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Abstract In this paper the author derives a geometric characterization of totally isotropic
Willmore two-spheres in S6, which also yields to a description of such surfaces in terms
of the loop group language. Moreover, applying the loop group method, he also obtains
an algorithm to construct totally isotropic Willmore two-spheres in S6. This allows him
to derive new examples of geometric interests. He first obtains a new, totally isotropic
Willmore two-sphere which is not S-Willmore (i.e., has no dual surface) in S6. This gives
a negative answer to an open problem of Ejiri in 1988. In this way he also derives many
new totally isotropic, branched Willmore two-spheres which are not S-Willmore in S6.
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1 Introduction

Totally isotropic surfaces first appeared in the study of the global geometry of surfaces
in the famous work of Calabi [11], where twistor bundle theory was applied to describe the
geometry of minimal two-spheres in Sn. This led later to much progress in geometry and
the theory of integrable systems (see for example [4, 8, 10]). In the study of Willmore two-
spheres, totally isotropic surfaces play an important role as well. First we note that isotropic
properties are conformally invariant. This indicates that they are of interest in the conformal
geometry of surfaces. Moreover, the classical work of Ejiri [20] shows that isotropic surfaces
in S4 are automatically Willmore surfaces and furthermore they are Willmore surfaces with
dual surfaces. He also showed that Willmore two-spheres in S4 are either Möbius equivalent to
minimal surfaces with planer ends in R4, or isotropic two-spheres (see [20]) (see also [7, 28–29]).

In [20], Ejiri also introduced the notion of S-Willmore surfaces. Roughly speaking, these
surfaces can be viewed as Willmore surfaces admitting dual surfaces. Note that by Bryant’s
classical work, every Willmore surface in S3 has a dual Willmore surface (see [5–6]). But when
the codimension is bigger than 1, a Willmore surface may not have a dual surface (see [7, 20, 27]).
Using the duality properties of S-Willmore surfaces, Ejiri provided furthermore a classification
of S-Willmore two-spheres in Sn+2 by constructing the holomorphic forms for these surfaces
(see [20]). Especially, for Willmore two-spheres in S4, a construction of a holomorphic 8-form
indicates that these surfaces are automatically S-Willmore (see [7, 20, 26, 28–29]). In the end of
Ejiri’s paper, he asked whether all Willmore two-spheres in Sn+2 are S-Willmore or not. If the
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answer is ‘no’, i.e., if some Willmore, but not S-Willmore two-spheres would exist, how would
one construct and characterize them?

In this paper, we will answer Ejiri’s open problem by a concrete construction of a totally
isotropic Willmore two-sphere in S6 which is not S-Willmore. Moreover, beyond the explicit
construction of some new examples, the main goal of this paper is to characterize all totally
isotropic Willmore two-spheres in S6 via their geometric properties and their normalized poten-
tials. This geometric description also supplies the basis for the work of [34], where we provide
a coarse classification of Willmore two-spheres in spheres by using the loop group method for
the construction of harmonic maps (see [8, 15, 18–19]).

Different from the case in S4, where totally isotropic surfaces are automatically S-Willmore
surfaces and of finite uniton type, totally isotropic surfaces in S6 are not even Willmore in
general. We refer to [8, 18, 33–34] for the definition of uniton. Moreover, even a totally
isotropic Willmore surface in S6 will, in general, not be of finite uniton type (see Remark
2.11). To this end, we first derive a geometric characterization of totally isotropic Willmore
two-spheres in S6, which is similar to the description of minimal two-spheres in Sn (see [4, 11]).
Roughly speaking, the normal connection of a totally isotropic Willmore two-sphere has a special
form and conversely, totally isotropic surfaces with such special normal connection are always
Willmore and of finite uniton type (see Theorems 2.1–2.2). Application of this description yields
a second description of such Willmore surfaces in terms of loop group language (see Theorems
2.8 and 3.3). The second description of totally isotropic Willmore two-spheres in S6 contains
also a concrete algorithm of constructions of explicit totally isotropic Willmore two-spheres.
By this method, we derive many new examples of Willmore surfaces as follows, most of which
have two branched points.

Example 1.1 Let λ ∈ S1 and let (we refer to Section 2 for the definition of η)

η = λ−1

(
0 B̂1

−B̂t
1I1,3 0

)
dz

with

B̂1 =
1

2




ipzp−1 −pzp−1 −i 1
−ipzp−1 pzp−1 −i 1

−p −ip −zp−1 −izp−1

ip −p −izp−1 zp−1


 . (1.1)

Here p ∈ Z+, p ≥ 2. The associated family of Willmore two-spheres xλ, corresponding to η, is

xλ =
1

ν




1− r2p−2 − (p− 1)3(p+ 1)r2p

p2
+
p2(p− 1)2r2p+2

(p+ 1)2
− (p− 1)2r4p

p2(p+ 1)2

−i(zp−1 − zp−1)
(
1 +

(p− 1)2r2p+2

(p+ 1)2

)

(zp−1 + zp−1)
(
1 +

(p− 1)2r2p+2

(p+ 1)2

)

−i(p− 1)(λ−1zp − λzp)
(
1− (p− 1)r2p

p2(p+ 1)

)

(p− 1)(λ−1zp + λzp)
(
1− (p− 1)r2p

p2(p+ 1)

)

−i (p−1)r2p−2

p
(λ−1z − λz)

(
1 +

p2(p− 1)r2

p+ 1

)

(p−1)r2p−2

p
(λ−1z + λz)

(
1 +

p2(p− 1)r2

p+ 1

)




, (1.2)
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with

ν = 1 + r2p−2 +
(p− 1)2(p2 + 1)r2p

p2
+
p2(p− 1)2r2p+2

(p+ 1)2
+

(p− 1)2r4p

p2(p+ 1)2
and r = |z|.

Moreover xλ : S2\{0,∞} → S6 is a Willmore immersion in S6, which is full, not S-Willmore,

and totally isotropic. It is obvious that xλ is S1-equivariant. Note that xλ is also immersed

at 0 and ∞ when p = 2. When p > 2, xλ has two branched points 0 and ∞, whose metrics

tend to 0 with the same speed r2p−4. To be concrete, near the point z = 0, |∂z(xλ)|2 =

2(p−1)2r2p−4+o(r2p−4). Near the point z = ∞, setting z̃ = 1
z
and r̃ = |z̃|, we have |∂z̃(xλ)|2 =

2p4(p− 1)2r̃2p−4 + o(r̃2p−4).

Recently there are several progresses on the discussions of branched points of Willmore sur-

faces (see for example [1, 12, 24–25]). We hope that these examples will help the understanding

of branched points of Willmore surfaces. We only show the explicit computations in Appendix

B for the case p = 2, since the construction of xλ is the same for the other ones.

This paper is organized as follow: In Section 2, we first recall basic results of Willmore

surfaces and derive a new geometric description of isotropic Willmore two-spheres in S6. More-

over, we obtain a description of the normalized potentials of isotropic Willmore two-spheres in

S6. The converse part, that generically such normalized potentials will produce special total-

ly isotropic Willmore surfaces in S6, as well as new examples, makes up the main content of

Section 3. The main idea is to perform a concrete Iwasawa decomposition for these normal-

ized potentials to derive geometric properties of the corresponding Willmore surfaces, which

also yields an algorithm to construct Willmore surfaces. We put the technical computations of

Iwasawa decompositions and examples into two Appendixes for interested readers.

2 Isotropic Willmore Two-spheres in S
6

In Subsection 2.1, we first recall the basic theory of Willmore surfaces and then focus on

isotropic Willmore surfaces in S6. In Subsection 2.2 we will collect the basic DPW methods as

well as Wu’s formula for harmonic maps and then derive the normalized potentials for isotropic

Willmore two-spheres in S6.

2.1 Isotropic Willmore surfaces in S
6 and related holomorphic differentials

2.1.1 Willmore surfaces in spheres

For completeness we first recall briefly the basic surface theory. For more details, we refer

to [16, Section 2], [17] and [34, Section 2] (see also [9, 26]).

Let Rn+4
1 be the Lorentz-Minkowski space equipped with the Lorentzian metric

〈x, y〉 = −x0y0 +
n+3∑

j=1

xjyj = xtI1,n+3y, I1,n+3 = diag(−1, 1, · · · , 1), ∀x, y ∈ R
n+4.

We denote by Cn+3
+ = {x ∈ R

n+4
1 | 〈x, x〉 = 0, x0 > 0} the forward light cone and by Qn+2 =

Cn+3
+ /R+ the projective light cone. It is well-known that Riemannian space forms can be

conformally embedded into Qn+2 (see [5, 7, 9, 20, 28–29]). For a conformal immersion y :

M → Sn+2, one has a canonical lift Y = e−ω(1, y) into Cn+3 with respect to a local complex

coordinate z of the Riemann surface M , where e2ω = 2〈yz, yz〉. There exists a global bundle

decomposition M ×R
n+4
1 = V ⊕ V ⊥, with V = Span{Y,ReYz, ImYz , Yzz}, where V ⊥ denotes
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the orthogonal complement of V . Let VC and V ⊥
C

be the complexifications of V and V ⊥. Let

{Y, Yz, Yz , N} be a frame of VC such that 〈N, Yz〉 = 〈N, Yz〉 = 〈N,N〉 = 0 and〈N, Y 〉 = −1. Let

D denote the normal connection on V ⊥
C
. For any section ψ ∈ Γ(V ⊥

C
) of the normal bundle and

a canonical lift Y with respect to z, we obtain the structure equations:





Yzz = −s
2
Y + κ,

Yzz = −〈κ, κ〉Y +
1

2
N,

Nz = −2〈κ, κ〉Yz − sYz + 2Dzκ,
ψz = Dzψ + 2〈ψ,Dzκ〉Y − 2〈ψ, κ〉Yz .

