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Turán Problems for Berge-(k, p)-Fan Hypergraph∗

Zhenyu NI1 Liying KANG1 Erfang SHAN2

Abstract Let F be a graph. A hypergraph H is Berge-F if there is a bijection f : E(F ) →
E(H) such that e ⊂ f(e) for every e ∈ E(F ). A hypergraph is Berge-F -free if it does not
contain a subhypergraph isomorphic to a Berge-F hypergraph. The authors denote the
maximum number of hyperedges in an n-vertex r-uniform Berge-F -free hypergraph by
exr(n,Berge-F ).

A (k, p)-fan, denoted by Fk,p, is a graph on k(p− 1) + 1 vertices consisting of k cliques
with p vertices that intersect in exactly one common vertex. In this paper they determine
the bounds of exr(n,Berge-F ) when F is a (k, p)-fan for k ≥ 2, p ≥ 3 and r ≥ 3.
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1 Introduction

Let F be a graph and H an r-uniform hypergraph. The hypergraph H is Berge-F if there is

a bijection f : E(F ) → E(H) such that e ⊂ f(e) for every e ∈ E(F ). In general, Berge-F is a

family of hypergraphs. An r-uniform hypergraph H is Berge-F -free if it does not contain a sub-

hypergraph isomorphic to a Berge-F hypergraph. For an integer r ≥ 2, write exr(n,Berge-F )

for the maximum number of hyperedges in an r-uniform Berge-F -free hypergraph on n vertices.

Let G be a graph. The chromatic number of G is denoted by χ(G). The number of clique

of size s in G is denoted by Ns(G). Following Alon and Shikhelman [1], let us denote the

maximum number of copies of G in an n-vertex F -free graph by ex(n,G, F ).

The Berge-Turán problem is of interest because it is closely related to the subgraph-counting

problem. If G is an F -free graph on n vertices, then we can define an r-uniform hypergraph H
on V (G), and an r-subset of V (G) forms a hyperedge in H if and only if that the set forms a

clique of size r in G. Since G is F -free, H is Berge-F -free. Therefore,

ex(n,Kr, F ) ≤ exr(n,Berge-F ). (1.1)

Alon and Shikhenlman [1] gave the following result.

Lemma 1.1 (see [1]) For any graph H, ex(n,Kt, H) = Ω(nt) if and only if χ(H) > t.

Furthermore, if indeed χ(H) = p > t, then ex(n,Kt, H) = (1 + o(1))
(

p−1
t

)

( n
p−1 )

t.
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Given a positive integer k and a graph F , the vertex disjoint union of k copies of the graph

F is denoted by kF . Let H = kKp. The following results, given by Gerbner, Methuku and

Vizer [6], determined the order of magnitude of ex(n,Kr−1, kKp) for all r ≥ 2, p and k (as n

tends to infinity).

Theorem 1.1 (see [6]) For r ≤ p,

ex(n,Kr−1, kKp) = (1 + o(1))

(

p− 1

r − 1

)

( n

p− 1

)r−1

.

Theorem 1.2 (see [6]) For p+ 1 ≤ r ≤ p+ k − 1,

ex(n,Kr−1, kKp) = (1 + o(1))

(

k − 1

r − 1− p+ 1

)

( n

p− 1

)p−1

.

Theorem 1.3 (see [6]) Let r ≥ p + 1 ≥ 3 and k ≥ 1 be arbitrary integers and let

x = ⌈kp−r+1
k−1 ⌉ − 1. Then

ex(n,Kr−1, kKp) = Θ(nx).

A (k, p)-fan, denoted by Fk,p, is a graph on k(p− 1)+1 vertices consisting of k cliques with

p vertices that intersect in exactly one common vertex. The extremal number for Fk,p+1 was

determined by Chen et al. [3] when p ≥ 2.

Theorem 1.4 (see [3]) For every k ≥ 1 and for every n ≥ 16k3(p+ 1)8, if a graph G on

n vertices has more than

ex(n,Kp+1) +











k2 − k, if k is odd,

k2 − 3k

2
, if k is even

edges, then G contains a copy of a Fk,p+1-fan. Further, the number of edges is the best possible.

Many results are known for exr(n,Berge-F ). Győri et al. [10] generalized the Erdős-

Gallai theorem to Berge-paths. Győri and Lemons [11] proved that the maximum number

of hyperedges in an n-vertex r-uniform Berge-C2k-free hypergraph (for r ≥ 3) is O(n1+ 1
k ).

