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1 Introduction

Let Q be a plane domain with at least two boundary points. The Teichmiiller space T'(2)
is the space of equivalence classes of quasiconformal maps f from Q to a variable domain f(€2).
Two quasiconformal maps f from Q to f(2) and g from Q to g(Q2) are equivalent if there is
a conformal map ¢ from f(92) onto ¢g(Q2) and a homotopy through quasiconformal maps h;
mapping  onto ¢g(£2) such that hg = co f, hy = g and hi(p) = co f(p) for every t € [0,1]
and every p in the boundary of €. Denote by [f] the Teichmiiller equivalence class of f; also
sometimes denote the equivalence class by [u] where p is the Beltrami coefficient of f.

Denote by M (Q2) the open unit ball in L>(Q2). For p € M(), define

ko([u]) = inf{[|v][ec : v € [u]}-

We say that p is extremal in [u] if ||¢]lcoc = ko([]), and uniquely extremal if ||v||oo > ko(u) for
any other v € [u]. The corresponding f is also called extremal or uniquely extremal.
A quasiconformal mapping f will be said to be of Teichmiiller type if its Beltrami cofficient

w is of Teichmiiller type, i.e.,

o fz(2) _ ‘PO—(Z)
HE =50 = e

where k& € (0, 1) is a constant and ¢ (z) # 0 a.e. is a measurable function in €. In particular, if

z €, (1.1)

o is holomorphic in 2, we call f a Teichmiiller mapping and the corresponding p a Teichmiiller

differential.
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Let B(Q) be the Banach space consisting of holomorphic functions ¢(z) belonging to L*(€2),

with norm
Il = [ let@ldady < oc.

For p e M(2) and ¢ € B(Q), set

ol¢] = kllel = Re [ [ u(z)o(e)aady,

In [4], Reich proved the following theorem.

Theorem 1.1 (see [4]) Let p € M(Q) be given by (1.1). Suppose that there exists a

sequence of functions ¢, € B(2),n =1,2, ---, such that
Jim ¢ (2) = ¢o(2) (1.2)

pointwise a.e. in €,
lim 0[¢,] = 0. (1.3)

n—r oo

Then f is uniquely extremal.

In [5], Reich showed that (1.3) can be replaced by the weaker assumption of boundedness of
{6[pn]}, provided that (1.2) is strengthened appropriately. This was done in his theorem which

is stated below.

Theorem 1.2 (see [5]) Let p € M(Q) be given by (1.1). Suppose that there exists a

sequence of functions g, € B(2), n=1,2,---, such that
Jim ¢ (2) = ¢o(2) (1.4)

pointwise a.e. in Q, o € Li (),

Slp n=1,2,-, (1.5)

lim // |pn(2)|dzdy =0 (1.6)
Ao Q(n,A)

uniformly with respect to n, where Q(n, A) = {z € Q: Alpo(2)] < |on(2)|}. Then f is uniquely

extremal.

Generally, if p satisfies Reich’s condition above, following [3] we call {¢,} a Reich sequence
for v on Q. Note that a Reich sequence {¢,} for u is not necessarily convergent pointwise on
Q (see [1-2]). Therefore, if in addition ,, converges to some ¢ pointwise a.e. on Q, we call
{¢n} a normal Reich sequence for p on €.

Let u € M(R2) be given by (1.1). We say that u satisfies weak Reich’s condition on § if
there exists a sequence {¢,} in B(€) such that (1.4)—(1.6) hold. If u satisfies weak Reich’s

condition, we call {¢,} a weak Reich sequence for p on Q.
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In order to show the unique extremality of f, when we cannot find the normal Reich sequence
by Theorem 1.1, we can find the weak Reich sequence by Theorem 1.2 instead. For example,
define

Qe={z=z+iy:xz>y*}, 1<a<oo, Qu={z=z+iy:z>0, |yl <1} (1.7)

Ever since [8], the family (1.7) has been known to possess a precise transition point a = 3.
It is known that the horizontal stretch of €2, is uniquely extremal if and only if 3 < a < co. It

is easy to check that
SOTL(Z) =en

provides a normal Reich sequence when 3 < a < oo, but it fails to do so for the critical case
a = 3. For a long time, in [7], Reich gave an explicit example of a normal Reich sequence for
the critical case a = 3.

In this paper, we consider another uniquely extremal quasiconformal mapping, in a border-
line case between uniqueness and non-uniqueness, a normal Reich sequence is given explicitly
in this case for the first time.

Define w, = {z = x+iy : y > |z|*, 2 #ib, b > 0}, T'(2) the Teichmiiller mapping generated
by the quadratic differential po(z) = r‘lb) The complex dilatation is p(z) = kﬁ, 0<k<
1.

In [6], it was proved that if a > %, then T'(z) is uniquely extremal, and in the proof, the

normal Reich sequence is given when a > 2, but when a = %, the normal Reich sequence is

2
failed to work. In this paper, we construct the normal Reich sequence for this case.

Theorem 1.3 The functions

i+ exp[—(27"(—iz)7)]
z—1b

9077/(2): ’ Zew%an:1727"'7

where zn denotes the branch in the right half-plane that is real on the positive y-axis, provide

a normal Reich sequence for ws.

