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On the Minimal Solutions of Variational Inequalities in
Orlicz-Sobolev Spaces
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Abstract In this paper, the author studies the existence of the minimal nonnegative
solutions of some elliptic variational inequalities in Orlicz-Sobolev spaces on bounded or
unbounded domains. She gets some comparison results between different solutions as tools
to pass to the limit in the problems and to show the existence of the minimal solutions
of the variational inequalities on bounded domains or unbounded domains. In both cases,
coercive and noncoercive operators are handled. The sufficient and necessary conditions for
the existence of the minimal nonnegative solution of the noncoercive variational inequality
on bounded domains are established.
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1 Introduction

In [10-12, 23], the sub-supersolution method was used to prove the existence of solutions
and extremal solutions, confined between their subsolutions and supersolutions, for elliptic
variational inequalities and nonlinear elliptic equations in Sobolev spaces or Orlicz-Sobolev
spaces defined on bounded domains. There are many existence results for elliptic equations in
Orlicz-Sobolev spaces on bounded domains such as [2—4, 7-9, 13-14, 16-19]. Landes [22] proved
the existence of a weak solution of a quasilinear elliptic equation without any lower order term
on an unbounded domain. In [6], a different method was used to establish the existence of the
minimal solution to some elliptic variational inequalities in Sobolev spaces defined on bounded
or unbounded domains. When trying to weaken the restriction on the operators in [6], one is
led to replace Sobolev spaces by Orlicz-Sobolev spaces. In this paper, we will take into account
the minimal solutions of elliptic variational inequalities on bounded and unbounded domains
by using a method in [6] different from the above.

In the present work, we will show the existence of the minimal nonnegative solutions for some
variational inequalities with coercive operators or noncoercive operators on bounded domains or
unbounded domains. Some comparison principles are investigated for the minimal solutions of
variational inequalities on bounded domains or unbounded domains. In particular noncoercive
one, the sufficient and necessary conditions for the existence of the minimal nonnegative solution
are established on bounded domains. We will use the idea introduced in [6].
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The paper is organized as follows. Section 2 contains some preliminaries which will be
needed in the next two sections. In Section 3, we start with the coercive case and prove the
existence theorems of nonnegative solutions for some elliptic variational inequalities on bounded
domain. Some comparison results between different solutions are established as tools to pass to
the limit in the problems and we show the existence of the minimal solutions for the variational
inequalities with coercive operators or noncoercive operators defined on bounded domains. The
sufficient and necessary conditions for the existence of the minimal nonnegative solution for
the noncoercive one are established. Section 4 is devoted to showing the existence of the
minimal solutions for variational inequalities on unbounded domains. In both cases, coercive
and noncoercive operators are handled.

2 Preliminaries

For quick reference, we recall some basic results of Orlicz spaces. Good references are
[1, 7, 18, 21, 25].

2.1 N-function

Let M : RT — R* be an N-function, i.e., M is continuous, convex, with M (u) > 0 for
u > 0, @ — O as u — 0, and Miu) — 400 as u — +oo. Equivalently, M admits the
representation M (u fo p(t)dt, where ¢ : RT — RT is a nondecreasing, right continuous
function, with ¢(0 ) =0, ¢(t) >0 for t >0, and p(t) — +0oo as t — +o00.

Clearly, M (u) < up(u) < M(2u) for all u > 0.

The N-function M conjugated to M is defined by M(v) = [ ¢(s)ds, where ¢ : Rt — R
is given by ¢(s) = sup{t: p(t) < s}.

@, ¢ are called the right-hand derivatives of M, M, respectively.

The N-function M is said to satisfy the Ag condition near infinity (M € Aj for short), if
for some k > 1 and up > 0, M(2u) < kM (u), Vu > ugp. It is readily seen that this will be the
case if and only if for every [ > 1 there exists a positive constant k = k(I) and u > 0, such that

M(lu) < kM(uw), VYu>u. (2.1)

Moreover, one has the following Young inequality: uv < M (u) + M (v), Vu,v > 0, and the
equality holds if and only if v = p(u) or u = ¢(v).

We will extend these N-functions into even functions on all R.

Let P,Q be two N-functions. We say that P grows essentially less rapidly than @) near

infinity, denoted as P < @, if for every ¢ > 0, CI;((;)) — 0 as t — +oo. This is the case if and
Q') _

only 1f hm P T —

For a measurable function u on €, its modular is defined by pas(u) = [, M dex.
The Sobolev conjugate N-function M, of M is defined by

t -1
M
‘1<t>=/ %dr, t>0.
0 TN
2.2 Orlicz spaces

Let © be an open and bounded subset of RY and M be an N-function. The Orlicz class
K (92) (respectively, the Orlicz space Ly (€2)) is defined as the set of (equivalence classes of)
real valued measurable functions w on 2 such that

oy (u) < 400 (respectlvely, pM( ) < +o0 for some A > O)

A



The Minimal Solutions of Variational Inequalities 335

L (€) is a Banach space under the (Luxemburg) norm
. U

and K/() is a convex subset of Ly (€2) but not necessarily a linear space.

The closure in Ly (€2) of the set of bounded measurable functions with compact support in
Q is denoted by Fjs(Q).

The equality En;(2) = Ly (£2) holds if and only if M € Ay, moreover, Ly () is separable.

L(9) is reflexive if and only if M € Ay and M € As.

Convergences in norm and in modular are equivalent if and only if M € A,.

The dual space of E;(£2) can be identified with L37(€2) by means of the pairing [, u(x)v(z)dz,
and the dual norm of L77(Q2) is equivalent to || - [[ 77).

2.3 Orlicz-Sobolev spaces

We now turn to the Orlicz-Sobolev space: WL (€2) (respectively, W1Ey;(£2)) is the space
of all functions u such that u and its distributional partial derivatives lie in L (§2) (respectively,
E)N(9)). Tt is a Banach space under the norm

lulloar =Y 1D%ull(ar).

l<1

Denote || Dul|(ary = ||| Dull|(ar) and [|u]
alent to ||ullq, -

Thus WLy () and WEp () can be identified with subspaces of the product of N + 1
copies of Ly7(£2). Denoting this product by ITL s, we will use the weak topologies o (1L, ITEy;)
and o(IIL pz, ITLyy).

If M € Ag, then WlLM(Q) = WlEM(Q) If M € Ay and M € Ag, then WlLM(Q) =
WEN () are reflexive and the weak topologies o (I1L s, [1E57) and o(IIL s, I1L7) are equiv-
alent.

The space Wi Ey(Q) is defined as the (norm) closure of the Schwartz space 2(Q) in
WIEpN () and the space WLy () as the o(IILys, IIE),) closure of 2(2) in WLy (Q). If
M € Ay, then Wi Ly (Q) = WEEN(Q) and Wi Ly () is separable. If M € Ay and M € As,
then Wi Ly () is reflexive.

