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Abstract In this paper, the authors study the moduli space of quasi-polarized complex
K3 surfaces of degree 6 and 8 via geometric invariant theory. The general members in such
moduli spaces are complete intersections in projective spaces and they have natural GIT
constructions for the corresponding moduli spaces and they show that the K3 surfaces with
at worst ADE singularities are GIT stable. They give a concrete description of boundary
of the compactification of the degree 6 case via the Hilbert-Mumford criterion. They
compute the Picard group via Noether-Lefschetz theory and discuss the connection to the
Looijenga’s compactifications from arithmetic perspective. One of the main ingredients is
the study of the projective models of K3 surfaces in terms of Noether-Lefschetz divisors.
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1 Introduction

A primitively quasi-polarized K3 surface (S,L) of degree 2ℓ over C consists of a complex

K3 surfaces, a big and nef line bundle L such that c1(L) ∈ H2(S,Z) is a primitive class and

L2 = 2ℓ. Let F2ℓ be the moduli space of primitively quasi-polarized complex K3 surfaces of

degree 2ℓ. It is well-known that the period map behaves very well on F2ℓ. Namely, if we denote

by D the period domain of K3 surfaces and Γ2ℓ the monodromy group, global Torelli theorem

tells us that F2ℓ is isomorphic to Γ2ℓ\D via the period map.

Besides the Hodge theoretical construction, there is also explicit algebraic construction of

F2ℓ via geometric invariant theory (GIT for short) for low degree K3 surfaces, where such a

general K3 surface is a complete intersection in the projective space. For instance, the GIT

construction of F2 and F4 has been worked out by Shah (see [20–21]). When 2ℓ = 6 or 8, a

general element (S,L) ∈ F2ℓ is a complete intersection of a smooth quadric and a cubic in P4

or a complete intersection of three quadrics in P5 respectively.

In this paper, we describe the GIT construction of moduli space of these complete intersects

and characterize the image of period map for such complete intersections as a complement of
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certain Noether-Lefschetz (NL for short) divisors in Γ2ℓ\D. The latter one has a natural arith-

metic compactification constructed by Looijenga (see [14]), and we will compare this arithmetic

compactification with the natural GIT compactification.

More precisely, for any non-negative integers d, g, the NL-divisor D2ℓ
d,g ⊂ F2ℓ

∼= Γ2ℓ\D is

defined to be the locus of quasi-polarized complex K3 surfaces (S,L) ∈ F2ℓ such that Pic(S)

contains a rank two primitive sublattice of the following form:

L β
L 2ℓ d
β d 2g − 2

(1.1)

for some β ∈ Pic(S). For simplicity of notations, we identify D2ℓ
d,g as divisors on Γ2ℓ\D via

period map. One of our main result is in the following.

Theorem 1.1 For ℓ = 3, 4, the complete intersections in Pℓ+1 of degree 2ℓ with at worst

simple singularities (i.e., isolated ADE singularities) are GIT-stable. Let M2ℓ be the moduli

space of such complete intersections with at worst simple singularities. Then the period map

extends to M2ℓ and its image in Γ2ℓ\D is the complement of D2ℓ
1,1, D

2ℓ
2,1 and D2ℓ

3,1.

Furthermore, the natural GIT compactification M2ℓ is not isomorphic to Looijenga’s com-

pactification of the complement Γ2ℓ\D−
3⋃

d=1

D2ℓ
d,1.

Remark 1.1 We refer the readers to [6] for the analysis of GIT stability for such complete

intersections with semi log canonical singularities.

Secondly, we have classified the boundary components of M6 in its GIT compactification

M6. The main result is as follows.

Theorem 1.2 The boundary M6\M6 consists of 9 irreducible components whose general

member X is described as follows:

α) (Semitable) X has two corank 3 singularities, but not a union of a quadric surface and

a quadric cone with multiplicity two.

β̃) (Stable) X is a union of a smooth quadric surface and a smooth complete intersection

of two quadrics.

γ) (Semistable) X has two simple elliptic singularities of type Ẽ8, whose projective tangent

cone intersect X along lines, and not the union of three quadric cones.

δ) (Stable) X has an isolated Ẽ7 singularity.

ǫ) (Stable) X has an isolated Ẽ8 singularity, whose projective tangent cone meets X at a

point.

ζ) (Stable) X is singular along a line.

η) (Stable) X is singular along a conic.

θ) (Stable) X is singular along a twisted cubic.

φ) (Stable) X is singular along a rational normal curve of degree 4.

The stratum α is 6-dimensional, β̃ is 7-dimensional (it contains a 2-dimensional semistable

loci β), γ and φ are 2-dimensional, δ and ζ are 11-dimensional, ǫ is 8-dimensional, η is 7-

dimensional, θ is 3-dimensional.
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According to the work of [22], the Baily-Borel compactification (Γ6\D)∗ of the Shimura vari-

ety Γ6\D consists of 10 irreducible components. The extended period map induces a birational

map

M6 99K (Γ6\D)∗. (1.2)

According to the spirit of Hassett-Keel-Looijenga program raised by [12], it is expected that the

map (1.2) can factor through a sequence of elementary birational transformations of Shimura

type, i.e., the exceptional loci comes from Shimura subvarieties. This problem will be solved in

a forthcoming paper (see [8]).

In [16], Maulik and Pandharipande have conjectured that the Picard group of F2ℓ with

Q-coefficients is spanned by the NL-divisors {D2ℓ
d,g} on F2ℓ. This conjecture has been verified

in [3] via automorphic representation theory and finding a geometric approach remains highly

interesting. Here, using the main theorem, we can compute the Picard group of F6 and F8

from the GIT construction.

Corollary 1.1 When 2ℓ = 6 or 8, the Picard group PicQ(F2ℓ) with rational coefficients is

spanned by NL-divisors D2ℓ
d,1, d = 1, 2, 3, 4. Moreover,

dimQ PicQ(F2ℓ) = dimH2(Γ2ℓ,Q) = 4

for 2ℓ = 6 or 8.

The first part of this result has been also obtained by O’grady in [18] using a slightly

different method. We just point out that the similar approach has been applied to K3 surfaces

with Mukai models (i.e., 10 ≤ 2ℓ ≤ 18 or 2ℓ = 22) in [9].

2 Noether-Lefschetz Divisors for K3 Surfaces

Let us recall the Noether-Lefschetz theory on K3 surfaces.

2.1 Noether-Lefschetz divisors

Let (S,L) be a primitively quasi-polarized K3 surface of degree 2ℓ. The middle cohomology

Λ := H2(S,Z) is a unimodular even lattice of signature (3, 19) under the intersection form 〈, 〉.
Let h2ℓ = c1(L), then the orthogonal complement Λ2ℓ := h⊥2ℓ ⊂ Λ is an even lattice of signature

(2, 19), which has a unique representation:

Λ2ℓ = Zω ⊕ U⊕2 ⊕ E8(−1)⊕2, (2.1)

where 〈ω, ω〉 = −2ℓ, U is the hyperbolic plane and E8(−1) is the unimodular, negative definite

even lattice of rank 8.

Let ΛC
2ℓ = Λ2ℓ ⊗ C. The period domain D associated to Λ2ℓ can be realized as a connected

component of

D± := {v ∈ P(ΛC
2ℓ) | 〈v, v〉 = 0,−〈v, v〉 > 0}.

The monodromy group

Γ2ℓ = {g ∈ Aut(Λ2ℓ)
+ | g acts trivially on Λ∨

2ℓ/Λ2ℓ},
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naturally acts on D, where Aut(Λ2ℓ)
+ is the identity component of Aut(Λ2ℓ). According to the

global Torelli theorem of K3 surfaces, there is an isomorphism

F2ℓ
∼= Γ2ℓ\D

via the period map. Then F2ℓ is a locally Hermitian symmetric variety with only quotient

singularities, and hence Q-factorial.