Gerbner and Palmer [7] gave bounds on exr(n,Berge-Ks,t). Gerbner et al. [5] established new

bounds for a Berge-Kr and Berge-trees. For general results on the maximum size of a Berge-

F -free hypergraph for an arbitrary graph F , see Gerbner and Palmer [7] and Grösz et al. [9].

For a short survey on Turán problems on Berge hypergraphs, see [8].

In this paper, we give a general lemma and establish some bounds on exr(n, Berge-Fk,p+1)

for r ≥ 3, k ≥ 2 and p ≥ 2. Our main results are the following.

Theorem 1.5 For given integers r ≥ 3, k ≥ 2 and sufficiently large n,

exr(n, Berge−Fk,3) ≤















(1 + o(1))
1

4
n2, if r ≥ 2k − 1,

(1 + o(1))
1

2r(r − 1)

(

2k − 2
r − 2

)

n2, if r ≤ 2k − 2.

Theorem 1.6 For p ≥ 3 and sufficiently large n, if r ≤ p, then

(1 + o(1))

(

p

r

)

(n

p

)r

≤ exr(n, Berge−Fk,p+1) ≤ (1 + o(1))
r(r − 1)

2

(

p

r

)

(n

p

)r

.
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Theorem 1.7 For p ≥ 3 and sufficiently large n, if r ≥ p+ 1, let x =
⌈

kp−r+1
k−1

⌉

− 1. Then

exr(n, Berge−Fk,p+1)

≤



































(1 + o(1))
r − 1

2

(

k − 1

r − p

)

(1

p

)p−1

np, if p+ 1 ≤ r ≤ p+ k − 1,

(1 + o(1))
(r − 1)c

2

(p− 1

p

)x

nx+1, if p+ k ≤ r ≤ pk − 2k + 2,

kp(p+ 1)

2
(1 +

√
n)n2, if pk − 2k + 3 ≤ r ≤ pk − k + 1,

where c is a positive constant depending on r, p and k.

The structure of the remaining part of the paper is as follows: In next section we provide

the bound on exr(n,Berge-Fk,3). In Section 3 we give a general lemma and use it to establish

the bounds on exr(n,Berge-Fk,p+1) for p ≥ 3.

2 Berge-Fk,3

Let ν(G) denote the matching number of G. For an integer t, the t-closure of G is the graph

obtained from G by iteratively joining non-adjacent vertices with degree sum at least t until

there is no more such a pair of vertices. The following lemma was given by Bondy and Chvátal

[2].

Lemma 2.1 (see [2]) Let G be a graph and G′ be the (2k − 1)-closure of G. Then

ν(G′) ≥ k implies ν(G) ≥ k.

For integers k, r and n, let hr−1(n, k − 1, δ) =
(

2k−1−δ

r−1

)

+ (n − 2k + 1 + δ)
(

δ

r−2

)

. The

following result determines the number of (r − 1)-cliques in a graph G with matching number

ν(G) ≤ k − 1 and minimum degree δ(G).

Theorem 2.1 (see [4]) If G is a graph with n ≥ 2k vertices, minimum degree δ, and

ν(G) ≤ k − 1, then Nr−1(G) ≤ max{hr−1(n, k − 1, δ), hr−1(n, k − 1, k − 1)} for each r ≥ 3.

We now obtain the following lemma by combining Lemma 2.1 and Theorem 2.1.

Lemma 2.2 If n ≤ 2k − 1, then ex(n,Kr−1, kK2) =
(

n

r−1

)

. If n ≥ 2k, then ex(n,Kr−1,

kK2) ≤ max{hr−1(n, k − 1, 0), hr−1(n, k − 1, k − 1)}.

Proof If n ≤ 2k − 1, it is easily seen that ν(Kn) ≤ k − 1. Then for any graph G on n

vertices, ν(G) ≤ k − 1 and Nr−1(G) ≤ Nr−1(Kn) =
(

n
r−1

)

. Thus, ex(n,Kr−1, kK2) =
(

n
r−1

)

.

If n ≥ 2k, for any graph G on n vertices with ν(G) ≤ k − 1, let G′ be the (2k − 1)-closure

of G. We first claim that the minimum degree δ(G) of G is at most k − 1. Indeed, assume

that δ(G) ≥ k, we have dG(u) + dG(v) ≥ 2k for each pair of vertices u, v ∈ V (G). This implies

G′ ∼= Kn and ν(G′) = ν(Kn) ≥ k. Then ν(G) ≥ k by Lemma 2.1, a contradiction.

