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Turén Problems for Berge-(k, p)-Fan Hypergraph*

Zhenyu NI' Liying KANG! Erfang SHAN?

Abstract Let F be a graph. A hypergraph # is Berge-F' if there is a bijection f : E(F) —
E(H) such that e C f(e) for every e € E(F). A hypergraph is Berge-F-free if it does not
contain a subhypergraph isomorphic to a Berge-F' hypergraph. The authors denote the
maximum number of hyperedges in an n-vertex r-uniform Berge-F-free hypergraph by
exr(n,Berge-F).

A (k,p)-fan, denoted by Fi p, is a graph on k(p — 1) + 1 vertices consisting of k cliques
with p vertices that intersect in exactly one common vertex. In this paper they determine
the bounds of ex(n, Berge-F') when F is a (k,p)-fan for k > 2, p > 3 and r > 3.
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1 Introduction

Let F be a graph and H an r-uniform hypergraph. The hypergraph H is Berge-F if there is
a bijection f : E(F) — E(H) such that e C f(e) for every e € E(F). In general, Berge-F is a
family of hypergraphs. An r-uniform hypergraph H is Berge- F-free if it does not contain a sub-
hypergraph isomorphic to a Berge-F hypergraph. For an integer r > 2, write ex,.(n, Berge-F')
for the maximum number of hyperedges in an r-uniform Berge- F-free hypergraph on n vertices.

Let G be a graph. The chromatic number of G is denoted by x(G). The number of clique
of size s in G is denoted by N,(G). Following Alon and Shikhelman [1], let us denote the
maximum number of copies of G in an n-vertex F-free graph by ex(n,G, F).

The Berge-Turan problem is of interest because it is closely related to the subgraph-counting
problem. If G is an F-free graph on n vertices, then we can define an r-uniform hypergraph
on V(G), and an r-subset of V(G) forms a hyperedge in A if and only if that the set forms a
clique of size 7 in G. Since G is F-free, H is Berge-F-free. Therefore,

ex(n, K, F) < ex,(n,Berge-F). (1.1)

Alon and Shikhenlman [1] gave the following result.

Lemma 1.1 (see [1]) For any graph H, ex(n, Ky, H) = Q(n') if and only if x(H) > t.
)

Furthermore, if indeed x(H) =p > t, then ex(n, Ky, H) = (1 + o(1)) ("] )(p%l)t
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Given a positive integer k£ and a graph F', the vertex disjoint union of k copies of the graph
F is denoted by kF. Let H = kK,. The following results, given by Gerbner, Methuku and
Vizer [6], determined the order of magnitude of ex(n, K,_1,kK,) for all » > 2, p and k (as n
tends to infinity).

Theorem 1.1 (see [6]) Forr <p,
ex(n, Ky_1,kK,) = (1+ o(1)) (p N 1) (L)M.
r—1)\p—-1
Theorem 1.2 (see [6]) Forp+1<r<p+k-—1,
ex(n, Ko_1,kK,) = (14 0(1)) (r B ’f :;+ 1) (]%)p—l.
Theorem 1.3 (see [6]) Letr > p+1 > 3 and k > 1 be arbitrary integers and let

x = (%1 — 1. Then

ex(n, K,_1,kK),) = O(n").

A (k, p)-fan, denoted by F}, ,, is a graph on k(p — 1) + 1 vertices consisting of k cliques with
p vertices that intersect in exactly one common vertex. The extremal number for Fj, ;1 was
determined by Chen et al. [3] when p > 2.

Theorem 1.4 (see [3]) For every k > 1 and for every n > 16k3(p + 1)8, if a graph G on
n vertices has more than
k% —k, if k is odd,
aln ) 44 g
2 3

edges, then G contains a copy of a Fy, pi1-fan. Further, the number of edges is the best possible.

if k is even

Many results are known for ex,(n,Berge-F). Gyori et al. [10] generalized the Erd&s-
Gallai theorem to Berge-paths. Gy6ri and Lemons [11] proved that the maximum number
of hyperedges in an n-vertex r-uniform Berge-Cy-free hypergraph (for r > 3) is O(nl‘*%).
Gerbner and Palmer [7] gave bounds on ex,(n, Berge-K ;). Gerbner et al. [5] established new
bounds for a Berge-K, and Berge-trees. For general results on the maximum size of a Berge-
F-free hypergraph for an arbitrary graph F, see Gerbner and Palmer [7] and Grosz et al. [9].
For a short survey on Turdn problems on Berge hypergraphs, see [8].