(2.1)

Here κ dz2

|dz| is named the conformal Hopf differential of y, and s is named the Schwarzian of y

(see [9]). The conformal Gauss, Codazzi and Ricci equations as integrability conditions are as

follows:




1

2
sz = 3〈κ,Dzκ〉+ 〈Dzκ, κ〉,

Im
(
DzDzκ+

s

2
κ
)
= 0,

RD
zzψ := DzDzψ −DzDzψ = 2〈ψ, κ〉κ− 2〈ψ, κ〉κ.

(2.2)

Recall that y is a Willmore surface if and only if the Willmore equation holds (see [9])

DzDzκ+
s

2
κ = 0. (2.3)

Another equivalent condition of y being Willmore is the harmonicity of the conformal Gauss

map Gr : M → Gr1,3(R
n+4
1 ) = SO+(1, n + 3)/SO+(1, 3) × SO(n) of y (see [5, 20, 26]) with

Gr := Y ∧ Yu ∧ Yv ∧N = −2i · Y ∧ Yz ∧ Yz ∧N. A local lift of Gr is chosen as

F :=
( 1√

2
(Y +N),

1√
2
(−Y +N), e1, e2, ψ1, · · · , ψn

)
: U → SO+(1, n+ 3) (2.4)

with its Maurer-Cartan form α = F−1dF =

(
A1 B1

−Bt
1I1,3 A2

)
dz+

(
A1 B1

−Bt

1I1,3 A2

)
dz, where

B1 =




√
2β1 · · ·

√
2βn

−
√
2β1 · · · −

√
2βn

−k1 · · · −kn
−ik1 · · · −ikn


 , (2.5)

{ψj} is an orthonormal basis of V ⊥ on U and κ =
∑
j

kjψj , Dzκ =
∑
j

βjψj , k
2 =

∑
j

|kj |2.

2.1.2 Isotropic Willmore surfaces in S6

Recall that y is totally isotropic if and only if all the derivatives of y with respect to z are

isotropic, that is,

〈Y (m)
z , Y (n)

z 〉 = 0 for all m, n ∈ Z
+.

Here Y
(m)
z means taking m times derivatives of Y by z. We refer to [4, 11, 16–17, 20, 26] for

more discussions on isotropic surfaces. A well-known result states that y is totally isotropic
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if and only if y is the projection of a holomorphic or anti-holomorphic curve into the twistor

bundle TS2n of S2n (see [11, 20]). For the basic theory about twistor bundles, we refer to [10].

Let y be a Willmore surface with an isotropic Hopf differential, i.e., 〈κ, κ〉 ≡ 0. Note that one

derives straightforwardly that 〈κ,Dzκ〉 = 〈κ,Dzκ〉 = 0 by differentiating 〈κ, κ〉 = 0. Applying

the Willmore equation (2.3), we also have 〈Dzκ,Dzκ〉 ≡ 0.

For isotropic Willmore surfaces, Ma introduced several holomorphic differentials, see [26,

Theorem 5.4]. For our case, we only need that

Ωdz4 := 〈Dzκ,Dzκ〉dz4 (2.6)

is a globally defined holomorphic differential on M . The fact that Ωdz4 is holomorphic can be

derived from a direct computation using 〈κ, κ〉 = 0, Willmore equations and Ricci equations

(see also [26]). Then, if M = S2, we will have 〈Dzκ,Dzκ〉 ≡ 0.

Now we assume that y is not S-Willmore, then Dzκ is not parallel to κ (recall that y is called

S-Willmore if y is Willmore with Dzκ‖κ, see [16–17, 20]). So Dzκ and κ span a two-dimensional

isotropic subspace SpanC{κ,Dzκ}. Since Dzκ is perpendicular to κ and Dzκ, Dzκ is contained

in SpanC{κ,Dzκ}. As a consequence, we also have 〈Dzκ,Dzκ〉 = 0. Summing up, we obtain

the following theorem. (This theorem can also be derived by the loop group theory. See the

end of Subsection 2.2.)

Theorem 2.1 Let y be a Willmore two-spheres in S6 with isotropic Hopf differential, i.e.,

〈κ, κ〉 = 0. If y is not S-Willmore, then y is totally isotropic (and hence full) in S6. Moreover,

locally there exists an isotropic frame {E1, E2} of the normal bundle V ⊥
C

of y such that




κ, Dzκ, Dzκ ∈ SpanC{E1, E2},
〈Ei, Ej〉 = 0, 〈Ei, Ej〉 = 2δij , i, j = 1, 2,
DzEi ∈ SpanC{E1, E2}, DzEi ∈ SpanC{E1, E2}, i = 1, 2.

(2.7)

That is, the normal connection is block diagonal under the frame {E1, E2, E1, E2}.

Note that (2.7) provides also sufficient conditions for y to be a Willmore surface.

Theorem 2.2 Let y be a totally isotropic surface from U into S6, with complex coordinate

z. If there exists an isotropic frame {E1, E2} of the normal bundle V ⊥
C

of y such that (2.7)

holds, then y is a Willmore surface.

Proof By (2.7), we see that DzDzκ+
s
2κ is an isotropic vector. Since Im(DzDzκ+

s
2κ) = 0

by (2.2), we have DzDzκ+ s
2κ = 0. So y is Willmore.

2.2 Normalized potentials of totally isotropic Willmore two-spheres in S
6

This subsection aims to derive the description of totally isotropic Willmore two-spheres in S6

in terms of the loop group methods. To this end, we will first collect the basic theory concerning

the DPW construction of harmonic maps and the applications to Willmore surfaces. Then, we

will derive the construction of normalized potentials of totally isotropic Willmore two-spheres

via Wu’s formula. For more details of the loop group method we refer to [17–19, 37].

2.2.1 Harmonic maps into a symmetric space

Let G/K be a symmetric space defined by the involution σ : G→ G, with Gσ ⊃ K ⊃ (Gσ)0,

and Lie algebras g = Lie(G), k = Lie(K). The Cartan decomposition induced by σ on g states

that g = k⊕ p, [k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k.
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Let f be a conformal harmonic map from a Riemann surfaceM into G/K. Let U be an open

connected subset of M with complex coordinate z. Then there exists a frame F : U → G of f

with a Maurer-Cartan form F−1dF = α. The Maurer-Cartan equation reads dα+ 1
2 [α∧α] = 0.

Decomposing with respect to the Cartan decomposition, we obtain α = α0 + α1 with α0 ∈
Γ(k⊗ T ∗M), α1 ∈ Γ(p⊗ T ∗M). And the Maurer-Cartan equation becomes




dα0 +

1

2
[α0 ∧ α0] +

1

2
[α1 ∧ α1] = 0,

dα1 + [α0 ∧ α1] = 0.

Decomposing α1 further into the (1, 0)-part α′
1 and the (0, 1)-part α′′

1 and introducing λ ∈ S1,

we set

αλ = λ−1α′
1 + α0 + λα′′

1 , λ ∈ S1. (2.8)

It is well known (see [15]) that f : M → G/K is harmonic if and only if dαλ + 1
2 [αλ ∧ αλ] =

0 for all λ ∈ S1.

Definition 2.1 Let F (z, λ) be a solution to the equation dF (z, λ) = F (z, λ)αλ, F (0, λ) =

F (0). Then F (z, λ) is called the extended frame of the harmonic map f . Note that F (z, 1) =

F (z).

2.2.2 Two decomposition theorems

To state the DPW constructions for harmonic maps, we need the Iwasawa and Birkhoff

decompositions for loop groups. For simplicity, from now on we consider the concrete case for

Willmore surfaces (see [17]). In this case, G = SO+(1, n + 3), K = SO+(1, 3) × SO(n) and

g = so(1, n+ 3) = {X ∈ gl(n+ 4,R) | XtI1,n+3 + I1,n+3X = 0}. The involution is given by

σ : SO+(1, n+ 3) → SO+(1, n+ 3),
A 7→ DAD−1,

with D =

(
−I4 0
0 In

)
.

Note that SO+(1, n+3)σ ⊃ SO+(1, 3)×SO(n+2) = (SO+(1, n+3)σ)0. We also have g = k⊕p,

with

k =
{(A1 0

0 A2

)
| At

1I1,3 + I1,3A1 = 0, A2 +At
2 = 0

}
, p =

{( 0 B1

−Bt
1I1,3 0

)}
.