Applying Theorem 2.1, we have Nr−1(G) ≤ max{hr−1(n, k−1, δ(G)), hr−1(n, k−1, k−1)}.
Since 0 ≤ δ(G) ≤ k − 1, by the convexity of hr−1(n, k − 1, δ),

Nr−1(G) ≤ max{hr−1(n, k − 1, 0), hr−1(n, k − 1, k − 1)}.

This completes the proof of the lemma.
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Lemma 2.3 For every n, ex(n,Kr−1, kK2) ≤ 1
r−1

(

2k−2
r−2

)

n.

Proof If n ≤ 2k − 1, by Lemma 2.2,

ex(n,Kr−1, kK2) =

(

n

r − 1

)

=
1

r − 1

(

n− 1

r − 2

)

n ≤ 1

r − 1

(

2k − 2

r − 2

)

n.

If n ≥ 2k, we have

hr−1(n, k − 1, 0) =

(

2k − 1

r − 1

)

=

(

2k − 2

r − 2

)

2k − 1

r − 1
≤ 1

r − 1

(

2k − 2

r − 2

)

n

and

hr−1(n, k − 1, k − 1) =

(

k − 1

r − 2

)

(n− k) +

(

k

r − 1

)

=

(

k − 1

r − 2

)

n− (r − 2)

(

k

r − 1

)

≤
(

k − 1

r − 2

)

n

≤ 1

r − 1

(

2k − 2

r − 2

)

n.

By Lemma 2.2, ex(n,Kr−1, kK2) ≤ 1
r−1

(

2k−2
r−2

)

n. The lemma follows.

Gerbner et al. [5] gave the following general lemma that will be used in the proof of Theorem

1.5.

Lemma 2.4 (see [5]) Let F be a graph and let F ′ be a graph resulting from the deletion

of a vertex from F . Let c = c(n) be such that ex(n,Kr−1, F
′) ≤ cn for every n. Then

exr(n, Berge−F ) ≤ max
{2c

r
, 1
}

ex(n, F ).

Proof of Theorem 1.5 Let H be an r-uniform Berge-Fk,3-free hypergraph on n vertices.

Let u ∈ V (Fk,3) be the center of Fk,3. Then F ′ = Fk,3 − u ∼= kK2. By Lemma 2.3, we have

ex(n,Kr−1, F
′) ≤ 1

r−1

(

2k−2
r−2

)

n for all n. Thus c = 1
r−1

(

2k−2
r−2

)

.

First we consider the case r ≥ 2k − 1. Then we have

max
{2c

r
, 1
}

= max
{ 2

r(r − 1)

(

2k − 2

r − 2

)

, 1
}

= 1.

Hence, Lemma 2.4 and Theorem 1.4 give

exr(n,Berge-Fk,3) ≤ ex(n, F ) = (1 + o(1))
1

4
n2.

Let us continue with the case r ≤ 2k − 2. If 4 ≤ r ≤ 2k − 2, then
(

2k−2
r−2

)

≥
(

2k−2
2

)

≥
(

r

2

)

. If

r = 3, then
(

2k−2
r−2

)

= 2k − 2 ≥ r = 3 =
(

r

2

)

. Hence,

max
{2c

r
, 1
}

=
2

r(r − 1)

(

2k − 2

r − 2

)

.

Then Lemma 2.4 and Theorem 1.4 give

exr(n,Berge-Fk,3) ≤
2

r(r − 1)

(

2k − 2

r − 2

)

ex(n, F ) = (1 + o(1))
1

2r(r − 1)

(

2k − 2

r − 2

)

n2.

This yields the needed result.
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3 Berge-Fk,p+1 for p ≥ 3

For an r-uniform hypergraph H, we define ∂H to be the graph induced by the pairs of

vertices in H which contained in at least one hyperedge of H, i.e., V (∂H) = V (H) and

E(∂H) = {{u, v} ⊂ V (H) : {u, v} ⊂ e for some e ∈ E(H)}.

For {u, v} ∈ ∂H, let dH(u, v) = |{e ∈ E(H) : {u, v} ⊂ e}|. An r-uniform hypergraph H is

called d-full if dH(u, v) ≥ d for all {u, v} ∈ ∂H. The following lemmas were given by Palmer et

al. [12], which are useful for Turán problems involving expansion.

