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Abstract In this paper, the author studies the existence of the minimal nonnegative
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1 Introduction

In [10–12, 23], the sub-supersolution method was used to prove the existence of solutions

and extremal solutions, confined between their subsolutions and supersolutions, for elliptic

variational inequalities and nonlinear elliptic equations in Sobolev spaces or Orlicz-Sobolev

spaces defined on bounded domains. There are many existence results for elliptic equations in

Orlicz-Sobolev spaces on bounded domains such as [2–4, 7–9, 13–14, 16–19]. Landes [22] proved

the existence of a weak solution of a quasilinear elliptic equation without any lower order term

on an unbounded domain. In [6], a different method was used to establish the existence of the

minimal solution to some elliptic variational inequalities in Sobolev spaces defined on bounded

or unbounded domains. When trying to weaken the restriction on the operators in [6], one is

led to replace Sobolev spaces by Orlicz-Sobolev spaces. In this paper, we will take into account

the minimal solutions of elliptic variational inequalities on bounded and unbounded domains

by using a method in [6] different from the above.

In the present work, we will show the existence of the minimal nonnegative solutions for some

variational inequalities with coercive operators or noncoercive operators on bounded domains or

unbounded domains. Some comparison principles are investigated for the minimal solutions of

variational inequalities on bounded domains or unbounded domains. In particular noncoercive

one, the sufficient and necessary conditions for the existence of the minimal nonnegative solution

are established on bounded domains. We will use the idea introduced in [6].
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The paper is organized as follows. Section 2 contains some preliminaries which will be

needed in the next two sections. In Section 3, we start with the coercive case and prove the

existence theorems of nonnegative solutions for some elliptic variational inequalities on bounded

domain. Some comparison results between different solutions are established as tools to pass to

the limit in the problems and we show the existence of the minimal solutions for the variational

inequalities with coercive operators or noncoercive operators defined on bounded domains. The

sufficient and necessary conditions for the existence of the minimal nonnegative solution for

the noncoercive one are established. Section 4 is devoted to showing the existence of the

minimal solutions for variational inequalities on unbounded domains. In both cases, coercive

and noncoercive operators are handled.

2 Preliminaries

For quick reference, we recall some basic results of Orlicz spaces. Good references are

[1, 7, 18, 21, 25].

2.1 N-function

Let M : R+ → R
+ be an N -function, i.e., M is continuous, convex, with M(u) > 0 for

u > 0, M(u)
u

→ 0 as u → 0, and M(u)
u

→ +∞ as u → +∞. Equivalently, M admits the

representation M(u) =
∫ u
0
ϕ(t)dt, where ϕ : R+ → R

+ is a nondecreasing, right continuous

function, with ϕ(0) = 0, ϕ(t) > 0 for t > 0, and ϕ(t) → +∞ as t→ +∞.

Clearly, M(u) ≤ uϕ(u) ≤M(2u) for all u ≥ 0.

The N -function M conjugated to M is defined by M(v) =
∫ v
0
φ(s)ds, where φ : R+ → R

+

is given by φ(s) = sup{t : ϕ(t) ≤ s}.

ϕ, φ are called the right-hand derivatives of M,M , respectively.

The N -function M is said to satisfy the ∆2 condition near infinity (M ∈ ∆2 for short), if

for some k > 1 and u0 > 0, M(2u) ≤ kM(u), ∀u ≥ u0. It is readily seen that this will be the

case if and only if for every l > 1 there exists a positive constant k = k(l) and ũ > 0, such that

M(lu) ≤ kM(u), ∀u ≥ ũ. (2.1)

Moreover, one has the following Young inequality: uv ≤ M(u) +M(v), ∀u, v ≥ 0, and the

equality holds if and only if v = ϕ(u) or u = φ(v).

We will extend these N -functions into even functions on all R.

Let P,Q be two N -functions. We say that P grows essentially less rapidly than Q near

infinity, denoted as P ≪ Q, if for every ε > 0, P (t)
Q(εt) → 0 as t → +∞. This is the case if and

only if lim
t→+∞

Q−1(t)
P−1(t) = 0.

For a measurable function u on Ω, its modular is defined by ρM (u) =
∫
ΩM(|u(x)|)dx.

The Sobolev conjugate N -function M∗ of M is defined by

M−1
∗ (t) =

∫ t

0

M−1(τ)

τ
N+1

N

dτ, t ≥ 0.

2.2 Orlicz spaces

Let Ω be an open and bounded subset of RN and M be an N -function. The Orlicz class

KM (Ω) (respectively, the Orlicz space LM (Ω)) is defined as the set of (equivalence classes of)

real valued measurable functions u on Ω such that

ρM (u) < +∞
(
respectively, ρM

(u
λ

)
< +∞ for some λ > 0

)
.
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LM (Ω) is a Banach space under the (Luxemburg) norm

‖u‖(M) = inf
{
λ > 0 : ρM

(u
λ

)
≤ 1

}
,

and KM (Ω) is a convex subset of LM (Ω) but not necessarily a linear space.

The closure in LM (Ω) of the set of bounded measurable functions with compact support in

Ω is denoted by EM (Ω).

The equality EM (Ω) = LM (Ω) holds if and only if M ∈ ∆2, moreover, LM (Ω) is separable.

LM (Ω) is reflexive if and only if M ∈ ∆2 and M ∈ ∆2.

Convergences in norm and in modular are equivalent if and only if M ∈ ∆2.

The dual space of EM (Ω) can be identified with LM (Ω) by means of the pairing
∫
Ω u(x)v(x)dx,

and the dual norm of LM (Ω) is equivalent to ‖ · ‖(M).

2.3 Orlicz-Sobolev spaces

We now turn to the Orlicz-Sobolev space: W 1LM (Ω) (respectively, W 1EM (Ω)) is the space

of all functions u such that u and its distributional partial derivatives lie in LM (Ω) (respectively,

EM (Ω)). It is a Banach space under the norm

‖u‖Ω,M =
∑

|α|≤1

‖Dαu‖(M).

Denote ‖Du‖(M) = ‖|Du|‖(M) and ‖u‖1,M,Ω = ‖u‖(M) + ‖Du‖(M). Clearly, ‖u‖1,M,Ω is equiv-

alent to ‖u‖Ω,M .

Thus W 1LM (Ω) and W 1EM (Ω) can be identified with subspaces of the product of N + 1

copies of LM (Ω). Denoting this product by ΠLM , we will use the weak topologies σ(ΠLM ,ΠEM )

and σ(ΠLM ,ΠLM ).

If M ∈ ∆2, then W 1LM (Ω) = W 1EM (Ω). If M ∈ ∆2 and M ∈ ∆2, then W 1LM (Ω) =

W 1EM (Ω) are reflexive and the weak topologies σ(ΠLM ,ΠEM ) and σ(ΠLM ,ΠLM ) are equiv-

alent.

The space W 1
0EM (Ω) is defined as the (norm) closure of the Schwartz space D(Ω) in

W 1EM (Ω) and the space W 1
0LM (Ω) as the σ(ΠLM ,ΠEM ) closure of D(Ω) in W 1LM (Ω). If

M ∈ ∆2, then W
1
0LM (Ω) = W 1

0EM (Ω) and W 1
0LM (Ω) is separable. If M ∈ ∆2 and M ∈ ∆2,

then W 1
0LM (Ω) is reflexive.

3 Variational Inequalities in Bounded Domains

This section is devoted to studying the existence of nonnegative solutions and their minimal

solutions for some quasilinear variational inequalities in bounded domains. We investigate

variational inequalities with coercive operators in Subsection 3.1 and with noncoercive operators

in Subsection 3.2, respectively.

3.1 Variational inequalities with coercive operator

Let Ω be a bounded domain in R
N (N ≥ 1) with Lipschitz boundary, M be an N -function

and M be the complementary function of M , and ϕ, φ are the right-hand derivatives of M,M ,

respectively. Assume that M,M ∈ ∆2.

In what follows we denote by L0(Ω) the set of all (equivalence classes of) Lebesgue mea-

surable functions from Ω to R. For u, v ∈ L0(Ω), U, V ⊂ L0(Ω), we use the standard no-

tation: u ≤ v ⇔ u(x) ≤ v(x) for a.e. x ∈ Ω, u ∧ v = min{u, v}, u ∨ v = max{u, v},
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U ∧ V = {u∧ v : u ∈ U, v ∈ V }, U ∨ V = {u∨ v : u ∈ U, v ∈ V }, u+ := u∨ 0, u− := −u∧ 0. We

consider the usual ordering relation (W 1
0LM (Ω),≤).

We denote by K a closed convex subset of W 1
0LM (Ω) containing 0 such that the lattice

condition

K ∨ K ⊂ K, K ∧ K ⊂ K

is satisfied. This type of lattice convex sets usually occurs in applications. For example,

K = W 1
0LM (Ω) for equations, and K = {u ∈ W 1

0LM (Ω) : u(x) ≥ ψ(x) for a.e. x ∈ Ω} for

obstacle problems, where ψ : Ω → R is an obstacle function (see [8–9, 13, 19]).