The NL-divisor D2ℓ
d,g can be identified as the quotient of the union of subdomains on D as

following:

D2ℓ
d,g

∼= Γ2ℓ\
⋃

M⊂Λ

{z ∈ D | 〈z,m〉 = 0, ∀m ∈M}, (2.2)

where M runs for all rank two primitive sublattice of Λ2ℓ of the form (1.1). In the language

of Heegner divisors, the right-hand side of (2.2) is called the arithmetic quotient of hyperplane

arrangement in D. As known in [18, Proposition 1.3], we have the irreducibility theorem.

Theorem 2.1 All the NL-divisors D2ℓ
d,g ∈ PicQ(F2ℓ) are irreducible.

Remark 2.1 The definition of NL-divisors we used here is slightly different from the one in

[16]. Maulik and Pandharipande define the NL-divisors without the assumption of primitivity

of the sublattice M in (2.2). But the span of these divisors are the same as ours (see [16, §0.2]).

2.2 Dimension formula

Let us denote by PicQ(Γ2ℓ\D)NL the subgroup of PicQ(Γ2ℓ\D) generated by NL-divisors

with Q-coefficients. By [5, 16], we know that the dimension ρ2ℓ of the span of Heegner divisors

on Γ2ℓ\D can be explicitly computed by the following formula:

ρ2ℓ =
31

24
ℓ+

55

24
− 1

6
√
6ℓ

Re(e
5πi

12 (G(−1, 4ℓ) +G(3, 4ℓ)))

− 1

4
√
2ℓ

Re(G(−1, 2ℓ))−
ℓ∑

k=0

{k2
4ℓ

}
− ♯
{
k
∣∣∣ k

2

4ℓ
∈ Z, 0 ≤ k ≤ ℓ

}
, (2.3)

where {, } denotes the fraction part and G(a, b) is the generalized quadratic Gauss sum:

G(a, b) =

b−1∑

k=0

e2πi
ak2

b .

Denote by dEis = ♯
{
k | k2

4ℓ ∈ Z, 0 ≤ k ≤ ℓ
}
. After applying the summation formula proved by

Gauss in 1811 (see [4, §2.2]), one can simply get the following lemma.

Lemma 2.1

ρ2ℓ =
31ℓ+ 55

24
− 1

4
αℓ −

1

6
βℓ −

ℓ∑

k=0

{k2
4ℓ

}
− dEis, (2.4)

where

αℓ =





( 2ℓ

2ℓ− 1

)
, ℓ is even ;

0, otherwise.

, βℓ =





( ℓ

4ℓ− 1

)
− 1, if 3|ℓ;

( ℓ

4ℓ− 1

)
+
( ℓ
3

)
, otherwise,
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and
(
a
b

)
is the Jacobi symbol.

As shown in [16], the span of NL-divisors are the same as the span of non irreducible divisors

on Γ2ℓ\D.

2.3 Projective models of K3 surfaces

Let (S,L) be a smooth K3 surface with a primitive quasi-polarization L of degree 2ℓ. The

linear system |L| defines a map ψL from S to Pℓ+1. The image of ψL is called a projective

model of S.

In [19], Saint-Donat gives a precise description of all projective models of (S,L) when ψL is

not a birational morphism.

Proposition 2.1 (see [19]) Let L be the primitive quasi-polarization of degree 2ℓ on S

and let ψL be the map defined by |L|. Then there are the following possibilities:

1. ψL is birational to a degree 2ℓ surface in Pℓ+1. In particular, ψL is a closed embedding

when L is ample.

2. ψL is a generically 2 : 1 map and ψL(S) is a smooth rational normal scroll of degree ℓ,

or a cone over a rational normal curve of degree ℓ.

3. |L| has a fixed component D, which is a smooth rational curve. Moreover, ψL(S) is a

rational normal curve of degree ℓ+ 1 in Pℓ+1.

We call K3 surfaces of type (1), (2), (3) nonhyperelliptic, unigonal, and digonal K3 surfaces

accordingly. When ℓ = 2, 3, 4, the projective model of a general quasi-polarized K3 surface

(S,L) is a complete intersection in the projective space Pℓ+1.

Remark 2.2 Assume that ψL is a birational morphism. Then one can easily see that L

is not ample if and only if there exists an exceptional (−2) curve D ⊆ S. The morphism ψL

will factor through a contraction π : S → S̃, where S̃ is a singular K3 surface with simple

singularities.

Recalling that the NL-divisor D2ℓ
0,0 parametrizes all K3 surfaces (S,L) of degree 2ℓ with

exceptional (−2) curves. Therefore, the projective model of a general member in D2ℓ
0,0 is a

surface in Pl+1 of degree 2ℓ with simple singularities.

In this paper, we mainly consider the case 2ℓ = 6 and 8, where the classification of projective

models of S can be read off from the Picard lattice of S.

Lemma 2.2 Let (S,L) be a smooth quasi-polarized K3 surface of degree 2ℓ (2ℓ = 6 or 8).

Then

1. (S,L) ∈ D2ℓ
1,1 if and only if S is digonal except

(∗) L2 = 8 and L = L′ + E + C, where C is a rational curve, E is an irreducible elliptic

curve and L′ is irreducible of genus two with L′ · C = E · C = 1 and L′ · E = 2. The image

ψL(S) is contained in a cone over cubic surface in P4.

2. (S,L) ∈ D2ℓ
2,1 if and only if S is unigonal.

3. (S,L) ∈ D2ℓ
3,1 if and only if S is one of the following:

• When ℓ = 3, S is birational to the complete intersection of a singular quadric and a cubic

in P4 via ψL.
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• When ℓ = 4, S is either birational to a bidegree (2, 3) hypersurface of the Serge variety

P1 × P2 →֒ P5 via ψL or in case (∗).

Proof The proof of (1) and (2) are straightforward from Proposition 2.1. See also [19, §2,
§5 ] for more detailed discussion.

Now we suppose that a quasi-polarized K3 surface (S,L) ∈ D6
3,1 is neither unigonal nor

diagonal. Then ψL is a birational map to a complete intersection of a quadric and a cubic.

Our first statement of (3) comes from the fact that any quadric threefold containing a plane

cubic must be singular. If (S,L) ∈ D8
3,1, the assertion follows from [19, Proposition 7.15 and

Example 7.19].

Remark 2.3 We would like to refer the readers to [9–10] for a detailed description of

projective models of low degree (2ℓ ≤ 22) K3 surfaces.

3 Complete Intersection of a Quadric and a Cubic

In this section, we construct the moduli space of the complete intersection of a smooth

quadric and a cubic in P4 via geometric invariant theory.

3.1 Terminology and notations

In the rest of this paper, we will use the following terminology. Let f(u, v, w) be an analytic

function in C[[u, v, w]] whose leading term defines an isolated singularity at the origin. We have

the following types of singularities:

• Simple singualrities: Isolated An, Dk, Er singularities.

• Simple elliptic singularities Ẽr:

− Ẽ6: f = u3 + v3 + w3 + auvw,

− Ẽ7: f = u2 + v4 + w4 + auvw,

− Ẽ8: f = u2 + v3 + w6 + auvw,

We will use the notation l(x), q(x) and c(x) as linear, quadratic and cubic polynomials of

x = (x0, · · · , xn).

3.2 Cubic sections on quadric threefolds

Let Q be the smooth quadric threefold in P4 defined by the equation

x0x4 + x1x3 + x22 = 0.

Since every nonsingular quadric hypersurface in P4 is projectively equivalent to Q, a complete

intersection of a smooth quadric and a cubic can be identified with an element in |OQ(3)|.
The automorphism group of Q is the reductive Lie group SO(Q)(C) which is isomorphic to

SO(5)(C). Then we can naturally describe the moduli space of the complete intersection of a

smooth quadric and a cubic as the GIT quotient of the linear system |OQ(3)| = P(V ), where

V is a 30-dimensional vector space defined by the exact sequence

0 → H0(P4,OP4(1)) → H0(P4,OP4(3)) → V → 0.
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Let us take the set of monomials

B :=
{
xa0

0 x
a1

1 · · ·xa4

4

∣∣∣
4∑

i=0

ai = 3 and a0a4 = 0
}

(3.1)

to be a basis of V . Sometimes, we may change the basis for simpler computations.

