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1 Introduction

The Adams-Novikov spectral sequence, constructed in [5], is an important tool for the study

of stable homotpy groups. See [6] for a detailed treatment of its construction and computational

techniques. One of the difficulty for this method is that the computations of the E2 term is

very hard. This paper gives an efficient algorithm for stemwise computations of the Adams-

Novikov E2 term using computers. Together with techniques introduced in [2], this has made

breakthroughs in the stemwise computations of classical and motivic stable homotopy groups

(see [3] and forthcoming works).

Usually people compute the Adams-Novikov E2 term by the following three methods: The

algebraic Novikov spectral sequence, the Bockstein spectral sequence, and the chromatic spec-

tral sequence. The chromatic spectral sequence, introduced in [4], separates informations of

different heights (or periods), which are computed individually. This gives many global struc-

ture theorems for the Adams-Novikov spectral sequence (see [6] for details). However, for

stem-wise computations, especially for small primes, it is hard to get complete informations us-

ing the chromatic methods alone. For example, to get to the stem 126 at prime 2, informations

up to chromatic level 6 are involved, which are beyond our current knowledge.

The Bockstein spectral sequence is often used for stem-wise computations. For example, this

method is illustrated in [6] for the computation of the first 25 stems. The method used in [6] to

the computation the differentials in the Bockstein spectral sequence is to do the computation

in the cobar complex. As the cobar complex grows very fast, direct computations in the cobar

complex become impossible very quickly, even for computers.

The algebraic Novikov spectral sequence is also often used in stem-wise computations. This

spectral sequence is very important from a theoretic as well as a practical point of view. It is

proved in [2] that the algebraic Novikov spectral sequence for the sphere spectrum is isomorphic
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to the motivic Adams spectral sequence for the cofiber of tau, giving us a very powerful method

for stemwise computations provided we know the structure of the algebraic Novikov spectral

sequence. As in the case of the Bockstein spectral sequence, the method of computing the

algebraic Novikov differentials using the cobar complex becomes too complicated very quickly.

The main technique of this paper is the observation that, the Bockstein and the algebraic

Novikov filtrations are defined on any resolution of BP∗BP -comodules. So we can replace the

cobar complex with any cofree resolution. In particular we introduce the notion of a minimal

resolution which is smallest among cofree resolutions.

Recall that the maximal ideal I of BP∗ is an invariant ideal, with the quotient BP∗BP/I

isomorphic to the even part of the dual Steenrod algebra. We define a cofree resolution to be

minimal, if its modulo I reduction is a minimal resolution as BP∗BP/I-comodules. Then we

use the Bockstein and the algebraic Novikov filtrations on the minimal resolution to compute

the Bockstein and the algebraic Novikov spectral sequences respectively.

To construct the minimal resolution, we first construct a minimal resolution for the modulo

I reduction. Then an arbitrary lift of this resolution almost gives us what we want, except that

the compositions of consecutive maps are only zero modulo I. Then we do adjustments using

some kind of Gaussian elimination. One such algorithm is given in Section 4. The naive method

can be optimized by observing that, for maps between cofree comodules, we only need to know

the projection to the cogenerators. This reduces the sizes of the matrices to be computed by

one order. This optimization is given in Section 5.

Implementations

The algorithm is implemented with C++ code (using C++11 standard), using the library

GMP (GNU Multiple Precision Arithmetic Library) to deal with large integers, and the library

OpenMP (Open Multi-Processing) to deal with parallelism. The source code is available at:

https://github.com/pouiyter/MinimalResolution.

The program has been performed on the MiG (minimum intrusion grid) at University of

Copenhagen, the Wayne State University Grid high performance computing cluster, and the

high performance computer at Shanghai Center for Mathematical Sciences. The (current) out-

puts are available at: https://github.com/pouiyter/morestablestems/raw/master/algNovikov-

machine.csv.

2 Preliminaries

Let BP be the Brown-Peterson spectrum. It is a complex oriented ring spectrum whose

associated formal group law is the universal p-typical formal group law over Z(p). We have

BP∗ = Z(p)[v1, v2, · · · ],

BP∗BP = BP∗[t1, t2, · · · ].