Lemma 3.1 (see [12]) For any positive integer d, the r-uniform hypergraph H has a d-full

sub-hypergraph H1 with e(H1) ≥ e(H)− (d− 1)|∂H|.

Lemma 3.2 (see [12]) Let r ≥ 3 be an integer and H be an r-uniform hypergraph with no

Berge-F . If ∂H contains a copy of F , then there is a pair of vertices u, v such that dH(u, v) <

e(F ).

Lemma 3.3 Suppose F is a graph with ex(n, F ) = βnα, where 1 ≤ α ≤ 2 and β is a

positive constant, and there is a vertex v ∈ V (F ) such that for large enough m, ex(m,Kr−1, F−
v) ≤ cmi for some positive constant c and integer i ≥ 1. If r ≥ 3 and e(F ) is the number of

edges of F , then for large enough n we have

exr(n, Berge− F) ≤ max
{

c(r − 1)2i−1
(

1 +
1√
n

)ex(n, F )i

ni−1
, e(F )(

√
n+ 1)n2

}

.

Proof Let H be an r-uniform Berge-F -free hypergraph on n vertices. If e(H) ≤ e(F )(
√
n+

1)n2, then we are done. Otherwise, e(H) > e(F )(
√
n+ 1)n2. Let θ be a real number such that

e(H) = e(F )(
√
n+ 1)nr−θ. Note that r − θ > 2.

Since ∂H is a subgraph of Kn, |∂H| ≤ n2

2 < nr−θ

2 . Thus, by Lemma 3.1, there exists an

e(F )-full sub-hypergraph H1 of H satisfying

e(H1) ≥ e(H)− e(F )|∂H| ≥
(√

n+
1

2

)

e(F )nr−θ.

Since H1 is e(F )-full, if ∂H1 contains a copy of F , then there exists a Berge-F in H1 by

Lemma 3.2, a contradiction. Thus, ∂H1 is F -free, which implies that |∂H1| ≤ ex(n, F ).

Let d = e(F )nr−θ+ 1
2

ex(n,F ) . Applying Lemma 3.1, we obtain a d-full sub-hypergraph H2 of H1 with

e(H2) ≥ e(H1)−
e(F )nr−θ+1

2

ex(n, F )
|∂H1| ≥

1

2
e(F )nr−θ.

Let H3 be the hypergraph obtained from H2 by removing all isolated vertices. Let G = ∂H3

and n′ = |V (G)|. Note that e(G) ≤ ex(n′, F ), since G is a subgraph of ∂H1. Thus, there exists

a vertex u ∈ V (G) such that

dG(u) ≤
2ex(n′, F )

n′
≤ 2ex(n, F )

n
, (3.1)

since ex(n, F ) = βnα with 1 ≤ α ≤ 2.

Let G′ = G[NG(u)]. Since H3 is d-full, there are at least d edges in H3 that contain both

u and u′ for any vertex u′ ∈ NG(u). If e = {u, u′, w1, · · · , wr−2} is an edge of H3, then
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{u′, w1, · · · , wr−2} forms an (r−1)-clique in G′. On the other hand, although there are at least

d edges e in H3 that contain u and u′, edge e is counted r−1 times since there are r−1 vertices

in e that are neighbors of u in G. Therefore,

Nr−1(G
′) ≥ dG(u) · d

r − 1
(3.2)

and

dG(u) ≥ d =
e(F )nr−θ+ 1

2

ex(n, F )
.

Since G is F -free and G′ = G[NG(u)], G′ is (F − v)-free, where v is any vertex in F . So

Nr−1(G
′) ≤ ex(dG(u),Kr−1, F − v). Thus, for large enough n, we have

Nr−1(G
′) ≤ ex(dG(u),Kr−1, F − v) ≤ cdG(u)

i. (3.3)

By (3.1)–(3.3), we have

d ≤ c(r − 1)dG(u)
i−1 ≤ c(r − 1)

(2ex(n, F )

n

)i−1

.

Since e(H) = (
√
n+ 1)e(F )nr−θ and d = e(F )nr−θ+ 1

2

ex(n,F ) ,

e(H) ≤
(

1 +
1√
n

)

c(r − 1)2i−1 ex(n, F )i

ni−1
,

which completes the proof.

Proof of Theorem 1.6 Let H be an r-uniform Berge-Fk,p+1-free hypergraph on n vertices.