3.3 Numerical criterion

Now we classify stability of the points in P(V ) under the action of SO(Q)(C) by applying

the Hilbert-Mumford numerical criterion (see [17]).

As is customary, a one parameter subgroup (1-PS) of SO(Q)(C) can be diagonalized as

λu,v : t ∈ C∗ → diag(tu, tv, 1, t−v, t−u)

for some u, v ∈ Z. We call such λu,v : C∗ → SO(Q)(C) a normalized 1-PS of SO(Q)(C) if

u ≥ v ≥ 0.

Let λu,v be a normalized 1-PS of SO(Q)(C). Then the weight of a monomial xa0

0 x
a1

1 · · ·xa4

4 ∈
B with respect to λu,v is

(a0 − a4)u + (a1 − a3)v. (3.2)

If we denote by M≤0(λu,v) (resp. M<0(λu,v)) the set of monomials of degree 3 which have

non-positive (resp. negative) weight with respect to λu,v, one can easily compute the maximal

subsets M≤0(λu,v) (resp. M<0(λu,v)), as listed in Table 1 (resp. Table 2).

Table 1 Maximal subsets M≤0(λ)

Cases (u, v) Maximal monomials
(N1) (1,0) xa1

1 x
a2

2 x
a3

3 ,
∑
ai = 3

(N2) (1,1) x0x2x3, x
3
2

(N3) (2,1) x0x
2
3, x

2
1x4, x1x2x3, x

3
2

Table 2 Maximal subsets M<0(λ)

Cases (u, v) Maximal monomials
(U1) (1,1) x0x

2
3, x

2
2x3

(U2) (3,1) x21x4, x1x
2
3, x

2
2x3

According to the Hilbert-Mumford criterion, an element f(x0, · · · , x4) ∈ P(V ) is not prop-

erly stable (resp. unstable) if and only if the weight of all monomial in f is non-positive (resp.

negative) for some 1-PS. Thus we obtain the following lemma.

Lemma 3.1 Let X be the surface defined by an element in P(V ). Then X is not properly

stable if and only if X = Q∩Y for some cubic hypersurface Y ⊆ P4 defined by a cubic polynomial

in one of following cases:

• c(x1, x2, x3, x4);
• x0x3l(x2, x3) + x1x2l1(x3, x4) + x1q(x3, x4) + c(x2, x3, x4);

• x0x23 + x1x3l1(x2, x3) + x1x4l2(x1, x2, x3, x4) + c(x2, x3, x4).
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For f ∈ P(V ) not properly stable, using the destabilizing 1-PS λ, the limit lim
t→0

ft = f0 exists

and it is invariant with respect to λ. The invariant part of polynomials of type (N1)–(N3) are

the followings:

(α) c(x1, x2, x3) = 0;

(β) λ1x
3
2 + λ2x1x2x3 + λ3x0x2x3 + λ4x1x2x4 = 0, λi ∈ C;

(γ) λ1x
3
2 + λ2x1x2x3 + λ3x0x

2
3 + λ4x

2
1x4 = 0, λi ∈ C.

Similarly, we get the following lemma.

Lemma 3.2 With the notation above, X is not semistable if and only if X = Q ∩ Y for

some cubic hypersurface Y defined by one of the following equations:

• x0x23 + x1q(x3, x4) + c(x2, x3, x4), and c(x2, x3, x4) has no x32 term;

• x4q1(x1, x2, x3, x4) + x3q2(x2, x3) + λx1x
2
3.

3.4 Geometric interpretation of stability

We use the terminology of the corank of the hypersurface singularities as in [1, 12].

Definition 3.1 Let 0 ∈ Cn be a hypersurface singularity given by the equation f(z1, · · · , zn) =
0. The corank of 0 is n minus the rank of the Hessian of f(z1, · · · , zn) at 0.

Theorem 3.1 A complete intersection X = Q ∩ Y is not properly stable if and only if X

satisfies one of the following conditions:

(i) X has a hypersurface singularity of corank 3.

(ii) X is singular along a line L and there exists a plane P such that P ∩Q = 2L and P is

contained in the projective tangent cone P(CTp(X)) for any point p ∈ L.

(iii) X has a singularity p which deforms to a singularity of Ẽ8 class, and the restriction

of the projective cone P(CTp(X)) to X contains a line L passing through p with multiplicity at

least 6.

Proof As a consequence of Lemma 3.1, it suffices to find the geometric characterizations

of the complete intersections of type (N1)–(N3). Here we do it case by case.

(i) If X is of type (N1), then X can be considered as the intersection of Q and a cubic cone

Y with the vertex p0 = [1, 0, 0, 0, 0] ∈ Q. It is easy to see that p0 is a corank of 3 singularity of

X .

Conversely, we write the equation of Y as

x0q(x0, x1, x2, x3) + c(x1, x2, x3, x4) = 0.

If we choose the affine coordinate

yi :=
xi
x0
, (3.3)

then the affine equation near p0 is

q(1, y1, y2, y3) + c(y1, y2, y3,−y22 − y1y3) = 0 (3.4)

in C3. It has a corank 3 singularity at the origin if and only if the quadric q is 0.
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(ii) If X is of type (N2), then the equation of Y is given by

x0x3l(x2, x3) + x1x2ℓ1(x3, x4) + x1q(x3, x4) + c(x2, x3, x4),

and therefore X is singular along the line L : x2 = x3 = x4 = 0.

Moreover, for any point p = [z0, z1, 0, 0, 0] ∈ L, the projective tangent cone P(CTp(X)) at p

is defined as

z0x4 + z1x3 = z0x3l(x2, x3) + z1(x2ℓ1(x3, x4) + q(x2, x3)) = 0, (3.5)

which contains the plane P : x3 = x4 = 0 for each p ∈ L and P ∩Q = 2L.

Conversely, since the intersection of P and Q is a double line L, we may certainly assume

that the plane P is defined by

x3 = x4 = 0

after some coordinate transform persevering the quadric form Q. Then the line L = P ∩ Q is

given by x2 = x3 = x4 = 0.

Because X is singular along L, the equation of Y can be written as:

x0q1(x2, x3) + x1q2(x2, x3, x4) + c(x2, x3, x4) = 0. (3.6)

Then the projective tangent cone

P(CTp(X)) = {z0x4 + z1x3 = z0q1(x2, x3, x4) + z1q2(x2, x3, x4) = 0}

contains the plane P for each point p = [z0, z1, 0, 0, 0] ∈ L only if the quadrics qi have no x22
term.

(iii) For X of type (N3), a similar discussion is as follows: If Y is defined by

x0x
2
3 + x1x3l1(x2, x3) + x1x4l2(x1, x2, x3) + c(x2, x3, x4) = 0, (3.7)

then X = Q ∩ Y is singular at p0. After choosing the affine coordinates as (3.3), the affine

equation near p0 is

y23 + y1y
2
3f(y1, y2, y3) + y1y

2
2ℓ(y1, y2) + ay1y2y3 + g(y2, y3) = 0 (3.8)

for some polynomials ℓ, f, g with ℓ linear, deg(f) ≥ 1, deg(g) ≥ 3. Therefore, p0 is a hypersurface

singularity of corank 2 and its projective tangent cone is a double plane 2P : x23 = x4 = 0. The

remaining part is straightforward.

Conversely, we take p0 to be the isolated singular point which deforms to a singularity of

Ẽ8 class. As it has corank at least 2, the equation of Y can be written as

x0q1(x1, · · · , x3) + x1q2(x1, · · · , x4) + c(x2, x3, x4) = 0.

Then the quadric q1(x1, x2, x3) is of the form l(x1, x2, x3)
2 for some linear polynomial l because

p0 is singular of corank at least 2.

