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Willmore Surfaces in Spheres via Loop Groups IV: On
Totally Isotropic Willmore Two-Spheres in S°*

Peng WANG!

Abstract In this paper the author derives a geometric characterization of totally isotropic
Willmore two-spheres in S®, which also yields to a description of such surfaces in terms
of the loop group language. Moreover, applying the loop group method, he also obtains
an algorithm to construct totally isotropic Willmore two-spheres in S®. This allows him
to derive new examples of geometric interests. He first obtains a new, totally isotropic
Willmore two-sphere which is not S-Willmore (i.e., has no dual surface) in S®. This gives
a negative answer to an open problem of Ejiri in 1988. In this way he also derives many
new totally isotropic, branched Willmore two-spheres which are not S-Willmore in S°.
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1 Introduction

Totally isotropic surfaces first appeared in the study of the global geometry of surfaces
in the famous work of Calabi [11], where twistor bundle theory was applied to describe the
geometry of minimal two-spheres in S™. This led later to much progress in geometry and
the theory of integrable systems (see for example [4, 8, 10]). In the study of Willmore two-
spheres, totally isotropic surfaces play an important role as well. First we note that isotropic
properties are conformally invariant. This indicates that they are of interest in the conformal
geometry of surfaces. Moreover, the classical work of Ejiri [20] shows that isotropic surfaces
in S* are automatically Willmore surfaces and furthermore they are Willmore surfaces with
dual surfaces. He also showed that Willmore two-spheres in S* are either Mobius equivalent to
minimal surfaces with planer ends in R*, or isotropic two-spheres (see [20]) (see also [7, 28-29]).

In [20], Ejiri also introduced the notion of S-Willmore surfaces. Roughly speaking, these
surfaces can be viewed as Willmore surfaces admitting dual surfaces. Note that by Bryant’s
classical work, every Willmore surface in S% has a dual Willmore surface (see [5-6]). But when
the codimension is bigger than 1, a Willmore surface may not have a dual surface (see [7, 20, 27]).
Using the duality properties of S-Willmore surfaces, Ejiri provided furthermore a classification
of S-Willmore two-spheres in S"*2 by constructing the holomorphic forms for these surfaces
(see [20]). Especially, for Willmore two-spheres in S*, a construction of a holomorphic 8-form
indicates that these surfaces are automatically S-Willmore (see [7, 20, 26, 28-29]). In the end of
Ejiri’s paper, he asked whether all Willmore two-spheres in S"*? are S-Willmore or not. If the
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answer is ‘no’, i.e., if some Willmore, but not S-Willmore two-spheres would exist, how would
one construct and characterize them?

In this paper, we will answer Ejiri’s open problem by a concrete construction of a totally
isotropic Willmore two-sphere in S¢ which is not S-Willmore. Moreover, beyond the explicit
construction of some new examples, the main goal of this paper is to characterize all totally
isotropic Willmore two-spheres in S® via their geometric properties and their normalized poten-
tials. This geometric description also supplies the basis for the work of [34], where we provide
a coarse classification of Willmore two-spheres in spheres by using the loop group method for
the construction of harmonic maps (see [8, 15, 18-19]).

Different from the case in S*, where totally isotropic surfaces are automatically S-Willmore
surfaces and of finite uniton type, totally isotropic surfaces in S® are not even Willmore in
general. We refer to [8, 18, 33-34] for the definition of uniton. Moreover, even a totally
isotropic Willmore surface in S® will, in general, not be of finite uniton type (see Remark
2.11). To this end, we first derive a geometric characterization of totally isotropic Willmore
two-spheres in S, which is similar to the description of minimal two-spheres in S™ (see [4, 11]).
Roughly speaking, the normal connection of a totally isotropic Willmore two-sphere has a special
form and conversely, totally isotropic surfaces with such special normal connection are always
Willmore and of finite uniton type (see Theorems 2.1-2.2). Application of this description yields
a second description of such Willmore surfaces in terms of loop group language (see Theorems
2.8 and 3.3). The second description of totally isotropic Willmore two-spheres in S® contains
also a concrete algorithm of constructions of explicit totally isotropic Willmore two-spheres.
By this method, we derive many new examples of Willmore surfaces as follows, most of which
have two branched points.

Example 1.1 Let A € S and let (we refer to Section 2 for the definition of 7)

_ 0 B\l
=1 ~ d
K (—B{Im o) -

with
ipzP=t  —pzPt —i 1
= 1| —ipzP=t  pep! —i 1
Bl - 5 —p —lp _Zp—l _in—l . (11)
ip —p —igPml pl

Here p € Z*,p > 2. The associated family of Willmore two-spheres x, corresponding to 7, is

|z = DY D pA(p— 1) (p - D

P’ P+1? PR+l
(r— 1)(A‘1zp+Azp)(1 _ %)
_i%(klz—m(u%)
M(,\—lz+,\g)(1+M)

P p+1
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with

(p— 12>+ 1)r?  p?(p—1)2r2*2  (p—1)%*P

v=1+4+7r*"24
p? (p+1)? pi(p+1)2

and r =|z|.

Moreover zy : S?\{0,00} — S% is a Willmore immersion in S°, which is full, not S-Willmore,
and totally isotropic. It is obvious that z) is S'-equivariant. Note that x is also immersed
at 0 and oo when p = 2. When p > 2, ) has two branched points 0 and oo, whose metrics
tend to 0 with the same speed 7??~%. To be concrete, near the point z = 0, |0.(z))|*> =
2(p—1)*r?P=* +0(r?~*). Near the point z = oo, setting Z = 1 and 7 = |2], we have |9z(z))|? =
2pt(p — 1)272P=4 4 o(72P—4).

Recently there are several progresses on the discussions of branched points of Willmore sur-
faces (see for example [1, 12, 24-25]). We hope that these examples will help the understanding
of branched points of Willmore surfaces. We only show the explicit computations in Appendix
B for the case p = 2, since the construction of x) is the same for the other ones.

This paper is organized as follow: In Section 2, we first recall basic results of Willmore
surfaces and derive a new geometric description of isotropic Willmore two-spheres in S¢. More-
over, we obtain a description of the normalized potentials of isotropic Willmore two-spheres in
56, The converse part, that generically such normalized potentials will produce special total-
ly isotropic Willmore surfaces in S®, as well as new examples, makes up the main content of
Section 3. The main idea is to perform a concrete Iwasawa decomposition for these normal-
ized potentials to derive geometric properties of the corresponding Willmore surfaces, which
also yields an algorithm to construct Willmore surfaces. We put the technical computations of
Iwasawa decompositions and examples into two Appendixes for interested readers.

2 Isotropic Willmore Two-spheres in S°

In Subsection 2.1, we first recall the basic theory of Willmore surfaces and then focus on
isotropic Willmore surfaces in S¢. In Subsection 2.2 we will collect the basic DPW methods as
well as Wu’s formula for harmonic maps and then derive the normalized potentials for isotropic
Willmore two-spheres in S°.

