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On Blow-up of Regular Solutions to the Isentropic Euler

and Euler-Boltzmann Equations with Vacuum∗
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Abstract In this paper, the authors study the Cauchy problem of n-dimensional isentropic
Euler equations and Euler-Boltzmann equations with vacuum in the whole space. They
show that if the initial velocity satisfies some condition on the integral J in the “isolated
mass group” (see (1.13)), then there will be finite time blow-up of regular solutions to the
Euler system with J ≤ 0 (n ≥ 1) and to the Euler-Boltzmann system with J < 0 (n ≥ 1)
and J = 0 (n ≥ 2), no matter how small and smooth the initial data are. It is worth
mentioning that these blow-up results imply the following: The radiation is not strong
enough to prevent the formation of singularities caused by the appearance of vacuum,
with the only possible exception in the case J = 0 and n = 1 since the radiation behaves
differently on this occasion.
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1 Introduction

It is well-known that the motion of isentropic inviscid fluid can be described by Euler

equations

{

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u) +∇pm = 0,
(1.1)

where t ≥ 0 is the time variable, x = (x1, · · · , xn) ∈ R
n is the space variable, ρ(t, x) is the mass

density, u(t, x) = (u1, · · · , un)T is the fluid velocity, pm is the material pressure satisfying the

equation of state

pm = Aργ , (1.2)

where A > 0 is the gas constant, γ > 1 is the adiabatic exponent. As is known to all, the

radiation effects become remarkable in some physical problems as the temperature increases,

for example, in the high-temperature plasma physics [24] and various astrophysical contexts [15].

Thus, one needs to consider radiation effects when describing the fluid motion. For the isentropic
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fluid, the coupling of fluid field and radiation field involves momentum source depending on

the specific radiation intensity driven by the so called radiation transfer integro-differential

equation (see [24]), and the equations of radiation hydrodynamics result from the balances of

particles and momentum. More precisely, the mass density ρ(t, x), the fluid velocity u(t, x)

and the specific radiation intensity I(v,Ω, t, x) are governed by the following Euler-Boltzmann

equations



























1

c
It +Ω · ∇I = Ar,

ρt + div(ρu) = 0,
(

ρu+
1

c2
Fr

)

t
+ div(ρu⊗ u+ Pr) +∇pm = 0,

(1.3)

where v and Ω are radiation variables, v ∈ R
+ is the frequency of photon and Ω ∈ Sn−1 is the

travel direction of photon, Sn−1 stands for the unit sphere in R
n, and c is the light speed. The

impact of radiation on the dynamical properties of the fluid is described by the radiation flux

Fr and the radiation pressure tensor Pr:

Fr =

∫

∞

0

∫

Sn−1

I(v,Ω, t, x)ΩdΩdv, Pr =
1

c

∫

∞

0

∫

Sn−1

I(v,Ω, t, x)Ω⊗ ΩdΩdv.

The collision term on the right-hand side of the radiative transfer equation is

Ar = σe − σaI +

∫

∞

0

∫

Sn−1

( v

v′
σsI

′ − σ′

sI
)

dΩ′dv′,

which involves emission, absorption and scattering of energy, where I = I(v,Ω, t, x), I ′ =

I(v′,Ω′, t, x); σe = σe(v,Ω, t, x) ≥ 0 is the rate of energy emission due to spontaneous process;

σa = σa(v, t, x, ρ) ≥ 0 denotes the absorption coefficient that may depend on the mass density

ρ; Similar to absorption, a photon can undergo scattering interactions with matter, and the

probability of a photon being scattered from v′ to v contained in dv, from Ω′ to Ω contained

in dΩ, and traveling a distance ds is given by the “differential scattering coefficient” σs(v
′ →

v,Ω′ ·Ω)dvdΩds (see [17, 24]). Moreover, the time rates of outscattering and inscattering within

a unit volume element are

outscattering =

∫

∞

0

∫

Sn−1

σs(v → v′,Ω · Ω′, ρ)I(v,Ω, t, x)dΩ′dv′,

inscattering =

∫

∞

0

∫

Sn−1

σs(v
′ → v,Ω′ · Ω, ρ)I(v′,Ω′, t, x)dΩ′dv′,

and σs, σ
′

s behave like

σs = σs(v
′ → v,Ω′ · Ω, ρ) = O(ρ), σ′

s = σs(v → v′,Ω · Ω′, ρ) = O(ρ).