Let GC = SO+(1, n+3,C) := {X ∈ SL(n+4,C) | XtI1,n+3X = I1,n+3} with so(1, n+3,C) its

Lie algebra. We extend σ to an inner involution of SO+(1, n+3,C) with KC = S(O+(1, 3,C)×
O(n,C)) its fixed point group. Let ΛGC

σ be the group of loops in GC = SO+(1, n+3,C) twisted

by σ.

Theorem 2.3 (see [16, Theorem 4.5], also see [15, 17] Iwasawa decomposition) There exists

a closed, connected solvable subgroup S ⊆ KC, such that the multiplication ΛG0
σ×Λ+

SG
C
σ → ΛGC

σ

is a real analytic diffeomorphism onto the open subset ΛG0
σ · Λ+

SG
C
σ = IU

e ⊂ (ΛGC
σ)

0. Here

Λ+
SG

C
σ := {γ ∈ Λ+GS

σ | γ|λ=0 ∈ S}.

Let Λ−
∗ G

C
σ be the group of loops that extend holomorphically into ∞ and take values I at

infinity. Set also Λ+
CG

C
σ := {γ ∈ Λ+GC

σ | γ|λ=0 ∈ (KC)0}.

Theorem 2.4 (see [15–17] Birkhoff decomposition) The multiplication Λ−
∗ G

C
σ × Λ+

CG
C
σ →

ΛGC
σ is an analytic diffeomorphism onto the open, dense subset Λ−

∗ G
C
σ · Λ+

CG
C
σ (big Birkhoff

cell).
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2.2.3 The DPW construction

Let D ⊂ C be a disk or C with complex coordinate z.

Theorem 2.5 (see [15]) (1) Let f : D → G/K denote a harmonic map with an extended

frame F (z, z, λ) ∈ ΛGσ and F (0, 0, λ) = I. Then there exists a Birkhoff decomposition of

F (z, z, λ),

F−(z, λ) = F (z, z, λ)F+(z, z, λ), with F+ ∈ Λ+
SG

C

σ ,

such that F−(z, λ) : D → Λ−
∗ G

C
σ is meromorphic and the Maurer-Cartan form η of F− is

η = F−1
− dF− = λ−1η−1(z)dz,

with η−1 independent of λ. The meromorphic 1-form η is called the normalized potential of f .

(2) Let η be a λ−1 · p ⊗ C-valued meromorphic 1-form on D. Let F−(z, λ) be a solution to

F−1
− dF− = η, F−(0, λ) = I. Then there exists an Iwasawa decomposition

F−(0, λ) = F̃ (z, z, λ)F̃+(z, z, λ), with F̃ ∈ ΛGσ, F̃ ∈ Λ+
SG

C

σ

on an open subset DI of D. Moreover, F̃ (z, z, λ) is an extended frame of some harmonic map

from DI to G/K with F̃ (0, λ) = I. All harmonic maps can be obtained in this way, since the

above two procedures are inverse to each other if the normalization at some based point is fixed.

Note that in this paper since we consider the case with Identity, initial condition the Birkhoff

decomposition (see Theorem 2.4) holds for our case (see [15, 30]). Moreover, Theorem 2.6 holds

only if the Iwasawa decomposition and Birkhoff decomposition are satisfied, since the proof

of the similar results in [15] replies only on these two decompositions. In this sense, [15] is

sufficient for this paper, except the Iwasawa case, which is provided essentially in [16–17]. We

also refer to Hélein’s paper (see [22]) for another Iwasawa decomposition for some non-compact

symmetric space (i.e, SO+(1, 4)/(SO+(1, 1) × SO(3))) slightly differenting from the present

one. We refer to [17] for more discussions on these two kinds of different harmonic maps related

with Willmore surfaces.

The normalized potential can be determined from the Maurer-Cartan form of f (see [36]).

Let f , F (z, λ) and αλ denote the stuff as above. Let δ1 and δ0 denote the sum of the holomorphic

terms of z about z = 0 in the Taylor expansion of α′
1

(
∂
∂z

)
and α′

0

(
∂
∂z

)
respectively.

Theorem 2.6 (see [36] Wu’s formula) We retain the notions in Theorem 2.5. Then the

normalized potential of f with respect to the based point 0 is given by η = λ−1F0(z)δ1F0(z)
−1dz,

where F0(z) : D → GC is the solution to F0(z)
−1dF0(z) = δ0dz, F0(0) = I.

2.2.4 Normalized potentials of totally isotropic Willmore two-spheres in S6

Let F be a frame of a Willmore surface y with α = F−1dF = α′
1 + α0 + α′′

1 as above. Here

α′
0 =

(
A1 0
0 A2

)
dz, α′

1 =

(
0 B1

−Bt
1I1,3 0

)
dz.

Let δ′1 be the holomorphic part of α′
1 and δ′0 be the holomorphic part of α′

0. Let B̃1 be the

holomorphic part of B1. Let F0 =

(
K1 0
0 K2

)
be the solution to F−1

0 dF0 = δ′0, F0(z0) = I8.
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By Theorem 2.6, we have

η = F0δ
′
1F

−1
0 = λ−1

(
0 B̂1

−B̂t
1I1,3 0

)
dz with B̂1 = K1B̃1K

−1
2 . (2.9)

Applying Wu’s formula, we obtain the following theorem.

Theorem 2.7 Let y be a totally isotropic Willmore two-spheres in S6. Then the normal

bundle of y satisfies the properties (2.7) of Theorem 2.1. The normalized potential of y is of

the form

η = λ−1η−1dz = λ−1

(
0 B̂1

−B̂t
1I1,3 0

)
dz, (2.10)

with (hij are meromorphic functions)

B̂1 =




h11 ih11 h12 ih12
h21 ih21 h22 ih22
h31 ih31 h32 ih32
h41 ih41 h42 ih42


 , B̂t

1I1,3B̂1 = 0. (2.11)

Lemma 2.1 Set

kC2 :=




A2 | A2 =




0 −b12 −b13 −b14
b12 0 b14 −b13
b13 −b14 0 −b34
b14 b13 b34 0


 ∈ so(4,C)




. (2.12)

Then, kC2 is a Lie sub-algebra of so(4,C). Moreover, let KC
2 be the subgroup of SO(4,C) with

Lie algebra kC2 . Then

KC

2 =




K2|K2 =




t11 −t12 −t13 −t14
t12 t11 t14 −t13
t13 −t14 t11 t12
t14 t13 −t12 t11







1
1

cosϕ sinϕ
− sinϕ cosϕ


 ∈ SO(4,C)




. (2.13)

Proof It is direct to show that

[kC2 , k
C

2 ] = k̃C2 =




A2 | A2 =




0 −b12 −b13 −b14
b12 0 b14 −b13
b13 −b14 0 b12
b14 b13 −b12 0


 ∈ so(4,C)





and k̃C2 is the Lie algebra of



K2

∣∣∣K2 =




t11 −t12 −t13 −t14
t12 t11 t14 −t13
t13 −t14 t11 t12
t14 t13 −t12 t11


 ∈ SO(4,C)




.

Since K−1
ϕ k̃C2Kϕ ⊂ kC2 , we see that KC

2 is the subgroup of SO(4,C) with Lie algebra kC2 . Here

Kϕ =




1
1

cosϕ sinϕ
− sinϕ cosϕ


 .
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Remark 2.1 (2.13) shows that the subgroup K̂2 = {K2 ∈ K2 | K2 = K2} is diffeomorphic

to S3 × S1.

Proof of Theorem 2.7 If y is not S-Willmore, (2.7) comes from Theorem 2.1. If y is

S-Willmore, first let E1 be a basis of the bundle spanned by κ (this bundle is globally defined,

since Dzκ ∈ SpanC{κ}, see the proof of [17, Lemma 1.3] for a detailed proof). Next, we consider

the sub-bundle V2 of the normal bundle perpendicular to {E1, E1}. Since 〈Dzκ,E1〉 = 0, we can

chose an isotropic basis {E2, E2} of V2, such that 〈E2, E2〉 = 0, 〈E2, E2〉 = 2 and 〈Dzκ,E2〉 = 0.

Then it is straightforward to verify that (2.7) holds.

Now we apply (2.7). Set E1 = ψ1 + iψ2, E2 = ψ3 + iψ4. Then we have a frame F of the

form (2.4). Under this frame, we have

B1 =




√
2β1

√
2iβ1

√
2β3

√
2iβ3

−
√
2β1 −

√
2iβ1 −

√
2β3 −

√
2iβ3

−k1 −ik1 −k3 −ik3
−ik1 k1 −ik3 k3


 , A2 =




0 −b12 −b13 −b14
b12 0 b14 −b13
b13 −b14 0 −b34
b14 b13 b34 0


 .

Then the normalized potential of y is expressed by (2.9). The holomorphic part B̃1 of B1 has

the same form as B1 and since K1 does not change the relations between the columns of B̃1,

we need only to consider the influence of K2 on B̃1. Note that A2 takes value in kC2 . So the

holomorphic part Ã2 of A2 also takes value in kC2 . Therefore, the integration Â2 =
∫ z

z0
Ã2dz of

Ã2 also takes value in kC2 . By Lemma 2.1, K2 takes value in KC
2 . Summing up, we can assume

that the following two equations hold:

K2 =




t11 −t12 −t13 −t14
t12 t11 t14 −t13
t13 −t14 t11 t12
t14 t13 −t12 t11







1
1

cosϕ sinϕ
− sinϕ cosϕ


 ,

K1B̃1 =




ĥ11 iĥ11 ĥ12 iĥ12
ĥ21 iĥ21 ĥ22 iĥ22
ĥ31 iĥ31 ĥ32 iĥ32
ĥ41 iĥ41 ĥ42 iĥ42


 .