2.1 Isotropic Willmore surfaces in S® and related holomorphic differentials
2.1.1 Willmore surfaces in spheres

For completeness we first recall briefly the basic surface theory. For more details, we refer
to [16, Section 2], [17] and [34, Section 2] (see also [9, 26]).
Let R?H be the Lorentz-Minkowski space equipped with the Lorentzian metric

n+3

<ZE,y> = —ZoYo + Z TiYy; = xtjl,n+3y7 Il,n+3 = diag(_la 17 Tty 1)a \V/JZ, ) S Rn+4'
j=1

We denote by C1™? = {z € RI"™ | (z,x) = 0,29 > 0} the forward light cone and by Q"*? =
C$+B/R+ the projective light cone. It is well-known that Riemannian space forms can be
conformally embedded into Q"2 (see [5, 7, 9, 20, 28-29]). For a conformal immersion y :
M — S™*2 one has a canonical lift Y = e~“(1,y) into C"*3 with respect to a local complex
coordinate z of the Riemann surface M, where e* = 2(y.,yz). There exists a global bundle
decomposition M x RIT = V@ V1L, with V = Span{Y,ReY;,ImY,, Y.z}, where V* denotes
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the orthogonal complement of V. Let V¢ and V(CL be the complexifications of V and V*. Let
{Y,Y,, Yz, N} be a frame of V¢ such that (N,Y,) = (N,Yz) = (N,N) =0 and(N,Y) = —1. Let
D denote the normal connection on Vg-. For any section 1) € T'(Vg") of the normal bundle and
a canonical lift Y with respect to z, we obtain the structure equations:

S
}/zz:__y )
5 + K

_ 1
YZE = _<"<‘77 KJ>Y+ §N7 (21)
N, = —2(k,R)Y, — sYz + 2D=x,
wz = Dﬂb + 2<¢7 DEK>Y - 2<w7 ﬁ>YE'

Here H:‘dd‘i is named the conformal Hopf differential of y, and s is named the Schwarzian of y
(see [9]). The conformal Gauss, Codazzi and Ricci equations as integrability conditions are as

follows:

1
553 = 3(k, D.,R) + (D.k,R),

Im(Dngn + %,.;) —0, (2.2)
Rgzw := DD, — D, Dz = 2(¢), k)E — 2(p, R) k.
Recall that y is a Willmore surface if and only if the Willmore equation holds (see [9])
D.Dk + %n = 0. (2.3)

Another equivalent condition of y being Willmore is the harmonicity of the conformal Gauss
map Gr : M — Gri3(RIT) = SOT(1,n + 3)/SO*(1,3) x SO(n) of y (see [5, 20, 26]) with
Gr =Y ANY,ANY,ANN=-21-Y AY, AY>A N. A local lift of Gr is chosen as

1 1
F:=(—(Y +N),— (=Y +N),er,ea, 01, ,p) : U — SOT(1,n+3 2.4
(50 + M), RIRCRTRENT (Ln+3)  (24)
A B
with its Maurer-Cartan form o = F~!dF = (—Bé?fm i;) dz+ (-Eilfl.a Z;) dz, where
V281 o V2Bn
By — V281 o V28, ’ (2.5)
B —ky,
—iky o =ik,

{4;} is an orthonormal basis of V+ on U and x = ki, Dzk =3 B, k=" |ki)2.
j j

J
2.1.2 Isotropic Willmore surfaces in S°

Recall that y is totally isotropic if and only if all the derivatives of y with respect to z are
isotropic, that is,
(Y™ vy =0 forall m, neZ".

z

Here Yz(m) means taking m times derivatives of Y by z. We refer to [4, 11, 16-17, 20, 26] for
more discussions on isotropic surfaces. A well-known result states that y is totally isotropic
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if and only if y is the projection of a holomorphic or anti-holomorphic curve into the twistor
bundle TS?" of S?" (see [11, 20]). For the basic theory about twistor bundles, we refer to [10].
Let y be a Willmore surface with an isotropic Hopf differential, i.e., (x, k) = 0. Note that one
derives straightforwardly that (k, D.k) = (k, Dzx) = 0 by differentiating (x, k) = 0. Applying
the Willmore equation (2.3), we also have (Dzx, Dzk) = 0.
For isotropic Willmore surfaces, Ma introduced several holomorphic differentials, see [26,
Theorem 5.4]. For our case, we only need that

Qdz* := (Dzk, D.k)dz" (2.6)

is a globally defined holomorphic differential on M. The fact that Qdz* is holomorphic can be
derived from a direct computation using (k,x) = 0, Willmore equations and Ricci equations
(see also [26]). Then, if M = S?, we will have (Dzk, D,k) = 0.

Now we assume that y is not S-Willmore, then Dzx is not parallel to x (recall that y is called
S-Willmore if y is Willmore with Dzk||k, see [16-17, 20]). So Dzx and k span a two-dimensional
isotropic subspace Spanc{r, Dzx}. Since D, is perpendicular to x and Dzk, D,k is contained
in Spang{r, Dzk}. As a consequence, we also have (D.k, D,x) = 0. Summing up, we obtain
the following theorem. (This theorem can also be derived by the loop group theory. See the
end of Subsection 2.2.)

Theorem 2.1 Let y be a Willmore two-spheres in S with isotropic Hopf differential, i.e.,
(k,k) = 0. If y is not S-Willmore, then y is totally isotropic (and hence full) in S®. Moreover,
locally there exists an isotropic frame {E1, Ex} of the normal bundle VCJ- of y such that

K, Dk, Dzt € Spanc{E1, Ea},
(Ei, E;) =0, (E;,E;) =20, i,j=12, (2.7)
D.E; € Sp&HC{El,EQ}, DzE; € SpanC{El,EQ}, 1= 1,2

That is, the normal connection is block diagonal under the frame {Ey, By, E1, Eo}.
Note that (2.7) provides also sufficient conditions for y to be a Willmore surface.

Theorem 2.2 Let y be a totally isotropic surface from U into S®, with complex coordinate
z. If there exists an isotropic frame {E1, E2} of the normal bundle V& of y such that (2.7)
holds, then y is a Willmore surface.

Proof By (2.7), we see that DzD=zr+ 3£ is an isotropic vector. Since Im(DzDzk+ 3k) =0
by (2.2), we have DzDzk + 2k = 0. So y is Willmore.

2.2 Normalized potentials of totally isotropic Willmore two-spheres in S

This subsection aims to derive the description of totally isotropic Willmore two-spheres in S6
in terms of the loop group methods. To this end, we will first collect the basic theory concerning
the DPW construction of harmonic maps and the applications to Willmore surfaces. Then, we
will derive the construction of normalized potentials of totally isotropic Willmore two-spheres
via Wu’s formula. For more details of the loop group method we refer to [17-19, 37].

2.2.1 Harmonic maps into a symmetric space
Let G/K be a symmetric space defined by the involution o : G — G, with G D K D (G)o,

and Lie algebras g = Lie(G), € = Lie(K). The Cartan decomposition induced by o on g states
that g=t@p, [t,§ CE [e,p] Cp, [ppCE.
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Let f be a conformal harmonic map from a Riemann surface M into G/K. Let U be an open
connected subset of M with complex coordinate z. Then there exists a frame F' : U — G of f
with a Maurer-Cartan form F~'dF = . The Maurer-Cartan equation reads da+ 3 [aAa] = 0.
Decomposing with respect to the Cartan decomposition, we obtain o = ay + a1 with oy €
FrteT*M), a; € T(p @ T*M). And the Maurer-Cartan equation becomes

1 1
dag + 5[060/\00] + 5[041 ANag] =0,

dag + [ag A 1] = 0.