Noticing that, unlike Euler-Poisson or Euler-Maxwell systems, where Euler equations are cou-

pled with an elliptic or a parabolic equation, (1.3) is a system that Euler equations are coupled

with a hyperbolic equation. Thus the study of Euler-Boltzmann equations is challenging due

to the high complexity and mathematical difficulty of the system itself.
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As has been shown in [17, 24], from the assumptions of “induced process” and local thermal

equilibrium, σe and σa can be written as














σe(v, t, x, ρ) = KaB(v)
(

1 +
c2I

2hv3

)

,

σa(v, t, x, ρ) = Ka

(

1 +
c2

2hv3
B(v)

)

,

where B(v) ∈ L2(R+) is actually a simplification of Planck function that represents the energy

density of black-body radiation, and the black-body holds the smallest radiation; h is the Planck

constant, and Ka satisfies

Ka = Ka(v, t, x, ρ) = ρKa(v, t, x, ρ) = o(ρ) ≥ 0,

in which, Ka ∈ C∞ for (v, t, x, ρ) and

lim
ρ→0

Ka(v, t, x, ρ) = 0.

Thus, when σs = 0, the radiative transfer equation can be written as

1

c
It +Ω · ∇I = −Ka(I −B(v)), (1.4)

and the isentropic Euler-Boltzmann system (1.3) is reduced to



























1

c
It +Ω · ∇I = −Ka(I −B(v)),

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u) +∇pm =
1

c

∫

∞

0

∫

Sn−1

Ka(I −B(v))ΩdΩdv.

(1.5)

One of the motivations that we study the radiation system (1.5) lies on the fact that the

isentropic Euler system (1.1) can be, to some extent, regarded as the non-radiation limit of

the isentropic Euler-Boltzman system (1.5). In fact, since the radiation of the black-body is

the smallest one, so I ≡ B(v) implies that the radiation effect is ignored, and formally system

(1.5) is reduced to system (1.1). For the rigorous justification of this type of limit, we refer to

Ducomet-Nečasová [7] for the diffusion limit of the Navier-Stokes-Boltzmann system, when the

radiative intensity is driven to equilibrium or non-equilibrium, see also Lowrie-Morel-Hittinger

[21], Buet-Després [2] for more results in this direction. While, as far as we know, the rigorous

diffusion limit of system (1.5) is still unknown, which is worth considering in the future work.

In this paper, we consider the singularity formation of regular solutions to the Cauchy

problems of (1.1) and (1.5) with initial data

(ρ, u)|t=0 = (ρ0, u0)(x), ρ0(x) ≥ 0 (1.6)

and

(I, ρ, u)|t=0 = (I0, ρ0, u0)(x), ρ0(x) ≥ 0, (1.7)

respectively.
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For the classical well-posedness of Euler equations, there are rich literatures on the existence

of strong or classical solutions with vacuum. For the Cauchy problem of non-isentropic Euler

equations with compactly supported initial density and velocity, Makino-Ukai-Kawashima [22]

established the local existence of regular solutions in 3D space and proved that the life span is

finite for any non-trivial solution, see also Liu-Yang [20] for similar results with damping for

non-isentropic Euler equations in 3D space and isentropic Euler equations (1.1) in 1D space.

For some small initial density with compact support and smooth initial velocity satisfying

dist(Sp(∇u0(x)),R
−) ≥ δ > 0, ∀x ∈ R

n(n ≥ 1),

where Sp(∇u0) stands for the spectrum of the matrix ∇u0 and δ is a constant, Grassin [8]

and Serre [25] obtained the global existence of smooth solutions for both isentropic and non-

isentropic Euler equations (see also [9]). For the Euler equations with radiation, when the

radiation fluid is inviscid and the initial density is away from vacuum, Jiang-Zhong [14] obtained

the local existence of C1 solutions to the Cauchy problem of non-isentropic fluid in multi-

dimensional space, see also Jiang-Wang [13] for the initial-boundary value problem in multi-

dimensional space and Blanc-Ducomet [1] for the global existence of weak solutions in 1D

space. When the initial vacuum is allowed, Jiang-Wang [12] obtained the global existence

of weak entropy solutions to the Cauchy problem of (1.5) in 1D space, see also Jiang [10]

for isothermal fluids. Li-Zhu [19] proved the local existence of Makino-Ukai-Kawashima type

(see [22]) regular solutions to the Cauchy problem of (1.5) in 3D space. For the Navier-

Stokes-Boltzmann equations of viscous radiation fluid, we refer to Ducomet-Feireisl-Nečasová

[3], Ducomet-Nečasová [3–6], Li-Zhu [17–18] and references therein for related existence results.