Then K1B̃1K
−1
2 has the form




h11 ih11 h12 ih12
h21 ih21 h22 ih22
h31 ih31 h32 ih32
h41 ih41 h42 ih42


 , with




hj1 = ĥj1(t11 − it12)− ĥj2(t13 + it14),

hj2 = (ĥj1(t13 − it14) + ĥj2(t11 + it12))
·(cosϕ− i sinϕ), 1 ≤ j ≤ 4.

Remark 2.2 Different from the case in S4, where totally isotropic surfaces are all S-

Willmore surfaces of finite uniton type, totally isotropic surfaces in S6 can be even not Willmore

in general. Moreover, for a totally isotropic Willmore surface in S6, if the holomorphic 4-form

Ωdz4 6= 0 (hence not S-Willmore), it is full in S6 and is not of finite uniton type. Given the fact

that such surfaces come from the twistor projection of holomorphic or anti-holomorphic curves

of the twistor bundle TS6 of S6, they can be expressed by rational functions on the Riemann

surface. Such harmonic maps which are not of finite uniton type are somewhat unexpected

since they correspond to holomorphic or anti-holomorphic curves in the twistor bundle of S6.

And it will be an interesting topic to classify and/or to characterize such harmonic maps as
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well as the corresponding Willmore surfaces, especially when the Riemann surface is a torus.

As a consequence, it will be an interesting topic to generalize the work of Bohle on Willmore

tori (see [2]) to Willmore tori in S6.

We can use the DPW method to give another proof of Theorem 2.1.

Proof of Theorem 2.1 If y is non S-Willmore with 〈κ, κ〉 = 0, we claim that its normalized

potential can only take the form of type 3. By Theorem 3.1 of Section 3, y is totally isotropic

and its normal connection has the desired form.

Now let us prove the claim. [34, Theorem 2.8] and [16, Theorem 5.2] show that B1 must be

either of type 2 or of type 3 in [34, Theorem 2.8]. On the other hand, as we have seen before, the

isotropy condition and the Willmore equation show 〈κ, κ〉 = 〈Dzκ, κ〉 = 〈Dzκ,Dzκ〉 = 0. This

yields that the Maurer-Cartan form of y satisfies B1B
t
1 = 0. Then B̃1, the holomorphic part

of B1, also satisfies B̃1B̃
t
1 = 0. As a consequence, we have B̂1B̂

t
1 = K1B̃1K

−1
2 (K−1

2 )tB̃t
1K

t
1 =

K1B̃1B̃
t
1K

t
1 = 0. If the normalized potential η of y is of type 2 in [35, Theorem 2.8], then

B̂1 =




h11 ih11 h12 f1h12
h21 ih21 h12 f1h12
h31 ih31 h32 f1h32
h41 ih41 ih32 if1h32


 .

So the condition B̂1B̂
t
1 = 0 forces f1 = i or f1 = −i. Hence η is of type 3 (up to a conjugation).

3 Construction of Totally Isotropic Willmore Two-spheres in S
6

This section is to describe geometric properties of Willmore surfaces of type 3 of [34, Theorem

3.3] We will provide an algorithm to derive a concrete construction of such Willmore surfaces

in S6 from the normalized potentials of type 3 of [34, Theorem 3.3] by a concrete Iwasawa

decomposition. The geometric properties of this kind of Willmore surfaces are also revealed

naturally. During this procedure, we will see that Willmore surfaces of this type will be the

special kind of totally isotropic Willmore surfaces in S6, which has been discussed in Section

2. This section has three parts. The main theorem and the new examples are stated first.

The technical lemmas combining the proof of Theorem 3.1 are stated in the end. The concrete

proofs and constructions of examples are postponed to two appendixes.

3.1 From potentials to surfaces

Theorem 3.1 (Case of [34, Theorem 3.3]) Let y be a Willmore surface in S6 with its

normalized potential being of the form (2.10). Then y is totally isotropic in S6. Moreover,

locally there exists an isotropic frame {E1, E2} of the normal bundle V ⊥
C

of y such that (2.7)

holds.

3.2 Examples of totally isotropic Willmore spheres in S
6

We have two kinds of examples to illustrate the algorithm presented in the proof of Theorem

3.1. The isotropic minimal surfaces in R4 are used to illustrate the algorithm with simpler

computations. The new, totally isotropic, non S-Willmore, Willmore two-spheres in S6 is

constructed to answer Ejiri’s question explicitly.
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Theorem 3.2 Let

η = λ−1

(
0 B̂1

−B̂t
1I1,3 0

)
dz, with B̂1 =

1

2




−if ′
2 f ′

2 0 0
if ′

2 −f ′
2 0 0

f ′
4 if ′

4 0 0
if ′

4 −f ′
4 0 0


 . (3.1)

Here f2 and f4 are (non-constant) meromorphic functions on C. This B̂1 is of both type 1 and

type 3 in [34, Theorem 2.8]. The corresponding associated family of Willmore surfaces is

[Yλ] =
[




(1 + |f2|2)−
f2f4f

′
2

f ′
4

− f2f4f
′
2

f ′
4

+
|f ′

2|2(1 + |f4|2)
|f ′

4|2

(1− |f2|2) +
f2f4f

′
2

f ′
4

+
f2f4f

′
2

f ′
4

− |f ′
2|2(1 + |f4|2)

|f ′
4|2

− if ′
2

f ′
4

+
if ′

2

f ′
4

−f
′
2

f ′
4

− f ′
2

f ′
4

−i(λ−1f2 − λf2) +
iλ−1f ′

2f4
f ′
4

− iλf ′
2f4

f ′
4

(λ−1f2 + λf2)−
λ−1f ′

2f4
f ′
4

− λf ′
2f4

f ′
4

0
0




]
. (3.2)

Corollary 3.1 The Willmore surface [Yλ] in Theorem 3.2 is conformal to the minimal

surface

xλ =




− if ′
2

f ′
4

+
if ′

2

f ′
4

−f
′
2

f ′
4

− f ′
2

f ′
4

−i(λ−1f2 − λf2) +
iλ−1f ′

2f4
f ′
4

− iλf ′
2f4

f ′
4

(λ−1f2 + λf2)−
λ−1f ′

2f4
f ′
4

− λf ′
2f4

f ′
4




in R4. (3.3)

Note that λ is different from the usual parameter of the associated family of a minimal surface.

Theorem 3.3 (The case p = 2 in (1.2)) Let

η = λ−1

(
0 B̂1

−B̂t
1I1,3 0

)
dz, with B̂1 =

1

2




2iz −2z −i 1
−2iz 2z −i 1
−2 −2i −z −iz
2i −2 −iz z


 . (3.4)
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The associated family of unbranched Willmore two-spheres xλ, λ ∈ S1, corresponding to η, is

xλ =
1(

1 + r2 + 5r4

4 + 4r6

9 + r8

36

)




(
1− r2 − 3r4

4
+

4r6

9
− r8

36

)

−i
(
z − z)

(
1 +

r6

9

))

(
z + z)

(
1 +

r6

9

))

−i
(
(λ−1z2 − λz2)

(
1− r4

12

))

(
(λ−1z2 + λz2)

(
1− r4

12

))

−i
r2

2
(λ−1z − λz)

(
1 +

4r2

3

)

r2

2
(λ−1z + λz)

(
1 +

4r2

3

)




with r = |z|. (3.5)

Moreover xλ : S2 → S6 is a Willmore immersion in S6, which is full, not S-Willmore, and

totally isotropic. Note that for all λ ∈ S1, xλ is isometric to each other in S6.

3.3 Technical lemmas

3.3.1 The basic ideas

To begin with, we first explain our basic ideas, since the computations are very technical.

We will divide the proof of Theorem 3.1 into two steps:

1. To derive the harmonic maps from the given normalized potentials.

2. To derive the geometric properties of the corresponding Willmore surfaces.

The main method in Step 1 is a concrete performing of Iwasawa decompositions. The main

idea in Step 2 is to read off the Maurer-Cartan forms of the corresponding Willmore surfaces.

For Step 1, we first transform SO+(1, 7,C) into G(8,C) (see (3.6)) so that the normalized

potentials in Theorem 3.1 are strictly upper-triangular in g(8,C) = Lie(G(8,C)) (see Lemma

3.1). Then Lemma 3.2 provides the concrete expressions of the normalized potential and its

meromorphic frame. Lemma 3.3 gives the Iwasawa decompositions of the meromorphic frame

by the method of undetermined coefficients. This finishes Step 1. For Step 2, we first derive the

forms of the Maurer-Cartan forms of the extended frame derived in Step 1. Then translating into

the computations of moving frames, one will obtain the isotropic properties of the corresponding

Willmore surfaces.