Decomposing «; further into the (1,0)-part o) and the (0,1)-part o and introducing A € S*,
we set

ay=A"ta) +ap+ Ay, AeSh (2.8)

It is well known (see [15]) that f : M — G/K is harmonic if and only if day + $[ax A ay] =
0 for all A € St

Definition 2.1 Let F(z,\) be a solution to the equation dF(z,\) = F(z,N)ay, F(0,)\) =
F(0). Then F(z,\) is called the extended frame of the harmonic map f. Note that F(z,1) =

2.2.2 Two decomposition theorems

To state the DPW constructions for harmonic maps, we need the Iwasawa and Birkhoff
decompositions for loop groups. For simplicity, from now on we consider the concrete case for
Willmore surfaces (see [17]). In this case, G = SOt (1,n +3), K = SO*(1,3) x SO(n) and
g=s0(l,n+3)={X eglin+4,R) | X'I1 nt3+ I1 n+3X = 0}. The involution is given by

o: SOT(1,n+3) — SOT(1,n+3), . _(-I, 0O
A — DAD!, with D =1{"o" |-

Note that SOT(1,n+3)° D SO*(1,3)x SO(n+2) = (SOT(1,n+3)7). We also have g = £®p,
with

_ Al O t _ t _ O Bl
E—{ < 0 A2> |A1[1)3+11)3A1—0,A2+A2—0}, p—{ _B{ILB 0 }

Let GC = SO+(1,TL+3,(C) = {X S SL(TL+4, (C) | Xt117n+3X = Il,n+3} with 50(1, Tl+3, (C) its
Lie algebra. We extend o to an inner involution of SO (1,n+3,C) with K€ = S(O*(1,3,C) x
O(n, C)) its fixed point group. Let AGS be the group of loops in G¢ = SO*(1,n+3,C) twisted
by o.

Theorem 2.3 (see [16, Theorem 4.5], also see [15, 17] Iwasawa decomposition) There exists
a closed, connected solvable subgroup S C K€, such that the multiplication AGS x ALGS — AGS
is a real analytic diffeomorphism onto the open subset AGY - ASGS = TU C (AGS)°. Here
ALGS = {y € ATGS | Y|r=0 € S}

Let A7 GS be the group of loops that extend holomorphically into oo and take values I at
infinity. Set also ASGS == {y € ATGS | v[r=0 € (K©)°}.

Theorem 2.4 (see [15-17] Birkhoff decomposition) The multiplication Ay GS x AFGS —
AGS is an analytic diffeomorphism onto the open, dense subset Ay GS - AgGS (big Birkhoff
cell).
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2.2.3 The DPW construction

Let D C C be a disk or C with complex coordinate z.

Theorem 2.5 (see [15]) (1) Let f : D — G/K denote a harmonic map with an extended
frame F(z,Z,\) € AG, and F(0,0,\) = I. Then there exists a Birkhoff decomposition of
F(z,z,\),

F_(2,)\) = F(2,Z,\)Fy(2,%,)\), with Fy € A§GS,

such that F_(z,\) : D — A7 GS is meromorphic and the Maurer-Cartan form n of F_ is
n=F'dF_ = X"1n_1(2)dz,

with n—1 independent of X\. The meromorphic 1-form n is called the normalized potential of f.
(2) Let n be a \™! - p @ C-valued meromorphic 1-form on D. Let F_(z,\) be a solution to
F7'dF_ =mn, F_(0,)\) = I. Then there exists an Iwasawa decomposition

F_(0,)) = F(2,Z, N F*(2,7,)), with FeAG,, FeAiGE

on an open subset Dy of D. Moreover, ﬁ(z,?, A) is an extended frame of some harmonic map
from Dy to G/K with F(0,\) = I. All harmonic maps can be obtained in this way, since the
above two procedures are inverse to each other if the normalization at some based point is fixed.

Note that in this paper since we consider the case with Identity, initial condition the Birkhoff
decomposition (see Theorem 2.4) holds for our case (see [15, 30]). Moreover, Theorem 2.6 holds
only if the Iwasawa decomposition and Birkhoff decomposition are satisfied, since the proof
of the similar results in [15] replies only on these two decompositions. In this sense, [15] is
sufficient for this paper, except the Iwasawa case, which is provided essentially in [16-17]. We
also refer to Hélein’s paper (see [22]) for another Iwasawa decomposition for some non-compact
symmetric space (i.e, SO1(1,4)/(SOT(1,1) x SO(3))) slightly differenting from the present
one. We refer to [17] for more discussions on these two kinds of different harmonic maps related
with Willmore surfaces.

The normalized potential can be determined from the Maurer-Cartan form of f (see [36]).
Let f, F(z,\) and ) denote the stuff as above. Let §; and dy denote the sum of the holomorphic
terms of 2z about z = 0 in the Taylor expansion of o) (£) and o (£) respectively.

Theorem 2.6 (see [36] Wu’s formula) We retain the notions in Theorem 2.5. Then the
normalized potential of f with respect to the based point 0 is given by n = A\~ 1 Fy(2)61Fy(2) " 1dz,
where Fy(z) : D — G© is the solution to Fy(z) " dFy(2) = dodz, Fy(0) = 1.

2.2.4 Normalized potentials of totally isotropic Willmore two-spheres in 5S¢
Let F be a frame of a Willmore surface y with a = F~1dF = o} + ag + of as above. Here
A 0 0 B
’_ 1 /o 1
a0—<0 A2>d2, a1_<_BHl.,3 O)dz.

Let & be the holomorphic part of o) and &), be the holomorphic part of of. Let By be the

holomorphic part of By. Let Fy = <Igl I? ) be the solution to Fo_ldFo =0y, Fo(z0) = Is.
2
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By Theorem 2.6, we have
0 By

= Fyd Et ="t ~
=+0% “BiLs 0

) dz with B; = KB K; " (2.9)

Applying Wu’s formula, we obtain the following theorem.

Theorem 2.7 Let y be a totally isotropic Willmore two-spheres in S%. Then the normal
bundle of y satisfies the properties (2.7) of Theorem 2.1. The normalized potential of y is of
the form

0 B
=A"tp_jdz =271 R 1) dz, 2.10
! L <_B§11.,3 0 )% (210

with (h;; are meromorphic functions)

hir ihi1 hiz ihio
5 h21 ih21 hQQ ih22 =t =
Bl B h3l ihi«}l h32 ih32 ’ Bl]1=3B1 =0. (211)

har  ihar  has  ihgo
Lemma 2.1 Set

0 —b12 —b13 —b14
bio 0 by —bis
b1z —bus 0 —bay
bia b1z by 0

£ = Ay | Ay = €50(4,C) ¢ . (2.12)

Then, € is a Lie sub-algebra of so(4,C). Moreover, let RS be the subgroup of SO(4,C) with
Lie algebra $. Then

tir —tie —tiz —tus 1
RS ={ KKy = bzttt L . € S0(4,C) p. (2.13)
: t13 —tia tin ti2 cosp  singp ’

tia tiz —tiz  tnn —sing cosp

Proof It is direct to show that

0  —biz —biz —biy
b2 0 by —bis
biz —biy 0 bio
by bz —bi2 0

[, 60] = ¢ = { Ay | Ay =

and ETS is the Lie algebra of

ti1 —tiz —t13 —tig

K| Ky = ti2 tnn tia —ti3 € S0(4,C)
tiz —tus  t1n t12

tia tiz —tie  tnn

Since K;”’TEKW C £C, we see that &Y is the subgroup of SO(4,C) with Lie algebra €. Here

cosp  sing
—siny cosy
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Remark 2.1 (2.13) shows that the subgroup Ry = {K; € R | K2 = K>} is diffeomorphic
to S x St

Proof of Theorem 2.7 If y is not S-Willmore, (2.7) comes from Theorem 2.1. If y is
S-Willmore, first let E7 be a basis of the bundle spanned by « (this bundle is globally defined,
since Dzk € Spanc{k}, see the proof of [17, Lemma 1.3] for a detailed proof). Next, we consider
the sub-bundle V; of the normal bundle perpendicular to { Ey, F1}. Since (D, x, 1) = 0, we can
chose an isotropic basis { Ea, Eo} of Va, such that (Fy, Ey) = 0, (Es, Es) = 2 and (D, k, E3) = 0.
Then it is straightforward to verify that (2.7) holds.