In this paper, we are interested in the finite time blow-up of regular solutions with initial

density containing vacuum state. For the case without initial vacuum, Sideris [27] proved two

types of finite time blow-up of C1 solutions to the Cauchy problem of Euler equations in 3D

space. The first one is for the non-isentropic Euler equations, if the initial data are “large”,

where the “large” essentially means that the initial flow velocity must be supersonic in some

region, then the singularity formation is detected as a disturbance that overtakes the wave front

forcing the front to propagate with supersonic speed. This blow-up result has been generalized

to the multi-dimensional non-isentropic Euler-Boltzmann equations by Jiang-Zhong [14] and to

the 3D isentropic version (1.5) by Jiang-Wang [11], with the initial radiation satisfying

I0(v,Ω, x) ≥ B(v) and I0(v,Ω, x) ≡ B(v) if |x| ≥ R, (1.8)

for some positive constant R. The second one shows that singularity will develop for both

isentropic and non-isentropic Euler equations if the fluid, on average, is slightly compressed

and out-going near the wave front, which has been generalized to the 3D isentropic Euler-

Boltzmann equations (1.5) by Jiang-Wang [11] with the initial radiation I0 satisfying (1.8) and

in addition

I0(v,Ω, x) ≡ B(v) for x · Ω ≤ 0. (1.9)

For the case with initial vacuum, Serre [26] proved that the regular solution to the Cauchy

problem of Euler system (1.1) will blow up in finite time if the initial density is compactly
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supported in some bounded region V ⊂ R
n(n ≥ 1) and the initial velocity satisfies some

integral condition, i.e.,

suppρ0 ⊂ V,

∫

V

det∇u0(x)dx ≤ 0. (1.10)

For the Euler-Boltzmann system (1.5), inspired by the “isolated mass group” introduced by

Xin-Yan [30] for Navier-Stokes equations and the global existence established by Grassin and

Serre [8–9, 25] for Euler equations, Li-Zhu [19] identified the following two classes of initial data

which contain local vacuum states such that the regular solutions of Cauchy problem blow up

in finite time:

(i) (Isolated Mass Group) For some bounded open sets A0 ⊂ B0 ⊂ BR0
⊂ R

3,

ρ0(x) = u0(x) = 0, ∀x ∈ B0\A0,

∫

A0

ρ0(x)dx > 0,

I0(v,Ω, x) ≡ B(v), ∀x ∈ BC
R0

,

(1.11)

where R0 is a positive constant and BR0
is the ball centered at the origin with radius R0, B

C
R0

is

the complementary set of BR0
in R

3. This class removed the key assumption (1.9) for radiation

field in [11].

(ii) (Hyperblic Singularity Set) In some smooth open set V ⊂ R
3,

ρ0(x) = 0, Sp(∇u0(x)) ∩R
− 6= ∅, ∀ x ∈ V. (1.12)

They also proved that this blow-up mechanism also holds for the corresponding non-radiation

version, i.e., the Euler system (1.1).

For the finite time formation of singularities on the Navier-Stokes-Boltzmann equations of

viscous fluid, we refer to [17] and the references cited therein for details.

As have been observed in Li-Zhu [19], according to the definition of regular solutions (see

Definition 1.1), one has

∂tu+ u · ∇u = 0, when ρ = 0,

which implies that in the vacuum domain, the behavior of the velocity is controlled by a positive

and symmetric hyperbolic system, i.e., the so called multi-dimensional Burgers equations. Thus,

in general, the velocity may not be zero in vacuum region. In this paper, based on the similar

idea, we will present a scenario (see Definition 1.2) for finite time singularity formation of

regular solutions to the Cauchy problems (1.1) with (1.6) and (1.5) with (1.7) for both Euler

and Euler-Boltzmann equations.

Before stating our main results, we give some related definitions. The first one is the regular

solution of system (1.1) and system (1.5) that we consider in this paper.

Definition 1.1 (Regular Solutions) For 1 < γ ≤ 3, let T > 0 be a finite constant. If

(1) (ρ, u)(t, x) ∈ C1([0, T )× R
n), ρ

γ−1

2 ∈ C1([0, T )× R
n), ρ ≥ 0;

(2) ut+ u · ∇u = 0 holds when ρ(t, x) = 0, then (ρ, u)(t, x) is called a regular solution to the

Cauchy problem (1.1) and (1.6) in [0, T )× R
n;

If, in addition;

(3) I(v,Ω, t, x) ∈ L2(R+ × Sn−1, C1([0, T ) × R
n)), then (I, ρ, u)(t, x) is called a regular

solution to the Cauchy problem (1.5) and (1.7) in [0, T )× R
n.
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Remark 1.1 It is worth pointing out that the local existence of regular solutions to (1.1)

and (1.5) in 3D space have been established by Makino-Ukai-Kawashima [22] and Li-Zhu [19],

respectively. Actually, these frameworks in [22] and [19] are applicable to arbitrary space

dimension with some minor modifications.

Now we give the definition of “isolated mass group” in this paper.

Definition 1.2 (Isolated Mass Group) Let A0, B0 be two smooth, bounded and connected

open sets in R
n, and A0 ⊂ B0 ⊆ BR0

, where A0 is the closure of A0 under standard Euclidean

norm, R0 is a positive constant and BR0
is the ball centered at the origin with radius R0. If















ρ0(x) = 0, ∀x ∈ B0\A0,

∫

A0

ρ0(x)dx > 0,

J :=

∫

A0

det ∇u0(x)dx ≤ 0,
(1.13)

we say that (ρ0, u0)(x) has an isolated mass group (A0, B0).