Let a(x, ξ) = (ai(x, ξ))1≤i≤N and a0(x, ξ) be a family of Carathéodory’s functions defined

on Ω× R
N+1 such that

(x, ξ) 7→ ai(x, ξ) is measurable on Ω× R
N+1, i = 0, 1, · · · , N, (3.1)

ξ 7→ ai(x, ξ) is continuous on R
N+1, i = 0, 1, · · · , N, (3.2)

N∑

i=0

ai(x, ξ)ξi ≥ α

N∑

i=0

M(|ξi|), (3.3)

N∑

i=0

[ai(x, ξ)− ai(x, ξ
′)](ξi − ξ′i) ≥ 0, (3.4)

|ai(x, ξ)| ≤ ϑ(x) + β

N∑

i=0

M
−1

(M(|ξi|)), i = 0, 1, · · · , N (3.5)

for a.e. x ∈ Ω and for all ξ = (ξi)0≤i≤N , ξ′ = (ξ′i)0≤i≤N ∈ R
N+1, where α, β > 0 and

ϑ ∈ LM (Ω).

Let f ∈ LM (Ω). We consider the following variational inequality:




u ∈ K,

〈Au, v − u〉 ≥

∫

Ω

f(v − u)dx, ∀ v ∈ K,
(3.6)

where A is a nonlinear operator defined from W 1
0LM (Ω) into its dual by

Au(x) := −div a(x, u,∇u) + a0(x, u,∇u).

From (3.5), the operator A is well defined. For simplicity we set the dual pairing 〈·, ·〉 =

〈·, ·〉(W 1
0
LM(Ω))∗,W 1

0
LM(Ω). The above duality is equivalent to

〈Au, v〉 =

∫

Ω

a(x, u,∇u)∇vdx+

∫

Ω

a0(x, u,∇u)vdx for all v ∈ W 1
0LM (Ω). (3.7)

Let ℓ > 0 be a real number and Ωl be the cylinder (−ℓ, ℓ) × Ω. The points in R
N+1 are

denoted by (y, x) with x = (x1, · · · , xN ) ∈ R
N and the gradient operator defined over RN+1 is

also denoted by ∇′ = (∂y,∇) with ∇ = (∂x1
, ∂x2

, · · · , ∂xN
). We set

Kℓ := {v ∈W 1
0LM (Ωℓ) | v(y, ·) ∈ K a.e. in (−ℓ, ℓ)}.

This is a closed convex subset of W 1
0LM (Ωℓ).

Let ψ : [0,+∞) → [0,+∞) be an increasing function. By [20, Lemma 8.2], ψ(|ξ|) ξ|ξ| is

monotone on R
n (n ≥ 1). However, we will show the strict monotonicity of ψ(|ξ|) ξ|ξ| on R

n and

give another method to proof the monotonicity of ψ(|ξ|) ξ|ξ| .
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Lemma 3.1 If ψ : [0,+∞) → [0,+∞) is increasing, then ψ(|ξ|) ξ|ξ| is monotone on R
n (n ≥

1). Moreover, if ψ is strictly increasing, then ψ(|ξ|) ξ|ξ| is strictly monotone.

Proof Let ξ, η be two nonzero vectors in R
n, with angle θ ∈ [0, π] between them at the

origin. Then
[ψ(|ξ|)

|ξ|
ξ −

ψ(|η|)

|η|
η
]
(ξ − η)

= [ψ(|ξ|)− ψ(|η|)](|ξ| − |η|) +
[ψ(|ξ|)

|ξ|
+
ψ(|η|)

|η|

]
(|ξ||η| − ξ · η). (3.8)

The first term of the right-hand side of (3.8) is nonnegative since ψ is increasing. Since

ξ · η = |ξ||η| cos θ, (3.9)

the second term of the right-hand side of (3.8) is nonnegative. Consequently,
[ψ(|ξ|)

|ξ|
ξ −

ψ(|η|)

|η|
η
]
(ξ − η) ≥ 0.

Moreover, suppose that there exist ξ1, ξ2 ∈ R
N with ξ1 6= ξ2 such that ψ(|ξ1|)

|ξ1|
ξ1 = ψ(|ξ2|)

|ξ2|
ξ2.

It follows from (3.8)–(3.9) that

[ψ(|ξ1|)− ψ(|ξ2|)](|ξ1| − |ξ2|) = 0 (3.10)

and cos θ1 = 1, where θ1 ∈ [0, π] is the angle between ξ1 and ξ2 at the origin. This yields

that θ1 = 0. Therefore, there exists λ > 0 with λ 6= 1 such that ξ1 = λξ2. It implies that

|ξ1| 6= |ξ2|. Immediately, ψ(|ξ1|) 6= ψ(|ξ2|) since ψ is strictly increasing. It contradicts (3.10).

This completes the proof of the lemma.

We recall the following notation which will be used later. It can be referred to [24, p. 25] or

[5, Definition 1].

Definition 3.1 (see [24]) Let X be a reflexive Banach space. The operator T : X → X∗

is called pseudomonotone if

(i) T is bounded; and

(ii) for any sequence {un} ⊂ X such that un ⇀ u0 weakly in X and lim sup
n→∞

〈T (un), un−u0〉 ≤

0, the inequality

lim inf
n→∞

〈T (un), un − v〉 ≥ 〈T (u0), u− v〉, ∀ v ∈ X

holds.

Theorem 3.1 Assume that f ∈ LM (Ω) is nonnegative and the assumptions (3.1)–(3.5) are

satisfied. Then for every ℓ > 0, the following variational inequality




uℓ ∈ Kℓ,

∫
Ωℓ

ϕ(|∂yuℓ|)

|∂yuℓ|
∂yuℓ∂y(v − uℓ)dxdy +

∫ ℓ

−ℓ

〈Auℓ, v − uℓ〉dy ≥

∫
Ωℓ

f(v − uℓ)dxdy, ∀ v ∈ Kℓ

(3.11)

has at least one solution uℓ with uℓ ≥ 0. Moreover, if ϕ is strictly increasing, or a and a0 are

strictly monotone, i.e., for a.e. x ∈ Ω and all ξ = (ξi)0≤i≤N , ξ′ = (ξ′i)0≤i≤N ∈ R
N+1,

N∑

i=0

[ai(x, ξ)− ai(x, ξ
′)](ξi − ξ′i) > 0, with ξ 6= ξ′, (3.12)

then there exists a unique solution uℓ of (3.11) and uℓ ≥ 0.
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Proof For ℓ > 0, we define the operator Tℓ :W
1
0LM (Ωℓ) → (W 1

0LM (Ωℓ))
∗ by

〈Tℓu, v〉 =

∫

Ωℓ

ϕ(|∂yu|)

|∂yu|
∂yu∂yvdxdy +

∫ ℓ

−ℓ

〈Au, v〉dy, ∀u, v ∈W 1
0LM (Ωℓ).

Denote z = (y, x). Thanks to (2.1), (3.5) and the Young inequality, we can deduce that there

exist positive constants C(β,N,K) and C(N, ℓ, ũ) such that

|〈Tℓu, v〉| ≤ C(β,N,K)

∫

Ωℓ

[M(|u(z)|) +M(|∇′u(z)|)

+M(|v(z)|) +M(|∇′v(z)|)]dz + C(N, ℓ, ũ) (3.13)

for all u, v ∈ W 1
0LM (Ωℓ). Therefore, Tℓ is well defined. From (3.13), it is easy to see that Tℓ is

bounded. In view of (3.4) and Lemma 3.1, we can show that Tℓ is monotone. In a similar way

as [10, Lemma 8], we can check that Tℓ is continuous. Thanks to [26, Propositon 27.6(a)], Tℓ

is pseudomonotone. For u0 ∈ Kℓ, in a way similar to the proof of [10, Theorem 11], we have

〈Tℓ(u)− f, u− u0〉 ≥ C1

∫

Ωℓ

[
M(|∂yu|) +

N∑

i=0

M(|∂xi
u|)

]
dxdy − C2 (3.14)

for some positive constants C1 and C2. For u ∈ W 1
0LM (Ωℓ), define

‖u‖ = inf
{
λ > 0 :

∫

Ωℓ

[
M

( |∂yu|
λ

)
+

N∑

i=0

M
( |∂xi

u|

λ

)]
dxdy ≤ 1

}
.

Then 1
N+2‖u‖ ≤ ‖u‖1,M,Ωℓ

≤ (N + 2)‖u‖. In view of (3.14), for any ε > 0, we have

〈Tℓ(u)− f, u− u0〉 ≥ C1(‖u‖ − ε)

∫

Ωℓ

[
M

( |∂yu|

‖u‖ − ε

)
+

N∑

i=0

M
( |∂xi

u|

‖u‖ − ε

)]
dxdy − C2

≥ C1(‖u‖ − ε)− C2.

Therefore, 〈Tℓ(u)− f, u− u0〉 > 0 when ‖u‖1,M,Ωℓ
is sufficiently large. From the above results,

we can deduce that the conditions (i)–(iv) in [19] hold. According to [19, Proposition 1], the

variational inequality (3.11) has at least one solution uℓ.

Now, we prove that uℓ is nonnegative. Taking v = u+ℓ ∈ Kℓ in (3.11) we have

∫

Ωℓ

ϕ(|∂yu
−
ℓ |)|∂yu

−
ℓ |dxdy +

∫ ℓ

−ℓ

〈A(−u−ℓ ), (−u
−
ℓ )〉dy ≤ −

∫

Ωℓ

fu−ℓ dxdy ≤ 0.

In view of (3.4), we have

∫

Ωℓ

M(|∂yu
−
ℓ |)dxdy +

∫ ℓ

−ℓ

∫

Ω

α

N∑

i=0

M(|∂xi
u−ℓ |)dxdy ≤ 0.