Now we apply (2.7). Set E1 = 91 + itha, Ey = 13 + itb4. Then we have a frame F' of the
form (2.4). Under this frame, we have

V2B V2iB V285 V2iBs 0  —biz —biz —bu
By = V2B V2 V283 —V2iBs Ay— | P2 0 b —bi
—iky k1 —ik3 k3 by bz ba 0

Then the normalized potential of y is expressed by (2.9). The holomorphic part El of By has
the same form as B; and since K7 does not change the relations between the columns of El,
we need only to consider the influence of K5 on El. Note that As takes value in E(f. So the
holomorphic part 112 of As also takes value in E(f. Therefore, the integration 121\2 = fzzo ,ngz of

Ay also takes value in €. By Lemma 2.1, K> takes value in 8S. Summing up, we can assume
that the following two equations hold:

t11 —tiz —ti3 —tig 1
Ky — ti2  tnn tia —ti3 1
2= .
tiz —tia tin tie cosp  singp
tia  tiz —ti2  tnn —sing  cosp

hy; ihyp hye ihyo

K\By = EZI ihy, hao ihy

hz; ih3; hgz ihss
hy; ihgy hye  ihyo

Then K1§1K2_1 has the form

hii ihi1 hiz koo

ho1 ihor  hoo  ihoo . hjr =hj (trn —iti2) — hZQ(tB +itia),
hay ihsy hss ihay | with ¢ hjs = (hji(t13 - i.‘514) + hj2(t1} +it12))
hai it has il (cosp —ising), 1<j<4.

Remark 2.2 Different from the case in S*, where totally isotropic surfaces are all S-
Willmore surfaces of finite uniton type, totally isotropic surfaces in S¢ can be even not Willmore
in general. Moreover, for a totally isotropic Willmore surface in S, if the holomorphic 4-form
Qdz* # 0 (hence not S-Willmore), it is full in S and is not of finite uniton type. Given the fact
that such surfaces come from the twistor projection of holomorphic or anti-holomorphic curves
of the twistor bundle TS® of S6, they can be expressed by rational functions on the Riemann
surface. Such harmonic maps which are not of finite uniton type are somewhat unexpected
since they correspond to holomorphic or anti-holomorphic curves in the twistor bundle of SS.
And it will be an interesting topic to classify and/or to characterize such harmonic maps as
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well as the corresponding Willmore surfaces, especially when the Riemann surface is a torus.
As a consequence, it will be an interesting topic to generalize the work of Bohle on Willmore
tori (see [2]) to Willmore tori in S.

We can use the DPW method to give another proof of Theorem 2.1.

Proof of Theorem 2.1 If y is non S-Willmore with (k, k) = 0, we claim that its normalized
potential can only take the form of type 3. By Theorem 3.1 of Section 3, y is totally isotropic
and its normal connection has the desired form.

Now let us prove the claim. [34, Theorem 2.8] and [16, Theorem 5.2] show that By must be
either of type 2 or of type 3 in [34, Theorem 2.8]. On the other hand, as we have seen before, the
isotropy condition and the Willmore equation show (k, k) = (Dzk, k) = (Dzk, Dzx) = 0. This
yields that the Maurer-Cartan form of y satisfies By B! = 0. Then El, the holomorphic part
of By, also satisfies B;B! = 0. As a consequence, we have B B! = KB Ky (K; ")!BIK! =
Klgléfo = 0. If the normalized potential n of y is of type 2 in [35, Theorem 2.8], then

hir ih11 hia fihao
§1 _ ho1 ihor  hiz  fihio
hgr ihzr  hza  fihso
har ihar ih3a ifihao

So the condition Elﬁf = 0 forces f1 =ior f; = —i. Hence 7 is of type 3 (up to a conjugation).

3 Construction of Totally Isotropic Willmore Two-spheres in S¢

This section is to describe geometric properties of Willmore surfaces of type 3 of [34, Theorem
3.3] We will provide an algorithm to derive a concrete construction of such Willmore surfaces
in S% from the normalized potentials of type 3 of [34, Theorem 3.3] by a concrete Iwasawa
decomposition. The geometric properties of this kind of Willmore surfaces are also revealed
naturally. During this procedure, we will see that Willmore surfaces of this type will be the
special kind of totally isotropic Willmore surfaces in S®, which has been discussed in Section
2. This section has three parts. The main theorem and the new examples are stated first.
The technical lemmas combining the proof of Theorem 3.1 are stated in the end. The concrete
proofs and constructions of examples are postponed to two appendixes.

3.1 From potentials to surfaces

Theorem 3.1 (Case of [34, Theorem 3.3]) Let y be a Willmore surface in S® with its
normalized potential being of the form (2.10). Then y is totally isotropic in S®. Moreover,

locally there exists an isotropic frame {E1, Fs} of the normal bundle V& of y such that (2.7)
holds.

3.2 Examples of totally isotropic Willmore spheres in S¢

We have two kinds of examples to illustrate the algorithm presented in the proof of Theorem
3.1. The isotropic minimal surfaces in R* are used to illustrate the algorithm with simpler
computations. The new, totally isotropic, non S-Willmore, Willmore two-spheres in S% is
constructed to answer Ejiri’s question explicitly.
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Theorem 3.2 Let

~ —ifs f; 00

o o B o1 S0
n=2A (_me 0 dz, with Bl—2 7 i 00 (3.1)

ify —fi 00

Here fy and fy are (non-constant) meromorphic functions on C. This By is of both type 1 and

type 3 in [34, Theorem 2.8]. The corresponding associated family of Willmore surfaces is

_Dafafs  fafufs | 1BPO+ AP

2
(L+1f2?) f T B
2 Tofafs | fofufs ABPA AP
o T T T
i i
vl = o f . (3.2)
i f
o = i/\_%f2/f4 NS4
SOy — ATy) + 22l D
f4 _i4
—1 g/ /
(/\_1f2+)\?2) _ A ]/[2][4 . )\fi/f4
f4 fi
0
0

Corollary 3.1 The Willmore surface [Yy] in Theorem 3.2 is conformal to the minimal

surface
s
T
4T
Ty = I ' f‘} | iRt (3.3)
—i(AT o = Afy) + A fof4 - 1/\f—2,f4
4 4
1 o AT) - A St AT
4 fi

Note that X\ is different from the usual parameter of the associated family of a minimal surface.