10 = [[ullan + | Dullar. Clearly, |lufl1,ar.0 is equiv-

3 Variational Inequalities in Bounded Domains

This section is devoted to studying the existence of nonnegative solutions and their minimal
solutions for some quasilinear variational inequalities in bounded domains. We investigate
variational inequalities with coercive operators in Subsection 3.1 and with noncoercive operators
in Subsection 3.2, respectively.

3.1 Variational inequalities with coercive operator

Let 2 be a bounded domain in RY(N > 1) with Lipschitz boundary, M be an N-function
and M be the complementary function of M, and ¢, ¢ are the right-hand derivatives of M, M,
respectively. Assume that M, M € A,.

In what follows we denote by LY(£2) the set of all (equivalence classes of) Lebesgue mea-
surable functions from Q to R. For w,v € L%(Q), U,V C L°%), we use the standard no-
tation: v < v < wu(r) < v(z) for ae. x € Q, uAv = min{u,v},u Vv = max{u,v},
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UNV ={unv:iueUweV}),UVV ={uVv:ueUweV}ut:=uVv0,u” :=—-uA0. We
consider the usual ordering relation (WL (), <).

We denote by K a closed convex subset of Wi Ly () containing 0 such that the lattice
condition

KvKcCcK, KAKcCK

is satisfied. This type of lattice convex sets usually occurs in applications. For example,
K = W3Ly(Q) for equations, and K = {u € WiLy(Q) : u(z) > ¢(z) for ae. z € Q} for
obstacle problems, where 1) : 2 — R is an obstacle function (see [8-9, 13, 19]).

Let a(z,§) = (ai(z,£))i<i<n and ap(z, &) be a family of Carathéodory’s functions defined
on 2 x RN*1 guch that

(z,€) — a;(z,€) is measurable on Q@ x RV 4 =10,1,---, N, (3.1)
€ — ai(z,€) is continuous on RV 4 =0,1,---, N,
N N
D ai(w, )& =y M(l&]), (3.3)
i=0 i=0
N
> lai(@,€) — ai(x,€))(& — &) >0, (3.4)
i=0
N
lai(z,8)] < @)+ B M (M(&]), i=0,1,--- N (3.5)
i=0
for a.e. 2 € Q and for all £ = (&)o<i<n, § = (§)o<i<n € RN+, where o, 8 > 0 and

Let f € Ly7(€2). We consider the following variational inequality:

u €K,
(3.6)

(Au,v —u) > / flo—w)dx, VveK,
Q
where A is a nonlinear operator defined from W L/ (Q2) into its dual by
Au(z) == —diva(z,u, Vu) + ag(z, u, Vu).
From (3.5), the operator A is well defined. For simplicity we set the dual pairing (-,-) =
(-, ->(W01LM(Q))*,W01LM(Q). The above duality is equivalent to

(Au,v) = / a(x,u, Vu)Vodx +/ ao(x,u, Vu)vdz for all v € Wy Ly (). (3.7)
Q Q

Let £ > 0 be a real number and §2; be the cylinder (—¢,¢) x Q. The points in RV*1 are
denoted by (y,z) with x = (21, ,zy) € R and the gradient operator defined over RV *1 is
also denoted by V' = (9, V) with V = (04, 04y, -+ , 0y ). We set

Ko :={veWyLy ()| v(y,") €K ae. in (—£,£)}.

This is a closed convex subset of W Ly ().
Let ¢ : [0,4+00) — [0,+00) be an increasing function. By [20, Lemma 8.2], ¢(|§|)‘—§‘ is
monotone on R” (n > 1). However, we will show the strict monotonicity of 1/)(|§|)‘—§‘ on R™ and

give another method to proof the monotonicity of 1(|¢ |)%
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Lemma 3.1 If1) : [0,+00) — [0, 4+00) is increasing, then w(|§|)|§—| is monotone on R™ (n >
1). Moreover, if 1 is strictly increasing, then ¢(|§|)‘—§‘ is strictly monotone.

Proof Let & n be two nonzero vectors in R™, with angle 6 € [0, 7] between them at the
origin. Then

[“e - ) e -
= ll) — wabidel - b + [+ L0 g — g, (3.5
The first term of the right-hand side of (3.8) is nonnegative since 4 is increasing. Since
€ = lellnl coso, (3.9
the second term of the right-hand side of (3.8) is nonnegative. Consequently,
[% - %n}(&—n) > 0.
Moreover, suppose that there exist &1,6 € RY with &1 # & such that 25t ¢, = 2&le,
It follows from (3.8)(3.9) that
wl&]) — lelal - 16 =0 (3.10)

and cosf; = 1, where 6, € [0,n] is the angle between & and & at the origin. This yields
that 07 = 0. Therefore, there exists A > 0 with A # 1 such that & = A. It implies that
|&1] # |€2]. Immediately, ¥(|€1]) # ¥(|€2]) since v is strictly increasing. It contradicts (3.10).
This completes the proof of the lemma.

We recall the following notation which will be used later. It can be referred to [24, p. 25] or
[5, Definition 1].

Definition 3.1 (see [24]) Let X be a reflexive Banach space. The operator T : X — X*
is called pseudomonotone if

(i) T is bounded; and

(ii) for any sequence {u,} C X such that u, — uo weakly in X and lmsup(T (uy,), un, —ug) <

n— 00

0, the inequality
liminf (T (uy,), wp — v) > (T'(up),u —v), VveX

n—oo

holds.

Theorem 3.1 Assume that f € L3;(2) is nonnegative and the assumptions (3.1)~(3.5) are
satisfied. Then for every £ > 0, the following variational inequality

Uy € ]ny
¢ (3.11)
/ M&,w&,(v — ug)dzdy + / (Aug,v — ug)dy > f(v—wup)dady, VYoveK,
Qy |ayuz| —¢ Qp
has at least one solution uy with we > 0. Moreover, if ¢ is strictly increasing, or a and ag are
strictly monotone, i.e., for a.e. x € Q and all £ = (&)o<i<n, & = ()o<i<n € RVNTL

N

D lai@, &) — ai(@, (& — &) >0, with & ¢, (3.12)

i=0

then there exists a unique solution uy of (3.11) and ug > 0.
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Proof For ¢ > 0, we define the operator .7, : Wi L (Q0) — (W3 Lar(Q0))* by

¢
(Tou,v) 2/ Mayuayvdxdy—l—/ (Au,v)dy, Yu,v € Wy L ().
o, |0yul ¢

Denote z = (y,z). Thanks to (2.1), (3.5) and the Young inequality, we can deduce that there
exist positive constants C(5, N, K) and C(N, ¢, u) such that

[(Zeu,v)| < C(B, N, K)/ [M(|u(2)]) + M (|V"u(2)])

Qp
+ M(|v(2)]) + M(|V'v(2)])]dz + C(N, ¢, ) (3.13)

for all u,v € W¢ Ly (). Therefore, 7 is well defined. From (3.13), it is easy to see that .7 is
bounded. In view of (3.4) and Lemma 3.1, we can show that .7 is monotone. In a similar way
as [10, Lemma 8], we can check that .7} is continuous. Thanks to [26, Propositon 27.6(a)], 7,
is pseudomonotone. For ug € Ky, in a way similar to the proof of [10, Theorem 11], we have

N
(i) = fou—w) = Cr [ [M(D,u)+ > M(10s,uD]dody - s (3.14)
2 i=0
for some positive constants C; and Cy. For u € W Lps(€), define

. . Byl | = 4, (100,
[lu]| = 1nf{)\ >0: /Q/Z [M(T) + ;M(T)}dxdy < 1}.