Remark 1.2 This definition is inspired by Li-Zhu [19] and Serre [26], we replace the con-

dition on u0 in [19] (i.e., u0 = 0 when ρ0 = 0 in (1.11)) by the one introduced in [26] (i.e., the

condition on the integral J in (1.13)), where the integral J depends only on the value of u0 on

the boundary ∂A0. In fact, by direct calculation, one has

det∇u0(x) = div(uj
0(U1j , · · · , Unj))

for any j = 1, · · · , n, where Uij(i = 1, · · · , n) are cofactors of the matrix

U = (∇u1
0, · · · ,∇u

j−1
0 ,1,∇u

j+1
0 , · · · ,∇un

0 ),

in which, 1 = (1, · · · , 1)T ∈ R
n. Thus

J =

∫

A0

det∇u0dx =

∫

A0

div(uj
0(U1j , · · · , Unj))dx =

∫

∂A0

u
j
0(U1j , · · · , Unj) · νdS,

where ν is the unit outward normal vector of ∂A0, this implies that J only depends on the

value of uj
0 on the boundary ∂A0. For example, when n = 3, one has

J =

∫

A0

det∇u0dx =

∫

∂A0

u1
0(U11, U21, U31) · νdS

=

∫

∂A0

u1
0(∇u2

0 ×∇u3
0) · νdS =

∫

∂A0

u1
0 det(ν,∇u2

0,∇u3
0)dS,

when n = 1, one has

J =

∫

A0

(u0)xdx = u0|∂A0
.

Now we state main theorems in this paper, the first one is the finite time blow-up for Euler

equations.

Theorem 1.1 Let 1 < γ ≤ 3. Assume that the initial data (ρ0, u0)(x) has an isolated mass

group (A0, B0), and (ρ, u)(t, x) is the corresponding regular solution to the Cauchy problem (1.1)
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and (1.6) in [0, Tm) × R
n with maximal existence time Tm. Then for all n ≥ 1, under either

J < 0 or

J = 0 with 1 < γ ≤ 1 +
2

n
,

we both have Tm < +∞.

The second one is the finite time blow-up for Euler-Boltzmann equations.

Theorem 1.2 Let 1 < γ ≤ 3. Assume that the initial data (ρ0, u0)(x) has an isolated mass

group (A0, B0), |u0(x)|L∞(Rn) < c, I0 satisfies

I0 ≡ B(v), ∀(v,Ω, x) ∈ R
+ × Sn−1 ×BC

R0
, (1.14)

where BC
R0

is the complementary set of BR0
in R

n, and (I, ρ, u)(t, x) is the corresponding regular

solution to the Cauchy problem (1.5) and (1.7) in [0, Tm) × R
n with maximal existence time

Tm. Then under either J < 0 for all n ≥ 1 or

J = 0 with 1 < γ ≤ 1 +
2

n
and n ≥ 2,

we both have Tm < +∞.

Remark 1.3 Compared with the blow-up result obtained in [26] for system (1.1), we remove

the assumption that the initial density is compactly supported, i.e., the vacuum can appear

in local domain. Compared with the two blow-up results obtained in [19] for system (1.5), we

remove the assumption in the first result (see (1.11)) that the initial velocity vanishes where

initial density vanishes, and we only need the information of initial velocity on the local vacuum

boundary ∂A(t) instead of the vacuum domain (see (1.12)) assumed in the second result of [19].

Remark 1.4 For the case without radiation, Theorem 1.1 shows that the appearance of

vacuum will cause finite time blow-up of regular solutions to (1.1) in arbitrary dimensional

space. Moreover, even with the radiation effect, Theorem 1.2 shows that the vacuum still leads

to finite time blow-up of regular solutions to (1.5) in arbitrary dimensional space when J < 0 or

in multi-dimensional space (n ≥ 2) when J = 0, which implies that the radiation is not strong

enough to prevent the formation of singularities caused by vacuum in multi-dimensional space.

In the rest section, we first provide some preliminary lemmas required for the proofs of

Theorems 1.1–1.2, then we prove Theorem 1.1 and Theorem 1.2, respectively.

2 Finite Time Blow-up

Hereinafter, it is always assumed that initial data (ρ0, u0)(x) and (I0, ρ0, u0)(x) satisfy

assumptions in Theorems 1.1–1.2, (ρ, u)(t, x) and (I, ρ, u)(t, x) are regular solutions to the

corresponding Cauchy problems of (1.1) and (1.5) in [0, Tm)× R
n, respectively.