After we make a coordinate change preserving Q and p0, the defining equation of Y has two

possibilities:
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1. x0x
2
2 + x1q(x1, x2, x3, x4) + c(x2, x3, x4) = 0,

2. x0x
2
3 + x1q(x1, x2, x3, x4) + c(x2, x3, x4) = 0.

The projective tangent cone at P(CTp0
(X)) is a double plane

2P : x4 = x22 = 0 or x4 = x23 = 0.

The line L contained in the restriction of 2P to X has to be defined by x2 = x3 = x4 = 0. It

follows that the first case can not happen since P ∩X contains L with multiplicity at least 3.

In the second case, the multiplicity condition further implies that the quadric q(x1, x2, x3, x4)

does not have x21, x1x2, x
2
2 terms. To see that there is no x1x3 term, note that the affine local

equation
(
yi =

xi

x0

)
near p0 can be written as

y23 + by21y3 + y1y
2
3g(y1, y2, y3) + y1y

2
2ℓ(y1, y2) + ay1y2y3 + c(y2, y3) = 0,

where a, b ∈ C, g, c are polynomials with deg(c) ≥ 3. Since p0 deforms to Ẽ8, we know that a

has to be 0.

Theorem 3.2 A complete intersection X = Q∩Y is unstable if and only if X satisfies one

of the following conditions:

(i′) X is singular along a line L satisfying the condition: There exists a plane P such that

P(CTp(X)) = 2P for any point p ∈ L;

(ii′) there exists a plane P whose restriction to X is a line L with multiplicity 6 and X has

a corank 3 singularity p on L. Moreover, the projective tangent cone P(CTp(X)) at p is the

union of the plane P and a quadric surface and they meet at L with multiplicity two.

Proof We check the complete intersections of type (U1)–(U2) case by case.

(i′) To simplify the proof, we choose another monomial basis of V as below:

B′ :=
{
xa0

0 · · ·xa4

4 |
4∑

i=0

ai = 3, a2 ≤ 1
}
. (3.9)

Then the polynomial of type (U1) has the form

x0q0(x3, x4) + x1q1(x3, x4) + x2q2(x3, x4) + c(x3, x4) = 0. (3.10)

At this time, X is singular along the line L : x2 = x3 = x4 = 0 and satisfies the condition

described in (i′).

On the other hand, the line L on Q can be written as

L : x2 = x3 = x4 = 0

for a suitable change of coordinates preserving Q. Then the equation of Y has the form

1∑

i=0

xiqi(x2, x3, x4) + x2q2(x3, x4) + c(x3, x4) = 0,

where qi does not contain x
2
2 term.
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Moreover, for any point p = [z0, z1, 0, 0, 0] ∈ L, the projective tangent cone P(CTp(X)) is

given by

z0x3 + z1x4 = z0q0(x2, x3, x4) + z1q1(x2, x3, x4) = 0.

They have a common plane P with multiplicity 2 if and only if P is defined by x3 = x4 = 0

and qi(x2, x3, x4) does not contain the x2x3, x2x4 terms.

(ii′) When Y has the equation

x4q1(x1, · · · , x4) + x3q2(x2, x3) + λx1x
2
3 = 0,

one observe that X contains the line L : x2 = x3 = x4 = 0 which is contained in the plane

P := x3 = x4 = 0. It is easy to see that P intersect with X is the line L with multiplicity 6.

Moreover, X is singular at p0 = [1, 0, 0, 0, 0] and the projective cone at p0 is given by

{x4 = x3q2(x2, x3) + λx1x
2
3 = 0},

which is the union of the plane X1 : x3 = x4 = 0 and the quadratic surface X2 : x4 =

q2(x2, x3) + λx1x3 = 0 satisfying the desired conditions. The proof of the converse is quite

similar as the previous cases and we omit the details here.

Corollary 3.1 A complete intersection X = Q ∩ Y is semistable (resp. stable) if X has at

worst isolated singularities (resp. simple singularities).

Proof By Theorem 3.2, the singular locus of X is at least one dimensional if it is unstable.

Then X has to be semistable if it has at worst isolated singularities.

Next, from Theorem 3.1, we know that if X is not properly stable, then either X is singular

along a curve or it contains at least an isolated simple elliptic singularity. It follows that X

with simple singularities is stable.

Now it makes sense to talk about the moduli space M6 of complete intersections of a smooth

quadric and a cubic with simple singularities. Let U6 be the open subset of P(V )s parameterizing

such complete intersections in P4. Then we have M6 = U6/SO(5)(C).

Theorem 3.3 There is an open immersion P6 : M6 → F6 via the period map and the

image of P6 in F6 is the complement of three NL-divisors D6
1,1, D

6
2,1 and D6

3,1. The Picard

group PicQ(F6) is spanned by {D6
d,1, 1 ≤ d ≤ 4}.

Proof For the first statement, one only need the fact that the complete intersections with

simple singularities correspond to degree 6 quasi-polarized K3 surfaces containing a (−2) curve.

Therefore, we obtain an open immersion P6 : M6 → F6 from Torelli theorem. By Lemma 2.2,

we know that the boundary divisors of the image P6(F6) is the union of D6
1,1, D

6
2,1 and D6

3,1.

Next, the moduli space M6 is isomorphic to the quotient U6/SO(5)(C). Observing that

Pic(U6) ∼= Pic(P(V )) has rank one since the boundary of U6 in P(V ) has codimension at least

two, we claim that the dimension of PicQ(M6) is at most one. Denote by Pic(U6)SO(5)(C) the

set of SO(5)(C)-linearized line bundles on U6. There is an injection

Pic(U6/SO(5)(C)) →֒ Pic(U6)SO(5)(C)
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by [11, Proposition 4.2] for the reductive group SO(5)(C). Our claim then follows from the fact

that the forgetful map Pic(U6)SO(5)(C) → Pic(U6) is an injection. Actually, one can easily see

that PicQ(M6) is spanned by the descent of the tautological line bundle OU6
(1) on U6 to the

quotient U6/SO(5)(C), and we denote it by OM6
(1).

Since the complement of P6(M6) in F6 is the union of three irreducible divisors and

dimQ(Pic(F6)) ≥ 4, it follows that PicQ(F6) is spanned by NL-divisors {D6
d,1, 1 ≤ d ≤ 4}

by the dimension consideration.

Remark 3.1 There is another natural GIT construction of moduli space of complete in-

tersections in projective spaces, see [2, 14]. There exists a projective bundle π : PE →
P(H0(P5,OP5(2))) ∼= P14 parameterizing all complete intersections of a quadric and a cubic

in P5. Then one can consider the GIT quotient

P(E)//Ht
SL5(C)

for the line bundle Ht = π∗OP14(1) + tOPE(1). We want to point out that P(E)//Ht
SL5(C)

is isomorphic to our GIT quotient P(V )//SO(5)(C) when t < 1
6 . This will be discussed in the

upcoming paper [8].

3.5 Minimal orbits

In this section, we give a description of the semistable boundary components of the GIT

compactification. It consists of strictly semistable points with minimal orbits. From Subsection

3.2, it suffices to discuss the points of type (α)–(γ). As in [12], our approach is to use Luna’s

criterion.

Lemma 3.3 (Luna’s criterion (see [15])) Let G be a reductive group acting on an affine

variety V . If H is a reductive subgroup of G and x ∈ V is stabilized by H, then the orbit G · x
is closed if and only if CG(H) · x is closed.

To start with, we first observe that Type (α), (β) and (γ) have a common specialization,

which we denote by Type (ξ):

λ1x
3
2 + λ2x1x2x3 = 0.

Lemma 3.4 If X is of Type (ξ), it is strictly semistable with closed orbits.

Proof The stabilizer of Type (ξ) contains a 1-PS:

H = {diag(t2, t, 1, t−1, t−2) | t ∈ C∗}

of distinct weights. So the center

CG(H) = {diag(a0, a1, 1, a−1
1 , a−1

0 )} ⊂ SO(Q)(C)

is a maximal torus. It acts on V H = 〈x0x23, x21x4, x1x2x3, x32〉 ⊂ V . It is straightforward to

see any element of Type (ξ) is semistable with closed orbit in V H under the action. Then the

statement follows from Luna’s criterion.
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Proposition 3.1 Let X be a surface of Type (α). Then it has two corank 3 singularities.