Theorem 3.3 (The case p=2in (1.2)) Let

21z —2z —i 1

0 B S~ 1| =2z 22 i 1

_ -1 1 ; = Z

n=A <—§Ul,3 0 ) dz, with B = 51 “9 91 . i |- (3.4)
21 -2 —iz z
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The associated family of unbranched Willmore two-spheres xx, A € S, corresponding to 1, is

6
(-0 5))
6

(+a(t+5)

—i(()\_le _ ,\32)(1 — %)) with r = |z|. (3.5)

(122 4+ x2)(1 - g))

—iT—;()\_lz - 7) (14 4—;2)

1
(14724522 4 42 4 o)

I\ =

2 2

SOt x2)(1+ %)

Moreover zy : S — 8% is a Willmore immersion in S®, which is full, not S-Willmore, and
totally isotropic. Note that for all X € S, xy is isometric to each other in S°.

3.3 Technical lemmas

3.3.1 The basic ideas

To begin with, we first explain our basic ideas, since the computations are very technical.
We will divide the proof of Theorem 3.1 into two steps:

1. To derive the harmonic maps from the given normalized potentials.

2. To derive the geometric properties of the corresponding Willmore surfaces.
The main method in Step 1 is a concrete performing of Iwasawa decompositions. The main
idea in Step 2 is to read off the Maurer-Cartan forms of the corresponding Willmore surfaces.

For Step 1, we first transform SO (1,7,C) into G(8,C) (see (3.6)) so that the normalized
potentials in Theorem 3.1 are strictly upper-triangular in g(8,C) = Lie(G(8,C)) (see Lemma
3.1). Then Lemma 3.2 provides the concrete expressions of the normalized potential and its
meromorphic frame. Lemma 3.3 gives the Iwasawa decompositions of the meromorphic frame
by the method of undetermined coefficients. This finishes Step 1. For Step 2, we first derive the
forms of the Maurer-Cartan forms of the extended frame derived in Step 1. Then translating into
the computations of moving frames, one will obtain the isotropic properties of the corresponding
Willmore surfaces.

3.3.2 Step 1: Iwasawa decompositions
Set
G(8,C) :={A € Mat(8,C) | A'JgA = Jg,det A =1} (3.6)

with J,, = (Je,1)nxns Jki = Oktintr forall 1 <k, 1 <n.
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Lemma 3.1 Let
P:SOt(1,7,C) — G(8,0)

A ~ P~'PT'APP, (3.7)
with
1 —1
1 1
Jo —i i
. Jo ~ 1 1 1
P = P=—
JQ ’ \/5 —1
Jo 1 1
—i i
1 1
Then P is a Lie group isomorphism.
We also have that P(SO*(1,7)) = {F € G(8,C) | F = Sg "FSg}, with
« ——1=-1_ _ 0 O J2 1 1
Ss=P P PP=|(0 Sy 0], Si= . (3.8)
1
Jo 0 0
1
This induces an involution of AG(8,C) :
71 AG,C) — AG(8,C), (3.9)
F — Sg 'F Sy '
with P(ASOT(1,7)) = {F € AG(8,C) | #(F) = F} as its fived point set.
The image of the subgroup (SO (1,3) x SO(4))® is
P((SOT(1,3) x SO(4))°) = {F € G(8,C) | F = Dy'FDy}
with N N
Dy =P 'P7'DPP = —Dy = diag(1,1,-1,-1,—1,-1,1,1).
Set
. . . I> . ! 1
Jg = Sng = JgSg = j4 with J4 = S4J4 = 1
I 1
For any F € G(8,C), we have
FHE) = J5F Js. (3.10)
Lemma 3.2 Let n be the normalized potential of Theorem 3.1. Then
V 0 f 0 L
Pi)=A""[0 0 —ft|de, ffo=Juf's,
0 0 O
with
F= —hzy —ihaz i(h12 — ha2) —i(hi2 + ha2) haz — il (3.11)
—hg1 —ihar  i(hiy — ha1)  —i(hin +ho1)  har —iha ) '
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Moreover, H = Ig + \"YH, + \"2H> is a solution to

H™'dH = P(n), H|.—o = Is. (3.12)
Here
0 f 0 00 g . .
m=(0 0 ) m=(0 00|, f=[ja g=- [
00 0 0 0 0 0 0

Lemma 3.3 Retaining the assumptions and the notations of the previous lemmas, assume
that ’P(n) is the normalized potential of some harmonic map, we obtain:

Assume that the Iwasawa decomposition of H is H = FE,, with F € P(ASOt(1,7),) C
AG(8,C), and Fy € A*G(8,C),. Then

F=0:W)Ly". (3.13)

Here W, Wy and Lq are the solutions to the matriz equations ¥(H) 1H = WWor(W)~1, Wy =
#(Lo) ™' Lo, with W = Is + AWy + A72Ws and

0 u 0 00 g a 0 0 L 0 0
Wi=10 0 —ut]|, Wo=|[0 0 0|, Wo=|0 ¢q 0], Lo=|0 1, 0
00 0 00 0 0 0 d 0 0 Iy

Here the sub-matrices a, q, d and u are determined by the following equations:

d= I+ F L f +gtg, (3.14a)
wtd = f* — Lif g, (3.14D)
g+ utdatt g, = I+ JiT f, (3.14c)
a -+ uqJaa’ + g(gt)_lgt = Iy, (3.144)
uq — guttJ, = f. (3.14e)

Moreover, F' can be expressed by these sub-matrices as below

((I — fSaT Jo + gJogd=TR)ITt ATN(f + glouSa)lyt AT 2glpt )
(3.15)

F=HiW)Ly"' = | —X(SuuJs + fllogdTh)ITY (I — fAhuSy)lyt =M1 fit

N2 Jagd =L a7t ANJowSaly ! It

Remark 3.1 1. Since in Lemma 3.2, the matrices f and g are given, (3.14a) determines d,
where d is invertible (true for z close to z = 0). Then (3.14b) determines u, hence u. Inserting
this into (3.14c) results in determining ¢. Inserting what we have so far into (3.14d) determines
a. The last equation (3.14e) is a consequence of the previous equations. Therefore, the only
condition for the solvability of (3.14) is the invertibility of d. If f and g are rational functions
of z, the invertibility of d is satisfied on an open dense subset as a rational expression in z,Z.

2. For a general procedure for the computations of Iwasawa decompositions for algebraic
loops, or more generally for rational loops, see [13, Section I1.2].

3. In [14, 21], a different method is used to produce all harmonic maps of finite uniton type
into U(n), the complex Grassmannian U(n + m)/(U(n) x U(m)) and G2. The treatment of
these papers basically follows the spirit of Wood [35], Uhlenbeck [33] and Segal [31], using some
special unitons. In [32], the converse part of this procedure is also used for the computations
of the Iwasawa decompositions of elements of the algebraic loop group AugU(n)C. It will be
an interesting and very hard question to apply they results to detect the geometry of harmonic
maps.
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3.3.3 Step 2: Maurer-Cartan forms

Lemma 3.4 Retaining the assumptions and the notations of the previous lemmas, the
Maurer-Cartan form of F in (3.15) is of the form

a0 0 0 Lfly! 0
=10 a 0|ds, a=A1{0 0 —(Uflgh) |dz (3.16)
0 0 as 0 0 0

with
a; = —llf$4ﬂﬁjgll_l — llzll_lv,
ag = —lo(f*JauSs — Saw I f)lgt = lo=1g (3.17)
ag = 14 JouSy fA Y — 1420t
Note that these three equations for a;, ag and a4 actually should be read as ordinary differ-
ential equations for I, ly and l4, as initial conditions we may use [;(0) = 1,7 =0, 1,4.

