2

22n24n2

∫ +∞

0

exp
(−y

1
n c

2n

)
y

2−n

n dy.

Let u = y
1
n

2n . Then y = 2n
2

un, dy = 2n
2 · nun−1du, hence

2π2

22n24n2

∫ +∞

0

exp
(−y

1
n c

2n

)
y

2−n

n dy =
2π2

22n24n2

∫ +∞

0

exp−cu 22−nn

u2−nnun−1du

=
2π2

24n

∫ +∞

0

exp−cu udu =
π2

12c3n
.

From above we obtain

∫∫

Ω

| exp[−(2−n(−iz)
1
n )]| − Re{exp[−(2−n(−iz)

1
n )]}

|z − ib| dxdy <
π2

12c3n
. (2.3)

Now we estimate another part of

δ[ϕn] = k

∫∫

ω 3
2

| exp[−(2−n(−iz)
1
n )]| − Re{exp[−(2−n(−iz)

1
n )]}

|z − ib| dxdy.

Let w = eiθ = r cos θ + ir sin θ. Then

|ew| − Re(ew) = er cos θ − er cos θ cos(r sin θ)

= er cos θ · 2 sin2 r sin θ

2
<

1

2
er cos θr2 sin2 θ ≤ 1

2
err2.

Let

ΩN = ω 3
2
− (Ω ∪ Ω̃).



332 X. Meng and S. H. Zhang

Then 0 ≤ y ≤ N , 0 ≤ |x| ≤ N
2
3 , we obtain that when z ∈ ΩN , | − iz| =

√
x2 + y2 < 2N . Let

w = − (−iz)
1
n

2n
, r = |w| =

∣∣∣− (−iz)
1
n

2n

∣∣∣ <
(2N)

1
n

2n
.

From above we get

| exp[−(2−n(−iz)
1
n )]| − Re{exp[−(2−n(−iz)

1
n )]}

<
1

2
· e|−

(−iz)
1
n

2n | ·
∣∣∣− (−iz)

1
n

2n

∣∣∣
2

<
1

2
· e

(2N)
1
n

2n · (2N)
2
n

22n
<

3

2
· (2N)

2
n

22n
.

From −N
2 < −b < y − b < N − b < N and |z − ib| =

√
(y − b)2 + x2 <

√
N2 +N2 < 2N , we

obtain
∫∫

ΩN

| exp[−(2−n(−iz)
1
n )]| − Re{exp[−(2−n(−iz)

1
n )]}

|z − ib| dxdy

<
3

2
· (2N)

2
n

22n
·
∫

ΩN

dxdy

|z − ib| ≤
3(2N)

2
n

22n+1
·
∫ 2N

0

∫ 2π

0

rdrdθ

r
=

3π(2N)
2
nN

22n−1
.

From above we get

∫∫

ΩN

| exp[−(2−n(−iz)
1
n )]| − Re{exp[−(2−n(−iz)

1
n )]}

|z − ib| dxdy <
3π(2N)

2
nN

22n−1
. (2.4)

Hence from (2.3)–(2.4), we obtain

δ[ϕn] < k
( π2

6c3n
+

3π(2N)
2
nN

22n−1

)
,

which approaches 0 when n → ∞. The proof of Theorem 1.3 is complete.
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