Define

I = (p, v1, v2, · · · ),

P = BP∗BP/I = Fp[t1, t2, · · · ].
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The pair (BP∗, BP∗BP ) forms a Hopf algebroid which represents the moduli stack of formal

groups over Z(p). See [6] for a detailed treatment of Brown-Peterson theory and the theory of

Hopf algebroids.

Reduction modulo I gives the Hopf algebra P , which is a sub-Hopf algebra of the dual

Steenrod algebra. For p = 2, P is isomorphic to the dual Steenrod algebra with degrees

doubled.

A BP∗BP -comodule F is cofree if F is a direct product of copies of BP∗BP (and its degree

shifts).

For a BP∗BP -comodule M , let Prim(M) denote the primitive elements of M .

We carry out all constructions in the graded sense. In particular, a direct product of objects

which are finite in each degree is also a direct sum.

Definition 2.1 A graded Z(p)-module is locally finite if it is bounded below and finitely

generated in each degree.

For example, BP∗, BP∗BP and P are all locally finite. In this paper, we implicitly assume

that all modules are locally finite.

3 Minimal Resolutions of BP∗BP -Comodules

In this section we introduce the notion of a minimal resolution for BP∗BP -comodules, which

are lifts of minimal resolutions of P -comodules.

Let M be a BP∗BP -comodule which is free as a BP∗-module. Then M/I becomes a P -

comodule.

Definition 3.1 A comodule map is a strong injection (resp., strong surjection) if it is a

split injection (resp., split surjection) of underlying BP∗-modules.

An exact sequence 0 → M
f

−→ F
g

−→ N → 0 of BP∗BP -comodules is strongly exact if f is

strongly injective and g is strongly surjective.

Remark 3.1 Amap is strongly injective (resp., surjective), if its associated matrix overBP∗

can be transformed into the form (

(
id
0

)
(resp., (id 0)) by row (resp., column) transformations.

For a comodule map f : M → N, let f̃ be the reduction M/I → N/I of f modulo I. If f is

strongly injective (resp., strongly surjective), the cokernel (resp., kernel) of f̃ is the reduction

of coker(f) (resp., ker(f)) modulo I.

Proposition 3.1 Let M and N be BP∗BP -comodules which are locally finite and free as

BP∗-modules. Then a comodule map

f : M → N

is strongly injective (resp., strongly surjective) if and only if the reduction

f̃ : M/I → N/I

modulo I is injective (resp., surjective).
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Proof If f̃ is injective (resp., surjective), then by lifting the row and column transforma-

tions, the matrix for f can be transformed into the one which is equivalent modulo I to

(
id
0

)

(resp., (id 0). Since I is a maximal ideal in BP∗, one can further transform the matrix into(
id
0

)
(resp., (id 0)) by row and column transformations.

Corollary 3.1 Suppose that we have a sequence 0 → M
f

−→ F
g

−→ N → 0 of BP∗BP -

comodule maps such that M , F and N are free over BP∗, and g ◦ f = 0. The sequence is

strongly exact if and only if its reduction modulo I is exact.

Recall that the data of a long exact sequence 0 → M → F0 → F1 → · · · is equivalent to the

data of a collection

0 → M → F0 → M1 → 0

0 → M1 → F1 → M2 → 0

0 → M2 → F2 → M3 → 0

...

of short exact sequences.

Definition 3.2 A long exact sequence 0 → M → F0 → F1 → · · · of BP∗BP -comodules is

a cofree resolution of M if each Fi is cofree, and each short exact sequence 0 → Mi → Fi →

Mi+1 → 0 is strongly exact.

Recall that we have the following notion of minimal resolutions of P -comodules.

Definition 3.3 A cofree resolution

0 → M̃ → F̃0 → M̃1 → 0

0 → M̃1 → F̃1 → M̃2 → 0

0 → M̃2 → F̃2 → M̃3 → 0

...

of a P -comodule M̃ is called minimal if for all i ≥ 0, the induced map

Prim(M̃i) → Prim(F̃i)

is bijective. (By convention, M0 = M.)

Remark 3.2 Since Prim is a left exact functor from P -comodules to Fp-modules, it follows

that the induced map

Prim(F̃i) → Prim(F̃i+1)

is trivial.