3.3.2 Step 1: Iwasawa decompositions

Set

G(8,C) := {A ∈ Mat(8,C) | AtJ8A = J8, detA = 1} (3.6)

with Jn = (jk,l)n×n, jk,l = δk+l,n+1 for all 1 ≤ k, l ≤ n.
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Lemma 3.1 Let

P̌ : SO+(1, 7,C) → G(8,C)

A 7→ P̌−1P̃−1AP̃ P̌ ,
(3.7)

with

P̌ =




J2
J2

J2
J2


 , P̃ =

1√
2




1 −1
1 1

−i i
1 1

−i i
1 1

−i i
1 1




.

Then P̌ is a Lie group isomorphism.

We also have that P̌(SO+(1, 7)) = {F ∈ G(8,C) | F = Š−1
8 FŠ8}, with

Š8 = P̌
−1
P̃

−1

P̃ P̌ =




0 0 J2
0 S4 0
J2 0 0


 , S4 =




1
1

1
1


 . (3.8)

This induces an involution of ΛG(8,C) :

τ̌ : ΛG(8,C) → ΛG(8,C),
F 7→ Š−1

8 FŠ8
(3.9)

with P̌ (ΛSO+(1, 7)) = {F ∈ ΛG(8,C) | τ̌(F ) = F} as its fixed point set.

The image of the subgroup (SO+(1, 3)× SO(4))C is

P̌((SO+(1, 3)× SO(4))C) = {F̌ ∈ G(8,C) | F̌ = Ď−1
0 F̌ Ď0}

with

Ď0 = P̌−1P̃−1DP̃ P̌ = −D0 = diag(1, 1,−1,−1,−1,−1, 1, 1).

Set

J̌8 = Š8J8 = J8Š8 =



I2

J̌4
I2


 with J̌4 = S4J4 =




1
1

1
1


 .

For any F ∈ G(8,C), we have

τ̌−1(F ) = J̌8F
t
J̌8. (3.10)

Lemma 3.2 Let η be the normalized potential of Theorem 3.1. Then

P̌(η) = λ−1




0 f̌ 0

0 0 −f̌ ♯

0 0 0


dz, f̌ ♯ := J4f̌

tJ2,

with

f̌ =

(
−h32 − ih42 i(h12 − h22) −i(h12 + h22) h32 − ih42
−h31 − ih41 i(h11 − h21) −i(h11 + h21) h31 − ih41

)
. (3.11)
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Moreover, H = I8 + λ−1H1 + λ−2H2 is a solution to

H−1dH = P̌(η), H |z=0 = I8. (3.12)

Here

H1 =




0 f 0
0 0 −f ♯

0 0 0


 , H2 =




0 0 g
0 0 0
0 0 0


 , f =

∫ z

0

f̌dz, g = −
∫ z

0

(f f̌ ♯)dz.

Lemma 3.3 Retaining the assumptions and the notations of the previous lemmas, assume

that P̌(η) is the normalized potential of some harmonic map, we obtain:

Assume that the Iwasawa decomposition of H is H = F̌ F̌+, with F̌ ∈ P̌(ΛSO+(1, 7)σ) ⊂
ΛG(8,C)σ and F̌+ ∈ Λ+G(8,C)σ. Then

F̌ = Hτ̌(W )L−1
0 . (3.13)

Here W , W0 and L0 are the solutions to the matrix equations τ̌ (H)−1H =WW0τ̌ (W )−1, W0 =

τ̌(L0)
−1L0, with W = I8 + λ−1W1 + λ−2W2 and

W1 =




0 u 0
0 0 −u♯
0 0 0


 , W2 =




0 0 ǧ
0 0 0
0 0 0


 , W0 =



a 0 0
0 q 0
0 0 d


 , L0 =



l1 0 0
0 l0 0
0 0 l4


 .

Here the sub-matrices a, q, d and u are determined by the following equations:

d = I2 + f
t♯
J̌4f

♯ + gtg, (3.14a)

u♯d = f ♯ − J̌4f
t
g, (3.14b)

q + u♯du♯tJ̌4 = I4 + J̌4f
t
f, (3.14c)

a+ uqJ̌4u
t + g(d

t
)−1gt = I2, (3.14d)

uq − gu♯tJ̌4 = f. (3.14e)

Moreover, F̌ can be expressed by these sub-matrices as below

F̌ = Hτ̌(W )L−1

0 =





(I − fS4u
♯J2 + gJ2gd−1J2)l

−1

1
λ−1(f + gJ2uS4)l

−1

0
λ−2gl−1

4

−λ(S4u
♯J2 + f ♯J2gd−1J2)l

−1

1
(I − f ♯J2uS4)l

−1

0
−λ−1f ♯l−1

4

λ2J2gd−1J2l
−1

1
λJ2uS4l

−1

0
l−1

4



 . (3.15)

Remark 3.1 1. Since in Lemma 3.2, the matrices f and g are given, (3.14a) determines d,

where d is invertible (true for z close to z = 0). Then (3.14b) determines u♯, hence u. Inserting

this into (3.14c) results in determining q. Inserting what we have so far into (3.14d) determines

a. The last equation (3.14e) is a consequence of the previous equations. Therefore, the only

condition for the solvability of (3.14) is the invertibility of d. If f and g are rational functions

of z, the invertibility of d is satisfied on an open dense subset as a rational expression in z, z.

2. For a general procedure for the computations of Iwasawa decompositions for algebraic

loops, or more generally for rational loops, see [13, Section I.2].

3. In [14, 21], a different method is used to produce all harmonic maps of finite uniton type

into U(n), the complex Grassmannian U(n + m)/(U(n) × U(m)) and G2. The treatment of

these papers basically follows the spirit of Wood [35], Uhlenbeck [33] and Segal [31], using some

special unitons. In [32], the converse part of this procedure is also used for the computations

of the Iwasawa decompositions of elements of the algebraic loop group λalgU(n)C. It will be

an interesting and very hard question to apply they results to detect the geometry of harmonic

maps.
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3.3.3 Step 2: Maurer-Cartan forms

Lemma 3.4 Retaining the assumptions and the notations of the previous lemmas, the

Maurer-Cartan form of F̌ in (3.15) is of the form

α̌′
k =



a1 0 0
0 a0 0
0 0 a4


 dz, α̌′

p = λ−1




0 l1f̌ l
−1
0 0

0 0 −(l1f̌ l
−1
0 )♯

0 0 0


dz, (3.16)

with



a1 = −l1f̌S4u

♯J2l
−1
1 − l1zl

−1
1 ,

a0 = −l0(f̌ ♯J2uS4 − S4u
♯J2f̌)l

−1
0 − l0zl

−1
0 ,

a4 = l4J2uS4f̌
♯l−1
4 − l4zl

−1
4 .

(3.17)

Note that these three equations for a1, a0 and a4 actually should be read as ordinary differ-

ential equations for l1, l0 and l4, as initial conditions we may use lj(0) = I, j = 0, 1, 4.

Lemma 3.5 Let F : M → SO+(1, 7)/SO+(1, 3) × SO(4) be the conformal Gauss map of

a Willmore surface y, with an extended frame F . If the Maurer-Cartan form of F̌ = P̌(F ) has

the form (3.16), then y is totally isotropic in S6. Moreover, locally there exists an isotropic

frame {E1, E2} of the normal bundle V ⊥
C

of y such that (2.7) holds.

A combination of the above lemmas provides a complete proof of Theorem 3.1. Lemmas

3.1–3.2 can be verified by straightforward matrix computations since the concrete formulas are

provided (compare also [34]). So we leave these computations to the readers. The proofs of the

other lemmas will be contained in the following section.

4 Appendix A: Iwasawa Decompositions

4.1 Proof of Lemma 3.3

Firstly one computes

τ̌−1(H)H =




I2 0 0

λJ̌4f
t

I4 0

λ2gt −λf ♯,t
J̌4 I2






I2 λ−1f λ−2g
0 I4 −λ−1f ♯

0 0 I2




=




I2 λ−1f λ−2g

λJ̌4f
t

I4 + J̌4f
t
f λ−1J̌4f

t
g − λ−1f ♯

λ2gt λgtf − λf
♯,t
J̌4 I2 + λf

♯,t
J̌4f

♯ + gtg


 .

We write τ̌−1(H)H =WW0τ̌
−1(W ) with W = I8 + λ−1W1 + λ−2W2 and

W1 =




0 u 0
−v♯ 0 −u♯
0 v 0


 , W0 =



a 0 b
0 q 0
c 0 d


 , W−1

0 =



â 0 b̂
0 q−1 0

ĉ 0 d̂


 .

Hence we obtain



W2W0 = H2,

W1W0 +W2W0J̌8W
t

1J̌8 = H1 + J̌8H
t

1J̌8H2,

W0 +W1W0J̌8W
t

1J̌8 +W2W0J̌8W
t

2J̌8 = I + J̌8H
t

1J̌8H1 + J̌8H
t

2J̌8H2.