Moreover, we have

1. X is unstable if it is union of a quadric surface and a quadric cone with multiplicity two.

2. The orbit of X is not closed if X is singular along two lines. It degenerates to type (ξ).

Otherwise, X is semistable with closed orbit.

Proof The stabilizer of Type (α) contains a 1-PS:

H1 = {diag(t, 1, 1, 1, t−1) | t ∈ C∗}.

The center CG(H1) ∼= SO(Q1)(C) × SO(Q2)(C), where Q1 = x0x4 and Q2 = x1x3 + x22. The

group SO(Q1)(C) ∼= SO(2;C) acts linearly on variable x0, x4, while SO(Q2)(C) ∼= SO(3)(C)

acts linearly on the variables x1, x2 and x3.

The action of CG(H1) on V H1 =
〈
xd1

1 x
d2

2 x
d3

3 ,
3∑

k=1

dk = 3
〉
⊂ V is equivalent to the ac-

tion of SO(Q2)(C) on the set of cubic polynomials in three variables x1, x2, x3 preserving the

quadratic form Q2. By Luna’s criterion, we can reduce our problem to a simpler GIT question

V H1//SO(3)(C). Any 1-PS λ : C∗ → SO(Q2)(C) of SO(Q2)(C) can be diagonalized in the form

λ(t) = diag(ta, 1, t−a). (3.11)

The weight of a monomial xd1

1 x
d2

2 x
d3

3 with respect to (3.11) is a(d1 − d3). Then our assertion

follows easily from the Hilbert-Mumford criterion.

The remaining cases can be shown in a similar way. Here we omit the proof.

Proposition 3.2 Let X be a surface of type (β). Then it is a union of a quadric surface

and a complete intersection of two quadrics. Moreover, we have

(i) X is unstable if X consists of two quadric cones and a quadric surface intersecting at a

line.

(ii) The orbit of X is not closed if its equation can be written as λ1x
3
2+λ2x1x2x3+λ3x1x2x4

up to a coordinate transform preserving Q. It degenerates to type (ξ).

Otherwise, X is semistable with closed orbit.

Proposition 3.3 A general member X of type (γ) has two simple elliptic singularities of

type Ẽ8. Moreover, we have

(i) X is unstable if X consists of three quadric cones.

(ii) The orbit of X is not closed if its equation has the form λ1x
3
2 + λ2x1x2x3 + λ3x

2
1x4 up

to a coordinate change preserving Q.

Otherwise, X is semistable with closed orbit.

4 Stable Singular Complete Intersection

In this section, we will discuss the stable loci of singular complete intersections of a smooth

quadric and a cubic hypersurface. As a result, we prove Theorem 1.2.
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4.1 Stable complete intersection with isolated singularity

Let X = Q ∩ Y be a complete intersection of the smooth quadric Q and a cubic threefold

Y . A first observation is in the following.

Proposition 4.1 If X = Q ∩ Y has only isolated singularity, then X is stable if and only

if the non-ADE singularities can only be one of the following situations:

i) Ẽ7 type,

ii) Ẽ8 type and its projective tangent cone P(CTp) meets X at a point, the general equation

of Y is of the form.

Up to a coordinate change, the general equation of Y for Y ∩Q with an Ẽ7 singularity is

(δ) : x0x
2
2 + x2q(x1, x2, x3, x4) + x4q(x1, x3, x4) = 0.

Similarly, the general equation of Y for Y ∩Q with an Ẽ8 singularity of type ii) is

(ǫ) : x0x
2
3 + x2x3ℓ(x1, x3, x4) + c(x1, x3, x4) = 0,

where ℓ is linear and c is a cubic polynomial in x1, x3, x4.

Proof Suppose X has only at worst isolated singularities of type i) or ii). This means that

X does not have a corank 3 singularity or Ẽ8 singularity whose projective tangent cone meets

X along a line. By Theorem 3.1, we know that X is stable. Conversely, suppose X is stable

and it has a non-ADE isolated singularity at p = [1, 0, 0, 0, 0]. If p is not of type i) or ii), by

Theorem 3.1 (i), p has to be a Ẽ8 type singularity. Let us analysis the local equation of p. As in

the proof in Theorem 3.1, up to a change of coordinates preserving the quadric Q, the defining

equation of Y has two possibilities:

1. x0x
2
2 + x21ℓ(x1, x2, x3, x4) + x1q(x2, x3, x4) + c(x2, x3, x4) = 0,

2. x0x
2
3 + x21ℓ(x1, x2, x3, x4) + x1q(x2, x3, x4) + c(x2, x3, x4) = 0.

In the first case, the affine local equation near p can be written as

x22 +
∑

6≥d≥3

fd(x1, x2, x3) = 0,

where fd is a homogenous polynomial of degree d. Note that there is no term x31x2, x
3
3x2 and

x1x
4
3, x

4
1x3 in the fourth and fifth jet. One can easily see that p can not be an Ẽ8 type singularity.

In the second case, we know that the projective tangent cone P(CTp(X)) meets X along

either a line L : x2 = x3 = x4 = 0 or the point p (with multiplicity). If the intersection is a line,

X can not be stable by the proof in Theorem 3.1. The only possibility is that the intersection

is a point. In this situation, the third jet contains the term x31 and the weights on variables

x1, x2, x3 are (13 ,
1
6 ,

1
2 ). The equation of Y is of the form

x0x
2
3 + x2x3ℓ(x1, x3, x4) + c(x1, x3, x4) = 0,

where ℓ is linear and c is a cubic in x1, x3, x4.

At the end, let us give the general equations for X with an Ẽ7 singularity. Without loss

of generality, we assume the singularity is at p = [1, 0, 0, 0, 0]. As it is corank 2, the defining

equation of Y can be written as

x0x
2
2 + x2q(x1, x2, x3, x4) + c(x1, x3, x4) = 0
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or

x0x
2
3 + x3q

′(x1, x2, x3, x4) + c′(x1, x2, x4) = 0.

The weights on (x1, x2, x3) are either (
1
4 ,

1
2 ,

1
4 ) or (

1
4 ,

1
4 ,

1
2 ). In either case, the direct computation

shows that all monomials in c(x1, x3, x4) and c
′(x1, x2, x4) must have x4 term. The assertions

follows.

From the proof, we can see that if X has only isolated singularities of Ẽ8 type, then X will

be stable if the projective tangent cone P(CTp(X)) of the singularity meets X at a point and

X is strictly semistable if P(CTp(X)) meets X along a line.

4.2 Stable loci of complete intersection with non-isolated singularity

Let us consider the non-normal case. With the notations as above, we denote by Sing(X)

the singular loci of X . Then we have the following theorem.

Theorem 4.1 Let X be a complete intersection of a smooth quadric Q and a cubic hyper-

surface Y with non-isolated singularities. Then one of the following holds:

i) Sing(X) contains a line. The general equations of such X are of the form

(ζ) : x0x4 + x1x3 + x22 = x3q1(x0, x1, x2) + x4q2(x1, x2) + c(x0, x1, x2) = 0,

where q1, q2 are quadrics and c is a cubic.

ii) Sing(X) contains a conic. The general equations of such X are of the form

(η) : x0x4 + x1x3 + x22 = x20ℓ1 + x0x4ℓ2 + x24ℓ3 = 0,

where ℓi are linear polynomials in x0, · · · , x4.
iii) Sing(X) contains a twisted cubic. The general equations of X are of the form

(θ) :

Q :

∣∣∣∣∣∣

x0 x1 x2
x1 x2 x3
a1 a2 a3

∣∣∣∣∣∣
+ x4ℓ(x0, x1, x2, x4) = 0,

Y :

∣∣∣∣∣∣

x0 x1 x2
x1 x2 x3
b1x4 b2x4 + a1x1 + a2x0 b3x4 + a1x2 + a2x1 + a3x0

∣∣∣∣∣∣
+ x4x0ℓ(x1, x2, x3, x4) + x24ℓ

′ = 0,

where ai, bi ∈ C, ℓ′ is a linear polynomial in x0, · · · , x4 and ℓ represents a linear polynomial in

four variables.

iv) Sing(X) contains an elliptic curve of degree four. The general equations of such X are

of the form

(β̃) : x0x4 + x1x3 + x22 = ℓq = 0,

where ℓ is a linear polynomial and q is a quadric polynomial.

v) Sing(X) contains a rational normal curve of degree four. The general equations of such

X are of the form

(φ) : x0x4 + x1x3 − 2x22 =

6∑

i=2

ℓi∆i = 0,
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where ℓi are linear polynomials in (4.6) and ∆i are quadric polynomials defined in (4.4).

