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Abstract The author shows that if a locally conformal K&hler metric is Hermitian Yang-
Mills with respect to itself with Einstein constant ¢ < 0, then it is a K&hler-Einstein metric.
In the case of ¢ > 0, some identities on torsions and an inequality on the second Chern
number are derived.
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1 Introduction

Let (X, g) be a compact Hermitian manifold of complex dimension n > 2. Let w = iZgﬁdzi/\
dz’ be the associated positive definite (1,1)-form, which is also called a Hermitian metric.

Let R,, be the curvature of the Chern connection of w. A Hermitian metric w is a Hermitian
Yang-Mills (HYM for short) metric with respect to itself if

n iRy, Aw" ' =c- Iroxy @ w", (1.1)

where ¢ = [ itrR, Aw" !/ [ w™ is the Einstein constant. In this paper we will always assume
that a Hermitian metric w is Hermitian Yang-Mills with respect to itself. It is also called an
Einstein-Hermitian metric in [4]. In fact, in [4] Gauduchon and Ivanov proved that when n = 2,
w is a HYM metric if and only if w is a Ké&hler-Einstein metric or is the natural metric on the
Hopf surface, i.e., is locally isometric to the product R x S% (up to homothety).

In this paper we consider how to generalize Gauduchon and Ivanov’s result to the higher
dimensional case. We need some definitions.

A Hermitian metric w is called a Gauduchon metric if i900w™ ' = 0. A well-known result
in [3] says that there exists a unique Gauduchon metric, up to a constant conformal factor, in
the conformal class of a Hermitian metric.

A Hermitian metric w is called a locally conformal Kéhler (l.c.K for short) metric if for any
point z € X, there exist an open neighbourhood U of  and a smooth function ¢ € A% (U) such
that w’ = e¥w is a Kéhler metric on U.

Denote torsions of the Chern connection of a Hermitian metric w to be

Tyi5 = Okgi5 — aig@ and T; = EgkiTikz.

Then 7 = XT;dz? is the torsion 1-form of w. A Hermitian metric w is l.c.K if and only if
equations

(n—1)0w=7TAw (1.2)
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and
d(t4+7)=0 (1.3)

hold. Note that when n = 2, equation (1.2) always holds for any Hermitian metric w and when
n >3, (1.2) implies (1.3). These results can be consulted in [2].

As we will see, the natural metric w on the Hopf manifold of complex dimension n > 2 is a
Gauduchon, l.c.K and HYM metric. Our main result is as follows.

Theorem 1.1 Let w be a l.c.K and HYM metric on a compact complex manifold X of
dimension n > 2. If ¢ < 0, then w is a Kéahler-Einstein metric; If ¢ > 0 and w is also a
(non-Kihler) Gauduchon metric, then |7|?>= (n — 1)c and

(n = 2)[|D'7|* = n(el|l|* = | D"7||*). (1.4)

Hence the real 1-form 747 is a non-vanishing d-closed form and so the Euler characterization
of X is equal to zero. We wonder whether the case of ¢ > 0 implies w is a Kéhler-Einstein
metric or is the natural metric (up to homothety) on the Hopf manifold.

Theorem 1.2 Let w be a Gauduchon, l.c.K and HYM metric on a compact complex man-
ifold X of dimension n > 2. Then

wn—2

/XCQ(X,LU)/\M ZO (15)

The equality holds if and only if w is either a flat Kéahler metric or the natural metric on the
Hopf surface.

A Kaéhler-Einstein metric w satisfies the Miyaoka-Yau inequality

47T2(2(TL+1)'CQ(X,CU)—TL'Cl(X,W)2)/\(;’:)%_22)! >0, (1.6)
from which we can easily get ,
co (X, w) A % > 0.
When w is non-Kéhler and HYM, it satisfies the Bogomolov-Liibke inequality
4m2(2n - en(X,w) — (n— 1) - 1(X,w)2) A % >0, (1.7)

where the equality holds if and only if w is projectively flat. Under the assumption in Theorem
1.2, we will show that [ ¢1(X,w)? A % > 0, hence the inequality (1.5) follows.