2.1 Preliminaries

Now, we introduce some necessary quantities and preliminary lemmas. First, we define the

particle path generated by the velocity u(t, x).
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Definition 2.1 (Particle Path) Let X(t; 0, x0) be the particle path starting from x0 at

t = 0, i.e.,

d

dt
X(t; 0, x0) = u(t,X(t; 0, x0)), X(t; 0, x0) = x0, (2.1)

and denote A(t), B(t), B(t)\A(t) as the images of A0, B0, B0\A0 under (2.1), respectively, then,

A(t) = {X(t; 0, x0) | x0 ∈ A0}, B(t) = {X(t; 0, x0) | x0 ∈ B0},

B(t)\A(t) = {X(t; 0, x0) | x0 ∈ B0\A0}.

This definition implies the evolution of A0. Moreover, for any t ∈ [0, Tm), according to the

mass equation (1.1)1 or (1.5)2, one has

ρ(t,X(t; 0, x)) = ρ0(x) exp
(

∫ t

0

divu(s,X(s; 0, x))ds
)

,

which, along with the condition in (1.13): ρ0(x) = 0 in B0\A0, we have ρ(t, x) = 0 in B(t)\A(t).

Then, together with the definition of regular solutions, one has

ut + u · ∇u = 0 in B(t)\A(t).

Thus for each x ∈ B0\A0, it yields that

d

dt
u(t,X(t; 0, x)) = ut(t,X(t; 0, x)) + u(t,X(t; 0, x)) · ∇u(t,X(t; 0, x)) = 0,

which implies that

u(t,X(t; 0, x)) = u0(x), ∀x ∈ B0\A0, t ∈ [0, Tm).

This, with the aid of (2.1), gives

X(t; 0, x) = x+ tu0(x), ∀x ∈ ∂A0, t ∈ [0, Tm),

and it immediately has

∂A(t) = {x = x0 + tu0(x0) | x0 ∈ ∂A0}. (2.2)

Here, (2.2) shows the evolution of the set A0.

To show the finite time formation of singularities, in the region A(t), we define the following

physical quantities:

M(t) =

∫

A(t)

ρ|x|2dx (second momentum),

F (t) =

∫

A(t)

ρu · xdx (first moment of momentum density),

ε(t) =

∫

A(t)

(1

2
ρ|u|2 +

pm

γ − 1

)

dx (total energy),

which is used to define the following functional (see also [16, 29]):

H(t) = M(t)− 2(t+ 1)F (t) + 2(t+ 1)2ε(t). (2.3)
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We also denote by

m(t) =

∫

A(t)

ρdx

the total mass in A(t), then it is clear that m(0) > 0 according to (1.13).

Now, we give some useful lemmas. The first one is the Reynolds transport lemma (see [28]).

Lemma 2.1 Considering any part of the fluid in τ(t) and with velocity u, for any G(t, x) ∈

C1(R+ × R
n), one has

d

dt

∫

τ(t)

G(t, x)dx =

∫

τ(t)

Gtdx+

∫

∂τ(t)

Gu · νdS,

where ν is the unit outward normal vector and dS is the surface elements of ∂τ(t).

With the help of Lemma 2.1, the second lemma implies the conservation of mass in A(t).

Lemma 2.2 The mass is conserved in A(t) for both Euler and Euler-Boltzmann systems,

i.e.,

m(t) = m(0), t ∈ [0, Tm).

Proof According to (1.1)2 or (1.5)2 and Lemma 2.1, one has

d

dt
m(t) =

∫

A(t)

ρtdx+

∫

∂A(t)

ρu · νdS =

∫

A(t)

(ρt + div(ρu))dx = 0,

which implies that m(t) = m(0) for any t ∈ [0, Tm).

The third lemma implies that the volume of the region A(t) is a polynomial function of t

with degree no more than n (see [23 Theorem 1, 26, Lemma 2.1]).

Lemma 2.3 (Polynomial Growth of Volume) In [0, Tm), the volume of A(t) is a polynomial

with degree no more than n, and the coefficient of the highest order term tn in the polynomial

|A(t)| is exactly J .

Moreover, the volume of A(t) has strictly positive lower bound.

Lemma 2.4 For both Euler and Euler-Boltzmann systems, the volume of A(t) satisfies

|A(t)| ≥ C0(1 + t)k, t ∈ [0, Tm)

for some nonnegative integer k ≤ n and positive constant C0 that depends on u0. More precisely,

if J = 0, then k ≤ n− 1.

Proof First, if |A(t)| = 0 for some t0 ∈ [0, Tm), then m(t0) = 0, which contradicts to the

conservation of mass in A(t), i.e., m(t0) = m(0) > 0 (see Lemma 2.2). Thus

|A(t)| > 0, ∀t ∈ [0, Tm).

Moreover, there exists a constant C0 > 0 such that

|A(t)| ≥ C0, ∀t ∈ [0, Tm), (2.4)
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otherwise, for any T ∗ < Tm, one can find a sequence {tj} (j = 1, 2, · · · ), tj ∈ [0, T ∗] satisfying

|A(tj)| ≤
C0

j
,

thus there exists a limit t1 ∈ [0, Tm) of the bounded sequence {tj}, such that |A(t1)| = 0, which

contradicts to Lemma 2.2.