(4.1)
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Since

J̌8W
t

1J̌8 =




0 −v♯tJ̌4 0
J̌4u

t 0 J̌4v
t

0 −u♯tJ̌4 0


 , W1W0 =




0 uq 0
−v♯a− u♯c 0 −v♯b− u♯d

0 vq 0


 ,

W2W0J̌8W
t

1J̌8 = H2J̌8W
t

1J̌8 =




0 −gu♯tJ̌4 0
0 0 0
0 0 0


 ,

from the second matrix equation of (4.1), one derives easily that vq = 0, −v♯a− u♯c = 0, uq−
gu♯tJ̌4 = f, −v♯b− u♯d = J̌4f

t
g − f ♯. Since q is invertible, v = 0. Therefore we have

v = 0, u♯c = 0, uq − gu♯tJ̌4 = f, u♯d = f ♯ − J̌4f
t
g.

Next we consider the third matrix equation in (4.1). Since

W1W0J̌8W
t

1J̌8 =




· · · 0 0
0 · · · 0
0 0 0


 , W2W0J̌8W

t

2J̌8 = H2J̌8W
t

2J̌8 =




· · · 0 0
0 0 0
0 0 0


 ,

comparing with the λ-independent part of τ̌−1(H)H , we derive directly that c = b = ĉ = b̂ = 0.

Substituting these results into the matrix equations in (4.1), a straightforward computation

yields (3.14).

In the end, let L0 be of the form as in Lemma 3.3, it is easy to compute

F̌ = Hτ̌(W )L−1
0 =



I λ−1f λ−2g
0 I −λ−1f ♯

0 0 I






I
−λS4u

♯J2 I

λ2J2gd
−1
J2 λJ2uS4 I


L−1

0

=




(I − fS4u
♯J2 + gJ2gd−1J2)l

−1
1 λ−1(f + gJ2uS4)l

−1
0 λ−2gl−1

4

−λ(S4u
♯J2 + f ♯J2gd−1J2)l

−1
1 (I − f ♯J2uS4)l

−1
0 −λ−1f ♯l−1

4

λ2J2gd−1J2l
−1
1 λJ2uS4l

−1
0 l−1

4


 .

4.2 The Maurer-Cartan form of F̌ and the geometry of Willmore surfaces

Proof of Lemma 3.4 We have F̌−1dF̌ = λ−1α̌′
p+α̌k+λα̌

′′
p with α̌′

p = L0P̌(η−1)L
−1
0 dz, α̌′

k

= L0[P̌(η−1), τ̌ (W1)]L
−1
0 dz + L0(L

−1
0 )zdz. Since

P̌(η−1) =




0 f̌ 0

0 0 −f̌ ♯

0 0 0


 , τ̌ (W1) =




0 0 0
−S4u

♯J2 0 0
0 J2uS4 0


 ,

we obtain

L0[P̌(η−1), τ̌ (W1)]L
−1
0 =




−l1f ′S4u
♯J2l

−1
1

−l0(f ′♯J2uS4 − S4u
♯Jf ′)l−1

0

l4J2uS4f
′♯l−1

4


 .
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Proof of Lemma 3.5 By (3.16) in Lemma 3.4, there exists a frame F̌ such that the

(1, 0)-part α̌′ of the Maurer-Cartan form of F̌ has the form




č11 č12 b̌11 b̌12 b̌13 b̌14 0 0

č21 č22 b̌21 b̌22 b̌23 b̌24 0 0

0 0 š11 š12 š13 0 −b̌24 −b̌14
0 0 š21 š22 0 −š13 −b̌23 −b̌13
0 0 š31 0 š33 −š12 −b̌22 −b̌12
0 0 0 −š31 −š21 −š11 −b̌21 −b̌11
0 0 0 0 0 0 −č22 −č12
0 0 0 0 0 0 −č21 −č11




dz.

Set F = P−1(F̃ ) = (φ1, φ2, φ3, φ4, ψ1, ψ2, ψ3, ψ4). By (3.7) in Lemma 3.1, we derive that

α′ = F−1Fzdz = P̌−1(α̃′) =

(
A1 λ−1B1

−λ−1Bt
1I1,3 A2

)
dz

with

A1 =




0 s22 s13 s14
s22 0 s23 s24
s13 −s23 0 −is11
s14 −s24 is11 0


 ,





2s13 = −i(š12 − š13)− i(š31 − š21),
2s14 = (š12 − š13) + (š21 − š31),
2s23 = i(š12 + š13 + š21 + š31),
2s24 = (š12 + š13) + (š31 + š21),

A2 =
1

2




0 −2ič22 č21 − č12 −i(č12 + č21)
2ič11 0 i(č12 + č21) č12 − č21

č12 − č21 −i(č12 + č21) 0 −2ič11
i(č12 + č21) č21 − č12 2ič11 0




and

B1 =
1

2




i(b̌23 − b̌22) −(b̌23 − b̌22) i(b̌13 − b̌12) −(b̌13 − b̌12)

i(b̌23 + b̌22) −(b̌23 + b̌22) i(b̌13 + b̌12) −(b̌13 + b̌12)

b̌24 − b̌21 i(b̌24 − b̌21) b̌14 − b̌11 i(b̌14 − b̌11)

i(b̌24 + b̌21) −(b̌24 + b̌21) i(b̌14 + b̌11) −(b̌14 + b̌11)




=




h11 ih11 h13 ih13
h21 ih21 h23 ih23
h31 ih31 h33 ih33
h41 ih41 h43 ih43


 . (4.2)

Therefore, one obtains
{
φ1z = λ−1(h11(ψ1 + iψ2) + h13(ψ3 + iψ4)) mod {φ1, φ2, φ3, φ4}
φjz = −λ−1(hj1(ψ1 + iψ2) + hj3(ψ3 + iψ4)) mod {φ1, φ2, φ3, φ4}, j = 2, 3, 4.

(4.3)

Now assume that Y is a canonical lift of the Willmore surface y. Note that SpanC{Y, Yz, Yz , N} =

SpanC{φ1, φ2, φ3, φ4}. So Yz is a linear combination of {φ1, φ2, φ3, φ4}. Then we compute the

Hopf differential κ = Yzz mod {Y, Yz, Yz, N}:

κ = λ−1k1(ψ1 + iψ2) + λ−1k2(ψ3 + iψ4) for some k1, k2.

Hence 〈κ, κ〉 ≡ 0, i.e., κ is isotropic. To show that Y is totally isotropic, we need only to verify

that Dzκ is isotropic. From the Maurer-Cartan form of F , we derive that

Dzψ1 = ič22ψ2 +
č12 − č21

2
ψ3 +

i(č12 + č21)

2
ψ4,
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Dzψ2 = −ič22ψ1 +
−i(č12 + č21)

2
ψ3 +

č12 − č21
2

ψ4,

Dzψ3 =
č21 − č12

2
ψ1 +

i(č12 + č21)

2
ψ2 + ič11ψ4,

Dzψ4 =
−i(č12 + č21)

2
ψ1 +

č21 − č12
2

ψ2 − ič11ψ3.

So Dz(ψ1 + iψ2) = č22(ψ1 + iψ2) + č12(ψ3 + iψ4), Dz(ψ3 + iψ4) = č21(ψ1 + iψ2)+ č11(ψ3 + iψ4).

As a consequence, we obtain that Dzκ = λ−1(δ1(ψ1 + iψ2) + δ2(ψ3 + iψ4)) for some complex

valued function δ1 and δ2. This indicates that Dzκ is also isotropic, i.e., Y as well as y is totally

isotropic.

4.3 An Algorithm to derive Willmore surfaces from frames

This subsection is to derive an algorithm permitting to read off y from the frame F . Although

the harmonic maps have been constructed in the above subsections, to obtain the Willmore

surfaces from the harmonic maps needs more computations. We retain the notation, in the

proof of Lemma 3.5.

Set B1 = (h1, ih1, h3, ih3) with hj = (h1j , h2j , h3j , h4j)
t, j = 1, 3. Since B1 satisfies

Bt
1I1,3B1 = 0, we have htjI1,3hl = 0, j, l = 1, 3. Therefore h1 and h2 are contained in

one of the following two subspaces (see also [34]):

SpanC








1 + ρ1ρ2
1− ρ1ρ2
ρ1 + ρ2

−i(ρ1 − ρ2)


 ,




ρ1
−ρ1
1
i







, or SpanC








1 + ρ1ρ2
1− ρ1ρ2
ρ1 + ρ2

−i(ρ1 − ρ2)


 ,




ρ2
−ρ2
1
−i







.

Let Y be a canonical lift of y. Hence Y ∈ SpanR{φ1, φ2, φ3, φ4}. Since Y is real and lightlike,

we may assume that

Y = ρ̂0((1 + |ρ̂1|2)φ1 + (1− |ρ̂1|2)φ2 + (ρ̂1 + ρ̂1)φ3 − i(ρ̂1 − ρ̂1)φ4) (4.4)

with ρ̂0 6= 0. A straightforward computation by use of (4.3) yields

Yz = ρ̂0((1 + |ρ̂1|2)h11 − (1 − |ρ̂1|2)h21 + (ρ̂1 + ρ̂1)h31 − i(ρ̂1 − ρ̂1)h41)(ψ1 + iψ2)

+ ρ̂0((1 + |ρ̂1|2)h13 − (1− |ρ̂1|2)h23 + (ρ̂1 + ρ̂1)h33 − i(ρ̂1 − ρ̂1)h43)(ψ3 + iψ4)

mod {φ1, φ2, φ3, φ4}.