This paper is arranged as follows. In Section 2, the geometry of the natural metric on
the Hopf manifold of dimension n is studied. In Section 3, some identities on torsion of a
Gauduchon and HYM metric are derived and in particular identity (1.4) in Theorem 1.1 is
proved. In Section 4, we finish the proof of Theorem 1.1 and in Section 5 we prove Theorem
1.2.

We follow the notations in [5]. For a Hermitian metric w, we denote R,, to be the curvature
of the Chern connection of w. Locally, its components are

RZD

ikl ~3g" %095 + Bg" 9" 10;9,,50k9i

and ngz = Egijfki Denote Rg = EgszkZiE and sz = Egsziij' Then Puw = ZERﬁdZZ/\dzj
is the Ricci curvature and K, = iEKﬁdzi A dz’ is the mean curvature (see [5, p.26]). Hence

the equation (1.1) is equivalent to K5 = c- g,5.
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2 Hopf Manifolds

Let H" = §?"=1 x S! with n > 2 be the standard Hopf manifold (see [6, Section 6]),
equipped with the natural metric

A6, .
w=1i2—2dz* AdZF.
|z]?

It is direct to check that w is both Gauduchon and l.c.K.
The torsions of the Chern connection of w are

4 —k n—1_,
Tik; = —W(Z 6k] —Z 5”) and Tl = —WZ N
and hence |7 |*= @. Further calculation yields
ViT,—=0 and V-T —”_1(5 _Z—izj) (2.1)
i = 11 Tl = — ij ) .
' / EERNFIE
which imply D't = 0 and | D7 [2= (=%
The curvature R, is
451']' Zh !
B Sur — _) 2.2
Rzgkl |Z|4( kl BE (2.2)
and the mean curvature K, is
n—1 n—1
Rg= gt =1 %

Hence w satisfies the HYM equation (1.1) with ¢ = 251,
By (2.2), the Ricci curvature of w is
=k 1
n Z°z
Ry = — (0 — 55
S I PTE
and hence 1
R = —Riagi,
i.e., w is projectively flat. So the equality in the Bogomolov-Liibke inequality (1.7) holds.
Now we assume n > 2. Since
wn—2 n%(n—1)(n —2)w"

w A\ Pu N\ = >
P P (n—2)! 16 n!

and w is projectively flat, by the formula in [5, p.42], we have

8% - co(H™, w) A (:i_;)l _ nT—l 147T2 cer(H™, w)? A (:i_;),
—1)2(n — n
_ nln 11)6(n 2)% > 0.
Moreover, we calculate
Ar?(2(n +1) - e2(H",w) —n - e (H",w)?) A (n 71_22)!
_ —%pw A A (:i_;, __nn-— 11)6(n - 2)02_7 < 0.

Hence the natural metric w on H™ does not satisfy the Miyaoka-Yau inequality (1.6), but
satisfies the inequality (1.5).
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3 Some Identities on Torsion

The start point of Theorem 1.1 is the following identities. Let w be a HYM metric. Denote

|T[°= $¢" ¢"1 g™ " T T jqm

‘We have
iN, DD |T|? = 2g" gP gmngkl(vkviTipﬁqum + Tipm Ve Viljqm
+ ViTipaViTigm + Vi TipnViTjgm)
= 2Re(Sg" "1 g" " gM N |V Tipn Tigm )+ | D'T [ + | DT |?
+ B¢ gPl g™ M [V, Vi T (3.1)
where

kf kf S S '
Eg [Vk, Vﬂqu = Eg (ETSqule + ETjstqlE — EquFRmkz) =cC- qum.