Moreover, the general members of each type is stable.

Proof Let C ⊆ Sing(X) be an irreducible curve. If X = X1 ∪ X2 is reducible, then

deg(Xi) = 2 or 4 as Xi is contained in a smooth quadric threefold Q. The only possibility is

X = Q ∩ Y with Y a union of a P3 and a quadric threefold. This is exactly type (β̃).

If X is irreducible, taking a general hyperplane H , then H ∩ X is an irreducible curve

singular along H ∩ C. Note that the arithmetic genus of H is at most 4, H ∩ C has at most 4

points. It follows that the degree of C is at most 4. Hence C can be a line, a conic, a plane

cubic, a twisted cubic or a rational normal curve of degree 4. If C is a plane cubic, then C is

contained in the intersection P2 ∩ Q, which is a conic. This is clearly impossible. Let us now

describe their equations of X case by case.

i) Take the quadric threefold Q : x0x4 + x1x3 + x22 = 0 and we can assume X is singular

along the line C : x0 = x1 = x2 = 0. The equation of Y is of the form

f = x23ℓ1 + x3x4ℓ2 + x24ℓ3 + x3q1 + x4q2 + c = 0, (4.1)

where ℓi are linear, qi are quadric and c is a cubic polynomial in x0, x1 and x2. Then the

Jacobian of X on the line C given by


x4 x3 0 0 0

∂f

∂x0

∂f

∂x1

∂f

∂x2
0 0




has rank one. The only possibility is that all ℓi = 0. This gives the equation (ξ).

ii) Take the quadric as above and we assume that X is singular along a smooth conic

C : x0 = x4 = x1x3 + x22 = 0. The equation of a cubic hypersurface Y containing C is of the

form

x0q1 + x4q2 + (x1x3 + x22)ℓ(x1, x2, x3) = 0 (4.2)

for some quadric polynomials q1 and q2. Similarly as i), one can compute that the equation of

Y is of type (η).

iii) Take Q as above. If C is an elliptic curve of degree 4, the span of C is a three dimension

linear subspace, denoted by H . Note that H ∩X can not be a curve as C is contained in H ∩X
with multiplicity at least 2. This means H ∩X is a surface and thus X is reducible. Such X is

of type (β̃).

iv) If C is a twisted cubic, the defining equations of C can be written as

x4 = 0, x1x3 − x22 = 0, x1x2 − x0x3 = 0, x0x2 − x21 = 0.

Then the equations of a complete intersection X containing C can be written as

Q :

∣∣∣∣∣∣

x0 x1 x2
x1 x2 x3
a1 a2 a3

∣∣∣∣∣∣
+ x4ℓ = 0,

Y :

∣∣∣∣∣∣

x0 x1 x2
x1 x2 x3
ℓ1 ℓ2 ℓ3

∣∣∣∣∣∣
+ x4q(x0, x1, x2, x3) + x24ℓ

′ = 0

(4.3)
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for some linear polynomials ℓi, ℓ, ℓ
′ and a quadric polynomial q. If X is singular along C, then

via computing the Jacobian of (4.3) , we get the equation (θ).

vi) Without loss of generality, we can assume that the curve C is defined by equations

∆1 = x1x3 − x22, ∆2 = x1x2 − x0x3, ∆3 = x0x2 − x21,

∆4 = x2x4 − x23, ∆5 = x2x3 − x1x4, ∆6 = x1x3 − x0x4,
(4.4)

and Q is defined by the equation 2∆1 −∆6 = 0. As Y contains C, we may assume that the

equation of Y is given by

6∑

2

ℓi∆i = 0 (4.5)

for some linear polynomial ℓi. As X is singular along C, the Jacobian matrix of X along C is

(
x4 x3 −4x2 x1 x0∑

i

ℓi
∂∆i

∂x0

· · · · · · · · · ∑
i

ℓi
∂∆i

∂x4

)
.

Then via a computation, one can get the linear functions ℓi are of the form

ℓ4 =
2∑

i=0

aixi, ℓ5 =
2∑

i=0

bixi + a2x3, ℓ2 =
3∑

i=1

cixi + (b2 − a1)x4,

ℓ3 = c1x2 + (c2 − b0)x3 + (c3 + a0 − b1)x4,

ℓ6 =
1

2
(c1x0 + (c2 − 2b0)x1 + (c3 − 2b1 + 3a0)x2 + (2a1 − b2)x3 + a2x4).

(4.6)

There are nine parameters ai, bi for i = 0, 1, 2 and cj for j = 1, 2, 3. We left the details to

readers.

Finally, the assertion of stability follows directly from Theorem 3.1.

Proof of Theorem 1.2 It basically follows from the combination of Propositions 3.1–

3.3, 4.1 and Theorem 4.1. The strata α, β, γ are strictly semistable, which are described in

Propositions 3.1, 3.2 and 3.3 respectively. The dimension of these components can be computed

via Luna’s slice theorem as below.

With the notations as in Propositions 3.1–3.3, we have

dim α = dimP(V H1)//SO(3)(C) = 6,

dim β = dimP(V H2)//C∗ = 2,

dim γ = dim(P(V H3)//C∗ = 2,

(4.7)

where V H2 = 〈x32, x1x2x3, x0x2x3, x1x2x4〉 and V H3 = 〈x32, x1x2x3, x0x23, x21x4〉 parameterizing

the equations of type (β) and (γ) respectively. For stable components, we can also compute

the dimension as follows:

1. For ζ, note that the NL-divisor D6
1,0 parametrizing X containing a line has dimension

18. The general member in D6
1,0 is of the form (4.1). Thus one can see that ζ has codimension

7 in D6
1,0 and it follows dim ζ = 11.
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2. Similarly, the general equations of elements in D6
2,0, D

6
3,0 and D6

4,0 are given in (4.2),

(4.3) and (4.5) respectively. Then one can directly see that η has codimension 7 in D6
2,0, while

θ has codimension 15 in D6
3,0 and φ has codimension 16 in D6

4,0.

3. Let us consider β̃ consisting of the union of a P2 and a complete intersection of two

quadrics meeting along a degree 4 curve in P3. The elements in β̃ are parameterized by the prod-

uct of two projective spaces P(V1)×P(V2), where V1 = H0(Q,OQ(1)) and V2 = H0(Q,OQ(2)).

Hence its dimension is

dimP(V1) + dimP(V2)− dimSO(5)(C) = 7.

4. For δ, it can be viewed as the quotient space P(V )/G1, where V is the vector space

spanned by monomials in the equation (δ) and G1 is the subgroup of SO(5)(C) fixing the

singular point p0 and the hyperplane x2 = 0. As dimV = 17 and dimG1 = 5, we get dim δ = 11.

5. Similar as above, ǫ is the quotient space P(V ′)/G2 with dim V ′ = 14 and dimG2 = 5. It

follows that dim ǫ = 8.