Consequently, uℓ ≥ 0.

Suppose that there exists another solution u′ℓ of (3.11) with uℓ 6= u′ℓ. When we take v = u′ℓ
in (3.11) and v = uℓ in (3.11) written for u′ℓ and add the two inequalities, it comes

∫

Ωℓ

[ϕ(|∂yuℓ|)
|∂yuℓ|

∂yuℓ −
ϕ(|∂yu

′
ℓ|)

|∂yu′ℓ|
∂yu

′
ℓ

]
∂y(uℓ − u′ℓ)dxdy +

∫ ℓ

−ℓ

〈Auℓ −Au′ℓ, uℓ − u′ℓ〉dy ≤ 0.

If ϕ is strictly increasing or a and a0 are strictly monotone, we can deduce, by Lemma 3.1 and

(3.4), or by (3.12), uℓ = u′ℓ. It is a contradiction.

Similar to the proof of Theorem 3.1, it is easy to show the following theorem.
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Theorem 3.2 Assume that f ∈ LM (Ω) is nonnegative and the assumptions (3.1)–(3.5) are

satisfied. Then (3.6) has at least one solution u with u ≥ 0. Moreover, if a and a0 satisfy

(3.12), then there exists a unique solution of (3.6) and u ≥ 0.

Does there exist the minimal nonnegative solution of problem (3.6) when it has more than

one solution? The following theorem will give the answer.

Theorem 3.3 Assume that f ∈ LM (Ω) is nonnegative, ϕ is strictly increasing and the

assumptions (3.1)–(3.5) are satisfied. Then the pointwise limit of {uℓ}ℓ is the minimal nonneg-

ative solution of (3.6), where uℓ is the solution of (3.11), for any ℓ > 0.

Moreover, if u1 and u2 are the minimal nonnegative solutions of (3.6) obtained by replacing

f with f1 and f2 respectively, then f1 ≤ f2 implies u1 ≤ u2.

Proof Step 1 The sequence {uℓ}ℓ is nondecreasing and bounded above by any nonnegative

solution of (3.6).

Let 0 < ℓ < ℓ′. Extending uℓ by 0 on Ωℓ′ and since uℓ′ is nonnegative, when we take

v = uℓ− (uℓ−uℓ′)
+ ∈ Kℓ in (3.11) and v = uℓ′ +(uℓ−uℓ′)

+ ∈ Kℓ′ in (3.11) written for uℓ′ and

Ωℓ′ and add the two inequalities, it comes
∫

Ωℓ

[ϕ(|∂yuℓ|)
|∂yuℓ|

∂yuℓ −
ϕ(|∂yuℓ′ |)

|∂yuℓ′ |
∂yuℓ′

]
∂y(uℓ − uℓ′)

+dxdy

+

∫ ℓ

−ℓ

〈Auℓ −Auℓ′ , (uℓ − uℓ′)
+〉dy

≤ −

∫

Ωℓ′\Ωℓ

ϕ(|∂yu
−
ℓ′ |)

|∂yu
−
ℓ′ |

∂yu
−
ℓ′dxdy −

∫

(−ℓ′,ℓ′)\(−ℓ,ℓ)

〈A(−u−ℓ′ ),−u
−
ℓ′〉dy −

∫

Ωℓ′\Ωℓ

fu−ℓ′dxdy

≤ 0.

Thanks to the condition (3.4) we deduce
∫

Ωℓ

[ϕ(|∂yuℓ|)
|∂yuℓ|

∂yuℓ −
ϕ(|∂yuℓ′ |)

|∂yuℓ′|
∂yuℓ′

]
∂y(uℓ − uℓ′)

+dxdy ≤ 0.

Using Lemma 3.1, we have uℓ(y, x) ≤ uℓ′(y, x) for a.e. (y, x) ∈ Ωℓ, which shows that the

sequence {uℓ}ℓ is nondecreasing.

Let ℓ > 0 and u be a nonnegative solution of (3.6). Taking v = u+ (uℓ(y, ·)− u)+ ∈ K as a

test function in (3.6), for a.e. y ∈ (−ℓ, ℓ), and integrating in y we derive

∫ ℓ

−ℓ

〈Au, (uℓ − u)+〉dy ≥

∫

Ωℓ

f(uℓ − u)+dxdy. (3.15)

Taking v = uℓ − (uℓ − u)+ ∈ Kℓ as a test function in (3.11) we can deduce that

−

∫

Ωℓ

ϕ(|∂yuℓ|)

|∂yuℓ|
∂yuℓ∂y(uℓ − u)+dxdy −

∫ ℓ

−ℓ

〈Auℓ, (uℓ − u)+〉dy

≥−

∫

Ωℓ

f(uℓ − u)+dxdy. (3.16)

Adding the two inequalities (3.15) and (3.16) and using the fact that u is independent of y and

the monotone condition (3.4) we obtain that
∫

Ωℓ

[ϕ(|∂yuℓ|)
|∂yuℓ|

∂yuℓ −
ϕ(|∂yu|)

|∂yu|
∂yu

]
∂y(uℓ − u)+dxdy ≤ 0.
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By Lemma 3.1,

uℓ(y, x) ≤ u(x) for a.e. x ∈ Ωℓ. (3.17)

Immediately, {uℓ}ℓ is bounded above by any nonnegative solution of (3.6).

Step 2 The pointwise limit of {uℓ}ℓ is independent of y.

It follows from Step 1 that uℓ has a pointwise limit we denote by û such that

uℓ → û a.e. in Ωℓ. (3.18)

Let h > 0. Denote Thuℓ(y, x) = uℓ(y+h, x). Then the functions Thuℓ(y, x) and (Thuℓ(y, x)−

uℓ+h(y, x))
+ are supported in the closure of Ωhℓ := (−l − h, l − h) × Ω. Thanks to (3.11), we

have
∫

Ωh
ℓ

ϕ(|∂yThuℓ|)

|∂yThuℓ|
∂yThuℓ∂y(v − Thuℓ)dxdy +

∫ ℓ−h

−ℓ−h

〈AThuℓ, v − Thuℓ〉dy

≥

∫

Ωh
ℓ

f(v − Thuℓ)dxdy, ∀ v ∈ Kℓ,h, (3.19)

where Kℓ,h := {Thv | v ∈ Kℓ} = {v ∈W 1
0LM (Ωhℓ ) | v(y, ·) ∈ K a.e. in (−ℓ−h, ℓ−h)}. Choosing

v = Thuℓ − (Thuℓ − uℓ+h)
+ ∈ Kℓ,h in (3.19) and v = uℓ+h + (Thuℓ − uℓ+h)

+ ∈ Kℓ+h in (3.11)

written for uℓ+h and adding the two inequalities, we have

∫

Ωh
ℓ

[ϕ(|∂yThuℓ|)
|∂yThuℓ|

∂yThuℓ −
ϕ(|∂yuℓ+h|)

|∂yuℓ+h|
∂yuℓ+h

]
∂y(Thuℓ − uℓ+h)

+dxdy

+

∫ ℓ−h

−ℓ−h

〈AThuℓ −Auℓ+h, (Thuℓ − uℓ+h)
+〉dy ≤ 0.

Using (3.4) we can obtain that

∫

Ωh
ℓ

[ϕ(|∂yThuℓ|)
|∂yThuℓ|

∂yThuℓ −
ϕ(|∂yuℓ+h|)

|∂yuℓ+h|
∂yuℓ+h

]
∂y(Thuℓ − uℓ+h)

+dxdy ≤ 0.

By Lemma 3.1,

uℓ(y + h, x) ≤ uℓ+h(y, x) for a.e. (y, x) ∈ Ωℓ. (3.20)

Letting ℓ→ +∞ in (3.20), we have

û(y + h, x) ≤ û(y, x) for a.e. (y, x) ∈ Ωℓ. (3.21)

Similarly, we can show that (3.21) holds whenever h < 0 for a.e. (y, x) ∈ Ωℓ. Since h is

arbitrary, û(y, x) = û(x) for a.e. (y, x) ∈ Ωℓ, that is, û is independent of y.

Step 3 For all ℓ0 > 0, there exists a constant C(ℓ0) independent of ℓ such that

‖uℓ‖1,M,Ωℓ0
≤ C(ℓ0). (3.22)

Let now ℓ0 > 0. Clearly, it is need to consider the case ℓ > ℓ0. Let ̺ ∈ D(−2ℓ0, 2ℓ0)

such that 0 ≤ ̺ ≤ 1, ̺ = 1 on (−ℓ0, ℓ0). Let u be a nonnegative solution of (3.6). Taking

v = uℓ − ̺2(uℓ − u) ∈ Kℓ as a test function in (3.11), we derive that

∫

Ωℓ

ϕ(|∂yuℓ|)

|∂yuℓ|
∂yuℓ∂y[̺

2(uℓ − u)]dxdy +

∫ ℓ

−ℓ

〈Auℓ, ̺
2(uℓ − u)〉dy
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≤

∫

Ωℓ

f̺2(uℓ − u)dxdy ≤ 0.