For BP∗BP -comodules, we define minimal resolutions in terms of reductions modulo I.

Definition 3.4 Let M be a BP∗BP -comodule which is free over BP∗. A cofree resolution

of M is called a minimal resolution if its reduction modulo I is a minimal resolution of M/I.

One can see that a minimal resolution has the smallest size among all cofree resolutions.
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4 Construction of Minimal Resolutions

We will construct minimal resolutions of BP∗BP -comodules by lifting minimal resolutions

of reductions modulo I.

First we introduce the notion of cogenerators dual to the notion of generators. Let M be a

locally finite BP∗BP -comodule which is free as BP∗-module, and let X be a locally finite free

BP∗-module. Let f : M → X be a BP∗-module map. Recall that the adjoint map of f is the

composite

M
ψM
−−→ BP∗BP ⊗BP∗

M
1⊗f
−−−→ BP∗BP ⊗BP∗

X.

We say that f exhibits X as cogenerators of M if the adjoint map of f is strongly injective.

We will also abbreviate to say that X is the cogenerators of M .

In this case, if g : N → M is a comodule map, then its corestriction to the cogenerators is

defined to be the composite map N
g

−→ M
f

−→ X. One finds that the adjoint of the above map

factors through g, and we have a commutative diagram

N //

��

BP∗BP ⊗BP∗
N

��
M // BP∗BP ⊗BP∗

X

.

It follows that g is determined by its corestriction to the cogenerators of M.

Proposition 4.1 A map f : M → X exhibits X as cogenerators of M if and only if its

reduction

f̃ : M/I → X/I

modulo I exhibits X/I as cogenerators of M/I as a P -comodule.

Proof The adjoint map

M/I → P ⊗Fp
X/I

for f̃ is the reduction of the adjoint map for f modulo I, so the proposition follows from

Proposition 3.1.

Now we construct minimal resolutions as follows. Suppose that M is a locally finite BP∗BP -

comodule with free underlying BP∗-module. We will construct strongly exact sequences

0 → M → F0 → M1 → 0

0 → M1 → F1 → M2 → 0

...

such that each Fi is cofree.

Set M0 = M . Suppose that we have constructed a locally finite BP∗BP -comodule Mn

which is free as a BP∗-module. We do the following to construct Mn+1:

1. Find a minimal cogenerator f̃n : Mn/I → X̃n for Mn/I, i.e., an Fp-module X̃n such that

the adjoint map Mn/I → P ⊗ X̃n is injective and the map Prim(Mn/I) → X̃n is bijective.

2. Take a free BP∗-module Xn such that Xn/I ∼= X̃n. By the freeness of Mn as a BP∗-

module, we can lift f̃n to fn : Mn → Xn.
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3. Take Fn to be BP∗BP ⊗BP∗
Xn, and Mn+1 to be the cokernel of the adjoint map

gn : Mn → Fn of fn, so we have the quotient map hn : Fn → Mn+1.

In this way, we construct a minimal resolution inductively.

Remark 4.1 The first step is the standard one for computing Adams E2 terms using

minimal resolutions. In the second step, in addition to constructing the map fn, we also need

to do a Gaussian elimination for its adjoint map gn, in order to find the quotient matrix needed

in Step 3. And in Step 3, we need to compose the quotient map with the coaction map on Fn

to get the coaction map on Mn+1.

Remark 4.2 The formulas for coactions of cofree comodules can be computed beforehand,

e.g. save a comultiplication table for BP∗BP in the disk.

5 Optimization of the Process

The complexity of computing a minimal resolution ofM/I has smaller order than computing

a minimal resolution of M . So the process can be optimized by computing a minimal resolution

of M/I first, and then using it as a model for a resolution of M .

Once we know the structure of the minimal resolution of M/I, the structures of the cofree

comodules Fi are already known. The problem with an arbitrary lift of the minimal resolution

of M/I is that the compositions of consecutive maps are not guaranteed to be zero.