Let w be a Gauduchon metric. Integrating (3.1) over X yields

’ﬂ

- /X 2Re(Xg" g mngklvkv lepnT]qm)_. = ||ID'T|* + | D"T|* + ¢|T|]?,
where the left hand side, after integration by parts, is equal to
| 2Re(2g T T ) 2+ 2 DT (3:2)
Thus we obtain the following result.
Proposition 3.1 If a Gauduchon metric w satisfies the HYM equation (1.1), then
| 2Re(2gT g T L) 2 = DT = DT + el T
For any Hermitian metric w, we obtain from the calculation (3.1) that
iA,00 |T|*= 2Re(Eg”gm"glekV—TT )+ |D'7 > + |D"1|* +5¢" gM Ty [V, V5 AT;.
From the HYM equation (1.1) and the calculation (3.2), we obtain the following result.
Proposition 3.2 If a Gauduchon metric w satisfies the HYM equation (1.1), then

[ 2Re(®g TN LT S = DI~ 177 el (5.3
X n.

The curvature R, of the Chern connection of a Hermitian metric w satisfies the following
Bianchi identity
Ri;kz k]zl =V Tk]’ (34)

which imples

SgHVLVIT, - = SgMVL(R,

ipj ijpl

Rzq)- (3.5)
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Combining the Bianchi identity

vaiEkf — ViR 2:RmmlT’k;D

ijpl

with the HYM equation (1.1), we obtain

Kl Kl Kl
Y9 ViR5, =39 " ViRg, —c Vg5 =39 Rz i Thx
Inserting it into (3.5) yields
S VEVT,; = B¢ (SR, T + SRz, /T,
Moreover, we have
SgHV L VT, = Egkz(ER%mz ™SR, T (3.6)
Let w be a l.c.K metric. By (1.2), we have
1

Notice that inserting (3.7) into Proposition 3.1 recovers (3.3). Inserting (3.7) and the HYM
equation (1.1) into (3.6), we obtain
(n—1)SgMVy VT = —(n— 1)e - Ti — zg”prsz +3gM R Ty
—(n—1)c- Ty — SgMTL VT, (by (3.4))
Moreover, we have
(n—1) - 2Re(Sg7 gV, VT T;) = —2(n — )¢ | 7> —2Re(Sg" gM T,V TT).

Integrating it over X and using integration by parts as in (3.2) to the left hand side yields

n

—2(n—1)|D"7|> = (n 1) /X 2Re(Egﬁgk7TkV7TiTj)%
= —2(n—1)e|7|* - /X 2Re(EgﬁngTkV7TiTj)U:L—T,
which implies
(n=2) [ Re(SgT TV IT) S = 200 = 1)l - D7) (3.8)
Comparing it with (3.3), we obtain the following result.

Proposition 3.3 Let n > 2 and w be a Gauduchon and 1.c.K metric. If w satisfies the
HYM equation (1.1), then identity (1.4) in Theorem 1.1 holds.

For n = 2, by [4] the Hopf surface (H?,w) is the only non-Kéhler HYM metric with respect
to itself. By (2.1), we have | D't |= 0 and ¢ |7 |?*=| D" 7|?. Hence, the identity (1.4) also holds
for n = 2.
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4 Proof of Theorem 1.1
Let us recall a well-known result in [3].

Lemma 4.1 Let (X,w) be a compact Hermitian manif_old of complex dimension n > 2.
Then dimg ker((iA,00)*) = 1 and any function f € ker((iA,00)*) has constant sign. Moreover,
if w is a Gauduchon metric, then ker((iA,00)*) = R.

Let w be a l.c.K and HYM metric on a compact complex manifold X of dimension n > 2.
We follow the idea in [1] to prove Theorem 1.1.

Proof There are two scalar curvatures of any Hermitian metric w:
s = Egijgszim, 5= Egijgszﬁkj.
Since w satisfies the HYM equation (1.1), and so s = nc. By (3.4), we have
§— s =Xg"VT,.
By (1.3), we have 07 + 97 = 0, which implies
008 w=idr = —idT = 00*w.
Inserting these and the HYM equation (1.1) into Proposition 3.2 in [1] yields
G—cw=Mn—-1)p,—ndd w, (4.1)
which implies d((5 — ¢)w) = 0. Then
i

(iA,00)* (8 — )" ! = TR % 00((5 — c)w)" ' = 0. (4.2)

By Lemma 4.1, we have §— ¢ =0 or (5 —¢) > 0.
If s—c=0, then

ij w™ Aw" w™
o<l =~ [ 2gT0 % = [(5-9% = m-1e [ 2

which implies ¢ = 0 and 7 = 0. Hence w is a Kédhler metric due to (3.7).