In this paper, we give a general lemma and establish some bounds on ex,(n, Berge-Fj, ,+1)
for r > 3, k> 2 and p > 2. Our main results are the following.

Theorem 1.5 For given integers r > 3, k > 2 and sufficiently large n,

1
(1+0(1))Zn23 if r > 2k —1,
exy(n, Berge—Fj3) < ) S
- o 2 i< _
(1+0(1))2r(r—1)(7“—2)n’ if r <2k — 2.

Theorem 1.6 For p > 3 and sufficiently large n, if r < p, then

o) (V) (2)" < exti, Berge—Fiper) < (1 o) L (7) (2

r) D
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. , _ [kp—r+l1
Theorem 1.7 For p > 3 and sufficiently large n, if r > p+1, let @ = [*5=521] — 1. Then
ex,(n, Berge—F p+1)

r—1(k—1\/1\r1
Z P ] <r< —
(1+0(1)5 (T_p>(p) W, ifp+l<r<ptk-l,

IN

_1 _1 x
(1+0(1))(r 5 )C(P_) n®t ifp+k<r<pk—2k+2,
p

1
’fp(P; )1+ a2, if pk — 2k +3 <71 <pk —k+1,

where ¢ 1s a positive constant depending on r,p and k.

The structure of the remaining part of the paper is as follows: In next section we provide
the bound on ex,(n, Berge-F}, 3). In Section 3 we give a general lemma and use it to establish
the bounds on ez, (n, Berge-Fy, ,41) for p > 3.

2 Berge-Fj. 3

Let (@) denote the matching number of G. For an integer ¢, the t-closure of G is the graph
obtained from G by iteratively joining non-adjacent vertices with degree sum at least ¢ until
there is no more such a pair of vertices. The following lemma was given by Bondy and Chvéatal

2].
Lemma 2.1 (see [2]) Let G be a graph and G’ be the (2k — 1)-closure of G. Then
v(G") > k implies v(G) > k.

For integers k, r and n, let h,_1(n,k — 1,§) = (ri__ll_‘s) +(n—-2k+1+9) (TEQ). The
following result determines the number of (r — 1)-cliques in a graph G with matching number

v(G) < k — 1 and minimum degree §(G).

Theorem 2.1 (see [4]) If G is a graph with n > 2k wvertices, minimum degree §, and
v(G) <k -1, then N,_1(G) < max{h,_1(n,k —1,0),hr—1(n,k — 1,k — 1)} for each r > 3.

We now obtain the following lemma by combining Lemma 2.1 and Theorem 2.1.

Lemma 2.2 [fn <2k —1, then ex(n,K,_1,kKs) = (:1). If n > 2k, then ex(n, K,_1,
kK5) < max{h,—1(n,k—1,0),h.—1(n,k — 1,k — 1)}.

Proof If n < 2k — 1, it is easily seen that v(K,) < k — 1. Then for any graph G on n
vertices, v(G) < k —1 and N,_1(G) < N,—1(K,,) = (,",). Thus, ex(n, K,_1,kK>) = (,",).

If n > 2k, for any graph G on n vertices with v(G) < k — 1, let G’ be the (2k — 1)-closure
of G. We first claim that the minimum degree 6(G) of G is at most k — 1. Indeed, assume
that 6(G) > k, we have dg(u) + dg(v) > 2k for each pair of vertices u,v € V(G). This implies
G 2 K, and v(@) = v(K,) > k. Then v(G) > k by Lemma 2.1, a contradiction.

Applying Theorem 2.1, we have N,_1(G) < max{h,_i1(n,k—1,5(GQ)), hy_1(n,k—1,k—1)}.
Since 0 < 0(G) < k — 1, by the convexity of h,._1(n,k —1,0),

N,—1(G) <max{h,_1(n,k —1,0), hp—1(n,k — 1,k — 1)}.

This completes the proof of the lemma.
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Lemma 2.3  For every n, ex(n, K,_1,kKs3) < %(Qf__f)n.

Proof If n <2k —1, by Lemma 2.2,
n 1 n—1 1 2k — 2
Ko 1, kKy) = <
ex(n, 1, kKz) (r—l) r—l(r—2>n r—l(r—2>n

If n > 2k, we have
2k — 2 1 2k — 2
_ — = <
fir—1(n, k —1,0) (r—l) <r—2>r—1 r—l(r—Q)n
k— )+ k
r— r—1

e
<(ma)
= ri1(2rk—_22)n

By Lemma 2.2, ex(n, K,_1,kKs) < -1 (Qk_z)n. The lemma follows.

r—1\r—2

and

hy1(n,k—1,k—1)

[\D

Gerbner et al. [5] gave the following general lemma that will be used in the proof of Theorem
1.5.