Second, according to Lemma 2.3, |A(t)| is a polynomial with degree no more than n, thus

with the aid of (2.4), there exists a integer 0 ≤ k ≤ n, such that

|A(t)| ≥ C0(1 + t)k, t ∈ [0, Tm) (2.5)

for some positive constant C0 that depends on u0.

Especially, when J = 0, |A(t)| is a polynomial with degree no more than n − 1, thus (2.5)

holds for some nonnegative integer k ≤ n− 1.

In the following lemma, we give some basic estimates on H(t).

Lemma 2.5 For 1 < γ ≤ 3 and t ∈ [0, Tm), it holds for both Euler and Euler-Boltzmann

systems that

H(t) ≥
2(t+ 1)2

γ − 1

∫

A(t)

pmdx ≥ C(1 + t)2−k(γ−1) (2.6)

for J = 0 and some nonnegative integer k ≤ n− 1, where C is a positive constant that depends

on C0,m(0), A and γ.

Proof First, according to the definition of H(t), one has

H(t) =

∫

A(t)

(

ρ|x|2 − 2(t+ 1)ρu · x+ 2(t+ 1)2
(1

2
ρ|u|2 +

pm

γ − 1

))

dx

=

∫

A(t)

(

ρ|x− (t+ 1)u|2 + 2(t+ 1)2
pm

γ − 1

)

dx, (2.7)

thus by the non-negativity of the first term on the right-hand side of (2.7), it is easy to show

that

H(t) ≥
2(t+ 1)2

γ − 1

∫

A(t)

pmdx =
2A(t+ 1)2

γ − 1

∫

A(t)

ργdx

≥
C(t+ 1)2

γ − 1
|A(t)|1−γm(0)γ ≥ C(1 + t)2−k(γ−1),

where we have used Lemma 2.4 and the following estimate

m(0) =

∫

A(t)

ρdx ≤
(

∫

A(t)

ργdx
)

1

γ

|A(t)|
γ−1

γ ,

and C is a positive constant that depends on C0,m(0), A and γ.
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2.2 Blow-up of Euler equations

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 We divide the proof into two steps.

Step 1 The case of J = 0. We will control H(t) by using Gronwall’s inequality for

t ∈ [0, Tm). On one hand, from the definition of H(t), one has

dH(t)

dt
=

dM(t)

dt
− 2(t+ 1)

dF (t)

dt
+ 2(t+ 1)2

dε(t)

dt
− 2F (t) + 4(t+ 1)ε(t), (2.8)

in which, from the definition of M(t) and (1.1)1, one has

dM(t)

dt
=

d

dt

∫

A(t)

ρ|x|2dx =

∫

A(t)

ρt|x|
2dx+

∫

∂A(t)

ρu|x|2 · νdS

= −

∫

A(t)

div(ρu)|x|2dx = 2

∫

A(t)

ρu · xdx, (2.9)

where we have used the fact that ρ = 0 on ∂A(t). Similarly,

−
dF (t)

dt
= −

d

dt

∫

A(t)

ρu · xdx = −

∫

A(t)

(ρu)t · xdx

=

∫

A(t)

(div(ρu⊗ u) · x+∇pm · x)dx

= −

∫

A(t)

(ρ|u|2 + npm)dx, (2.10)

where we have used (1.1)2, integrating by parts and ρ = 0 on ∂A(t). For

dε(t)

dt
=

∫

A(t)

(1

2
ρ|u|2 +

pm

γ − 1

)

t
dx,

noticing that

1

2
(ρ|u|2)t = ρut · u+

1

2
ρt|u|

2 = ρut · u−
1

2
div(ρu)|u|2,

(pm)t
γ − 1

= −pmdivu−
div(pmu)

γ − 1
,

with the help of integrating by parts and (1.1)2, it arrives at

dε(t)

dt
=

∫

A(t)

(

ρut · u−
1

2
div(ρu)|u|2 +∇pm · u

)

dx

=

∫

A(t)

(

(ρu)t · u+ div(ρu⊗ u) · u+∇pm · u−
1

2
div(ρu|u|2)

)

dx = 0, (2.11)

where we have used the equalities

−ρt|u|
2 −

1

2
div(ρu)|u|2 =

1

2
div(ρu)|u|2 = div(ρu⊗ u) · u−

1

2
div(ρu|u|2).

Thus, submitting (2.9)–(2.11) into (2.8), it arrives at

dH(t)

dt
=

2(2− n(γ − 1))(t+ 1)

γ − 1

∫

A(t)

pmdx
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=
2− n(γ − 1)

t+ 1

2(t+ 1)2

γ − 1

∫

A(t)

pmdx. (2.12)

Then, for 2− n(γ − 1) ≥ 0, i.e., 1 < γ ≤ 1 +
2

n
, combination of (2.12) and (2.6) gives

d

dt
H(t) ≤

2− n(γ − 1)

t+ 1
H(t) for t ∈ [0, Tm). (2.13)

With the help of (2.13) and the Gronwall’s inequality, we immediately have

H(t) ≤ (t+ 1)2−n(γ−1)H(0).