< (N + 2)||lul|. In view of (3.14), for any € > 0, we have

<c%<u>—fvu—uo>zcl<||u||—e>/ [ (7L )+iM( e
e i=0

Jull =& lull —e

Then i [lull < [lull,ar0,

)]dxdy — G

> Ci(fJull =€) = Ca.

Therefore, (Zy(u) — f,u—ug) > 0 when ||ul|1,am,q, is sufficiently large. From the above results,
we can deduce that the conditions (i)—(iv) in [19] hold. According to [19, Proposition 1], the
variational inequality (3.11) has at least one solution wuy.

Now, we prove that u, is nonnegative. Taking v = u; € K¢ in (3.11) we have

14
/ @(|19yuy [)|0yuy |dady +/_ (A(=uy), (—uy ))dy < — [ fuydady <O0.

Qp £ Qp

In view of (3.4), we have

Y N
[ o asdy+ [ [ o> a0, oty <o
Q —£JQ o

Consequently, uy > 0.
Suppose that there exists another solution ) of (3.11) with u; # uj. When we take v = ),
in (3.11) and v = uy in (3.11) written for «} and add the two inequalities, it comes

/ £
/ [M&,w - M&,u} Oy (ug — uy)dzdy +/ (Aup — Aup, up — uy)dy < 0.
o b Oyue] |Oyug| 7 0
If ¢ is strictly increasing or a and ag are strictly monotone, we can deduce, by Lemma 3.1 and
(3.4), or by (3.12), ug = uj. It is a contradiction.
Similar to the proof of Theorem 3.1, it is easy to show the following theorem.
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Theorem 3.2 Assume that f € Ly3;(Q) is nonnegative and the assumptions (3.1)~(3.5) are
satisfied. Then (3.6) has at least one solution u with uw > 0. Moreover, if a and ay satisfy
(3.12), then there exists a unique solution of (3.6) and u > 0.

Does there exist the minimal nonnegative solution of problem (3.6) when it has more than
one solution? The following theorem will give the answer.

Theorem 3.3 Assume that f € Ly;(Q2) is nonnegative, ¢ is strictly increasing and the
assumptions (3.1)—(3.5) are satisfied. Then the pointwise limit of {ug}e is the minimal nonneg-
ative solution of (3.6), where uy is the solution of (3.11), for any £ > 0.

Moreover, if uy and ug are the minimal nonnegative solutions of (3.6) obtained by replacing
f with f1 and fo respectively, then fi < fo implies u; < ug.

Proof Step 1 The sequence {u,} is nondecreasing and bounded above by any nonnegative
solution of (3.6).

Let 0 < ¢ < {'. Extending uy by 0 on Q4 and since ugp is nonnegative, when we take
v=1up— (ug—up)T € Kyin (3.11) and v = up + (ug — up )™ € Ky in (3.11) written for uy and
Qp and add the two inequalities, it comes

90(|6yu€|) 90(|6yu€’|) +
- 0, — - 0 K — )T dad
|, [ v = Zigtboyue oytus = e dacy

4
+ / <AUg — A’lu/, (U,g — w/)+>dy
—0

Oyun
<— [ Ay ey - [ Aup)—udy = [ fupdady
o |Oyug| (—0 N (=2,0) Q\Q

<0.

Thanks to the condition (3.4) we deduce

©(|0yue|) p(|0yue)
———0yu —‘7811/]8 up — up ) Tdady < 0.
;2w g et — ey <
Using Lemma 3.1, we have us(y,z) < up(y,z) for ae. (y,z) € Q, which shows that the
sequence {uy}y is nondecreasing.
Let £ > 0 and u be a nonnegative solution of (3.6). Taking v = u+ (us(y,-) —u)T € K as a
test function in (3.6), for a.e. y € (—¢,¢), and integrating in y we derive

¢
[t = )y = [ e w*dady. (315)
—¢ o)
Taking v = ug — (ug — u)™ € K¢ as a test function in (3.11) we can deduce that
¢
- / Mﬁyway(ug —u)Tdady — / (Aug, (ug —u)™)dy

Q |8yw| —¢

> — flug —u)tdady. (3.16)

Adding the two inequalities (3.15) and (3.16) and using the fact that u is independent of y and
the monotone condition (3.4) we obtain that

SD(|BUW|) S"(|6y“|) +
: 15, — : o,u|0, — dady < 0.
/Qe [ |0y we yue |0y ul yu} y(ue — )" ddy <
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By Lemma 3.1,
ue(y, ) <wu(z) forae. x ey (3.17)

Immediately, {u¢}¢ is bounded above by any nonnegative solution of (3.6).
Step 2 The pointwise limit of {u,}, is independent of y.
It follows from Step 1 that u, has a pointwise limit we denote by @ such that

up — U a.e. in Q. (3.18)

Let h > 0. Denote Tpue(y, ) = we(y+h, z). Then the functions True(y, x) and (Thue(y, ) —
upn(y,z))t are supported in the closure of QF := (=1 — h,l — h) x Q. Thanks to (3.11), we
have

) {—h
/ Mﬁy'ﬁue@y(v — Trhue)dady + / (AThue,v — Trhue)dy
Qb |0y Thue —l—h
> fv—Thue)dzdy, Vv e Kpp, (3.19)

h
Ql

where Ky p := {Thv | v € Ko} = {v € WS Ly () | v(y,-) € K a.e. in (=€ —h,£—h)}. Choosing
v = Thuy — (77{1” — Ug+h)+ S IC@JL in (3.19) and v = wpyp + (7711145 — U,g+h)+ € Kyqp in (3.11)
written for ugy, and adding the two inequalities, we have

P19, Tuuel) _ #l0yuernl) )t
/Qh{ |0y Tl Oy |0yt ynl 8yw+h}8y(%w ue+n) " dzdy

t—h
+ / (AThue — Augpn, (Thue — uesn) T )dy < 0.
—t—h

Using (3.4) we can obtain that

©(|10y Thuel) o(|0yuesnl) N
10, Thue| T T - <0.
/Qh [ |0y Th e OuThue |Oytign| Oytiern | Oy(Thue — uesn) " dody <0