Lemma 2.4 (see [5]) Let F be a graph and let F' be a graph resulting from the deletion
of a vertex from F. Let ¢ = c¢(n) be such that ex(n, K,._1,F’) < cn for every n. Then

2
ex,(n, Berge—F) < max{—c, l}ex(n, F).
r

Proof of Theorem 1.5 Let A be an r-uniform Berge-Fj, 3-free hypergraph on n vertices.
Let uw € V(Fy3) be the center of Fy, 3. Then F' = Fj 3 — u = kK. By Lemma 2.3, we have
ex(n,K,—1,F') < L= (% 7)n for all n. Thus ¢ = -1 (QTk__;).

First we consider the case r > 2k — 1. Then we have

o { 2,1} = ma {2 (B0} <0,

Hence, Lemma 2.4 and Theorem 1.4 give

1
ex,(n, Berge-Fy. 3) < ex(n, F) = (1+ 0(1))1712.

Let us continue with the case r < 2k — 2. If 4 < r < 2k — 2, then (Qf_ 2) > (%2_2) > (;) If
r =3, then (QTk_Q) 2k—2>r=3= ( ) Hence,

B ]

Then Lemma 2.4 and Theorem 1.4 give

ex,(n, Berge-Fj 3) < ﬁ (2Tk:22> ex(n,F)=(1+ 0(1))_2r(r1— 1) (2Tk__22> n’.

This yields the needed result.
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3 Berge-Fj 1 for p > 3

For an r-uniform hypergraph #H, we define OH to be the graph induced by the pairs of
vertices in 1 which contained in at least one hyperedge of H, i.e., V(OH) = V(H) and

E(OH) = {{u,v} C V(H): {u,v} C e for some e € E(H)}.

For {u,v} € OH, let dy(u,v) = [{e € E(H) : {u,v} C e}|. An r-uniform hypergraph # is
called d-full if dg (u,v) > d for all {u,v} € OH. The following lemmas were given by Palmer et
al. [12], which are useful for Turédn problems involving expansion.

Lemma 3.1 (see [12]) For any positive integer d, the r-uniform hypergraph H has a d-full
sub-hypergraph Hq with e(H1) > e(H) — (d — 1)|OH].

Lemma 3.2 (see [12]) Letr > 3 be an integer and H be an r-uniform hypergraph with no
Berge-F. If OH contains a copy of F', then there is a pair of vertices u,v such that dy(u,v) <
e(F).

Lemma 3.3  Suppose F is a graph with ex(n,F) = fn®, where 1 < a < 2 and 8 is a
positive constant, and there is a vertex v € V(F') such that for large enough m, ex(m, K,_1, F —
v) < em® for some positive constant ¢ and integer i > 1. If r > 3 and e(F) is the number of
edges of F', then for large enough n we have

ex,(n, Berge — F) < max {c(r —1)2¢1 (1 + %) %’_f‘)l, e(F)(vn+ 1)n2}.

Proof Let H be an r-uniform Berge-F-free hypergraph on n vertices. If e(H) < e(F)(y/n+
1)n?, then we are done. Otherwise, e(H) > e(F)(y/n + 1)n?. Let 0 be a real number such that
e(H) = e(F)(y/n+1)n"~%. Note that r — 0 > 2.

Since OH is a subgraph of K,,, |0H| < %2 < g Thus, by Lemma 3.1, there exists an
e(F)-full sub-hypergraph H; of H satisfying

() 2 e(H) — e(F)|oH| 2 (Vi + 3 ) e(Fn ",

Since H; is e(F)-full, if OH; contains a copy of F, then there exists a Berge-F in H; by

Lemma 3.2, a contradiction. Thus, 0H; is F-free, which implies that |0H:| < ex(n, F').
ooyl

Let d = % Applying Lemma 3.1, we obtain a d-full sub-hypergraph Hs of H; with

e(F)n™=0+3
ex(n, F)

Let Hs be the hypergraph obtained from Hs by removing all isolated vertices. Let G = 0H3
and n’ = |[V(G)|. Note that e(G) < ex(n/, F), since G is a subgraph of 9H;. Thus, there exists
a vertex u € V(G) such that

1
e(Ha) > e(H1) — |OH 4| > §e(F)nT_9.