Hence, to ensure that Yz ∈ SpanC{φ1, φ2, φ3, φ4}, ρ̂1 needs to satisfy

{
(1 + |ρ̂1|2)h11 − (1− |ρ̂1|2)h21 + (ρ̂1 + ρ̂1)h31 − i(ρ̂1 − ρ̂1)h41 = 0,

(1 + |ρ̂1|2)h13 − (1− |ρ̂1|2)h23 + (ρ̂1 + ρ̂1)h33 − i(ρ̂1 − ρ̂1)h43 = 0.
(4.5)

Without loss of generality, we assume that h1 = ρ0(1 + ρ1ρ2, 1− ρ1ρ2, ρ1 + ρ2,−i(ρ1 − ρ2))
t. If

the maximal rank of B1 is 1, then h3 = ρ01(1 + ρ1ρ2, 1− ρ1ρ2, ρ1 + ρ2,−i(ρ1 − ρ2))
t. So (4.5) is

equivalent to (ρ̂1 − ρ1)(ρ2 − ρ̂1) = 0. Hence ρ̂1 = ρ1 or ρ̂1 = ρ2. These two solutions provide a

pair of dual Willmore (therefore S-Willmore) surfaces y and ŷ with the same conformal Gauss

map.

If the maximal rank of B1 is 2, then

h3 = ρ01(1 + ρ1ρ2, 1− ρ1ρ2, ρ1 + ρ2,−i(ρ1 − ρ2))
t + ρ02(ρ1,−ρ1, 1, i)t,
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or

h3 = ρ01(1 + ρ1ρ2, 1− ρ1ρ2, ρ1 + ρ2,−i(ρ1 − ρ2))
t + ρ02(ρ2,−ρ2, 1,−i)t.

For the first case, (4.5) is equivalent to ρ̂1 = ρ1. For the second case, (4.5) is equivalent to

ρ̂1 = ρ2. In both cases, we obtain a unique non-S-Willmore surface.

From the above discussions, clearly it is necessary to obtain the first four columns of F .

By (3.15), F̌ can be derived from the Iwasawa decompositions. Set F̌ = (fjl), j, l = 1, · · · , 8,
and F = P̌−1(F̌ ). Writing F = (φ1, φ2, φ3, φ4, ψ1, ψ2, ψ3, ψ4), and setting (φ̂1, φ̂2, φ̂3, φ̂4) =

(φ1 + φ2, φ1 − φ2, φ3 − iφ4, φ3 + iφ4), one obtains straightforwardly from (3.7) that

(φ̂1, φ̂2, φ̂3, φ̂4) =




(f44 − f54) −(f45 − f55) −i(f46 − f56) i(f43 − f53)
(f44 + f54) −(f45 + f55) −i(f46 + f56) i(f43 + f53)

−i(f34 − f64) i(f35 − f65) −(f36 − f66) (f33 − f63)
(f34 + f64) −(f35 + f65) −i(f36 + f66) i(f33 + f63)

−i(f24 − f74) i(f25 − f75) −(f26 − f76) (f23 − f73)
(f24 + f74) −(f25 + f75) −i(f26 + f76) i(f23 + f73)

−i(f14 − f84) i(f15 − f85) −(f16 − f86) (f13 − f83)
(f14 + f84) −(f15 + f85) −i(f16 + f86) i(f13 + f83)




. (4.6)

5 Appendix B: Construction of Examples

5.1 Proof of Theorem 3.2

By the procedures in Subsection 4.3, to derive the expression of y, one needs to figure out

B1 of the Maurer-Cartan form and the first four columns of the frame F . Applying Lemmas

3.2–3.3 to P̌(η), F and the Maurer-Cartan form can be derived by solving (3.14) for the Iwasawa

decompositions. Therefore we have three steps to derive y:

1. Computation of the first four columns of F .

2. Computation of the Maurer-Cartan form of F .

3. Computation of Y .

Step 1: Computation of the first four columns of F . By (3.11), it is straightforward to

derive that

P̌(η) = λ−1




0 f̌ 0

0 0 −f̌ ♯

0 0 0


dz

with f̌ =

(
0 0 0 0
0 f ′

2 0 f ′
4

)
and f =

∫ z

0
f̌dz =

(
0 0 0 0
0 f2 0 f4

)
. Since f f̌ = 0, we obtain

g = 0. And a straightforward computation yields

d = (dij) =

(
1 + |f4|2 0

0 1

)
, d−1 =

( 1
|d| 0

0 1

)
, with |d| = 1 + |f4|2.

Since W0 ∈ G(8,C), we derive at = Jd−1J =




1 0

0
1

|d|


 = a. By (3.14b) and (3.14c), we have
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u =
1

|d|

(
0 0 0 0
0 f2 0 f4

)
, q = (qij) =




1

|d| −f2f4|d| 0 0

0 1 0 0

−f2f4|d|
|f2f4|2
|d| 1 f2f4

0 f2f4 0 |d|




.

It is straightforward to verify that q = J̌4l
t

0J̌4l0 with l0 ∈ G(4,C):

l0 =




1√
|d|

− f2f4√
|d|

0 0

0 1 0 0

0 0 1 f2f4
0 0 0

√
|d|



, and hence l−1

0 =




√
|d| f2f4 0 0
0 1 0 0

0 0 1 − f2f4√
|d|

0 0 0
1√
|d|



.

Moreover, by (3.15), we have




f13 f14 f15 f16
f23 f24 f25 f26
f33 f34 f35 f36
f43 f44 f45 f46
f53 f54 f55 f56
f63 f64 f65 f66
f73 f74 f75 f76
f83 f84 f85 f86




=



f + gJuS4

I − f ♯JuS4

JuS4


 l−1

0 =




0 0 0 0

0 f2 0
f4√
|d|

1√
|d|

0 0 0

0 1 0 0

− f2f4√
|d|

−|f2|2 1 − f2f4√
|d|

0 0 0
1√
|d|

f4√
|d|

f2 0 0

0 0 0 0




.

Step 2: Computation of the Maurer-Cartan form of F . Applying Lemma 3.4, the l1f̌ l
−1
0

part of the Maurer-Cartan form of F̌ is of the form

l1f̌ l
−1
0 =




0 0 0 0

0
f ′
2√
|d|

0
f ′
4

|d|


 =⇒ B1 =

1

2




− if ′
2√
|d|

f ′
2√
|d|

0 0

if ′
2√
|d|

− f ′
2√
|d|

0 0

f ′
4

|d|
if ′

4

|d| 0 0

if ′
4

|d| − f ′
4

|d| 0 0




.

Step 3: Computation of Y . Here we follow the discussions in Subsection 4.3. First from,

the Maurer-Cartan form we have

Dzφ1 = − if ′
2

2
√
|d|

(ψ1 + iψ2), Dzφ2 = − if ′
2

2
√
|d|

(ψ1 + iψ2),
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Dzφ3 = − f ′
4

2|d| (ψ1 + iψ2), Dzφ4 = − if ′
4

2|d|(ψ1 + iψ2).

Set E1 = φ1 − φ2, Ê1 = φ1 + φ2, E2 = φ3 − iφ4. Assume that Y = Ê1 + µE2 + µE2 + |µ|2E1

for some µ. We have that

DzY =
(−if ′

2√
|d|

− µ
f ′
4

|d|
)
(ψ1 + iψ2).

So DzY = 0 if and only if µ = − if ′

2

√
|d|

f ′

4

. This yields (3.2).

Remark 5.1 Note that the above Iwasawa decomposition only blows up at the poles of f2
and f4, showing that the above decomposition does not cross the boundary of an Iwasawa big

cell.

5.2 Proof of Theorem 3.3

Here we have four steps:

1. Computation of the first four columns of F .

2. Computation of the Maurer-Cartan form of F .

3. Computation of Y .

4. Computation of metric of Y (to check the immersion properties of y).

Step 1: Computation of the first four columns of F . Since η is of the form stated in (3.4),

by (3.11), it is easy to derive that

P̌(η) = λ−1




0 f̌ 0

0 0 −f̌ ♯

0 0 0


dz

with

f̌ =

(
0 0 −1 −z
2 −2z 0 0

)
, f =

∫ z

0

f̌dz =


 0 0 −z −z

2

2

2z −z2 0 0


 .