By the fact ̺ = 1 on (−ℓ0, ℓ0) and u is independent of y, it yields that

∫

Ωℓ0

M(|∂yuℓ|)dxdy + α

∫ ℓ0

−ℓ0

∫

Ω

N∑

i=0

M(|∂xi
uℓ|)dxdy

≤

∫

Ωℓ

̺2ϕ(|∂yuℓ|)|∂yuℓ|dxdy +

∫ ℓ

−ℓ

̺2〈Auℓ, uℓ〉dy

≤

∫

Ωℓ

ϕ(|∂yuℓ|)

|∂yuℓ|
∂yuℓ2̺∂y̺(u− uℓ)dxdy +

∫ ℓ

−ℓ

̺2〈Auℓ, u〉dy.

By (2.1), (3.3), (3.5) and the Young inequality, we can obtain that

∫

Ωℓ0

M(|∂yuℓ|)dxdy + α

∫ ℓ0

−ℓ0

∫

Ω

N∑

i=1

M(|∂xi
uℓ|)dxdy

≤ Cε

∫

Ωℓ

[
M(|∂yuℓ|) +

N∑

i=0

M(|∂xi
uℓ|)

]
dxdy + C

∫

Ω2ℓ0

M
(1
ε
|uℓ|

)
dxdy

+ C

∫

Ω2ℓ0

[
M

(1
ε
|u|

)
+M(|u|) +M(|ϑ(x)|) + εM(ũ)

]
dxdy,

where ε ∈ (0, 1) and the constant C > 0 is independent of ℓ. Since M ∈ ∆2, there exists a

constant Kε > 0 and some tε > 0 such that M
(
1
ε
t
)
≤ KεM(t) for all t > tε. In view of (3.17),

we get

∫

Ωℓ0

M(|∂yuℓ|)dxdy + α

∫ ℓ0

−ℓ0

∫

Ω

N∑

i=1

M(|∂xi
uℓ|)dxdy

≤ Cε

∫

Ωℓ

[
M(|∂yuℓ|) +

N∑

i=0

M(|∂xi
uℓ|)

]
dxdy

+ C(ε)

∫

Ω2ℓ0

[M(|u|) +M(|ϑ(x)|) +M(ũ) +M(tε)]dxdy,

where ε ∈ (0, 1) and the positive constants C and C(ε) are independent of ℓ. Choosing ε small

enough, we get
∫

Ωℓ0

[M(|uℓ|) +M(|∇′uℓ|)]dxdy ≤ C(ℓ0)

for some positive constant C(ℓ0) independent of ℓ. For u ∈ W 1LM (Ωℓ0), define

ρ(u) :=

∫

Ωℓ0

[M(|uℓ|) +M(|∇′uℓ|)]dxdy

and

‖u‖ρ,Ωℓ0
:= inf

{
λ < 0 : ρ

(u
λ

)
≤ 1

}
.
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Then ‖u‖ρ,Ωℓ0
is a norm of W 1LM (Ωℓ0) equivalent to ‖u‖1,M,Ωℓ0

(see [15]). It implies (3.22).

Step 4 û is a solution of (3.6).

Let ℓ0 > 0. In view of (3.22), {uℓ}ℓ is bounded in W 1
0LM (Ωℓ0) for all ℓ > 0. Consequently,{ϕ(|∂yuℓ|)

|∂yuℓ|
∂yuℓ

}
ℓ
and {ai(x, uℓ,∇uℓ)}ℓ (i = 0, 1, · · · , N) are bounded in LM (Ωℓ0). Hence, there

exist d and di in LM (Ωℓ0) such that

uℓ → û strongly in LM (Ωℓ0), (3.23)

∇uℓ ⇀ ∇û weakly in (LM (Ωℓ0))
N for σ

( N∏

i=1

LM (Ωℓ0),

N∏

i=1

EM (Ωℓ0)
)
, (3.24)

ϕ(|∂yuℓ|)

|∂yuℓ|
∂yuℓ ⇀ d weakly in LM (Ωℓ0) for σ(LM (Ωℓ0), EM (Ωℓ0)), (3.25)

ai(x, uℓ,∇uℓ)⇀ di weakly in LM (Ωℓ0) for σ(LM (Ωℓ0), EM (Ωℓ0)), (3.26)

as ℓ→ +∞, i = 0, 1, · · · , N . The two first convergences hold for the whole sequence since {uℓ}ℓ
is nondecreasing, which guarantees the uniqueness of the limit and the last two convergences

hold up to a subsequence.

Let ω be a nonnegative function in D(−ℓ0, ℓ0). By (3.4), (3.23) and (3.26), it follows that

lim inf
ℓ→+∞

∫ ℓ0

−ℓ0

ω〈Auℓ, uℓ〉dy ≥ lim inf
ℓ→+∞

∫ ℓ0

−ℓ0

ω〈Auℓ, û〉dy + lim inf
ℓ→+∞

∫ ℓ0

−ℓ0

ω〈Aû, uℓ − û〉dy

=

∫

Ωℓ0

ω

N∑

i=0

di∂xi
ûdxdy, (3.27)

where ∂x0
û = û.

On the other hand, taking v = uℓ −
ω

|ω|∞
(uℓ − û) ∈ Kℓ as a test function in (3.11), one has

∫

Ωℓ0

ϕ(|∂yuℓ|)

|∂yuℓ|
∂yuℓ∂y[ω(uℓ − û)]dxdy +

∫ ℓ0

−ℓ0

ω〈Auℓ, uℓ − û〉dy ≤

∫

Ωℓ0

ωf(uℓ − û)dxdy ≤ 0

and thus
∫

Ωℓ0

ωM(|∂yuℓ|)dxdy +

∫ ℓ0

−ℓ0

ω〈Auℓ, uℓ〉dy

≤

∫

Ωℓ0

ϕ(|∂yuℓ|)

|∂yuℓ|
∂yuℓ∂yω(û− uℓ)dxdy +

∫ ℓ0

−ℓ0

ω〈Auℓ, û〉dy,

since û is independent of y. Consequently,

lim sup
ℓ→+∞

[ ∫

Ωℓ0

ωM(|∂yuℓ|)dxdy +

∫ ℓ0

−ℓ0

ω〈Auℓ, uℓ〉dy
]
≤

∫

Ωℓ0

ω

N∑

i=0

di∂x
i
ûdxdy. (3.28)

Combining (3.27) and (3.28), we have

lim
ℓ→+∞

∫ ℓ0

−ℓ0

ω〈Auℓ, uℓ〉dy =

∫

Ωℓ0

ω

N∑

i=0

di∂x
i
ûdxdy (3.29)

and

lim
ℓ→+∞

∫

Ωℓ0

ωM(|∂yuℓ|)dxdy = 0. (3.30)
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Let w ∈ K and ω 6≡ 0 be a nonnegative function in D
(
− ℓ0

2 ,
ℓ0
2

)
. Taking v = uℓ+

ω
|ω|∞

(w−uℓ) ∈

Kℓ as a test function in (3.11), we have

∫

Ω ℓ0
2

ϕ(|∂yuℓ|)

|∂yuℓ|
∂yuℓ∂y[ω(w − uℓ)]dxdy +

∫ ℓ0
2

−
ℓ0
2

ω〈Auℓ, w − uℓ〉dy ≥

∫

Ω ℓ0
2

ωf(w − uℓ)dxdy.

Thanks to (3.4), one has

∫

Ω ℓ0
2

ϕ(|∂yuℓ|)

|∂yuℓ|
∂yuℓ∂y[ω(w − uℓ)]dxdy +

∫ ℓ0
2

−
ℓ0
2

ω〈Aw,w − uℓ〉dy ≥

∫

Ω ℓ0
2

ωf(w − uℓ)dxdy.

From (3.30), it is clear that ∂yuℓ → 0 strongly in LM (Ω ℓ0
2

). This can imply that ϕ(|∂yuℓ|) → 0

strongly in LM (Ω ℓ0
2

). Passing to the limit in the above inequality as ℓ→ +∞ yields

∫ ℓ0
2

−
ℓ0
2

ω〈Aw,w − û〉dy ≥

∫

Ω ℓ0
2

ωf(w − û)dxdy.

This implies

〈Aw,w − û〉 ≥

∫

Ω

f(w − û)dx, ∀w ∈ K.

Choosing w = û + t(v − û), where 0 < t < 1 and v ∈ K, and passing to the limit as t → 0 we

get

〈Aû, v − û〉 ≥

∫

Ω

f(v − û)dx, ∀ v ∈ K,

that is, û is a solution of (3.6).

Step 5 û is the minimal nonnegative solution of (3.6).

Let u be an arbitrary solution of the problem (3.6). Letting ℓ → +∞ in (3.17), we deduce

û ≤ u. This means that û is the minimal solution of the problem (3.6).

Step 6 u1 ≤ u2.

Let uℓ,1 and uℓ,2 be the solutions of (3.11) obtained if we replace f by f1 and f2, respectively.

Then uℓ,1 and uℓ,2 converge to u1 and u2, respectively, as ℓ → +∞. Taking v = uℓ,1 − (uℓ,1 −

uℓ,2)
+ and v = uℓ,1 + (uℓ,1 − uℓ,2)

+ in (3.11) for f1 and f2, respectively, we get

∫

Ωℓ

(ϕ(|∂yuℓ,1|)
|∂yuℓ,1|

∂yuℓ,1 −
ϕ(|∂yuℓ,2|)

|∂yuℓ,2|
∂yuℓ,2

)
∂y(uℓ,1 − uℓ,2)

+dxdy

+

∫ ℓ

−ℓ

〈Auℓ,1 −Auℓ,2, (uℓ,1 − uℓ,2)
+〉dy ≤

∫

Ωℓ

(f1 − f2)(uℓ,1 − uℓ,2)
+dxdy ≤ 0.