By Lemma 3.1,
ue(y + h,x) < upgp(y,z) for ae. (y,x) € Q. (3.20)
Letting ¢ — +o00 in (3.20), we have
u(y + h,z) <u(y,z) forae. (y,x)€ Q. (3.21)

Similarly, we can show that (3.21) holds whenever h < 0 for a.e. (y,x) € €. Since h is
arbitrary, u(y, z) = u(x) for a.e. (y,x) € Qy, that is, @ is independent of y.
Step 3 For all ¢y > 0, there exists a constant C'(¢y) independent of £ such that

[uellr,ar.0., < C(lo). (3.22)

Let now ¢y > 0. Clearly, it is need to consider the case ¢ > fy. Let o € P(—2{y,24p)
such that 0 < o < 1,0 = 1 on (—¥{p,fy). Let u be a nonnegative solution of (3.6). Taking
v=u; — 0*(ug — u) € K¢ as a test function in (3.11), we derive that

L

1)
/ Mﬁyw@y[g%w —u)|dady + / (Aug, QZ(W —u))dy
Q |8yug| —0
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< fo*(ug — u)dxdy < 0.
Qe

By the fact o =1 on (—¥p,¢p) and u is independent of y, it yields that

Lo N
/ M(|8yug|)dxdy+a/ / ZM(|8Mw|)dxdy
o —lo S8 i—g
¢

< [ Petoyul)louldsdy + [ oAusuiy
Qp

14
S/ Maywzg)ayg(u—w)dxdy+/ 0 (Aug, u)dy.

—£

By (2.1), (3.3), (3.5) and the Young inequality, we can obtain that

Lo N
/ M(|8yug|)dxdy+a/ / ZM(|8Mu4|)dxdy
e —lo & —y

N
1
< cs/m {M(|8yw|)+§M(|8xiw|)}dxdy+0 8 (L )y

Qaey

e {M(§|u|) + M((ul) + FI(9()]) + M (@)] dady,

Qaey

where € € (0,1) and the constant C' > 0 is independent of ¢. Since M € A,, there exists a
constant K. > 0 and some ¢, > 0 such that M (1t) < K.M(t) for all ¢ > .. In view of (3.17),
we get

Lo N
[ aroudsdy +a [ [ 5700, wl)dsdy
e —lo SOy

N
<Ce /Q [M(9,uel) + ;Mqamum] dzdy
+C(e) / M (Juf) + FT(9(@)]) + M(@) + M(t.))dxdy,

where € € (0,1) and the positive constants C' and C(g) are independent of ¢. Choosing e small
enough, we get

/ [M () + MV ugl)dady < C(ko)
ng
for some positive constant C'({y) independent of £. For u € WLy (Qy,), define
plu) = /Q M (Jugl) + M(|V"ug])dady
)

and

[ inf{/\ <0: p(§) < 1}.
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Then ||ul|pq,, is a norm of W' Ly (€,) equivalent to |lull1,a.0,, (see [15]). It implies (3.22).
Step 4 w is a solution of (3.6).
Let £y > 0. In view of (3.22), {us}¢ is bounded in W Ly (€y,) for all £ > 0. Consequently,
{Mayw}e and {a;(x,u¢, Vug)}e (1 =0,1,--- ,N) are bounded in L37(€2,). Hence, there

[0y uel

exist d and d; in L37(€,) such that

ug —  strongly in Ly (Qg,), (3.23)
N N
Vue — Vi weakly in (L (Q,))Y for 0( T 2as(920)., T B )), (3.24)
i=1 i=1
0,
%@,W — d weakly in Ly(Q,) for o(Lr(Qu,), Ear(Q,)), (3.25)
y e
a;(x,ug, Vug) = d; weakly in Ly () for o(Lgp(Qe,), Err (), (3.26)
as { — +00,1=0,1,---, N. The two first convergences hold for the whole sequence since {ug},

is nondecreasing, which guarantees the uniqueness of the limit and the last two convergences

hold up to a subsequence.
Let w be a nonnegative function in 2(—4y, £p). By (3.4), (3.23) and (3.26), it follows that

Lo Lo Lo
liminf/ w{Aug, up)dy > liminf/ w(Aug,ﬂ>dy+1iminf/ w({Au, up — u)dy

{—+oo —4 {—+oo —2 {——+oo —¢

N
= / WY d;0,,idzdy, (3.27)
Q

o =0

where 0,,u = u.
On the other hand, taking v = uy —

_w
[wloo

(ug — ) € K¢ as a test function in (3.11), one has

P10y uel) - o - -
/ = Oy ueOy[w(ue — u)]dzdy + / w(Aug,up —u)dy < / wf(up —w)dzdy <0
Qg |0y —t Qe
and thus
Lo
/ wM (|0yue|)dady + / w{Aug, ue)dy
Qg —Lo

9 .
Q

. 19,u] L

since u is independent of y. Consequently,

Lo N
lim sup [/ wM(|8yw|)dxdy+/ w(Aug,u@dy} S/ deiﬁw,ﬂdxdy. (3.28)
t—=+o00 LJQ —to Q ‘

€0 Lo =0
Combining (3.27) and (3.28), we have
‘0 N
lim w{Aug, ug)dy z/ w d;0, udzdy (3.29)
{——+o0 —t Q, ; i
and
lim wM (|0yue|)dzdy = 0. (3.30)

{—+o00 QEO
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Lo

Let w € K and w # 0 be a nonnegative function in @( -3,

K¢ as a test function in (3.11), we have
P Lo
/ Mﬁyw@y[w(w — uyg)]dady + /
Qy |8U'U/[|

w({Aug, w —up)dy > /
_%0 Q

L), Taking v = uﬁ—ﬁ(w—w) €

o
2

Thanks to (3.4), one has

P Lo
/ Mayugay [w(w — up)|dzdy + /
Qﬂl |6yu€|

, w{Aw, w — ug)dy > / wf(w — up)dady.
_to Q

4

wf(w — ug)dazdy.

Lo
2

Lo
2
From (3.30), it is clear that 0,us — 0 strongly in Las (¢, ). This can imply that ¢(|0,ue|) — 0
2
strongly in Lp7(£2¢, ). Passing to the limit in the above inequality as £ — 400 yields
2

mlg

L
/ w{Aw,w — u)dy > /

wf(w — u)dady.
Qg
2
This implies

(Aw,w —T) > / fw—T)dz, Ywek,
Q
get

Choosing w = @ + t(v — u), where 0 < t < 1 and v € K, and passing to the limit as t — 0 we

(Au,v —u) > / flo—u)de, Vvek,
Q
that is, @ is a solution of (3.6)

Step 5 w is the minimal nonnegative solution of (3.6).
Let u be an arbitrary solution of the problem (3.6). Letting ¢ — +o0 in (3.17), we deduce

u < w. This means that @ is the minimal solution of the problem (3.6).
Step 6 u1 < us.