2 Proof of Theorem 1.3

We have
Jimpn(2) = po(2),
exp|—(27"(—iz 0
foala)] = =LA
and

_ | exp[—(27"(~i2)n)]| — Re{exp[-(2""(=iz)")]} |
Slpn] = k/ P dady.

w3
2
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We mainly focus on the left half part of ws to the upper of the line Imz = N, N > max{2b, 1}
first, and denote it by , i.e., Q={z:z € ws, Rez <0, Imz > N}. We also let Q= {z:z¢€
ws, Rez >0, Im z > N}. Obviously,

|exp[— (27" (—i2)#)]| — Refexp|—(2~"(~iz)7)]}
k/~ |z — b dady
QUi
equals
| exp[— (27" (=i2)7)]| - Refexp[—(2~"(=iz)*)]}
2 é/ |z — ib] dedy.
Consider

| exp[—(27"(—i2))]| — Refexp|—(2~"(~iz)7)]}
ké/ |z — ib] dady.

Let E(z) = | exp[—(27"(—iz) " )]|—Re{exp[— (27" (—iz)#)]}, and let = arg(—iz), z = a+iy,

—iz = —iz +y. Hence |z|cosf =y, |z|sinf = —z. It is easy to have § < Z,1 > sl > %ﬁ
i 3

From Sl%" <1< gf}gg, we have

. 0  mwsind

sin— < ———.

no 2y2n
From
" L |2| = cos £ |2| sin &
Re{exp[— (27" (=i2)%)]} = exp [— - ] -cos( = )

and

|z|% sin% |z|%7rsin9 |z|% - 7| ]
cos (7) > cos (7) = oS (7)
2124/2n

COS\ ————— = COS
2m2/2n 2m2/2n

s
> cos ( ) > 0,
212v/2n

when n is sufficiently large, we obtain that

Re{exp[— (27" (—iz))]} > 0. (2.1)
Since a 2 a 2
|w| — Rew = W+ Rew ol

when Rew > 0, from (2.1) we have

2|7 cos &1 5 || sin £
E(z) <exp [— T"} -sin (T”) (2.2)

Now we estimate the terms on the right of (2.2) when n is sufficiently large. From

0 (?_W)_V_h
COSn7COS 34 = 2 =C,
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we get
|z|%cos% ywe
eXp[_ on }SGXP[_ 2n]
From
M |L5. 9‘<| |ﬂ 12| 7| sin 6| <= » T
Z n 'ln— Z n . Z . n . :Z:‘ .—’
nl = 2v/2n 2v2n

we obtain that
|2|# sin £ 1 52t
an2 (2 " n - .z = =
s ( on ) = 5o 8n2

Since N > 2b, it is easy to see |z —ib| > 4 when z € €, hence

/ expl—(e (iz) b = Refexpl-( " (<120}
|z — 1b]

2—2n
n 1)2 71'2

< / / exp y:c 22"‘7!8"2 dady
2
27T2 00 —y%C 23 0 )
g f, o () VT [ e

2m? oo —ymey 2om
< 5 = du.
9212402 /0 eXp( n )y 4

Let u = “" . Then y = 2"°u", dy = 2" - nu™~1du, hence

272 +oo —yr “n 272 oo n
0 0

27T2 +oo D 7T2
T 24n exp udu= 12¢3n

From above we obtain

xp[—(27"(—iz))]| — Re{exp[— (27" (—iz)= 2
/ |exp[-(27"( ))]||Z_§je p[—(27"( ))]}d:z:dy<123- (2.3)

Now we estimate another part of

bon) = b [ 120~ Relen i)

i6

Let w = €'Y =rcosf +irsinf. Then
le”| — Re(e®) = e" ¥ — " ¢050 co5(r sin )
. o rsind 1 1
_ ercos@ . 281112 ercosG 25111 9 —eTTQ.
2 -2
Let

Oy =ws — (QUQ).
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Then 0 <y < N, 0 < || SN%,WG obtain that when z € Qu, | —iz| = y/22 + y? < 2N. Let

(—iz)w

(2N)w
2n <

271

w=—— r:|w|:‘—
From above we get

|exp[—(27"(~i2)%)]| — Re{exp[~(27"(~i2) )]}

1 1 1 2
(=i —iz)m |2 e (2N)w 3
- |_‘_@ L2 (2N) <2

PR EC 1.
on 2 2%

From —§ < —b<y—b< N—-b< Nand|z—ib| = /(y—b)2+2%2 < V/N2+ N2 <2N, we

obtain

(2N)*
22n

[ Lol Dl Relew (7 ),
|z — 1b]
3 2N)% [ daedy _ 3(2N)% /2N /2” rdrdd _ 3m(2N)+ N
2 22n |Z _ 1b| 22n+1 22n—1 :
Qn
From above we get
[[ Lo C G Relep D g,  SEVEN

Hence from (2.3)—(2.4), we obtain

2 3m(2N)= N
Olpn] < k(603n + 22n—1 )’

which approaches 0 when n — co. The proof of Theorem 1.3 is complete.
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