Using the condition (3.4) one has

∫

Ωℓ

(ϕ(|∂yuℓ,1|)
|∂yuℓ,1|

∂yuℓ,1 −
ϕ(|∂yuℓ,2|)

|∂yuℓ,2|
∂yuℓ,2

)
∂y(uℓ,1 − uℓ,2)

+dxdy ≤ 0.

This implies uℓ,1 ≤ uℓ,2 a.e. in Ωℓ. Letting ℓ→ +∞, it follows that u1 ≤ u2.
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3.2 Noncoercive variational inequalities

We keep the notation and the assumptions of Subsection 3.1. Then we consider the following

problem





u ∈ K,

〈Au, v − u〉 ≥

∫

Ω

F (x, u)(v − u)dx, ∀ v ∈ K,
(3.31)

where F : Ω× R → R is a nonnegative function satisfying

F (·, t) : Ω → R is measurable for all t ∈ R, (3.32)

F (x, ·) : R → R is continuous and nondecreasing for a.e. x ∈ Ω, (3.33)

F (x, u) ∈ LM (Ω) for all u ∈ LM∗
(Ω). (3.34)

Clearly, (3.31) is the extension of (3.6).

Remark 3.1 If F : Ω× R → R is a nonnegative Carathéodory function such that for a.e.

x ∈ Ω and all t ∈ R, |F (x, t)| ≤ q(x), where q(x) ∈ LM (Ω), then F satisfies the conditions

(3.32)–(3.34).

Lemma 3.2 Let F be a nonnegative function satisfying the hypotheses (3.32)–(3.34), ϕ be

strictly increasing, and suppose that the assumptions (3.1)–(3.5) are fulfilled. Define that un is

the minimal nonnegative solution of the variational inequality in the last line of the following

problem:





u0 = 0,
un ∈ K,

〈Aun, v − un〉 ≥

∫

Ω

F (x, un−1)(v − un)dx, ∀ v ∈ K,

(3.35)

∀n ≥ 1. Then the sequence {un}n∈N is well defined and nondecreasing.

Proof The existence of un is insured by Theorem 3.3 since F (x, un−1) ∈ LM (Ω). In a way

similar to the proof in [6], the sequence of functions {un}n∈N is nonnegative and nondecreasing.

This completes the proof of Lemma 3.2.

Denote by u∞ the pointwise nonnegative limit of {un}n which is not necessarily in LM (Ω)

and may equal ∞. We also denote F∞ := lim
n→∞

F (·, un), which may also be infinite on some

subset. Assume that

F∞ ∈ LM (Ω). (3.36)

Note that the above assumption is satisfied. For example, sup
t≥0

F (·, t) ∈ LM (Ω). Then we have

the following result.

Theorem 3.4 Let F be a nonnegative function satisfying the hypotheses (3.32)–(3.34), ϕ

be strictly increasing, and suppose that the assumptions (3.1)–(3.5) are fulfilled. Then we have

the equivalence between the following assertions:

(1) (3.31) has at least one nonnegative solution,

(2) (3.31) has a minimal nonnegative solution,
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(3) the hypothesis (3.36) holds.

Moreover if the hypothesis (3.36) holds, then u∞, the limit of un, belongs to K and is the

minimal solution of (3.31).

Proof Clearly, (2) ⇒ (1). Suppose that (3.31) has a nonnegative solution w ∈ K. According

to Theorem 3.3, there exits a minimal nonnegative solution w ∈ K of the following problem:





u ∈ K,

〈Au, v − u〉 ≥

∫

Ω

F (x,w)(v − u)dx, ∀ v ∈ K.
(3.37)

It is clearly that w is also a solution of (3.37). Then w ≥ w. Since w is nonnegative and F

is nondecreasing in the second variable, F (x,w) ≥ F (x, 0) for a.e. x ∈ Ω. By Theorem 3.3,

we have w ≥ u1, where u1 is the minimal nonnegative solution of the variational inequality in

the last line of (3.35) for n = 1. Consequently, F (x,w) ≥ F (x,w) ≥ F (x, u1) for a.e. x ∈ Ω.

This implies that w ≥ u2 by Theorem 3.3, where u2 is the minimal nonnegative solution of the

variational inequality in the last line of (3.35) for n = 2. By induction, we can obtain that

w ≥ w ≥ un, ∀n ∈ N, (3.38)

and

F (x,w) ≥ F (x,w) ≥ F (x, un) for a.e. x ∈ Ω, ∀n ∈ N,

which yields (3.36). Hence, (1) ⇒ (3).

Let the hypothesis (3.36) hold. By Theorem 3.3, there exists the minimal solution u∞ of

the following problem:





u ∈ K,

〈Au, v − u〉 ≥

∫

Ω

F∞(v − u)dx, ∀ v ∈ K.

Since F (·, un−1) ≤ F∞, ∀n ≥ 1, and thanks to Theorem 3.3, we deduce that

un ≤ u∞, ∀n ∈ N. (3.39)

It follows that there exists u∞ such that

un → u∞ a.e. in Ω, (3.40)

as n→ ∞. Therefore, u∞ ≤ u∞, and F∞ = F (·, u∞) a.e. in Ω. Consequently, u∞ ∈ LM (Ω).

Taking v = u∞ as a test function in (3.35), using (3.3), (3.5), (3.33), (3.36), (3.39), Young

inequality, and the fact M ∈ ∆2, we obtain that

α

∫

Ω

N∑

i=0

M(|∂xi
un|)dx ≤

∫

Ω

F (x, un−1)(un − u∞)dx+ 〈Aun, u∞〉

≤

∫

Ω

F∞(un − u∞)dx + 〈Aun, u∞〉

≤ Cε

∫

Ω

N∑

i=0

M(|∂xi
un|)dx+ C(ε)
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for some positive constants C and C(ε) independent of n, where ε ∈ (0, 1) and ∂x0
un = un.

Choosing ε small enough, we have
∫

Ω

[M(|un|) +M(|∇un|)]dx ≤ C

for some constant C > 0 independent of n. This yields that ‖un‖1,M,Ω ≤ C for some positive

constant C independent of n. Combining the above results, it follows, as n→ ∞, that

un → u∞ strongly in LM (Ω), (3.41)

un ⇀ u∞ weakly in W 1
0LM (Ω) for σ(ΠLM ,ΠEM ). (3.42)

Since K is a closed convex subset of W 1
0LM (Ω), it is also weakly closed, which yields that

u∞ ∈ K.

From (3.4) and (3.35), it follows that

〈Aw,w − un〉 −

∫

Ω

F (x, un−1)(w − un)dx ≥ 〈Aw −Aun, w − un〉 ≥ 0, ∀w ∈ K. (3.43)

Since M ∈ ∆2, from (3.40), (3.33) and (3.36), it is easy to see that F (x, un) is strongly

convergent to F (x, u∞) in LM (Ω) as n → ∞. Then passing to the limit as n → ∞ in (3.43),

we have that

〈Aw,w − u∞〉 ≥

∫

Ω

F (x, u∞)(w − u∞)dx, ∀w ∈ K.

Taking w = u∞ + t(v − u∞) with 0 < t < 1 and v ∈ K, and letting t→ 0, one has

〈Au∞, v − u∞〉 ≥

∫

Ω

F (x, u∞)(v − u∞)dx, ∀ v ∈ K,

that is, u∞ is a solution of (3.31). Therefore, (3) ⇒ (1).

Suppose that the hypothesis (3.36) holds. Let w ∈ K be a nonnegative solution of (3.31).

By the above arguments, letting ℓ → +∞ in (3.38), we get w ≥ u∞. Since w is an arbitrary

solution of (3.31), we have that u∞ is the minimal solution of (3.31). Hence (3) ⇒ (2) and the

proof is achieved.

4 Variational Inequalities in Unbounded Domains

This section is devoted to studying the existence of nonnegative solutions and their minimal

solutions for some quasilinear variational inequalities in unbounded domains. We investigate

variational inequalities with coercive operators in Subsection 4.1 and with noncoercive operators

in Subsection 4.2, respectively.

4.1 Variational inequalities with coercive operator

Let G be a bounded domain in R
N−1 (N ≥ 2) with Lipschitz boundary, and KG be a closed

convex subset of W 1
0LM (G) containing 0 such that the lattice condition

KG ∧KG ⊂ KG, KG ∨ KG ⊂ KG

is satisfied. Let M be an N -function, M be the complementary function of M , and ϕ, φ are

the right-hand derivatives of M,M , respectively. Assume that M,M ∈ ∆2.
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For x ∈ R×G, denote x = (x1, X2) with X2 = (x2, · · · , xN ), and

W 1
locLM (R×G) = {u | u ∈W 1LM ((−a, a)×G), ∀ a > 0}.

We set

K̃ :=W 1
locLM (R;KG)

:= {v ∈ W 1
locLM (R×G) | v = 0 on R× ∂G and v(x1, ·) ∈ KG for a.e. x1 ∈ R}.

Then K̃ is a closed convex subset of W 1
locLM (R×G). We also denote

Lloc
M

(R×G) = {f | f ∈ LM ((−a, a)×G), ∀ a > 0}

and

Lloc
M

(R, LM (G)) := {f ∈ Lloc
M

(R×G) | f(x1, ·) ∈ LM (G) for a.e. x1 in R}.