Let ug 1 and ug 2 be the solutions of (3.11) obtained if we replace f by fi and fa, respectively.
Then wug,; and wug o converge to uy and ug, respectively, as £ — +oo. Taking v = ug1 — (ug1 —
we2)t and v =wug 1 + (ug1 —ueo)™ in (3.11) for f1 and fa, respectively, we get

eloueil) y \,  — £UO2)) )t
/m( Byueal T (0l Oyre2) By (e, — ue2)* dady
L
g
£

(Augy — Auga, (g —ug2)")dy < / (fr = f2)(ues — ue2)"dady < 0.
Qe
Using the condition (3.4) one has

[ (£, s,
Qe

) - Tdady < 0.
ERR 01 EXo yue,z) (e 1 — up )T dady <

This implies ug 1 < ug 2 a.e. in . Letting £ — +oo0, it follows that u; < us.
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3.2 Noncoercive variational inequalities

We keep the notation and the assumptions of Subsection 3.1. Then we consider the following
problem

u €K,
(3.31)
(Au,v — u) > / F(z,u)(v—u)dz, YveK,
Q
where F': 2 x R — R is a nonnegative function satisfying
F(-,t) :  — R is measurable for all ¢ € R, (3.32)
F(z,-) : R — R is continuous and nondecreasing for a.e. x € €, (3.33)
F(z,u) € Lyp(2) for all u € Ly, (). (3.34)

Clearly, (3.31) is the extension of (3.6).

Remark 3.1 If F':  x R — R is a nonnegative Carathéodory function such that for a.e.
z e Qandall t € R, |F(z,t)| < q(z), where g(z) € Ly7(2), then F satisfies the conditions
(3.32)~(3.34).

Lemma 3.2 Let F' be a nonnegative function satisfying the hypotheses (3.32)—(3.34), ¢ be
strictly increasing, and suppose that the assumptions (3.1)—~(3.5) are fulfilled. Define that wu,, is
the minimal nonnegative solution of the variational inequality in the last line of the following
problem:

ug = O,
u, € K,
(3.35)

(Atp, v — up) > / F(z,up—1)(v —up)dz, VoveKk,
Q

Vn > 1. Then the sequence {u,}nen is well defined and nondecreasing.

Proof The existence of u, is insured by Theorem 3.3 since F'(z,u,—1) € L3;(Q2). In a way
similar to the proof in [6], the sequence of functions {uy, }nen is nonnegative and nondecreasing,.
This completes the proof of Lemma 3.2.

Denote by us the pointwise nonnegative limit of {u,}, which is not necessarily in L (2)
and may equal co. We also denote Fi, := lim F'(-,u,), which may also be infinite on some
n—00
subset. Assume that

Foo € Lyp(9). (3.36)

Note that the above assumption is satisfied. For example, sup F'(-,t) € L37(£2). Then we have
>0
the following result.

Theorem 3.4 Let F be a nonnegative function satisfying the hypotheses (3.32)—(3.34), ¢
be strictly increasing, and suppose that the assumptions (3.1)—(3.5) are fulfilled. Then we have
the equivalence between the following assertions:

(1) (3.31) has at least one nonnegative solution,
(2) (3.31) has a minimal nonnegative solution,
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(3) the hypothesis (3.36) holds.
Moreover if the hypothesis (3.36) holds, then uoo, the limit of wy, belongs to K and is the
minimal solution of (3.31).

Proof Clearly, (2) = (1). Suppose that (3.31) has a nonnegative solution w € K. According
to Theorem 3.3, there exits a minimal nonnegative solution w € K of the following problem:

u € IC,

(3.37)
(Au,v —u) > /QF(x,w)(v —u)dz, VwveK.

It is clearly that w is also a solution of (3.37). Then w > w. Since w is nonnegative and F
is nondecreasing in the second variable, F(z,w) > F(z,0) for a.e. & € . By Theorem 3.3,
we have w > w1, where u; is the minimal nonnegative solution of the variational inequality in
the last line of (3.35) for n = 1. Consequently, F'(x,w) > F(z,w) > F(x,uy) for a.e. x € Q.
This implies that w > wus by Theorem 3.3, where ug is the minimal nonnegative solution of the
variational inequality in the last line of (3.35) for n = 2. By induction, we can obtain that

w>w> U, VneN, (3.38)
and
F(z,w) > F(z,w) > F(x,u,) forae z€Q, VneN,

which yields (3.36). Hence, (1) = (3).
Let the hypothesis (3.36) hold. By Theorem 3.3, there exists the minimal solution u_, of
the following problem:

u € IC,
(Au,v — u) > /QFOO(’U —u)dz, VwveKkK.
Since F(+,up—1) < Fs, Vn > 1, and thanks to Theorem 3.3, we deduce that
Up <uy, VneN. (3.39)
It follows that there exists uo, such that
Uy —> Uso  a.€. in €, (3.40)

as n — 00. Therefore, us <u g, and Foo = F(-,us) a.e. in Q. Consequently, uo € Ly7(2).
Taking v = u,, as a test function in (3.35), using (3.3), (3.5), (3.33), (3.36), (3.39), Young
inequality, and the fact M € Ay, we obtain that

N
a/ S M(|0, un)dz < / Fa, 1)t — u)da + (Aun, u.)
Qg )
< / Foo(tn — uo)de + (Aun, u)
Q

N
< Ca/ S M(0,,unl)dz + C(e)
=0
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for some positive constants C' and C(e) independent of n, where e € (0,1) and 9y up = Up.
Choosing ¢ small enough, we have

/Q M (Jun) + M([Vun)ldz < C

for some constant C' > 0 independent of n. This yields that ||u,|l1,a,0 < C for some positive
constant C' independent of n. Combining the above results, it follows, as n — oo, that

Up — U strongly in Lps(Q), (3.41)
Uy — Uoo Weakly in Wy L () for o(I1L s, ES7). (3.42)

Since K is a closed convex subset of WLy (£2), it is also weakly closed, which yields that
Uso € K.
From (3.4) and (3.35), it follows that

(Aw, w — uy,) — / F(z,up—1)(w —up)de > (Aw — Aup,w —uy) >0, YwekK. (343)
Q

Since M € A,, from (3.40), (3.33) and (3.36), it is easy to see that F(x,u,) is strongly
convergent to F(z,ux) in Ly(Q) as n — co. Then passing to the limit as n — oo in (3.43),
we have that

(Aw,w — uso) > / F(z,u00)(w — too)dz, Yw € K.
Q
Taking w = teo + (v — us) With 0 < ¢ < 1 and v € K, and letting ¢ — 0, one has

(AUoo, U — Uno) > / F(z,u0)(v — us)dz, Vv eK,
Q
that is, u is a solution of (3.31). Therefore, (3) = (1).

Suppose that the hypothesis (3.36) holds. Let w € K be a nonnegative solution of (3.31).
By the above arguments, letting ¢ — +o0 in (3.38), we get w > uso. Since w is an arbitrary
solution of (3.31), we have that u is the minimal solution of (3.31). Hence (3) = (2) and the
proof is achieved.