5 Complete Intersection of Three Quadrics in P5

Let W = H0(P5,OP5(2)) be the space of global sections of OP5(2). Since every complete

intersection X is determined by a net of quadrics Q1, Q2, Q3, the complete intersection of three

quadrics are parametrized by the Grassmannian Gr(3,W ). The moduli space of complete

intersections can be constructed as the GIT quotient Gr(3,W )ss//SL6(C). In this situation,

the complete GIT strata is very complicated. For example, see [7] for the GIT stability of a net

of quadrics in P4. However, we are satisfied with the following result.

Theorem 5.1 Let X be a complete intersection of three quadrics in P5. If X has at worst

simple singularities, then X is GIT stable.

5.1 Set up

We first make some notations. Given a net of quadrics {Q1, Q2, Q3}, the Plücker coordinates
of {Q1, Q2, Q3} in P(

∧3
W ) can be represented by

{xi1xj1 ∧ xi2xj2 ∧ xi3xj3}

for three distinct pairs (ik, jk).

Let λ : C∗ → SL6(C) be a normalized one-parameter subgroup, i.e., λ(t) = diag(ta0 , ta1 , · · · , ta5)

satisfying a0 ≥ a1 ≥ · · · ≥ a5 and
5∑

i=0

ai = 0. We denote by

wλ(xixj) := ai + aj

the weight of the monomial xixj with respect to λ. The weight of a Plücker coordinate xi1xj1 ∧
xi2xj2 ∧ xi3xj3 with respect to λ is simply

3∑
k=1

wλ(xikxjk).
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5.2 Numerical criterion for nets

By the Hilbert-Mumford numerical criterion, a net of quadrics {Q1, Q2, Q3} is not properly

stable if and only if for a suitable choice of coordinates, there exists a normalized 1-PS λ :

t→ diag(ta0 , ta1 , · · · , ta5) such that the weight of all Plücker coordinates of {Q1, Q2, Q3} with

respect to λ is not positive. We say that {Q1, Q2, Q3} is not properly stable with respect to λ.

Given a normalized 1-PS λ : C∗ → SL6(C), we can define two complete orders on quadratic

monomials:

1. “ > ” : x20 > x0x1 > · · · > x0x5 > x21 > x1x2 > · · · > x4x5 > x25.

2. “ >λ ” : xixj >λ xkxl if either wλ(xixj) > wλ(xkxl) or wλ(xixj) = wλ(xkxl) for a given

normalized 1-PS λ and xixj > xkxl.

Since the 1-PS λ : C∗ → SL6(C) is normalized, xixj >λ xkxl implies max{i, j} > min{k, l}.
We denote by mi the leading term of Qi with respect to the order “ >λ ” and we say that

a monomial xkxl /∈ Qi if the quadratic polynomial Qi does not contain xkxl term. Moreover,

we can always set

m1 >λ m2 >λ m3, (5.1)

up to replacing Q1, Q2, Q3 with a linear combination of the three polynomials. Then the term

m1 ∧m2 ∧m3 appears in the Plücker coordinates of Q1 ∧Q2 ∧Q3 and has the largest weight

with respect to λ. Hence the net {Q1, Q2, Q3} is not properly stable with respect to λ if and

only if wλ(m1 ∧m2 ∧m3) ≤ 0.

Lemma 5.1 With the notation above, let X be the complete intersection Q1 ∩ Q2 ∩ Q3.

Then X has a singularity with multiplicity greater than two if one of the following conditions

does not hold:

(1) m1 ≥λ x0x4;

(2) m2 ≥λ x1x5 if m1 = x20, and m2 ≥λ x0x5 otherwise;

(3) m3 ≥λ x
2
3 if m1 <λ x0x3.

Moreover, X is singular along a curve if one of the following conditions does not hold:

(1′) m1 ≥λ x
2
1 if m3 <λ x1x5; or m1 ≥λ max{x1x3, x22} if m2 <λ x1x4;

(2′)m2 ≥λ x
2
2 if m3 <λ x2x5;m2 ≥λ max{x1x4, x23} if m1 <λ x

2
1; andm2 ≥λ max{x2x4, x23}

otherwise;

(3′) m3 ≥λ max{x3x5, x24}.

Proof Let p0 be the point [1, 0, 0, 0, 0, 0] in P5. For (1) and (2), if either m1 <λ x0x4 or

m2 <λ x0x5 and m1 <λ x
2
0, the surface X contains the point p0 and two quadrics Q2, Q3 are

both singular at p0. It follows that multiplicity of p0 is greater than 2.

If m1 = x20 and m2 <λ x1x5, then X is singular along the two points

{Q1 = x2 = x3 = x4 = x5 = 0}

with multiplicity greater than 2. Similarly, one can easily check our assertion for (3).

For (1′), (2′) and (3′), we will only list the singular locus of X and leave the proof to readers:

• X is singular along the line L : x2 = x3 = x4 = x5 = 0 if condition (1′) is invalid.
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• X is either reducible or singular along L or C1 : x3 = x4 = x5 = Q1 = 0 if condition (2′)

is invalid.

• X is either reducible or singular along the curve C2 : x4 = x5 = Q1 = Q2 = 0 if condition

(3′) is invalid.

As before, we need to know the maximal setM≤0(λ) of triples of distinct quadratic monomi-

als {q1, q2, q3}, whose sum of their weights with respect to λ is non-positive. Instead of looking

at all maximal subsets, we are interested in the maximal subsetM≤0(λ) which contains a triple

{m1,m2,m3} satisfying the conditions (1)–(3) and (1′)–(3′) in Lemma 5.1. It is not difficult to

compute that there are four such maximal subset. See Table 3 below.

Table 3 Maximal set M≤0(λ)

Cases λ = (a0, · · · , a5) Maximal triples {q1, q2, q3}
q1 q2 q3

(N1′) (2, 1, 0, 0,−1,−2) x0x2, x
2
1 x0x5, x1x4, x

2
2 x2x5, x

2
4

(N2′) (3, 1, 1,−1,−1,−3) x0x3, x
2
1 x0x5, x1x3 x1x5, x

2
3

(N3′) (4, 1, 1,−2,−2,−2) x0x3, x
2
1 x0x3, x

2
1 x23

(N4′) (5, 3, 1,−1,−3,−5) x0x4, x1x3, x
2
2 x0x5, x1x4, x2x3 x1x5, x2x4, x

2
3

The lemma below gives a geometric description of X of type (N1′)–(N4′).

Lemma 5.2 Let X be a general element of type (N1′)–(N4′). Then X has an isolated simple

elliptic singularity.

Proof Obviously, X is singular at p0 = [1, 0, 0, 0, 0, 0]. Moreover, p0 is an isolated hyper-

surface singularity when X is general. To show that it is simple elliptic, let us compute the

analytic type of p0 case by case.

If X is a general element of type (N1′), then the equations of Qi can be written as

Q1 : x0x2 + q(x1, · · · , x5) = 0,

Q2 : x0x5 + x1x4 + q′(x2, x3, x4, x5) = 0,

Q3 : x24 + x5l(x2, x3, x4, x5) = 0

up to a linear change of the coordinates. Let us take the local coordinates near p0:

yi =
xi
x0
. (5.2)

From the first two quadratic equations, one can get

y2 = f1(y1, y3, y4),

y5 = y1y4 + by23 + b′y3f1(y1, y2, y4) + f2(y1, y3, y4)

for some formal power series f1 ∈ C[[y1, y3, y4]]≥2, f2 ∈ C[[y1, y3, y4]]≥4 and some constants

b, b′ ∈ C. Therefore, the local equation of p0 is

y24 + α1y
3
3 + α2y

2
3y

2
1 + α3y3y

4
1 + α4y

6
1 + (≥ higher order terms) = 0 (5.3)
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for some complex number αi. According to Subsection 3.1, the singularity p0 is simple elliptic

of type Ẽ8.

If X is a general element of type (N2′), we write the equations as

Q1 : x0x3 + q(x1, · · · , x5) = 0,

Q2 : x0x5 + x1x3 + x2x4 = 0,

Q3 : q′(x3, x4, x5) + x5l(x1, x2) = 0.