Note now g = −
∫ z

0
f(f̌ ♯)dz = z3

3

(
−1 0
0 1

)
. Set r =

√
|z|2. By (3.14a), we have

d = (dij) =




1 + 4r2 +
r6

9
r2z

r2z 1 +
r4

4
+
r6

9


 , d−1 =

1

|d|




1 +
r4

4
+
r6

9
−r2z

−r2z 1 + 4r2 +
r6

9




with |d| =
(
1 + 4r2 + r4

4 + r6

9

)(
1 + r6

9

)
. So a = (Jd−1J)t = 1

|d|

(
1 + 4r2 + r6

9 −r2z
−r2z 1 + r4

4 + r6

9

)

and a = l1
t
l1 with l1 =




√
d11√
|d|

− d12√
|d|

√
d11

0
1√
d11


 = 1√

|d|




√
1 + 4r2 +

r6

9

−r2z√
1 + 4r2 +

r6

9

0
1√

1 + 4r2 +
r6

9



.
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Moreover, by (3.14b), one computes

u♯ =
1

|d|




r2z3

2

(
1 +

4r2

3

)
−z

2

2

(
1 +

4r2

3

)(
1 + 4r2 +

r6

9

)

r2z2

3

(
2− r6

9
− r4

4

)
−z
(
1 + 4r2 − 2r6

9

)

−z2
(
1 +

r4

4
+

4r6

9

) r4z

3

(
4 + 4r2 +

r6

9

)

2z
(
1− r4

12

)(
1 +

r4

4
+
r6

9

)
−2r4

(
1− r4

12

)




.

Substituting these into (3.14c), we obtain q = (qij) with

|d|q11 =
(
1 + 4r2 − 2r6

9

)2
, |d|q12 = |d|q31 = −2r2z

(
1− r4

12

)(
1 + 4r2 − 2r6

9

)
,

|d|q13 = |d|q21 = −r
2z

2

(
1 +

4r2

3

)(
1 + 4r2 − 2r6

9

)
,

|d|q14 = |d|q41 = −r4z2
(
1 +

4r2

3

)(
1− r4

12

)
,

|d|q22 = |d|q33 =
(
1 + 4r2 − 2r6

9

)(
1 +

r4

4
+

4r6

9

)
, |d|q23 =

r6

4

(
1 +

4r2

3

)2
,

|d|q24 = |d|q43 =
r2z

2

(
1 +

4r2

3

)(
1 +

r4

4
+

4r6

9

)
, |d|q32 = 4r6

(
1− r4

12

)2
,

|d|q34 = |d|q42 = 2r2z
(
1− r4

12

)(
1 +

r4

4
+

4r6

9

)
, |d|q44 =

(
1 +

r4

4
+

4r6

9

)2
.

It is straightforward to check that q = J̌4l
t

0J̌4l0 with

l0 =




(
1 + 4r2 − 2r6

9

)

√
|d|

−
2r2z

(
1− r4

12

)

√
|d|

−
r2z
(
1 + 4r2

3

)

2
√
|d|

−
r4z2

(
1 + 4r2

3

)(
1− r4

12

)

√
|d|
(
1 + 4r2 − 2r6

9

)

0
√
|d| 0

r2z
(
1 + 4r2

3

)√
|d|

2
(
1 + 4r2 − 2r6

9

)

0 0
1√
|d|

2r2z
(
1− r4

12

)

√
|d|
(
1 + 4r2 − 2r6

9

)

0 0 0

√
|d|(

1 + 4r2 − 2r6

9

)




.
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Assume that F̌ = (fjl) =
1

|d|
1

2 (1+4r2− 2r6

9
)
(̂fjl). By (3.15),

(̂fjl) =




− r8

6λ

(
1 +

4r2

3

) zr4

3λ
−z(1 + 4r2)|d|

λ
−z

2f̂25
2

2z

λ
f̃23 −z

2

λ

2z2r2|d|
3λ

z3r2
(
1 + 4r2

3

)

2λ

f̂24 2zr2 −4zr4|d|
3

−z2r4
(
1 +

4r2

3

)

−r
2z

2
f̂25 1 + 4r2 +

r6

9
−r2(1 + 4r2)|d| −zr

2

2
f̃25

r6z

2

(
1 +

4r2

3

)
−r4

(
1 + 4r2 +

4r6

9

)
|d| r6z

2

(
1 +

4r2

3

)

−r4z2
(
1 +

4r2

3

)
2zr2 −4zr4|d|

3
f̂24

λr2z3

2

(
1 +

4r2

3

)
−λz 2λz2r2|d|

3
2λzf̃23

−λz
2

2
f̃25

λzr4

3
−λz(1 + 4r2)|d| −λr

8

6

(
1 +

4r2

3

)




(5.1)

with 1 ≤ j ≤ 8, 3 ≤ l ≤ 6, and

f̃23 = 1 + 4r2 +
r4

6
− 2r6

9
+
r10

54
,

f̃25 =
(
1 +

4r2

3

)(
1 + 4r2 +

r6

9

)
,

f̂24 = 1 + 4r2 − 10r6

9
− 8r8

9
− 2r12

81
.

Step 2: Computation of the Maurer-Cartan form of F . By (3.16)–(3.17) of Lemma 3.4, the

Maurer-Cartan form of F̌ has the expression

l1f̌ l
−1
0 =

1√
|d|

· l1

·




0 0 −|d| −z
(
1 + 2r2 − r6

18

)

2|d|(
1+4r2− 2r6

9

) −2z
(
1 + 2r2 − r6

18

)
(
1 + 4r2 − 2r6

9

) zr2
(
1 + 4r2

3

)
(
1 + 4r2 − 2r6

9

) z2r2
(
1 + 4r2

3

)(
1 + 2r2 − r6

18

)
(
1 + 4r2 − 2r6

9

)




=
√
|d|
(
w̃1 −w̃1ρ w̃2 w̃2ρ
ŵ1 −ŵ1ρ ŵ2 ŵ2ρ

)

with

ρ =
z
(
1 + 2r2 − r6

18

)

|d| , l1 =
1√
|d|




√
1 + 4r2 +

r6

9

−r2z√
1 + 4r2 + r6

9

0
1√

1 + 4r2 + r6

9




=

(
l̂11 l̂12
0 l̂22

)
,

w̃1 =
2l̂12

1 + 4r2 − 2r6

9

, w̃2 =
l̂12zr

2
(
1 + 4r2

3

)

1 + 4r2 − 2r6

9

− l̂11,
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ŵ1 =
2l̂22

1 + 4r2 − 2r6

9

, ŵ2 =
l̂22zr

2
(
1 + 4r2

3

)

1 + 4r2 − 2r6

9

.

Transforming back to so(1, 7,C), we derive

B̌1 =




i(ŵ2 + ŵ1ρ) −(ŵ2 + ŵ1ρ) i(w̃2 + w̃1ρ) −(w̃2 + w̃1ρ)
i(ŵ2 − ŵ1ρ) −(ŵ2 − ŵ1ρ) i(w̃2 − w̃1ρ) −(w̃2 − w̃1ρ)
(ŵ2ρ− ŵ1) i(ŵ2ρ− ŵ1) (w̃2ρ− w̃1) i(w̃2ρ− w̃1)
i(ŵ2ρ+ ŵ1) −(ŵ2ρ+ ŵ1) i(w̃2ρ+ w̃1) −(w̃2ρ+ w̃1)


 = (h1, ih1, h3, ih3).

Step 3: Computation of Y . Here we follow the discussions in Subsection 4.3. It is easy to ver-

ify that h1 and h3 can be expressed as a (functional) linear combination of (1, 1,−iρ, ρ)t and (ρ,

−ρ, i, 1)t. Therefore one obtains easily that ρ̌1 = −iρ is the unique solution to (4.5). Substituting

ρ̌1 into (4.4), we obtain

[Y ] = [(1+|ρ|2)φ1+(1−|ρ|2)φ2−i(ρ−ρ)φ3+(ρ+ρ)φ4] = [(φ1+φ2)+|ρ|2(φ1−φ2)+iρ(φ3−iφ4)−iρ(φ3+iφ4)].

Then by (5.1) and (4.6) we have that

[Y ] =
[(1 + 4r2 − 2r6

9

)

|d| 32




(
1 + r2 +

5r4

4
+

4r6

9
+
r8

36

)

(
1− r2 − 3r4

4
+

4r6

9
− r8

36

)

−i
(
(z − z)

(
1 +

r6

9

))

(
(z + z)

(
1 +

r6

9

))

−i
(
(λ−1z2 − λz2)

(
1− r4

12

))

(
(λ−1z2 + λz2)

(
1− r4

12

))

−i r
2

2 (λ
−1z − λz)

(
1 +

4r2

3

)

r2

2 (λ
−1z + λz)

(
1 +

4r2

3

)




]
. (5.2)

Step 4: Let [Y ] be a global immersion. Let xλ be of the form (3.5). Then xλ : S2 → S6 is

well-defined on S2 with Y as its lift. Since

|xλz |2|dz|2 =
2 + 8r2 + r4

2 + 4r6

9 + 8r8

9 + r10

18 + 2r12

81(
1 + r2 + 5r4

4 + 4r6

9 + r8

36

)2 |dz|2,

x has no branch point at z ∈ C. As to ∞, set z̃ = 1
z
and r̃ =

√
|z̃|, we derive that |xλz̃ |2|dz̃|2 =

32|dz̃|2 at the point z̃ = 0.

Remark 5.2 Note that in the above Iwasawa decomposition, there exists a circle 1 +

4r2 − 2r6

9 = 0 such that the frame (5.1) obtained from the Iwasawa decomposition blows up.

However, this blowing up can be avoided by a change of frames and hence the corresponding

harmonic map is in fact globally well defined. This also means that the decomposition of the

corresponding harmonic map does not cross the boundary of an Iwasawa big cell (compare [4,

24]).
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