4 Variational Inequalities in Unbounded Domains

This section is devoted to studying the existence of nonnegative solutions and their minimal
solutions for some quasilinear variational inequalities in unbounded domains. We investigate
variational inequalities with coercive operators in Subsection 4.1 and with noncoercive operators
in Subsection 4.2, respectively.

4.1 Variational inequalities with coercive operator

Let G be a bounded domain in RN ~! (N > 2) with Lipschitz boundary, and K¢ be a closed
convex subset of Wi Ly (G) containing 0 such that the lattice condition

KaANKag CKg, KgVKagcCKa

is satisfied. Let M be an N-function, M be the complementary function of M, and ¢, ¢ are
the right-hand derivatives of M, M, respectively. Assume that M, M € As.
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For x € R x G, denote x = (z1, X2) with X2 = (22, -+ ,2n), and
WL Ly(RxG)={u|uecW'Ly((—a,a) x G), Va > 0}.
We set

K 1= WigeLu (R; K)
={veWL.LyR xG)|v=0o0nR x JG and v(x,-) € K¢ for a.e. z; € R}.

Then K is a closed convex subset of W;L Lys(R x G). We also denote
LR x G) ={f| f € Lyz((—a,a) x G), Ya >0}
and
L%C(R,LM(G)) ={f¢€ L%C(R x G) | f(z1,-) € Li7(G) for a.e. x1 in R}.

For a nonnegative f in L%C(R,LM(G)), we consider the following nonlinear variational
inequality defined on the infinite cylinder R x G,

u €K,
/ a(z,u, Vu) - V(o(v — u))dz + / ao(x,u, Vu)o(v — u)dz (4.1)
RxG RxG
> fo(v—u)dx
RxG

for all v € K, and all ¢ € 2(R) with ¢ > 0.
Note that if 9,,a1(x,u, Vu) € L%C(R, L7(G)), the above variational inequality can be
written as

/ > ai(w,u, Vu)dy, (v —u)(x1, -)dXs
G o<i<N

+ / [ao (2, u, Vu) — Oy a1 (z,u, Vu)] (v — u)(xq1, - )d X
G
2/ fv—u)(z1,)dXs, VYveK ae z; inR.
G

Since the domain is unbounded and f is not necessarily in the dual of Wi Ly (R x G),
the existence of nonnegative solutions to problem (4.1) is not an ordinary issue. Once this is
ensured, we can then look for the minimal nonnegative solution. Here, we will use the same
approach as in Subsection 3.1 to prove these existence results. To this end, in addition to the
hypotheses (3.1)—(3.5), assume that

ai(x17X2550707€27 e 7§N) = a”i(X23€0507§27 e 7§N)
= 04(X2,§0,§2,"',§N), Vé-JGR, j:0727"'7N7 (42)

1 = 0,1,---,N. That is to say if & = 0 then the coefficients a; for « = 0,1,--- ;N are
independent of z;. We also assume that there exists h € Ly;(G) such that

f($1,X2) < h(XQ) for a.e. (ZZ?l,XQ) cRxG. (43)
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For £ > 0, let Oy = (—¢,£)*xG. For simplicity we denote (-, )¢ = (-, Y (W Lt (@) Wi Lt (@)
and (-,")r,q = fz(-, Yadzy. We set

Ke:={veWiLy(Qua) | vy, z1,-) € Kg forae. (y,21) € (=€, 0)%}.

Then K, is a closed convex subset of WeLar(Qu.)-
Let £ > 0. Consider the following variational inequalities:

u e ICC:,
(4.4)
(Agu,v —u)g > / h(v —u)dX,, VveKg,
G
and
Up € /Ee,
o ¢
/ Mayugay(v — up)dady + / (Aug, v — ug)r.ady (4.5)
Q@,G |6yué| —L
> flv—up)dady, Yove Ky,
Qc
where Agu = — > 0:,a0(Xo,u, Vx,u) + ao(Xa,u, Vx,u) with Vx, = (0p,, - ,0x,) and
2<i<N

A is the nonlinear operator given by (3.7). Under the above assumptions, the problems (4.4)
has the minimal nonnegative solution by Theorem 3.3 and (4.5) has a unique solution u; € K,
with ug > 0 for every £ > 0 by Theorem 3.1, when ¢ is strictly increasing. Then, we have the
following theorem.

Theorem 4.1 Suppose that the assumptions (3.1)~(3.5) and (4.2)—(4.3) are satisfied, where
Q is replaced by R x G in (3.1)—~(3.5). Assume that ¢ is strictly increasing. Then the pointwise
limit of {u¢}e is the minimal nonnegative solution of (4.1), where uy is the solution of (4.5),
for every £ > 0.

Moreover, the following assertions hold:

(i) Let uy and uz be the minimum nonnegative solutions of (4.1) obtained by replacing f
with f1 and fo, respectively. If f1 < fa, then uy < us.

(i) Let uy be the minimum nonnegative solution of (4.1) obtained by replacing f with fi,
and Uy be a nonnegative solution of (4.1) obtained by replacing f with fo, where fo does not
necessarily satisfy (4.3). If f1 < fa, then Uy < Us.

Proof Step 1 The sequence {uy}y is nondecreasing and bounded by any solution u of (4.4).

As the same arguments in the proof of Theorem 3.3, we can get {u,}, is a nondecreasing
sequence.

Taking v = u+ (ue(y, z1, ) —u)T € K¢ as a test function in (4.4) and integrating on (—¢, £)?,
we obtain by (4.2) that

¥4
[ e = yecdy = [ b ) dady, (46)

—f QZ,G
Taking v = up — (ug —u)™ € K as a test function in (4.5) and adding the resulting inequality
with (4.6) one yields

L

/ Mﬁywﬁy(w —u)Tdady + / (Aug — Au, (ug — u)*)pady
QLG |8yuf| —L
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< / (f — h)(ug — u)"dady.
Q¢
In view of (3.4) and (4.3), we derive

/ Mayway(w —u)Tdady <0.
Q@,G |6yué|

Since u is independent of y, this implies that

lyuel) o\ 2(10yu) +
L 0yup — ———20,u| Oy (uy — u)T < 0.
/Qe,c[ EX7R 0,u] y (e — u)

It follows that u, < u.
Step 2 The pointwise limit of uy is independent of y.
By Step 1, there exists © > 0, such that

ug — 4 ae. in R? x G as £ — +oo. (4.7)

Following the arguments as in the proof of Theorem 3.3, we can show that u is independent of

Y.
Step 3 For all £y > 0, there exists a constant Cp, independent of ¢ such that

welli,ar,00,¢ < Coo- (4.8)
Let 0 € 2((—24o,20p)?) such that
0<o<land p=1 on (= ly)>

Let o > 0 and u be a nonnegative solution of (4.4). Taking v = uy — 02(ug — u) € Ky in (4.5),
then following the same arguments as in the proof of Theorem 3.3 we can deduce (4.8).