This, together with (2.6), gives

(1 + t)2−k(γ−1) ≤ C(t+ 1)2−n(γ−1) (2.14)

for some constant C > 1 that depends on C0,m(0), A and γ. Since for k ≤ n− 1 and n ≥ 1, it

holds that

2− k(γ − 1) > 2− n(γ − 1),

thus (2.14) implies Tm < +∞, otherwise, there is a contradiction to (2.14).

Step 2 The case of J < 0. According to Lemma 2.3, the polynomial |A(t)| can be expressed

as

|A(t)| = Jtn + l.o.t, (2.15)

where l.o.t denotes the lower order terms in the polynomial. When J < 0, for any n ≥ 1 and

t > 0 large enough, we have |A(t)| ≤ 0, then m(t) = 0, which contradicts to the conservation

of mass in Lemma 2.2, thus Tm < +∞.

The proof of Theorem 1.1 is finished.

2.3 Blow-up of Euler-Boltzmann equations

Proof of Theorem 1.2 We divide the proof into two steps.

Step 1 When J < 0, the proof is the same as the case of the Euler system, see Step 2 in

the proof of Theorem 1.1. This implies that the radiation has no effect when J < 0.

Step 2 When J = 0, we need to consider the behavior of radiation effect. First, one knows

that

dH(t)

dt
=

dM(t)

dt
− 2(t+ 1)

dF (t)

dt
+ 2(t+ 1)2

dε(t)

dt
− 2F (t) + 4(t+ 1)ε(t), (2.16)

in which, by using (1.5)2 and the fact that ρ = 0 on ∂A(t), one has

dM(t)

dt
=

d

dt

∫

A(t)

ρ|x|2dx = 2

∫

A(t)

ρu · xdx. (2.17)

Similarly, with the help of (1.5)3 and integrating by parts, one has

dF (t)

dt
=

d

dt

∫

A(t)

ρu · xdx =

∫

A(t)

(ρu)t · xdx
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=

∫

A(t)

(

− div(ρu⊗ u)−∇pm +
1

c

∫

∞

0

∫

Sn−1

Ka(I −B(v))ΩdΩdv
)

· xdx

=

∫

A(t)

(ρ|u|2 + npm)dx+
1

c

∫

A(t)

∫

∞

0

∫

Sn−1

Ka(I −B(v))ΩdΩdv · xdx (2.18)

and

dε(t)

dt
=

∫

A(t)

(

ρut · u−
1

2
div(ρu)|u|2 +∇pm · u

)

dx

=

∫

A(t)

((ρu)t + div(ρu⊗ u) +∇pm) · udx

=
1

c

∫

A(t)

(

∫

∞

0

∫

Sn−1

Ka(I −B(v))ΩdΩdv
)

· udx (2.19)

for all t ∈ [0, Tm).

Now, we need to consider the radiation effect.

We first claim the following: In the multi-dimensional space, the assumption on I0 in (1.14)

results in the phenomena that the impact of radiation on dynamical properties of the fluid in

A(t) vanishes after some time Tb, i.e., for n ≥ 2, one has

I(v,Ω, t, x) ≡ B(v), ∀(v,Ω, t, x) ∈ R
+ × Sn−1 × [Tb, Tm)×A(t). (2.20)

Noticing that, if Tm ≤ Tb, then Tm is finite and Theorem 1.2 follows immediately, thus we only

consider the case that Tb < Tm.

Second, combining the claim (2.20) with (2.18)–(2.19), it arrives at

dF (t)

dt
=

∫

A(t)

(ρ|u|2 + npm)dx,
dε(t)

dt
= 0 for Tb ≤ t < Tm. (2.21)

Submitting (2.17) and (2.21) into (2.16), one has

dH(t)

dt
=

2− n(γ − 1)

t+ 1

2(t+ 1)2

γ − 1

∫

A(t)

pmdx for Tb ≤ t < Tm, (2.22)

thus, for 2 − n(γ − 1) ≥ 0, i.e., 1 < γ ≤ 1 +
2

n
, combination of (2.22) and (2.6) immediately

implies

d

dt
H(t) ≤

2− n(γ − 1)

t+ 1
H(t) for Tb ≤ t < Tm. (2.23)

With the help of (2.23) and the Gronwall’s inequality, one has

H(t) ≤ (t+ 1)2−n(γ−1)H(Tb),

where H(Tb) is independent of Tm. This, together with (2.6) in Lemma 2.5, gives

(t+ 1)2−k(γ−1) ≤ C(t+ 1)2−n(γ−1) (2.24)

for some constant C > 1 that depends on C0,m(0), A, γ and Tb. Then for 1 < γ ≤ 1 + 2
n
, and

any nonnegative integer k ≤ n− 1, (2.24) implies Tm < +∞.