For a nonnegative f in Lloc
M

(R, LM (G)), we consider the following nonlinear variational

inequality defined on the infinite cylinder R×G,





u ∈ K̃,
∫

R×G

a(x, u,∇u) · ∇(̺(v − u))dx +

∫

R×G

a0(x, u,∇u)̺(v − u)dx

≥

∫

R×G

f̺(v − u)dx

(4.1)

for all v ∈ K̃, and all ̺ ∈ D(R) with ̺ ≥ 0.

Note that if ∂x1
a1(x, u,∇u) ∈ Lloc

M
(R, LM (G)), the above variational inequality can be

written as
∫

G

∑

2≤i≤N

ai(x, u,∇u)∂xi
(v − u)(x1, ·)dX2

+

∫

G

[a0(x, u,∇u)− ∂x1
a1(x, u,∇u)](v − u)(x1, ·)dX2

≥

∫

G

f(v − u)(x1, ·)dX2, ∀ v ∈ K̃ a.e. x1 in R.

Since the domain is unbounded and f is not necessarily in the dual of W 1
0LM (R × G),

the existence of nonnegative solutions to problem (4.1) is not an ordinary issue. Once this is

ensured, we can then look for the minimal nonnegative solution. Here, we will use the same

approach as in Subsection 3.1 to prove these existence results. To this end, in addition to the

hypotheses (3.1)–(3.5), assume that

ai(x1, X2, ξ0, 0, ξ2, · · · , ξN ) = ai(X2, ξ0, 0, ξ2, · · · , ξN )

:= ai(X2, ξ0, ξ2, · · · , ξN ), ∀ ξj ∈ R, j = 0, 2, · · · , N, (4.2)

i = 0, 1, · · · , N . That is to say if ξ1 = 0 then the coefficients ai for i = 0, 1, · · · , N are

independent of x1. We also assume that there exists h ∈ LM (G) such that

f(x1, X2) ≤ h(X2) for a.e. (x1, X2) ∈ R×G. (4.3)



348 G. Dong

For ℓ > 0, let Ωℓ,G = (−ℓ, ℓ)2×G. For simplicity we denote 〈·, ·〉G = 〈·, ·〉(W 1
0
LM (G))∗,W 1

0
LM(G)

and 〈·, ·〉ℓ,G =
∫ ℓ
−ℓ〈·, ·〉Gdx1. We set

K̃ℓ := {v ∈ W 1
0LM (Ωℓ,G) | v(y, x1, ·) ∈ KG for a.e. (y, x1) ∈ (−ℓ, ℓ)2}.

Then K̃ℓ is a closed convex subset of W 1
0LM (Ωℓ,G).

Let ℓ > 0. Consider the following variational inequalities:




u ∈ KG,

〈AGu, v − u〉G ≥

∫

G

h(v − u)dX2, ∀ v ∈ KG,
(4.4)

and




uℓ ∈ K̃ℓ,

∫

Ωℓ,G

ϕ(|∂yuℓ|)

|∂yuℓ|
∂yuℓ∂y(v − uℓ)dxdy +

∫ ℓ

−ℓ

〈Auℓ, v − uℓ〉ℓ,Gdy

≥

∫

Ωℓ,G

f(v − uℓ)dxdy, ∀ v ∈ K̃ℓ,

(4.5)

where AGu = −
∑

2≤i≤N

∂xi
ai(X2, u,∇X2

u) + a0(X2, u,∇X2
u) with ∇X2

= (∂x2
, · · · , ∂xN

) and

A is the nonlinear operator given by (3.7). Under the above assumptions, the problems (4.4)

has the minimal nonnegative solution by Theorem 3.3 and (4.5) has a unique solution uℓ ∈ K̃ℓ
with uℓ ≥ 0 for every ℓ > 0 by Theorem 3.1, when ϕ is strictly increasing. Then, we have the

following theorem.

Theorem 4.1 Suppose that the assumptions (3.1)–(3.5) and (4.2)–(4.3) are satisfied, where

Ω is replaced by R×G in (3.1)–(3.5). Assume that ϕ is strictly increasing. Then the pointwise

limit of {uℓ}ℓ is the minimal nonnegative solution of (4.1), where uℓ is the solution of (4.5),

for every ℓ > 0.

Moreover, the following assertions hold:

(i) Let u1 and u2 be the minimum nonnegative solutions of (4.1) obtained by replacing f

with f1 and f2, respectively. If f1 ≤ f2, then u1 ≤ u2.

(ii) Let û1 be the minimum nonnegative solution of (4.1) obtained by replacing f with f1,

and û2 be a nonnegative solution of (4.1) obtained by replacing f with f2, where f2 does not

necessarily satisfy (4.3). If f1 ≤ f2, then û1 ≤ û2.

Proof Step 1 The sequence {uℓ}ℓ is nondecreasing and bounded by any solution u of (4.4).

As the same arguments in the proof of Theorem 3.3, we can get {uℓ}ℓ is a nondecreasing

sequence.

Taking v = u+(uℓ(y, x1, ·)−u)
+ ∈ KG as a test function in (4.4) and integrating on (−ℓ, ℓ)2,

we obtain by (4.2) that
∫ ℓ

−ℓ

〈Au, (uℓ − u)+〉ℓ,Gdy ≥

∫

Ωℓ,G

h(uℓ − u)+dxdy. (4.6)

Taking v = uℓ − (uℓ − u)+ ∈ K̃ℓ as a test function in (4.5) and adding the resulting inequality

with (4.6) one yields
∫

Ωℓ,G

ϕ(|∂yuℓ|)

|∂yuℓ|
∂yuℓ∂y(uℓ − u)+dxdy +

∫ ℓ

−ℓ

〈Auℓ −Au, (uℓ − u)+〉ℓ,Gdy
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≤

∫

Ωℓ,G

(f − h)(uℓ − u)+dxdy.

In view of (3.4) and (4.3), we derive

∫

Ωℓ,G

ϕ(|∂yuℓ|)

|∂yuℓ|
∂yuℓ∂y(uℓ − u)+dxdy ≤ 0.

Since u is independent of y, this implies that

∫

Ωℓ,G

[ϕ(|∂yuℓ|)
|∂yuℓ|

∂yuℓ −
ϕ(|∂yu|)

|∂yu|
∂yu

]
∂y(uℓ − u)+ ≤ 0.

It follows that uℓ ≤ u.

Step 2 The pointwise limit of uℓ is independent of y.

By Step 1, there exists û ≥ 0, such that

uℓ → û a.e. in R
2 ×G as ℓ→ +∞. (4.7)

Following the arguments as in the proof of Theorem 3.3, we can show that û is independent of

y.

Step 3 For all ℓ0 > 0, there exists a constant Cℓ0 independent of ℓ such that

‖uℓ‖1,M,Ωℓ0,G
≤ Cℓ0 . (4.8)

Let ̺ ∈ D((−2ℓ0, 2ℓ0)
2) such that

0 ≤ ̺ ≤ 1 and ̺ = 1 on (−ℓ0, ℓ0)
2.

Let ℓ0 > 0 and u be a nonnegative solution of (4.4). Taking v = uℓ − ̺2(uℓ − u) ∈ K̃ℓ in (4.5),

then following the same arguments as in the proof of Theorem 3.3 we can deduce (4.8).

Step 4 û is a solution of (4.1).

For ℓ0 > 0, according to (4.7)–(4.8), we can deduce that

uℓ → û strongly in LM (Ωℓ0,G) (4.9)

and

uℓ ⇀ û weakly in W 1LM (Ωℓ0,G) for σ
(N+1∏

i=0

LM (Ωℓ0,G),

N+1∏

i=0

EM (Ωℓ0,G)
)
, (4.10)

as ℓ→ +∞.

Since K̃ℓ0 is closed and convex, it is also weakly closed and by consequence û ∈ K̃ℓ0 , i.e.,

û(x1, ·) ∈ KG for a.e. x1 ∈ (−ℓ0, ℓ0). Then by using the above convergence results, we can

prove as in (3.29)–(3.30) that

lim
ℓ→+∞

∫

Ωℓ0,G

ω〈Auℓ, uℓ〉ℓ0,Gdxdy =

∫

Ωℓ0,G

ω

N∑

i=0

di∂xi
ûdxdy, (4.11)

lim
ℓ→+∞

∫

Ωℓ0,G

ωM(|∂yuℓ|)dxdy = 0, ∀ω ∈ D((−ℓ0, ℓ0)
2), ω ≥ 0, (4.12)
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where di is the weak limit of ai(x, uℓ,∇uℓ) in LM (Ωℓ0,G). (4.11)–(4.12) hold for a subsequence

of {uℓ}ℓ, still denoted by {uℓ}ℓ.

Let w ∈ K̃ and ω 6≡ 0 be a nonnegative function in D
((

− ℓ0
2 ,

ℓ0
2

)2)
. Taking v = uℓ +

ω
|ω|∞

(w − uℓ) ∈ K̃ℓ as a test function in (4.5), we get

∫

Ω ℓ0
2

,G

ϕ(|∂yuℓ|)

|∂yuℓ|
∂yuℓ∂y(ω(w − uℓ))dxdy +

∫ ℓ0
2

−
ℓ0
2

〈Auℓ, ω(w − uℓ)〉 ℓ0
2
,G
dy

≥

∫

Ω ℓ0
2

,G

ωf(w − uℓ)dxdy.