Step 4 w is a solution of (4.1).

For £y > 0, according to (4.7)—(4.8), we can deduce that

ug — u strongly in Ly (Qe,.¢) (4.9)
and
N+1 N+1
Uy — u weakly in WlLM(ngﬂg) for O’( H LM(QEO,G), H EH(QZO,G))v (410)
=0 =0
as £ — +00.

Since IE@O is closed and convex, it is also weakly closed and by consequence u € E@O, ie.,
u(z1,-) € Kg for ae. 1 € (—£o,fy). Then by using the above convergence results, we can
prove as in (3.29)—(3.30) that

N
lim w(Aug, ug) ey, gdady :/ w d; 0y, udxdy, (4.11)
£or+o0 Qg ’ Qey.c ;
, ligl WM (|0yue])dzdy =0, Yw e D((—Ly,4)?), w >0, (4.12)
— 400

Q.G
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where d; is the weak limit of a;(x, u¢, Vuy) in Lyp(Q, ). (4.11)-(4.12) hold for a subsequence
of {ug}e, still denoted by {us}s.

Let w € K and w # 0 be a nonnegative function in @(( — %0, %0)2). Taking v = ug +
ﬁ(w —uy) € Ky as a test function in (4.5), we get

Lo

17) 2
/ Ma Oy (w(w — ug))dady —|—/ (Aug, w(w —up)) o dy
Q, |Oyud o 2,

G 2

> /Q wf(w — ug)dady.

Lo
2¢

N}o

Passing to the limit as £ — 400 and taking into account (4.9)—(4.12) we obtain

N
/ > didy, (w(w — @))dzdy > / wf(w — a)dedy. (4.13)
Q%O,G =0 Q%O,G
Lo

Let t > 0 and 1 be a nonnegative function in Z((—4
(3.4) that

2 2)2). Then it follows from the condition

/_[_0 LA + twlw — ) — Aug, i~ ur) gy oy
E

th( (U + tw(w — 1)) — Aup,w(w — 17)>%0)Gdy > 0.

Passing to the limit as £ — +o0, it follows from (3.5), (4.9)—(4.11) that

N
/Q P Z[ai(x, U+ tw(w —u), V(@ + tw(w — 1)) — d;]0y, (w(w — w))dzdy > 0,

ﬂzG 1=0

Vi € @(( — 70 70) ) 1 > 0. Consequently, letting ¢ — 0, one has

N
[ 03 (@9 - dos, (w(w - D)dedy > 0
Qu g =0
Ly Lo\2
_ 0 >
vwes((-3.3) ) v=o
which implies that
20 N
/ ATl =) oy > /Q S didy, (w(w — ))dady. (4.14)
e . =0
Combining (4.13) and (4.14), we have
Lo
/é (Al wlw — ) Gdy>/ wf(w — )dady (4.15)
_*o Q

EIe
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for all w e K, w € 2((- %0, %0)2), w > 0. Taking w(y,z1) = 0(y)o(z1) in (4.15) where g # 0

and p are nonnegative functions in 2 ( — %0, %0), we obtain

[ dwitow-)g oty= [ awertw - 2)dod.

Qg

mlg
S

,G

o]

The fact that @ is independent of y implies that

_ 0
27 (

0t
-2 )xa

Since £ is arbitrary, we get

(4T, ow - D)exc > [ of(w—a)ds, Vwek, o€ I(R), 020
RxG
Therefore, @ is a solution of (4.1).

Step 5 w is the minimal nonnegative solution of (4.1).

Let u be an arbitrary nonnegative solution of (4.1). Then (u; — u)™ are supported in the
closure of Q.. Choosing o € Z(R) such that ¢ = 1 on (—¢, ), taking v = u+(ue(y,-)—u)* € K
as a test function in (4.1), and integrating on (—/, ¢), we have

¢
/ (Au, (ug — u) ). ody > flug —u)*dady. (4.16)
—¢ Q.

Taking v = ug — (ug —u)* € Ky as a test function in (4.5) and summing the produced inequality
with (4.16), we obtain

4

—/ Mﬁyw@y(w —u)tdady + / (Au — Aug, (ug — u)*)p.ady > 0.
Q.c |8y’LLg| l —2 ’

According to (3.4), we get

/ [Ma wy ‘F’(WW')@W} 8, (ug — u)*dady < 0,
Q¢

|0yl . |0yl

since u is independent of y. It follows from Lemma 3.1 that vy, < u a.e. in €y. Letting { — +oo
in (4.7), we have u < u a.e. in R x G. This means that @ is the minimal nonnegative solution
of (4.1).

Let uj and u? be the converging sequences defined above as solutions of (4.5) for f = f;
and f = fo, respectively. By the same arguments as in the proof of Theorem 3.3, uj < u?,
since f1 < fo. Letting ¢ — +o0, it follows that 77 < s a.e. in R X G, where u; and s are the
minimum nonnegative solutions of (4.1) obtained by replacing f with f; and fa, respectively.
Hence, the assertion (i) holds.

Let u} be the converging sequence defined above as the solution of (4.5) for f = f1, U be the
minimum nonnegative solution of (4.1) obtained by replacing f with f1, and @s be a nonnegative
solution of (4.1) obtained by replacing f with fo, where fo does not necessarily satisfy (4.3).
Note that (u} — U2)T are supported in the closure of € . Taking v = u} — (u} — )™ € Ky
as a test function in (4.5) for f = f1 and v = U2 + (uj(y, ) —U2)* € K as a test function in
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(4.1) for f = fa, choosing ¢ € Z(R) such that ¢ =1 on (—¢,¢) and integrating on (—¥¢, ), then
summing the produced inequalities we have

£

o ‘P(|8yu%|)8 la 1~ +d d A/\ —A 1 1 =~ \+ d
Tloull Cvte y(ug —Uz)Tdady + [ (Aliz — Auy, (ug — U2) " )e,cdy
Q.a | yuf —¢

z / (f2 — f1)(up — U2) T dady.
Q.c
Using the fact that uy is independent of y and the condition (3.4) we derive

90(|5uué|) 1 el9yual) o 1 ~\+
= L0 uy — ————20, Uz | Oy (uy; — uz)"dady < 0.
‘/QLG [ |8yu}| y e |ayu2| y U2 U( 4 2)

Therefore, uj < Us. Letting £ — +o0, it yields that @, < Us a.e. in R x G. Consequently, the
assertion (ii) holds.
Consider the following nonlinear elliptic problem defined on the infinite cylinder R x G,

we WL Ly(RxG), u=0 onRx3dG, (4.17)
Au=f inRxG. '
A function w is called a (weak) solution of (4.17) if u € Wil Ly (R x G) and
/ a(x,u, Vu)Vodz —|—/ ap(z,u, Vu)vdr = fodz, Vve 2(RxG). (4.18)
RxG RxG RxG

Then any solution of problem (4.1) for K¢ = W¢ Ly (G) is a solution of (4.17) and vice versa.
Thus the existence of nonnegative solutions of problem (4.17) is proved in Theorem 4.1. Indeed,
let u € K be a solution of (4.1). Choosing v = u+ v’ with v/ € Z(R x G) in (4.1) and o = 1 on
the support of v/, we can obtain (4.18). The converse is an immediate consequence of (4.18).
Therefore, we have the following result as an immediate consequence of Theorem 4.1.