Now it remains to prove the claim (2.20) to finish the proof of Theorem 1.2, which will be

proved in the following lemma.
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Lemma 2.6 (Behavior of Radiation Effect) Let n ≥ 2. For the regular solution to the

Cauchy problem (1.5) and (1.7), there exists a time Tb < +∞, such that

I(v,Ω, t, x) ≡ B(v), ∀(v,Ω, t, x) ∈ R
+ × Sn−1 × [Tb, Tm)×A(t).

Proof Since B(v) is independent of t and x, for n ≥ 2, according to (1.5)1, one has

1

c
(I −B(v))t +Ω · ∇(I −B(v)) = −Ka(I −B(v)). (2.25)

If we denote by y(t; y0) the photon path starting from y0 at t = 0, i.e.,

d

dt
y(t; y0) = cΩ, y(0; y0) = y0,

then it is easy to show that y0 = y− cΩt. According to (2.25), along the photon path, we have

(I −B(v))(t, y(t; y0)) = (I0 −B(v))(y0) exp
(

∫ t

0

−cKa(v, s, y(s; y0), ρ)ds
)

. (2.26)

Considering the photon positioned in A(t), since the light speed c > |u0|L∞(Rn), thus taking

Tb =
2R0

c− |u0|L∞(Rn)
, (2.27)

and combining with (2.2), A0 ⊂ BR0
and |Ω| = 1 for n ≥ 2, one has

|y0| = |y − cΩt| ≥ |R0 − (c− |u0|L∞(Rn))t| ≥ R0 for t ∈ [Tb, Tm), y ∈ A(t), (2.28)

which implies that after the time Tb, the photon positioned in A(t) comes from BC
R0

. Thus,

together with (2.26) and the assumption on I0 in (1.14), it arrives at

I(v,Ω, t, x) = B(v), ∀(v,Ω, t, x) ∈ R
+ × Sn−1 × [Tb, Tm)×A(t).

The proof of this lemma is completed.

Remark 2.1 We emphasize that for 1D case, the Euler-Boltzmann system (see [3, 6, 17])

is deduced from the multi-dimensional case by considering only one single space variable.

More precisely, one can consider the three-dimensional case with specific radiation intensity

I = I(v,Ω, t, x) that depends only on the single spatial coordinate x3 and the single angular

coordinate φ, the angle between Ω and x3 axis. Introducing ω = cosφ, since I = I(v, ω, t, x3),

we have

Ω · ∇I(v, ω, t, x3) = Ω3∂x3
I(v, ω, t, x3) = ω∂x3

I(v, ω, t, x3).

So, the one-dimensional radiation hydrodynamics equations read as (see [17, 24])



























1

c
It + ωIx = −Ka(I −B(v)),

ρt + (ρu)x = 0,

(ρu)t + (ρu⊗ u)x + (pm)x =
1

c

∫

∞

0

∫

S0

Ka(I −B(v))ωdωdv,

(2.29)
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where ω ∈ S0 = [−1, 1] stands for the angular variable (we emphasize here that |ω| is not just

equal to 1, which is different from the multi-dimensional case, where |Ω| = 1 for n ≥ 2).

Moreover, according to (2.29)1, under the assumptions in this paper, the radiative effect in

A(t) will never disappear, in fact, due to |ω| ≤ 1, we are not able to find a uniform time Tb

such that (2.28) holds. Thus the radiation related terms on right-hand side of (2.18)–(2.19)

will never disappear, and we are not able to deduce finite time blow-up for 1D case under the

framework in this paper.

Remark 2.2 We also emphasize that, for 1D space, if we denote A0 = (a1, a2), B0 = (b1, b2)

for some constants b1 < a1 < a2 < b2, then the assumption J ≤ 0 is equivalent to

J =

∫

A0

(u0)xdx =

∫ a2

a1

(u0)xdx = u0(a2)− u0(a1) ≤ 0, i.e., u0(a2) ≤ u0(a1). (2.30)

Compared with the two blow-up results in [19], the first one needs u0(x) = 0 on (b1, a1]∪[a2, b2),

which plays an important role in proving the finite time blow-up of regular solutions to (2.29),

and is much stronger than our condition (2.30); The second one needs Sp(∇u0) ∩ R
− 6= ∅ in

the vacuum domain, which is equivalent to (u0)x < 0 on (b1, a1] ∪ [a2, b2), here, we only need

the condition on the boundary points a1, a2.

Remark 2.3 Based on Theorems 1.1–1.2, a natural question that we are working on is

to consider whether there exists a global regular solution to the Euler system or the Euler-

Boltzmann system for all dimensions n ≥ 1 when J > 0, as well as to the Euler-Boltzmann

system for dimension n = 1 when J = 0.
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