Passing to the limit as ℓ→ +∞ and taking into account (4.9)–(4.12) we obtain

∫

Ω ℓ0
2

,G

N∑

i=0

di∂xi
(ω(w − û))dxdy ≥

∫

Ω ℓ0
2

,G

ωf(w − û)dxdy. (4.13)

Let t > 0 and ψ be a nonnegative function in D((− ℓ0
2 ,

ℓ0
2 )

2). Then it follows from the condition

(3.4) that

∫ ℓ0
2

−
ℓ0
2

ψ〈A(û + tω(w − û))−Auℓ, û− uℓ〉 ℓ0
2
,G
dy

+

∫ ℓ0
2

−
ℓ0
2

ψt〈A(û + tω(w − û))−Auℓ, ω(w − û)〉 ℓ0
2
,G
dy ≥ 0.

Passing to the limit as ℓ→ +∞, it follows from (3.5), (4.9)–(4.11) that

∫

Ω ℓ0
2

,G

ψ

N∑

i=0

[ai(x, û+ tω(w − û),∇(û + tω(w − û))) − di]∂xi
(ω(w − û))dxdy ≥ 0,

∀ψ ∈ D
((

− ℓ0
2 ,

ℓ0
2

)2)
, ψ ≥ 0. Consequently, letting t→ 0, one has

∫

Ω ℓ0
2

,G

ψ

N∑

i=0

[ai(x, û,∇û)− di]∂xi
(ω(w − û))dxdy ≥ 0,

∀ψ ∈ D

((
−
ℓ0

2
,
ℓ0

2

)2)
, ψ ≥ 0,

which implies that

∫ ℓ0
2

−
ℓ0
2

〈Aû, ω(w − û)〉 ℓ0
2
,G
dy ≥

∫

Ω ℓ0
2

,G

N∑

i=0

di∂xi
(ω(w − û))dxdy. (4.14)

Combining (4.13) and (4.14), we have

∫ ℓ0
2

−
ℓ0
2

〈Aû, ω(w − û)〉 ℓ0
2
,G
dy ≥

∫

Ω ℓ0
2

,G

ωf(w − û)dxdy (4.15)



The Minimal Solutions of Variational Inequalities 351

for all w ∈ K̃, ω ∈ D
((

− ℓ0
2 ,

ℓ0
2

)2)
, ω ≥ 0. Taking ω(y, x1) = ˜̺(y)̺(x1) in (4.15) where ˜̺ 6≡ 0

and ̺ are nonnegative functions in D
(
− ℓ0

2 ,
ℓ0
2

)
, we obtain

∫ ℓ0
2

−
ℓ0
2

˜̺(y)〈Aû, ̺(w − û)〉 ℓ0
2
,G
dy ≥

∫

Ω ℓ0
2

,G

˜̺(y)̺f(w − û)dxdy.

The fact that û is independent of y implies that

〈Aû, ̺(w − û)〉 ℓ0
2
,G

≥

∫

(−
ℓ0
2
,
ℓ0
2
)×G

̺f(w − û)dx, ∀w ∈ K̃, ̺ ∈ D

(
−
ℓ0

2
,
ℓ0

2

)
, ̺ ≥ 0.

Since ℓ0 is arbitrary, we get

〈Aû, ̺(w − û)〉R×G ≥

∫

R×G

̺f(w − û)dx, ∀w ∈ K̃, ̺ ∈ D(R), ̺ ≥ 0.

Therefore, û is a solution of (4.1).

Step 5 û is the minimal nonnegative solution of (4.1).

Let u be an arbitrary nonnegative solution of (4.1). Then (uℓ − u)+ are supported in the

closure of Ωℓ,G. Choosing ̺ ∈ D(R) such that ̺ = 1 on (−ℓ, ℓ), taking v = u+(uℓ(y, ·)−u)
+ ∈ K̃

as a test function in (4.1), and integrating on (−ℓ, ℓ), we have

∫ ℓ

−ℓ

〈Au, (uℓ − u)+〉ℓ,Gdy ≥

∫

Ωℓ,G

f(uℓ − u)+dxdy. (4.16)

Taking v = uℓ−(uℓ−u)
+ ∈ K̃ℓ as a test function in (4.5) and summing the produced inequality

with (4.16), we obtain

−

∫

Ωℓ,G

ϕ(|∂yuℓ|)

|∂yuℓ|
∂yuℓ∂y(uℓ − u)+dxdy +

∫ ℓ

−ℓ

〈Au −Auℓ, (uℓ − u)+〉ℓ,Gdy ≥ 0.

According to (3.4), we get

∫

Ωℓ,G

[ϕ(|∂yuℓ|)
|∂yuℓ|

∂yuℓ −
ϕ(|∂yu|)

|∂yu|
∂yu

]
∂y(uℓ − u)+dxdy ≤ 0,

since u is independent of y. It follows from Lemma 3.1 that uℓ ≤ u a.e. in Ωℓ. Letting ℓ→ +∞

in (4.7), we have û ≤ u a.e. in R×G. This means that û is the minimal nonnegative solution

of (4.1).

Let u1ℓ and u2ℓ be the converging sequences defined above as solutions of (4.5) for f = f1
and f = f2, respectively. By the same arguments as in the proof of Theorem 3.3, u1ℓ ≤ u2ℓ ,

since f1 ≤ f2. Letting ℓ→ +∞, it follows that û1 ≤ û2 a.e. in R×G, where û1 and û2 are the

minimum nonnegative solutions of (4.1) obtained by replacing f with f1 and f2, respectively.

Hence, the assertion (i) holds.

Let u1ℓ be the converging sequence defined above as the solution of (4.5) for f = f1, û1 be the

minimum nonnegative solution of (4.1) obtained by replacing f with f1, and û2 be a nonnegative

solution of (4.1) obtained by replacing f with f2, where f2 does not necessarily satisfy (4.3).

Note that (u1ℓ − û2)
+ are supported in the closure of Ωℓ,G. Taking v = u1ℓ − (u1ℓ − û2)

+ ∈ K̃ℓ
as a test function in (4.5) for f = f1 and v = û2 + (u1ℓ(y, ·) − û2)

+ ∈ K̃ as a test function in
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(4.1) for f = f2, choosing ̺ ∈ D(R) such that ̺ = 1 on (−ℓ, ℓ) and integrating on (−ℓ, ℓ), then

summing the produced inequalities we have

−

∫

Ωℓ,G

ϕ(|∂yu
1
ℓ |)

|∂yu1ℓ |
∂yu

1
ℓ∂y(u

1
ℓ − û2)

+dxdy +

∫ ℓ

−ℓ

〈Aû2 −Au1ℓ , (u
1
ℓ − û2)

+〉ℓ,Gdy

≥

∫

Ωℓ,G

(f2 − f1)(u
1
ℓ − û2)

+dxdy.

Using the fact that û2 is independent of y and the condition (3.4) we derive

∫

Ωℓ,G

[ϕ(|∂yu1ℓ |)
|∂yu1ℓ |

∂yu
1
ℓ −

ϕ(|∂y û2|)

|∂y û2|
∂yû2

]
∂y(u

1
ℓ − û2)

+dxdy ≤ 0.

Therefore, u1ℓ ≤ û2. Letting ℓ → +∞, it yields that û1 ≤ û2 a.e. in R×G. Consequently, the

assertion (ii) holds.

Consider the following nonlinear elliptic problem defined on the infinite cylinder R×G,
{
u ∈ W 1

locLM (R×G), u = 0 on R× ∂G,

Au = f in R×G.
(4.17)

A function u is called a (weak) solution of (4.17) if u ∈W 1
locLM (R×G) and

∫

R×G

a(x, u,∇u)∇vdx+

∫

R×G

a0(x, u,∇u)vdx =

∫

R×G

fvdx, ∀ v ∈ D(R×G). (4.18)

Then any solution of problem (4.1) for KG =W 1
0LM (G) is a solution of (4.17) and vice versa.

Thus the existence of nonnegative solutions of problem (4.17) is proved in Theorem 4.1. Indeed,

let u ∈ K̃ be a solution of (4.1). Choosing v = u± v′ with v′ ∈ D(R×G) in (4.1) and ̺ = 1 on

the support of v′, we can obtain (4.18). The converse is an immediate consequence of (4.18).

Therefore, we have the following result as an immediate consequence of Theorem 4.1.

Corollary 4.1 Under the assumptions of Theorem 4.1, there exists a minimal nonnegative

solution of (4.17). Moreover, let û1 and û2 be the minimal nonnegative solutions of (4.17)

obtained by replacing f with f1 and f2 respectively. Then if f1 ≤ f2 we have û1 ≤ û2.

4.2 Noncoercive variational inequalities

We consider the following nonlinear variational inequality defined on the infinite cylinder

R×G,




u ∈ K̃,
∫

R×G

a(x, u,∇u)∇(̺(v − u))dx+

∫

R×G

a0(x, u,∇u)̺(v − u)dx

≥

∫

R×G

F (x, u)̺(v − u)dx, ∀ v ∈ K̃, ̺ ∈ D(R), ̺ ≥ 0,

(4.19)

where F is defined as in Subsection 3.2, replacing Ω by R×G. In addition, we assume that

h(X2, r) := sup
x1∈R

F (x1, X2, r) (4.20)

satisfies

h(X2, u) ∈ LM (G), ∀u ∈ LM∗
(G). (4.21)
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Lemma 4.1 Let F and h be nonnegative functions satisfying the hypotheses above. Suppose

that the assumptions (3.1)–(3.5) and (4.2) hold, where Ω is replaced by R × G in (3.1)–(3.5).