Once we know the structure of Fn, we already know a set of cogenerators for it. Moreover,

these also make a set of cogenerators for Mn. So the data for gn and hn (in Step 3 of Section

4) are determined by their corestrictions to cogenerators. This reduces the order of the size of

the matrices for the data of fn and gn. So the optimized process is as follows:

1. This is the same as Step 1 of Section 4, but it is computed beforehand.

2. This is the same as Step 2 of Section 4, but it is computed beforehand.

3. Compute the matrix for the composite map

h̃n : Fn → Mn+1 → Xn+1

by first taking an arbitrary lift of the map Fn/I → Xn+1/I constructed in Step 1 and using a

Gaussian elimination process for the map gn : Mn → Fn to modify h̃n so that the composite

h̃n ◦ gn is 0. Since hn is a comodule map, this suffices to imply that hn ◦ gn = 0.

4. In order to compute gn+1, we only need to know the composite

Mn+1
ψ

−→ BP∗BP ⊗Mn+1 → BP∗BP ⊗Xn+1

instead of the full formula for the coaction of Mn. We do this by composing the coaction of Fn

with the composite

Fn → Mn+1 → Xn+1.

Remark 5.1 In Step 3, instead of solving the linear equations hn ◦ gn = 0, we solve the

equations h̃n ◦gn = 0, which only involve the cogenerators. This reduces the complexity of Step

3 by one order.

Similarly, in Step 4, only the coactions of cogenerators are computed. This reduces the

complexity of Step 4 by one order.
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6 Computations of Homology

With the minimal resolution constructed, our next step is to compute the homology of the

chain complex of its primitives. We will modify the algorithm of [1].

Suppose X0 → X1 → · · · is a complex of locally finite Z(p)-modules.

Suppose each Xi is given a maximal filtration. This means that, there is an ordinal α0 such

that for each ordinal number α < α0, there is a submodule Fil≥αXi of Xi, decreasing with

respect to α. Moreover, the maximality means that, Fil≥αXi/Fil
≥α+1Xi

∼= Fp, and when α is

a limit ordinal, Fil≥αXi =
⋂
β<α

Fil≥βXi.

For each i, we take a set Ai consisting of an Fp basis for the graded pieces of Xi. Then

each Ai has a canonical order. For any x ∈ Xi, we say a ∈ Ai is the leading term of x, if the

projection of x to the graded pieces of Xi is a nontrivial multiple of a.

Remark 6.1 Here we allow the generality that the filtration is indexed by any ordinal

number. In actual computations we will use appropriate truncations to make the filtration

finite.

Remark 6.2 We do not require that the differentials in the complex respect the filtrations.

A Curtis table is a list with entries of the form:

• a, where a ∈ Ai for some i, or

• a → b, where a ∈ Ai and b ∈ Ai+1 for some i;

such that

1. An entry a is in the table if and only if a is the leading term of a cycle, and no boundary

has leading term a.

2. An entry a → b is in the table if and only if

(a) there is an element x ∈ Xi with leading term a, and d(x) has leading term b, and

(b) for any element x′ such that d(x′) has leading term b, the leading term of x′ is at least

a (i.e., x′ has filtration at most that of a).

The following proposition is proved in [7].

Proposition 6.1 Suppose that X0 → X1 → · · · is a complex of locally finite Z(p)-modules

such that each Xi is maximally filtered, and let Ai be an Fp basis for the graded pieces of Xi.

Then a Curtis table exists and is unique. And in addition, all the elements of Ai appears in the

table exactly once.

Now we suppose that there is an additional filtration Fi on eachXi which is preserved by the

differentials. Moreover, we suppose that the maximal filtration associated to Ai is a refinement

of Fi. Then the Curtis table describes the structure of the spectral sequence defined by Fi (see

[7] for details).

Proposition 6.2 The entries of the form a in the Curtis table correspond bijectively to the

surviving permanent cycles in the spectral sequence defined by the filtration Fi.

The entries of the form a → b correspond bijectively to the differentials in the spectral

sequence, where the length of the differential is the difference of the F-filtration degrees of a

and b. (We include all the differentials from d0.)
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7 The Algebraic Adams-Novikov Spectral Sequence

Let

M → F0 → F1 → · · ·

be a cofree resolution of a BP∗BP -comodule M , which is free over BP∗.