If 5 — ¢ is not identically 0, then £(5— ¢)w is a Kéhler metric, i.e., w is a globally conformal
Kéhler metric. In this case, w is actually Kahler-Einstein.

Indeed, let w’ = efw be a Kihler metric for some function f € A%(X). By (1.2),

T=—(n-1)0f.

Since ﬁ _
s=s+2g70;T; = nc— (n—1)iA,00f,

we obtain from (4.1) that
Pot = P — N -100f = (c — iA,00f)w,

which implies d((c — iA,00f)w) = 0. By Lemma 4.1, the function ¢ — iA,00f has constant
sign.

If ¢ —iA,00f > 0, then f is a constant by the maximum principle and ¢ is non-positive.
Hence we obtain ¢ > 0, a contradiction.
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If ¢ —iA,00f = 0, the same reason as above yields ¢ = 0 and f is a constant. Hence, w is
a Kéhler metric.
If ¢ —iA,00f < 0, by the uniqueness of the Gauduchon metric in the conformal class of a

—f . m
o . . e w .
Hermitian metric, the constant v = c% satisfies
X

vel =¢—iN,DDf < 0.

In this case, ¢ < 0. Notice that
0= n/ i00e! AWMt > n/ ef i0df AWt = / (c —yel ™.
X X X

Inserting v into the right hand side above, we have

o for) <ol [ ([ o).

By the Cauchy-Schwarz inequality, we obtain

(foor) = (foere)(foerem) < ([ o)

Hence, the above inequalities hold if and only if f is a constant. Combining the above arguments,
we obtain the first part of Theorem 1.1.

As to the second part, we obtain from Lemma 4.1 and (4.2) that §— c is a constant. If 5— ¢
is not identically zero, then w is Kahler. Hence 5§ — ¢ = 0, and

|7[?= ~2gT0:T; = s — 5= (n—1)c >0, (4.3)
where the first identity holds for any Gauduchon metric.

In the case ¢ > 0, we obtain from (4.1) that

which implies

|1D"7J?

- 5l = ID"7(%)  (by (1.4))

n

n = 7 — w
= I [ Re(SgTAVITI) S (b (39)
X n'

n —

G K e W
:_/ 297 9" RiT T — .
X n.

By these facts, it seems that the Hopf manifold (H", w) is the only (non-Ké&hler) l.c.K metric
satisfying the HYM equation (1.1) with positive Einstein constant.

5 Proof of Theorem 1.2

Let w be a Gauduchon, l.c.K and HYM metric on a compact complex manifold X of dimen-
sion n > 2. We are ready to prove Theorem 1.2.

Proof By the Bogomolov-Liibke inequality (1.7), the inequality (1.5) holds if

n—2

/Xcl(X,w)Q/\ (:_ ) > 0. (5.1)
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If ¢ <0, then w is Ké&hler-Einstein and (5.1) is obvious. For the equality, by (1.6) we have
¢ =0, and then p, = 0. Hence, we obtain

wn—Q wn—Q

/(|Rw|2—|Kw| >——||R 12,

where the second equality follows from the formula [5, (4.1)] and the last one follows from
K, =py,.
If ¢ > 0, then we use again the formula [5, (4.1)] to calculate

n—2 n
472 X 2A°’7:/ 2 | puH)
7 [ el n i = [ 1 b

From (4.4), (4.3) and (1.4), we obtain

2 Qw_”:(n)Q/ 1 D//2w_n
[ 10m% = (25) [ (== 10

“((n = Dellr| — D7) (5.2)

|
~
3

n—1

—2
= =) 4 D) > 0,

(n—1)
which implies the inequality (5.1), and hence the inequality (1.5). For the equality, we obtain
from the Bogomolov-Liibke inequality (1.7) that

n—2

> 42 X. w)? v
0>4mr /Xcl( W) /\(n—2)!’

which contradicts (5.2) unless n = 2. By the result in [4], w is the natural metric on the Hopf
surface.
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