Corollary 4.1 Under the assumptions of Theorem 4.1, there exists a minimal nonnegative
solution of (4.17). Moreover, let wy and Us be the minimal nonnegative solutions of (4.17)
obtained by replacing [ with fi1 and fo respectively. Then if f1 < fo we have Uy < Us.

4.2 Noncoercive variational inequalities

We consider the following nonlinear variational inequality defined on the infinite cylinder
R x G,

u € IC,

/RXG a(z,u, Vu)V(o(v — u))dz + /RXG ao(z,u, Vu)o(v — u)dx (4.19)

2/ F(z,u)o(v —u)dz, Yvek, o€ 2(R), 0> 0,
RxG

where F' is defined as in Subsection 3.2, replacing 2 by R x G. In addition, we assume that

h(Xa,r) := sup F(x1,Xa,7) (4.20)
r1€R

satisfies

h(XQ,u) S LW(G), Yuée Ly, (G) (421)
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Lemma 4.1 Let F' and h be nonnegative functions satisfying the hypotheses above. Suppose
that the assumptions (3.1)—(3.5) and (4.2) hold, where Q is replaced by R x G in (3.1)=(3.5).
Assume that ¢ is strictly increasing. Define u,, and w,, are respectively the minimal nonnegative
solutions of variational inequalities in the last line of the following problems:

EO = 07
u,, S ICGa
(4.22)
(Act,,v —u,)a > / MXo,u, 1)(v—u,)dXs, VoveKg,
G
and

Uy = 0,

Uy, € IC,

/ a(x, Up, Vug,)V(o(v — uy,))dx + / ag(z, Up, Vuy)o(v — uy,)dx (4.23)

RxG RxG
> / F(z,tun_1)o(v —upn)dz, YveKk, Voe 2(R), p>0,
RxG

respectively, for every n > 1. Then the sequences {u, }nen and {un}nen are well defined and
nondecreasing satisfying

U <u,, Fr,u,)<h(Xs,u,), VYneN forae zeRxG. (4.24)

Proof 1t is clear that ug, u, satisfy (4.24). Suppose that {u,_;} and {u,_1} are defined
and satisfy (4.24), i.e.,

Un—1 < Uy_q1, F(x,un—1) <h(Xo,u, ;) forae zeRxG. (4.25)

Thanks to (4.21), one has h(X2,u, _,) € Ly;(G). Consequently, u,, exists by Theorem 3.3. In
view of (4.25), F(x,un—1) € L37(G). Therefore, u, exists by Theorem 4.1. Arguing as Step 1
in the proof of Theorem 4.1 one can deduce that u, < u,. According to (3.33) and (4.20), we
have

F(z,u,) < F(z,u,) < h(X2,u,), VneNforae zeRxG,

i.e., (4.24) holds.

We denote ho = lim h(-,u,), Foo = lim F(-,u,) and assume that
n— 00 n—oo

heo € Ly;(G). (4.26)

Theorem 4.2 Let F and h be nonnegative functions satisfying the hypotheses above and
suppose that the assumptions (3.1)—(3.5) and (4.2) hold, where § is replaced by R x G in (3.1)-
(3.5). Assume that ¢ is strictly increasing. Then there exists a minimal nonnegative solution
of (4.19).

Proof By (3.33), F(-,up—1) < Feo, Vn > 1 ae. in R x G. Tt follows, by using Theorem
4.1, that {uy }nen is nondecreasing and

un < u, (4.27)
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where u is the minimal solution of

u € IC,

/RXG a(z,u, Vu) - V(e(v —u))dz + /RxG ao(w,u, Vu)o(v — u)dr (4.28)

> / Fyoo(v —u)dx
RxG

for all v € K, and all g € 2(R) with ¢ > 0.

Note that Fiyo < heo a.e. in R X G, and hy, is independent of x;. By Lemma 4.1, there
exists U such that u, — U a.e. on R x G.

Let ¢y > 0. Taking v = u,, — o(u, — u) as a test function in (4.23) and choosing ¢ such that
o=1on (—¥y, ), we have

/ a(x, Up, Viin)2005, 0(un — u)dz + / a(, tup, Vun)0®V (u, — u)de
RxG RxG

+/ ao (2, up, Vun) 0* (up, — w)da < F(z,up-1)0%(uy — u)dz,
RxG RxG

which implies that

/ a(x, Un, Vg ) 0? Vu,dr + / ao(, U, Vi) 0*uyde
RxG RxG

< —/ a(x,un,Vun)Zgamlgundx—F/ a(x, U, Vi, )200,, oudx
RxG RxG

+ / a(z, U, Vun)QQngx + / ao(x, up, Vun)QQde
RxG RxG

+ F(x, un_l)QQ(un —u)dx.
RxG

Since M € Ay, using the conditions (3.3), (3.5), (4.27) and the Young inequality, we can deduce
[ Ml + M P < Ot
(Lo, lo)x G

as Theorem 3.3, for some constant C' = C'(¢y) independent of n, and consequently,
wnll1,0z,(=t0,00)xc < C(fo)-
Therefore, one has
Up — Uno strongly in Ly ((—£p, 4o) X G)
and

Uy — Uso Weakly in W(}LM((—ZQ,EO) x G)

N N
for U(HLM((—eO,eO) x Q). [T Exr((~to. o) G)),
1=0 1=0

as n — 00. Since fy is arbitrary, e € K.
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By the same arguments as in the proof of Theorem 4.1, it is easy to see that u., is a

nonnegative solution of (4.19).

Let w be a nonnegative solution of (4.19). Then w is a solution of the following problem:
uek,
/ a(z,u, Vu)V(o(v — u))dz + / ao(z,u, Vu)o(v — u)dx
RxG RxG
2/ F(z,w)o(v —u)dz, Yvek, g€ 2(R), 0>0.
RxG

Since w > 0, F(xz,w) > F(x,0) = F(x,ug) for a.e. z € R x G. By Lemma 4.1 and Theorem
4.1(ii), w > uy. Therefore, F(z,w) > F(x,uq) for a.e. x € R x G. By Lemma 4.1 and Theorem
4.1(ii), w > ug. By induction, we can obtain that w > u,,, Vn € N. Letting n — 0o, w > Uxo,
that is, U is the minimal solution of (4.19).
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