Lemma 3.5 Let F : M — SO%(1,7)/SOT(1,3) x SO(4) be the conformal Gauss map of
a Willmore surface y, with an extended frame F. If the Maurer-Cartan form of ' = P(F) has

the form (3.16), then y is totally isotropic in S®. Moreover, locally there exists an isotropic
frame {E1, E2} of the normal bundle V&= of y such that (2.7) holds.

A combination of the above lemmas provides a complete proof of Theorem 3.1. Lemmas
3.1-3.2 can be verified by straightforward matrix computations since the concrete formulas are
provided (compare also [34]). So we leave these computations to the readers. The proofs of the
other lemmas will be contained in the following section.

4 Appendix A: Iwasawa Decompositions

4.1 Proof of Lemma 3.3

Firstly one computes

I . 0 0 L A'f Ay
FTUH)H = | Muf I 0 0 I, At
A2gt _/\7ﬁ’tj4 I 0 0 I
1o ATLf A"2g

— | MNTF L AT AT g At
4t s —Ht s _
NG MG AT L+ AP 4 gt

We write 771 (H)H = WWoi =Y (W) with W = Ig + A=W + A72W3 and

0 u 0 a 0 b a 0 b
Wi=| -t 0 -t |, Wo=[0 ¢ 0], Wygt=[0 ¢ 0
0 v 0 c 0 d ¢ 0 d
Hence we obtain
WoWy = Ho,
WiWo + WaWoJs Wy Js = Hy + JsHy Js Ho, (4.1)

Wy + W1WOJ8W§j8 + WQWQJgngg =1+ jgﬁingl + jgﬁgngQ.
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Since
L 0 —7J, 0 0 uq 0
JngJg = v4_t 0 j45t , WiWy = —vta —ule 0 —ovfb—uld
0 —itJ, 0 0 vq 0
L . 0 —guJ, 0
WoWoJsW i Js = HodsWiJg = | 0 0 01,
0 0 0

from the second matrix equation of (4.1), one derives easily that vq = 0, —vfa —ufc =0, ug—
guttdy = f, —vtb —uld = j4?tg — f¥. Since ¢ is invertible, v = 0. Therefore we have

v =0, uﬁc:O7 uq—gﬂﬁtj4=f, Uud:fﬁ—j4?t9'

Next we consider the third matrix equation in (4.1). Since

.0 0 o0 0
WiWodsWids=| 0 - 0|, WoWoJsWaJs = HaJsWeods=| 0 0 0],
0 0 0 0 0 0

comparing with the M\-independent part of #=1(H)H, we derive directly that ¢ = b =¢ = b=0.
Substituting these results into the matrix equations in (4.1), a straightforward computation
yields (3.14).

In the end, let Ly be of the form as in Lemma 3.3, it is easy to compute

) I A A2y I
F=HrW)Lyt=|0 I —xlft —/\Smﬁiiz I Lyt
0 0 1 )\QJQQE_ Jo ANJouSy I

(I — fS4T@ Ty + gJagd=1Do)I;t A7Y(f +gJowSe)lgt A2l t
= | Ay Iz + fiTagd1Jo)I;? (I— frrmsSy)lyt  —A7fft
N2 Jogd LIyl AJ2TS4ly e

4.2 The Maurer-Cartan form of F' and the geometry of Willmore surfaces

Proof of Lemma 3.4 We have F~'dF = A"ty 4 e+ Ay with ay, = LoP(n-1)Ly'dz, &,
= Lo[P(n-1),7(W1)|Lg 'dz + Lo(Lg ').dz. Since

) 0o f 0 0 0 0
Pin-)=10 0 —f4 ], #(Wy)=|-Sa@J, 0 0],
0 0 0 0 JouSy 0
we obtain
i} Iy f' St Jpl
LO[P(T]_l), %(Wl)]Lal = —lo(f/ﬁJgﬂS4 — S4ﬂﬁjfl)l0_1

13 JouS, fo "
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Proof of Lemma 3.5 By (3.16) in Lemma 3.4, there exists a frame F' such that the
(1,0)-part @ of the Maurer-Cartan form of F has the form

¢i1 G2 b bio bis bia 0 0
Co1 €G22 bar  bao ba3 boy 0 0
0 0 3811 3812 313 0 —by —bus
0 0 3821 382 —813 —byg  —bi3 dz.
0 0 33 $33  —S12 —bxp —bio
0 0 0 —3831 91 —811 —bar —Dbny
0 0 0 0 0 0 —C22  —C12
0 0 0 0 0 0 —C21  —C11

Set F' = 77_1(13) = (1, P2, @3, Ga, 1,2, 13,14). By (3.7) in Lemma 3.1, we derive that

- ~ A A 1B
I —1 _ p—1li~ry 1 1
o =F 'F,dz="P (oz)-(_/\_lBHLB Ay )dz
with . )
0 522 s13  Sua 2513 = —i(812 — 813) — (831 — 821),
A = 522 0 823 S24 2514 = (812 — 313) + (821 — 831),
s13 —s23 0 —isyp |’ 2593 = (812 + S13 + 21 + 331),
S14 —S24 is11 0 2594 = (812 + 313) + (831 + 321),
0 —2iCa0 Co1 — C12 —i(C12 + ¢21)
Ay — 1 2icn 0 i(G12 +¢E21)  ¢12 — ¢
2 G2 —C1 —i(¢12 + €21) 0 —2ic11
i(¢é12 + ¢21) Co1 — C12 2ic11 0
and
1(1}23 — 1}22) —(i23 — 1}22) 1(1}13 — 1}12) —(1}13 - 1}12)
By — 1 i(bos +ba2)  —(bas + b22) i(b13 +b12) —(biz + bi2)

2 boa —ba1  i(baa —b21)  bia—bin i(bia —bu1)
i(boa +b21) —(bag + b21) i(big +b11) —(bia + b11)
hi1 k11 hiz ihas
hor ihor  hog  ihos
h31 ih31  hsz  ihs3
har ihgr  hag  ihas

Therefore, one obtains

{¢1z = A" Y1 (1 + ith2) + haz(Ys +ithy))  mod {é1, d2, Pz, st (4.3)
¢jz = _A_l(hjl(wl +H/)2)+h33(¢3 +1¢4)) mod {¢17¢27¢37¢4}? .] = 27374' '

Now assume that Y is a canonical lift of the Willmore surface y. Note that Span-{Y, Y., Yz, N} =
Spanc{@1, 2, ¢3, ¢4 }. So Y, is a linear combination of {¢1, ¢2, d3, d4}. Then we compute the
Hopf differential x =Y., mod {Y,Y,,Ys, N}:

k= X"y (b1 + ithe) + A ko (3 4+ inhg)  for some ki, ko.

Hence (k, k) =0, i.e., k is isotropic. To show that Y is totally isotropic, we need only to verify
that D,k is isotropic. From the Maurer-Cartan form of F', we derive that

Dty = icanths + C12 — 0212/13 i i(¢12 + ¢21)

5 > Py,
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—i(é12 + ¢21)

.. C1g — C
D 4py = —iCo2tP1 + Vs + 2,

2 2
Co1 — C (G120 + € ..
D,y = = 5 2 + (G2 5 21)¢2 +i¢11%4,
—i(¢19 + ¢ Co1 — C .
Doy = = 2),, 4 o St — i,

So D (Y1 +ithg) = ¢aa(V1 +ithe) + 12(¥3 +iths), D, (P34 iths) = Ca1(h1 +ith2) + C11(2P3 + ithy).
As a consequence, we obtain that D,x = A\71(81 (1 + i) + d2(2h3 + itp4)) for some complex
valued function 0; and d. This indicates that D,k is also isotropic, i.e., Y as well as y is totally
isotropic.