2ex(n’, F) - 2ex(n, F)

/ — )

n

da (u) <

A (3.1)

since ex(n, F) = fn® with 1 < a < 2.
Let G’ = G[Ng(u)]. Since Hg is d-full, there are at least d edges in Hs that contain both
uw and v« for any vertex u' € Ng(u). If e = {u,v/, w1, - ,w,—2} is an edge of Hs, then
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{v,wy, -+ ,wy_o} forms an (r —1)-clique in G’. On the other hand, although there are at least
d edges e in H3 that contain u and v/, edge e is counted r — 1 times since there are r — 1 vertices
in e that are neighbors of v in G. Therefore,

]\]T_l(G’) > M

> (3.2)

and

e(F)ynm—0+z

dalu) 2 d= =Ty

Since G is F-free and G’ = G[Ng(u)], G’ is (F — v)-free, where v is any vertex in F. So
N,_1(G") < ex(dg(u), K—1, F — v). Thus, for large enough n, we have

N, 1(G") < ex(dg(u), K,—1, F —v) < cdg(u)". (3.3)

By (3.1)—(3.3), we have

d < c(r—1)da(u) ™" <c(r— U(M)M'

F)nT7ng b

Since e(H) = (v/n+ 1)e(F)n"~% and d = B(WW’

21'—1M

nt—1 ?

e(H) < (1 + %)c(r —1)

which completes the proof.

Proof of Theorem 1.6 Let H be an r-uniform Berge- Fj, ,,41-free hypergraph on n vertices.
Let w € V(Fgp+1) be the center of Fy 11 and F' = Fj, py1 — u. Observe that F' = kK, and
X(F') = p. Therefore, by Theorem 1.1, we have

ex(n, K,_1,F') = (1+ o(1)) (f: D (p . 1)T_1.

T

Using Theorem 1.4 and Lemma 3.3 with i = r—1 and ¢ = (1 —I—o(l))(p:}) (p%l)r_l, we have

ex,(n, Berge-F, p+1)

)ex(n,F)i

< max {c(r —1)2¢t (1 + = T e(F)(v/n+ 1)n2}

Jn
_ max{%(l +o(1)) (f: D (1)T_1(1 n %)n gp(]? T+ \/ﬁ)nQ}

p
_ ’”(7"2‘ Yt 0(1))<f> (g)

On the other hand, since x(Fy,p+1) =p + 1, by Lemma 1.1,

ex(n, Ky, Frpi1) = (14 0(1)) (f) (ﬁ)

p
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Combining this with (1.1), we have

(14 0(1)) <f) (g)r < ex,(n,Berge-Fi p11).

The Proof of Theorem 1.6 is completed.

Proof of Theorem 1.7 Let H be an r-uniform Berge- F}, ,,11-free hypergraph on n vertices.
Let u € V(Fj p+1) be the center of Fy, 41 and F' = Fj, 1 — u. Observe that F' = kK, and
X(F') =p.

Ifp+1<r<p+k—1, by Theorem 1.2,

ex(n,Kr_LF')=(1+0(1))(k_1>( n )p_l.

r—p)\p—1

Using Theorem 1.4 and Lemma 3.3 with i = p — 1 and ¢ = (1 + o(1))(¥_!) (p—il)p_l, we
have

ex,(n, Berge-F, p+1)

< Inax{c(r - 1)2i_1(1 + %)%’_f‘)i, e(F)(vn + 1)n2}
= max {(1 +0(1)) ! (’: :;) (%)p_l (1+ %)np gp(p + )0+ Vi)

= (14 o(1) 52 (f :;) (]lg)”‘lnp.

Ifp+k<r<pk—2k+2, then z = [%] — 1> 2. By Theorem 1.3,
ex(n, K,_1,F') = O(n").
Using Theorem 1.4 and Lemma 3.3 with ¢ = z and ¢ = ¢1(r, p, k), we have

ex,(n, Berge-F, p+1)

< max{c(r - 1)2i_1(1 + %)%’_f)i, e(F)(vn + 1)n2}

1

- max{(l + 0(1))(1 + %) % (%)Inw“, gp(p +1)1+ \/ﬁ)rﬂ}

= (1 o) I (Y e

If pk — 2k +3 <r <pk—k+1, then x = [kpk__rf'lw —1=1. By Theorem 1.3,

ex(n, K,_1,F") = O(n).
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Using Theorem 1.4 and Lemma 3.3 with i = 1 and ¢ = ¢1(r, p, k), we have

ez, (n, Berge-Fi p+1)

< max {c(r —1)2i! (1 + %) %’_fr)i, e(F)(vn + 1)n2}
:max{(l—i-o(l))(l—l—%)%(pgl)n{ gp(p+1)(1+\/ﬁ)n2}

= Lo+ )1+ Vi,

This completes the proof of Theorem 1.7.
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