Then Ext(M) is computed by the complex

Prim(F0) → Prim(F1) → · · · .

By construction, Prim(Fi) has the structure of a free BP∗-module when a set of cogenerators

for Fi is given. (Note that this BP∗-module structure is not preserved by the differentials.)

The algebraic Adams-Novikov filtration is given by filtering Prim(Fi) by powers of the

augmentation ideal I. To be precise, let Gi be a set of BP∗-generators for Prim(Fi). Then

all elements of Prim(Fi) are linear combinations of expressions of the form vi00 vi11 · · · vikk a with

a ∈ Gi. By convention, v0 = p. Then we define the decreasing algebraic Adams-Novikov

filtration by setting vi00 vi11 · · · vikk a to have filtration i0 + i1 + · · ·+ ik.

Let Ai be the set

{vi00 vi11 · · · vikk a : ij ≥ 0, a ∈ Gi}.

We order Ai by the following rules. We first order them by using the Adams-Novikov filtration.

Then, amongst elements with the same Adams-Novikov filtration, we use a lexicographic order.

By Proposition 6.2, we have the following propositon.

Proposition 7.1 The Curtis table associated to the above Ai gives the structure of the

algebraic Adams-Novikov spectral sequence for M .

Remark 7.1 We can also introduce an order, by taking the lexicographic order directly.

This gives results in the Bockstein spectral sequence.

8 The Atiyah-Hirzebruch Spectral Sequence and Multiplicative Struc-

ture

We fix a cofree resolution

BP∗ → F0 → F1 → · · ·

for BP∗.

Let M be a BP∗BP comodule. Recall that the tensor product of two BP∗BP -comodules

(over BP∗) has the structure of a BP∗BP -comodule (see [6, A1.1.2]). BP∗ is the unit for this

tensor product, i.e.,

M ⊗BP∗
∼= M.

Since Fi is cofree, M ⊗ Fi is relatively injective, and

Prim(M ⊗ Fi) ∼= M ⊗BP∗
Prim(Fi).

So Ext(M) can be computed by the complex M ⊗BP∗
Prim(Fi).

Remark 8.1 The formula for the above isomorphism involves the coaction on M , because

we used the diagonal coaction.
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Now suppose thatM is filtered as a BP∗BP -comodule. Then there is an associated algebraic

Atiyah-Hirzebruch spectral sequence computing Ext(M). We have the following standard fact

for Atiyah-Hirzebruch differentials.

Proposition 8.1 Let M have a two-step filtration as shown in the short exact sequence

0 → BP∗ → M → ΣjBP∗ → 0.

Let h ∈ Extj,1(BP∗) be the element corresponding to this extension. Then the Atiyah-Hirzebruch

differentials for M corresponds to multiplication by h.

So we can compute multiplication by elements in homological degree 1 by computing the

Atiyah-Hirzebruch differentials. To do this, we do the following.

Suppose in general that M is a filtered BP∗BP -comodule. We select a set K of BP∗-

generators for M , with order refining the filtration on M . Then an element in

Prim(M ⊗ Fi) ∼= M ⊗BP∗
Prim(Fi)

is a linear combination of expressions of the form

k ⊗ vi00 · · · vikk a

with k ∈ K and a ∈ Gi. Here Gi is a set of BP∗-generators for Prim(Fi), as in Section 7.

We order these elements as follows. We first consider the filtration of k, then the Adams-

Novikov filtration of vi00 · · · vikk , and finally the lexicographic order. By Proposition 6.2, the

Curtis table for this order gives the structure of the Atiyah-Hirzebruch spectral sequence for

M .

Remark 8.2 More generally, if the comoduleM has a three step filtration, then the Atiyah-

Hirzebruch spectral sequence gives data for the corresponding Massy products. The same

generalizes to higher Massy products. One needs to be careful that the choice of M fixes some

part of the indeterminacies of the Massey products.

Remark 8.3 Once we have a cofree resolution of BP∗, we always get a relative injective

resolution for any M , which needs not to be free over BP∗. In particular, we can take M to

be an extension of BP∗/p. This allows us to compute multiplications and Massey products

involving p as well as the β families, the latter living in homological degree 1 on the top cell of

BP∗/p.
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