4.3 An Algorithm to derive Willmore surfaces from frames

This subsection is to derive an algorithm permitting to read off y from the frame F'. Although
the harmonic maps have been constructed in the above subsections, to obtain the Willmore
surfaces from the harmonic maps needs more computations. We retain the notation, in the
proof of Lemma 3.5.

Set B1 = (hl,ihl,hg,ihg) with hj = (hlj,th,hgj,h4j)t, j = 1, 3. Since B1 satisfies
BiI, 3B, = 0, we have h;-]lﬁghl =0, 4, I = 1, 3. Therefore h; and hy are contained in
one of the following two subspaces (see also [34]):

1+ p1p2 p1 1+ p1p2 P2
L —pip2 —p1 L= pip2 —p2
Span , , or Span ,
batic p1+ p2 1 pane p1+ p2 1
—i(p1 — p2) i —i(p1 — p2) —i

Let Y be a canonical lift of y. Hence Y € Spang{¢1, d2, ¢3, ¢4 }. Since Y is real and lightlike,
we may assume that

Y =po((L+ 11?1 + (1 = [p1f*) b2 + (Pr + P1)ds — i(p1 — 1) ¢a) (4.4)
with po # 0. A straightforward computation by use of (4.3) yields

Y. = po((1+ [p11*)har = (1= [p1*)har + (P14 1) har — i(p1 — 91)har) (1 + i9h2)
+ (1 + [P1*)has — (1 — [p1[*)has + (P1 + Py )has — i(Pr — Py )has) (s + iths)
mOd {¢17 ¢27 ¢37 ¢4}

Hence, to ensure that Y, € Spang{¢1, ¢2, 3, ¢4}, p1 needs to satisfy

{(1 + )i = (1= [p1*)har + (P1 + py)har —i(p1 — p1)har = 0, (4.5)

(L4 |p11*)has — (1 = |p1[*)has + (P1 + p1)has — i(p1 — p1)has = 0.

Without loss of generality, we assume that hy = po(1 + p1p2, 1 — p1p2, p1 + p2, —i(p1 — p2))t. If
the maximal rank of By is 1, then hg = po1(1 + p1p2, 1 — p1p2, p1 + p2, —i(p1 — p2))t. So (4.5) is
equivalent to (p1 — p1)(p2 — p;) = 0. Hence p1 = p1 or pi = py. These two solutions provide a
pair of dual Willmore (therefore S-Willmore) surfaces y and 3 with the same conformal Gauss
map.

If the maximal rank of By is 2, then

hs = po1(1 + p1p2, 1 — p1pa2, p1 + p2, —i(p1 — p2))" + poz(p1, —p1, 1,1)",
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or
hs = po1 (1 + p1p2, 1 — p1p2, p1 + p2, —i(p1 — p2))" + po2(p2, —p2, 1, —i)".

For the first case, (4.5) is equivalent to p; = p;. For the second case, (4.5) is equivalent to
p1 = Po. In both cases, we obtain a unique non-S-Willmore surface.

From the above discussions, clearly it is necessary to obtain the first four columns of F.
By (3.15), F can be derived from the Iwasawa decompositions. Set F = (fjl)l\j,l\:/\l, 8,
and F = P~YEF). Writing F' = (¢1, 2, ¢3, da, 1, ¥2,3,%4), and setting (¢1, ¢2, b3, ¢a) =
(1 + P2, 1 — P2, b3 — ia, 3 + ih4), one obtains straightforwardly from (3.7) that

(faa —f50)  —(fas —f55) —i(fas — f56) )
(f1a + f50)  —(fas +155) —i(fas + f56) )
—i(fyg —fea) i(f35 — f65)) —(f36 — fGG)) )
o (f3a +foa) —(f3s +165) —i(fzg +fe6) i(f33 + fo3)
(61,02, 83, 61) = —i(fos — fra)  i(fas —f75)  —(fo6 — f76) )| (4.6)
(foa +1f72)  —(fo5 +f75) —i(fos + f76) )
—i(f1a —fsa) i(fi5 —fss)  —(fi6 — fs6) )
(f1a +fs4)  —(f15 +fs5) —i(f16 + fs6) )

5 Appendix B: Construction of Examples

5.1 Proof of Theorem 3.2

By the procedures in Subsection 4.3, to derive the expression of y, one needs to figure out
B of the Maurer-Cartan form and the first four columns of the frame F. Applying Lemmas
3.2-3.3to P(n), F and the Maurer-Cartan form can be derived by solving (3.14) for the Iwasawa
decompositions. Therefore we have three steps to derive y:

1. Computation of the first four columns of F'.

2. Computation of the Maurer-Cartan form of F'.

3. Computation of Y.

Step 1: Computation of the first four columns of F. By (3.11), it is straightforward to
derive that

) 0o f o0
P)=Xx"110 0 —f*|de
0 0 0
with f = 8 J(")é 8 J%)andf:fozfdz:(g J92 8 Jg).Sinceff:O,weobtain

g = 0. And a straightforward computation yields

gy (L fa? 0 -1 _ ﬁ 0 . _ 2
d—(d”)_< 0 L)od =0 ) with =T fl
1 0
Since Wy € G(8,C), we derive a' = Jd~'.J = 1 | =a. By (3.14b) and (3.14c), we have

Idl
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u

~ld]

(OOOO

0 fo O

f4)’ q=(q;) =

0

|d|
0

Pl

_fofs

It is straightforward to verify that g = j47f)j410 with Iy € G(4,C):

—_

f14
fou
f34

f54
foa
fr4
fsa

_f2f4 0
vl
1 0
0 1
0 0

fse

0
0 , and hence [
f2f4
V1|
f+gJuS,
I—figuSy | Iyt =
JuSy

0
|d]
1 0
| f2fa]? ]
d
fafs 0
\% |d| 72f4
0 1
= 0 0
0 0

f
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fafs
|d|

o O

—
|

Step 2: Computation of the Maurer-Cartan form of F. Applying Lemma 3.4, the llflo_l
part of the Maurer-Cartan form of F is of the form

Lflgh =

0

/
2

VIdl

1
:>31:§

A
d

Ll
L2

i
if;
Vd

!
Ja
|d|

f3
Vid
f

Vi

ify

|d|
A
|d]|

o

o

Step 3: Computation of Y. Here we follow the discussions in Subsection 4.3. First from,
the Maurer-Cartan form we have

Dz(bl =

s
2y/1d]

(Y1 +ivha),

Dz¢2 =

i

21

(Y1 + ivha),
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f4 1f4

D, =
%= "o ~30d]

(Y1 +1tp2), D.gy = (Y1 +ivha).

Set By = ¢1 — b2, E1 = ¢1 + ¢o, Eo = 3 — idy. Assume that Y = By + B + wEy + |u?Ey

for some p. We have that

—ifs __f4
\/m |d|)(1/11 + 1"/]2)

So D.Y =0 if and only if 77 = —ifé;{m. This yields (3.2).

D.Y = (

Remark 5.1 Note that the above Iwasawa decomposition only blows up at the poles of f,
and fy, showing that the above decomposition does not cross the boundary of an Iwasawa big
cell.