Still, we take the affine coordinate (5.2) near p0 and then we have

y3 = f(y1, y2, y4), y5 = −y1f(y1, y2, y4)− y2y4

for some f ∈ C[[y1, y2, y4]]≥2. Thus the local equation around p0 is

αy24 + g(y1, y4) + y4g
′(y1, y2, y4) = 0, (5.4)

where g ∈ C[[y1, y2]]≥4, g
′ ∈ C[[y1, y2, y4]]≥2 and α ∈ C is a constant. Hence p0 is simple elliptic

of type Ẽ7 by Subsection 3.1.

One can similarly prove that X has a simple elliptic singularity p0 of type Ẽ7 when it is

general of type (N3′), and of type Ẽ8 when it is general of type (N4′).

5.3 Image of the period map

Let U8 ⊂ Gr(3,W ) be the open subset consisting of all complete intersections with at

worst simple singularities. By Lemma 5.2, we know that U8 is contained in the stable locus

of Gr(3,W ). This proves Theorem 5.1. Moreover, similarly as Theorem 3.3, we can get the

following result.

Theorem 5.2 Let M8 = U8//SL6(C) be the moduli space of the complete intersection of

three quadrics in P5 with simplest simple singularities. Then

(i) the boundary of M8 in M8 has codimension ≥ 2;

(ii) there is an open immersion P8 : M8 → F8 as the extended period map and the comple-

ment of P8(M8) in F8 is the union of three NL-divisors D8
1,1, D

8
2,1 and D8

3,1. The Picard group

PicQ(F8) is spanned by {D8
d,1, 1 ≤ d ≤ 4}.

Proof For (i), let ∆ ⊆ Gr(3,W ) be the discriminant divisor which parameterizes singular

complete intersections. Then ∆ is SL6(C)-invariant and irreducible (see [9]). Consider the GIT

quotient ∆//SL6(C). By Theorem 5.1, the general members in ∆ is stable, so the boundary

M8\M8 lies in the boundary of ∆//SL6(C) as a proper closed subset. It follows that M8\M8

has codimension two in M8.

For (ii), this follows from the same arguments as in Theorem 3.3.

6 Arithmetic Compactification of Locally Hermitian Symmetric Vari-

eties

Baily and Borel compactify the arithmetic quotient Γ2ℓ\D to a normal projective variety

Γ2ℓ\D
bb

by adding finitely many modular curves and singletons, which correspond to the classes
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of Q-isotropic subspaces of ΛC
2ℓ of dimensions 2 and 1. In [14], Looijgenga gives an arithmetic

compactification of the completment of hyperplane arrangements in Γ2ℓ\D in the spirit of

Satake-Baily-Borel theory. In our situation, the hyperplane arrangement which we are interested

in will be the union of three NL-divisors D2ℓ
d,1 for d = 1, 2, 3.

6.1 A review of Looijenga’s work

Let E be a collection of elements in Λ. The orthogonal complement of β ∈ E and h2ℓ in Λ

defines a hyperplane Hβ ⊆ P(ΛC
2ℓ). Set DHβ

= D ∩Hβ to be the hyperplane arrangement and

define

D◦
E = D−

⋃

β∈E

DHβ

to be the complement of all subdomains obtained from E. The quotient Γ2ℓ\D◦
E
is the comple-

ment of Heenger divisors.

Looijenga constructed the compactification Γ̂2ℓ\D◦
E

from the strata of decomposition of

rational cones. It can also be viewed as the natural blowdown of certain minimal normal

blowup of the Baily-Borel compactification Γ2ℓ\D
bb
. The structure of the birational map is

explicitly provided that how the hyperplanes Hβ intersect inside the period domain D. To

make it precise, we fix our temporary notation as follows:

• PO(E): The collection of subspaces M ⊆ ΛC
2ℓ which are intersection of the hyperplane

arrangements from E. Denote by

πM : P(ΛC
2ℓ)− P(M) → P(ΛC

2ℓ/M)

the natural projection. The projection also defines a natural subdomain πMD◦
E
⊆ D◦

E
(see [14,

Section 7]).

• I(E): The collection of the common intersection of I⊥ and hyperplane arrangements from

E containing I, where I is a Q-isotropic subspace of ΛC
2ℓ.

The compactification Γ̂2ℓ\D◦
E
can be interpreted as below: We define

D̂E = D◦
E

⋃ ∐

M∈PO(E)

πMD◦
E

⋃ ∐

V ∈I(E)

πV D
◦
E
, (6.1)

then the compactification Γ̂2ℓ\D◦
E

is isomorphic to the quotient Γ2ℓ\D̂, and boundary thus

decomposes into finitely many strata. A consequent of this description is that if the r-th self

intersection of hyperplane arrangements (Γ2ℓ\
⋃

β DHβ
)(r) 6= ∅, then

dim(Γ̂2ℓ\D◦
E
− Γ2ℓ\D◦

E
) ≥ r + 1. (6.2)

When the codimesion of Γ̂2ℓ\D◦
E
−Γ2ℓ\D◦

E
is greater than one, there is an explicit description

of Γ̂2ℓ\D◦
E
in terms of the algebra of automorphic forms: Let L be natural automorphic line

bundle on D and L◦ be the restriction of L to D◦
E
, then

Γ̂2ℓ\D◦
E
∼= Proj

⊕

k∈Z

H0(D◦
E, (L

◦)⊗k)Γ2ℓ (6.3)

by [14, Corollary 7.5].
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6.2 Application to moduli problem via GIT

Let us discuss the possible geometric interpretation of ̂Γ2ℓ\D◦
2ℓ. For many known geometric

examples, such as Enrique surface, K3 surfaces of degree 2 and cubic fourfolds, the natural GIT

compactification is precisely Looijenga’s compactification (see [13–14]). So it is interesting to

investigate the relations between the compactifiations from GIT and arithmetic for K3 surfaces.

For K3 surface with Mukai models, Laza has first found that the two compactifications do not

necessarily coincide. This fails for quartic surfaces in P3. We can show that this actually

happens quite often.

In our case, let E2ℓ be the collection of elements β ∈ Λ satisfying β2 = 0 and β ·h2ℓ = 1, 2 or

3. Then Γ2ℓ\D◦
E2ℓ

is the completement of three NL-diviosrs D2ℓ
d,1 for d = 1, 2, 3. The following

lemma gives a rough description of the dimension of the boundary strata of ̂Γ2ℓ\D◦
E2ℓ
.

Lemma 6.1 When 2ℓ = 6 and 8, the boundary of ̂Γ2ℓ\D◦
E2ℓ

−Γ2ℓ\D◦
E2ℓ

has codimension 1.

Proof To understand the dimension of boundary, it suffices to consider the intersection of

hyperplane arrangements from E2ℓ. Let M be an even lattice of signature (1, 17) spanned by

h2ℓ and elements e1, e2, · · · , e17 satisfying that e2i = 0, eiej = 1 and h2ℓei = 3 for i 6= j. It is

easy to check that this lattice has signature (1, 17) and thus can be embedded into Λ. Then the

lattice M can represent the intersection of 17 hyperplane arrangements from E2ℓ. This proves

the assertion by (6.2).

Corollary 6.1 For 2ℓ = 6 and 8, the GIT quoitent M2ℓ is not isomorphic to Looijenga’s

compactification.

Proof Since M2ℓ is isomorphic to Γ2ℓ\D◦
E2ℓ

, this is obtained by comparing the dimension

of the boundary of M2ℓ −M2ℓ and ̂Γ2ℓ\D◦
E2ℓ

− Γ2ℓ\D◦
E2ℓ

.

In general, we believe that natural GIT compactifications of K3 surfaces with Mukai models

constructed in [9] will not be the same as Looijenga’s compactification. This can be achieved

by a similar method.

Another interesting problem is to study the birational maps between ̂Γ2ℓ\D◦
E2ℓ

and M2ℓ.

In a sequel to this paper, the authors together with Greer and Laza will study the birational

geometry of F6 via the variation of GIT and Looijenga’s arithmetic approach.
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