Let u ∈ V (Fk,p+1) be the center of Fk,p+1 and F ′ = Fk,p+1 − u. Observe that F ′ ∼= kKp and

χ(F ′) = p. Therefore, by Theorem 1.1, we have

ex(n,Kr−1, F
′) = (1 + o(1))

(

p− 1

r − 1

)

( n

p− 1

)r−1

.

Using Theorem 1.4 and Lemma 3.3 with i = r−1 and c = (1+o(1))
(

p−1
r−1

)(

1
p−1

)r−1
, we have

exr(n,Berge-Fk,p+1)

≤ max
{

c(r − 1)2i−1
(

1 +
1√
n

)ex(n, F )i

ni−1
, e(F )(

√
n+ 1)n2

}

= max
{r − 1

2
(1 + o(1))

(

p− 1

r − 1

)

(1

p

)r−1(

1 +
1√
n

)

nr,
k

2
p(p+ 1)(1 +

√
n)n2

}

=
r(r − 1)

2
(1 + o(1))

(

p

r

)

(n

p

)r

.

On the other hand, since χ(Fk,p+1) = p+ 1, by Lemma 1.1,

ex(n,Kr, Fk,p+1) = (1 + o(1))

(

p

r

)

(n

p

)r

.
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Combining this with (1.1), we have

(1 + o(1))

(

p

r

)

(n

p

)r

≤ exr(n,Berge-Fk,p+1).

The Proof of Theorem 1.6 is completed.

Proof of Theorem 1.7 Let H be an r-uniform Berge-Fk,p+1-free hypergraph on n vertices.

Let u ∈ V (Fk,p+1) be the center of Fk,p+1 and F ′ = Fk,p+1 − u. Observe that F ′ ∼= kKp and

χ(F ′) = p.

If p+ 1 ≤ r ≤ p+ k − 1, by Theorem 1.2,

ex(n,Kr−1, F
′) = (1 + o(1))

(

k − 1

r − p

)

( n

p− 1

)p−1

.

Using Theorem 1.4 and Lemma 3.3 with i = p − 1 and c = (1 + o(1))
(

k−1
r−p

)(

1
p−1

)p−1
, we

have

exr(n,Berge-Fk,p+1)

≤ max
{

c(r − 1)2i−1
(

1 +
1√
n

)ex(n, F )i

ni−1
, e(F )(

√
n+ 1)n2

}

= max
{

(1 + o(1))
r − 1

2

(

k − 1

r − p

)

(1

p

)p−1(

1 +
1√
n

)

np,
k

2
p(p+ 1)(1 +

√
n)n2

}

= (1 + o(1))
r − 1

2

(

k − 1

r − p

)

(1

p

)p−1

np.

If p+ k ≤ r ≤ pk − 2k + 2, then x =
⌈

kp−r+1
k−1

⌉

− 1 ≥ 2. By Theorem 1.3,

ex(n,Kr−1, F
′) = Θ(nx).

Using Theorem 1.4 and Lemma 3.3 with i = x and c = c1(r, p, k), we have

exr(n,Berge-Fk,p+1)

≤ max
{

c(r − 1)2i−1
(

1 +
1√
n

)ex(n, F )i

ni−1
, e(F )(

√
n+ 1)n2

}

= max
{

(1 + o(1))
(

1 +
1√
n

) (r − 1)c1
2

(p− 1

p

)x

nx+1,
k

2
p(p+ 1)(1 +

√
n)n2

}

= (1 + o(1))
(r − 1)c1

2

(p− 1

p

)x

nx+1.

If pk − 2k + 3 ≤ r ≤ pk − k + 1, then x =
⌈

kp−r+1
k−1

⌉

− 1 = 1. By Theorem 1.3,

ex(n,Kr−1, F
′) = Θ(n).
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Using Theorem 1.4 and Lemma 3.3 with i = 1 and c = c1(r, p, k), we have

exr(n,Berge-Fk,p+1)

≤ max
{

c(r − 1)2i−1
(

1 +
1√
n

)ex(n, F )i

ni−1
, e(F )(

√
n+ 1)n2

}

= max
{

(1 + o(1))
(

1 +
1√
n

) (r − 1)c1
2

(p− 1

p

)

n2,
k

2
p(p+ 1)(1 +

√
n)n2

}

=
k

2
p(p+ 1)(1 +

√
n)n2.

This completes the proof of Theorem 1.7.
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