5.2 Proof of Theorem 3.3

Here we have four steps:

1. Computation of the first four columns of F'.

2. Computation of the Maurer-Cartan form of F'.

3. Computation of Y.

4. Computation of metric of Y (to check the immersion properties of y).

Step 1: Computation of the first four columns of F. Since 7 is of the form stated in (3.4),
by (3.11), it is easy to derive that

) 0o f o0
Pm)y=x"1{0 0 —ft]dz
00 0
with

22
(0 0 1 —2 2 0 0 -z —=
f‘<2 ~2z 0 0)’ f‘/ofdz_ 2
2z —z2 0 0

NOtenOWg:—fozf(fﬁ)dZZ§< 01 O) Set r = +/|z|%. By (3.14a), we have

6 4 6

1—|—47"2—|—T— r2z 1_|_T__|_T_ _r2z
9 o 1 4 9
d = (dij) = , d ==
J o d "
r2z 1+Z+§ —r2z 1+4T2+§
r_ _ 2
with [d| = (1+ 4% + 5 + £)(1+5). Soa = (Jd 1)) = & L §Z>
—r?z 1+ +
— Jita2y o TE
dll d12 + 4r + \/T
. a +4r2 + —
anda =1l with &y = [ VIdl - VIdVdu -+
0 0

Vd 8
11 1+42+_
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Moreover, by (3.14b), one computes

r2z3 472 22 472
242 (1 —)(1 4 )
5 ( + 5 (15 L 42 4
r2z2 76 7l 270
0 e )
oL 3 ( 9 14 e
d 4 46 4 6
ld —z2(1—|—T— L) z(4+47~2+—)
R
4 4 6 4

Substituting these into (3.14c), we obtain ¢ = (g;;) with

2 6.2 4 2 6
\d|gu = (1 a2 %) . |z = |dlgs, = —27“22(1 _ %) (1 a2 %)
r2z 472 270
dg1s = |d|g :——(1 —)(1 42——),
|d|q13 = |d[Gay 5 + 3 + 9
4
s = Wiz = —r'=2(1+22) (1= 1),
276 rd 46 76 472
_ — _ 2 o - — -
gz = Il = (1447 = Z5) (14 54 50), ez = (14 )
r2z r2 rd 4y 72
dlaas = Wiy = 5= (14 =) (1+ T+ 557). Ml =0 (1- 55)
4 4 6 4 6. 2
—dld . = 22 _r_)(r_‘i) :(r_"i)
dlgss = ldfgi = 2% (1= ) (14 T+ =)+ Idlas = (1+ 5 + =5

|i

(1—!—47“2 — %) 27“22(1— %) 7‘%(14—%) r422(1—|—%) (1— 4)

12
T T 2 /1d] VIAI(1+4r2 - 2
r2z(1 + 422 ) Vid|
0 [d] 0
lo = 2(1+4r% - 32)
O | 1 27"22'(1 - T—Q)
d] VI (1442 - 2
0 0 0 1

276
(1 + 47’2 — T)
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~

5 ey L ‘
Assume that F' = (f;;) P (£51). By (3.15),

_ﬁ(1 + ﬁ) ar z(1+4r?)|d| %o
6\ 3 3A A 2
2_Z”fv _22 22272 |d| 237‘2(1 + %)
P A 3\ 2
~ 4 4 d 4 2
foq 2272 _&erld| 24 (1 + L)
3 3
2% 6 2
~ —%fgg) 1—|—4T2—|—% —T2(1—|—4T2)|d| —if25
=1 12 o . 2 12 (5.1)
0% r 7 r6% r
Eaek) e e e )
2 ( 3 " s )ld 51+ 3
4 2 47 4 d —~
—T‘4E2(1 + L) 2712 _zErld | | fou
3 3
\r2z3 472 207272 |d| ~
1 —) —\Z _ 2Nzt
5 ( + 3 Z 3 Z123
72~ Azrd Ar8 472
——f —A\z(1 + 4r3)|d ——(1 —)
5 125 3 Z(1 4 4r?)|d| 5 + 3
with 1 < j < 8,3 <1 <6, and
~ rd op6 10
fp=14ar2+ 2 4T
23 +4r° + 6 9 + 51
- 4 2 6
fys = (14 %)(14—47“2 + %),
-~ 10075 88 2712
fog =144 - — - — =
2= A==y 9 81

Step 2: Computation of the Maurer-Cartan form of . By (3.16)—(3.17) of Lemma 3.4, the
Maurer-Cartan form of F has the expression

< 1
Wilyt = — b

|d]|
6
0 0 —|d| —2(1—0—27"2—%)
. 21d| —2z(1 +2r2 — %) zr2(1 + %) 22r? (1 + %) (1 +2r2 — %)
O I N (E T R OB (R TR
_ |d| <’Lfiv11 —’[Lvllp '[UVQ ’LTIQ[))
Wy —wWip Wo Wap

with
G -
G Jrowen =N
Z(1+2T2—;—8) - 1 1/1-1—47“2-‘1-% <111 112>
= 1 0 ,

p=——7—">, h
|d] VId] 0

V1+4r2 42

l22

~ 2
~ 22\12 ~ llQZTQ(l_F%) 2\
w1_1—|—4’]"2—%’ W2 = 1—’—47‘2—% — 11,
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~ 2

22\22 N l2227‘2 (1 + %)

w :7’ Wy —— ————
S T T T R R N T2

Transforming back to so(1,7,C), we derive

i(Wy +W1p) —(W2 +W1p) i(wWe+wip) —(wWa+ wip)

By — Wy —w1p) —(W2 —w1p) i(wWy —wip) —(Wy—wip)
(Wap —w1)  W(Wap—w1) (Wep—wi) i(Wwap—wr)

i(w w1) —(W2p+w1) i(wep+wi) —(Wap+wi)

B = (h1,1ihq, hs,ihs).
+ wq

Step 3: Computation of Y. Here we follow the discussions in Subsection 4.3. It is easy to ver-
ify that hy and h3 can be expressed as a (functional) linear combination of (1,1, —ip, p)* and (p,

—p, i, 1)t Therefore one obtains easily that p; = —ip is the unique solution to (4.5). Substituting
p1 into (4.4), we obtain

[Y] = [(A+|p*)o1+(1=p[*) b2 —i(p—p) p3+(p+P)da] = [(¢1+2)+|p|* (01— ¢2)+ip(¢3—ida) —ip(P3+iga)].
Then by (5.1) and (4.6) we have that

PR
(1T 5)
(-2(1+5))

6

[Y]:[w ((z+z)(1+%))4 |

I R (O ()

((A—le + /\22)(1 - %))

i (e -9 (1+ 4%2)

(5.2)

SOz x7) (14 %’2)

Step 4: Let [Y] be a global immersion. Let z be of the form (3.5). Then xy : S — S% is
well-defined on S? with Y as its lift. Since
2482 4l A0y 82yt R

D) |dz| )

Hr4 476 r8

z has no branch point at z € C. As to oo, set Z = 1 and 7 = \/|Z], we derive that |z,z|?|dZ|? =
32|dz|? at the point Z = 0.

Remark 5.2 Note that in the above Iwasawa decomposition, there exists a circle 1 +
42 — % = 0 such that the frame (5.1) obtained from the Iwasawa decomposition blows up.
However, this blowing up can be avoided by a change of frames and hence the corresponding
harmonic map is in fact globally well defined. This also means that the decomposition of the

corresponding harmonic map does not cross the boundary of an Iwasawa big cell (compare [4,
24)).
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