Assume that ϕ is strictly increasing. Define un and un are respectively the minimal nonnegative

solutions of variational inequalities in the last line of the following problems:





u0 = 0,
un ∈ KG,

〈AGun, v − un〉G ≥

∫

G

h(X2, un−1)(v − un)dX2, ∀ v ∈ KG,

(4.22)

and




u0 = 0,

un ∈ K̃,
∫

R×G

a(x, un,∇un)∇(̺(v − un))dx +

∫

R×G

a0(x, un,∇un)̺(v − un)dx

≥

∫

R×G

F (x, un−1)̺(v − un)dx, ∀ v ∈ K̃, ∀ ̺ ∈ D(R), ̺ ≥ 0,

(4.23)

respectively, for every n ≥ 1. Then the sequences {un}n∈N and {un}n∈N are well defined and

nondecreasing satisfying

un ≤ un, F (x, un) ≤ h(X2, un), ∀n ∈ N for a.e. x ∈ R×G. (4.24)

Proof It is clear that u0, u0 satisfy (4.24). Suppose that {un−1} and {un−1} are defined

and satisfy (4.24), i.e.,

un−1 ≤ un−1, F (x, un−1) ≤ h(X2, un−1) for a.e. x ∈ R×G. (4.25)

Thanks to (4.21), one has h(X2, un−1) ∈ LM (G). Consequently, un exists by Theorem 3.3. In

view of (4.25), F (x, un−1) ∈ LM (G). Therefore, un exists by Theorem 4.1. Arguing as Step 1

in the proof of Theorem 4.1 one can deduce that un ≤ un. According to (3.33) and (4.20), we

have

F (x, un) ≤ F (x, un) ≤ h(X2, un), ∀n ∈ N for a.e. x ∈ R×G,

i.e., (4.24) holds.

We denote h∞ = lim
n→∞

h(·, un), F∞ = lim
n→∞

F (·, un) and assume that

h∞ ∈ LM (G). (4.26)

Theorem 4.2 Let F and h be nonnegative functions satisfying the hypotheses above and

suppose that the assumptions (3.1)–(3.5) and (4.2) hold, where Ω is replaced by R×G in (3.1)–

(3.5). Assume that ϕ is strictly increasing. Then there exists a minimal nonnegative solution

of (4.19).

Proof By (3.33), F (·, un−1) ≤ F∞, ∀n ≥ 1 a.e. in R × G. It follows, by using Theorem

4.1, that {un}n∈N is nondecreasing and

un ≤ u, (4.27)
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where u is the minimal solution of




u ∈ K̃,
∫

R×G

a(x, u,∇u) · ∇(̺(v − u))dx+

∫

R×G

a0(x, u,∇u)̺(v − u)dx

≥

∫

R×G

F∞̺(v − u)dx

(4.28)

for all v ∈ K̃, and all ̺ ∈ D(R) with ̺ ≥ 0.

Note that F∞ ≤ h∞ a.e. in R × G, and h∞ is independent of x1. By Lemma 4.1, there

exists ũ∞ such that un → ũ∞ a.e. on R×G.

Let ℓ0 > 0. Taking v = un− ̺(un− u) as a test function in (4.23) and choosing ̺ such that

̺ = 1 on (−ℓ0, ℓ0), we have

∫

R×G

a(x, un,∇un)2̺∂x1
̺(un − u)dx+

∫

R×G

a(x, un,∇un)̺
2∇(un − u)dx

+

∫

R×G

a0(x, un,∇un)̺
2(un − u)dx ≤

∫

R×G

F (x, un−1)̺
2(un − u)dx,

which implies that
∫

R×G

a(x, un,∇un)̺
2∇undx+

∫

R×G

a0(x, un,∇un)̺
2undx

≤ −

∫

R×G

a(x, un,∇un)2̺∂x1
̺undx+

∫

R×G

a(x, un,∇un)2̺∂x1
̺udx

+

∫

R×G

a(x, un,∇un)̺
2∇udx+

∫

R×G

a0(x, un,∇un)̺
2udx

+

∫

R×G

F (x, un−1)̺
2(un − u)dx.

SinceM ∈ ∆2, using the conditions (3.3), (3.5), (4.27) and the Young inequality, we can deduce

∫

(−ℓ0,ℓ0)×G

[M(|un|) +M(|∇un|)]dx ≤ C(ℓ0)

as Theorem 3.3, for some constant C = C(ℓ0) independent of n, and consequently,

‖un‖1,M,(−ℓ0,ℓ0)×G ≤ C(ℓ0).

Therefore, one has

un → ũ∞ strongly in LM ((−ℓ0, ℓ0)×G)

and

un ⇀ ũ∞ weakly in W 1
0LM ((−ℓ0, ℓ0)×G)

for σ
( N∏

i=0

LM ((−ℓ0, ℓ0)×G),

N∏

i=0

EM ((−ℓ0, ℓ0)×G)
)
,

as n→ ∞. Since ℓ0 is arbitrary, ũ∞ ∈ K̃.
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By the same arguments as in the proof of Theorem 4.1, it is easy to see that ũ∞ is a

nonnegative solution of (4.19).

Let w be a nonnegative solution of (4.19). Then w is a solution of the following problem:





u ∈ K̃,
∫

R×G

a(x, u,∇u)∇(̺(v − u))dx+

∫

R×G

a0(x, u,∇u)̺(v − u)dx

≥

∫

R×G

F (x,w)̺(v − u)dx, ∀ v ∈ K̃, ̺ ∈ D(R), ̺ ≥ 0.

Since w ≥ 0, F (x,w) ≥ F (x, 0) = F (x, u0) for a.e. x ∈ R × G. By Lemma 4.1 and Theorem

4.1(ii), w ≥ u1. Therefore, F (x,w) ≥ F (x, u1) for a.e. x ∈ R×G. By Lemma 4.1 and Theorem

4.1(ii), w ≥ u2. By induction, we can obtain that w ≥ un, ∀n ∈ N. Letting n → ∞, w ≥ ũ∞,

that is, ũ∞ is the minimal solution of (4.19).

Acknowledgement The author is highly grateful for the referees’ careful reading and

comments on this paper.

References

[1] Adams, R. A. and Fournier, J. J. F., Sobolev Spaces, 2nd ed., Academic Press, New York, 2003.

[2] Aharoucha, L. and Bennouna, J., Existence and uniqueness of solutions of unilateral problems in Orlicz
spaces, Nonlinear Anal., 72, 2008, 3553–3565.

[3] Benkirane, A. and Elmahi, A., An existence for a strongly nonlinear elliptic problem in Orlicz spaces,
Nonlinear Anal., 36, 1999, 11–24.

[4] Boccardo, L. and Gallouet T., Nonlinear elliptic equations with right hand side measures, Comm. Partial

Differential Equations, 17 (3–4), 1992, 641–655.

[5] Browder, F. E. and Hess, P., Nonliear mappings of monotone type in Banach spaces, J. Funct. Anal., 11,
1972, 251–294.

[6] Chipot, M., Guesmia, S. and Harkat, S., On the minimal solution for some variational inequalities, J.

Differential Equations, 266, 2019, 493–525.

[7] Donaldson, T., Nonlinear elliptic boundary value problems in Orlicz-Sobolev space, J. Differential Equa-

tions, 10, 1971, 507–528.

[8] Dong, G., An existence theorem for weak solutions for a class of elliptic partial differential systems in
general Orlicz-Sobolev spaces, Nonlinear Anal., 69, 2008, 2049–2057.

[9] Dong, G., Elliptic equations with measure data in Orlicz spaces, Electron. J. Diff. Eq., 2008 (76), 2008,
1–10.

[10] Dong, G. and Fang, X. C., Variational inequalities with multivalued lower order terms and convex func-
tionals in Orlicz-Sobolev spaces, J. Funct. Space., 2015, 2015, 1–10.

[11] Dong, G. and Fang, X. C., The sub-supersolution method and extremal solutions of quasilinear elliptic
equations in Orlicz-Sobolev spaces, J. Funct. Space., 2018, 2018, 1–7.

[12] Dong, G. and Fang, X. C., Positive solutions to nonlinear inclusion problems in Orlicz-Sobolev spaces,
Appl. Anal., 2019, DOI: 10.1080/00036811.2019.1645327.

[13] Dong, G. and Shi, Z. R., An existence theorem for weak solutions for a class of elliptic partial differential
systems in Orlicz spaces, Nonlinear Anal., 68, 2008, 1037–1042.

[14] Elmahi, A. and Meskine, D., Existence of solutions for elliptic equations having natural growth terms in
Orlicz spaces, Abstr. Appl. Anal., 12, 2004, 1031–1045.

[15] Fan, X. L., Differential equations of divergence form in Musielak-Sobolev spaces and a sub-supersolution
method, J. Math. Anal. Appl., 386, 2012, 593–604.

[16] Fu, Y. Q., Dong Z. F. and Yan, Y., On the existence of weak solution for a class of elliptic partial differential
systems, Nonlinear Anal., 48, 2002, 961–977.



356 G. Dong
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