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Congruence Pairs of Decomposable MS-Algebras*
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Abstract In this paper, the authors first introduce the concept of congruence pairs on
the class of decomposable MS-algebras generalizing that for principal MS-algebras (see
[13]). They show that every congruence relation 6 on a decomposable MS-algebra L can
be uniquely determined by a congruence pair (61,602), where 01 is a congruence on the
de Morgan subalgebra L°° of L and 6 is a lattice congruence on the sublattice D(L)
of L. They obtain certain congruence pairs of a decomposable MS-algebra L via central
elements of L. Moreover, they characterize the permutability of congruences and the strong
extensions of decomposable MS-algebras in terms of congruence pairs.
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1 Introduction

Blyth and Varlet [18] studied Morgan Stone algebras (briefly MS-algebras) as a generaliza-
tion of the classes of de Morgan and Stone algebras. Such algebras are bounded distributive
lattices with additional unary operation. Blyth and Varlet [19] described the lattice of subva-
rieties of the variety MS of all MS-algebras. Badawy, Guffova and Haviar [12] introduced and
characterized the class of decomposable MS-algebras by means of decomposable MS-triples.
They observed that every decomposable MS-algebra L has two auxiliary substructures, name-
ly, the de Morgan subalgebra L°° of all closed elements of L and the sublattice D(L) of all
dense elements of L. Also, they introduced and characterized principal MS-algebras by means
of principal MS-triples. They observed that the class of decomposable MS-algebras contains
the class of principal MS-algebras. Badawy [1-7] investigated a relationship between congru-
ences and special filters of a principal MS-algebra and a decomposable MS-algebra, respectively.
Also, Badawy and El-Fawal [9] studied homomorphisms and subalgebras of decomposable MS-
algebras in terms of decomposable MS-triples. Recently, Badawy and Atallah [8] introduced
and characterized the set B(L) of all central elements of an MS-algebra L and established the
relationship between its MS-intervals and congruences. For recent studies of (decomposable)
MS-algebras and double MS-algebras see also [2, 4-6, 10-11, 14-15, 23, 25, 31].
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In this paper, we introduce a suitable notion of congruence pairs of decomposable MS-
algebras which is a generalization of the notion of congruence pairs of both Stone algebras and
principal MS-algebras. We study many properties of congruence pairs of a decomposable MS-
algebra. We derive that every congruence relation # on a decomposable MS-algebra L can be
represented by a pair of congruences (61, 62), where 67 € Con(L°°) and 65 € Con(D(L)). We
establish that there is a one to one correspondence between the lattice Con(L) of all congruences
of L and the lattice A(L) of all congruence pairs of L. Also, we investigate the relationship
between the central elements of a decomposable MS-algebra L and the congruence pairs of the
form (0[a ], 0lap(L)]) for a € L°°. Using the concept of congruence pairs, we prove that a
decomposable MS-algebra L is congruence permutable if and only if both L°° and D(L) are
congruence permutable. If L is a subalgebra of a decomposable MS-algebra L;, we show that
L4 is a strong extension of L if and only if L{° is a strong extension of L°° and D(Lq) is a

strong extension of D(L).

2 Preliminaries

In this section, we give the definitions and the main results which are needed through this
work. We refer the readers to [8-9, 1213, 18-20, 29-31] for more details.

A de Morgan algebra is an algebra (L;V,A,”,0,1) of type (2,2,1,0,0), where (L;V,A,0,1)
is a bounded distributive lattice and ~ is the unary operation of involution satisfying:

T=x, (@Vy)=TAY, (xAy)=TVTY.

A Stone algebra is a universal algebra (L; V,A,*,0,1) of type (2,2, 1,0,0), where the unary
operation * of pseudocomplementation has the properties that x Aa = 0 < x < ¢* and
¥ Vvat =1.

An MS-algebra is an algebra (L;V, A,°,0,1) of type (2,2,1,0,0), where a unary operation °
satisfies :

x <z, (zAy)°=z°Vy®, 1°=0.

The class MS of all MS-algebras is equational. A de Morgan algebra is an MS-algebra satisfying
the identity, © = z°°. The class S of Stone algebras is a subclass of MS and is characterized
by the identity = A x° = 0.

We recall some of the basic properties of MS-algebras which were proved in [18] or [20].

Theorem 2.1 For any two elements a,b of an MS-algebra L, we have

(1) 0° =1,

(2) a<b=1b°<a®

(3) a®° = a°,

(4) (aVb)° =a® AD°,
(5) (@ Vb)°° =a° Vb,
(6) (a Ab)°° 00 A poo

We recall special subsets of an MS-algebra L which play an important role in the construc-
tion:
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(1) L°° = {x € L : x = 2°°} is the set of closed elements of L which is a de Morgan
subalgebra of L (see [18]),

(2) D(L) = {x € L : z° = 0} is the set of dense elements of L which is a filter of L (see
[12)),

(3) at={x € L : x> a} is the principal filter of L generated by the element a of L,

(4) a l={x € L : 2 < a} is the principal ideal of L generated by the element a of L.
Now, we recall from [12] the definition of a decomposable MS-algebra and some related prop-

erties.

Definition 2.1 (see [12]) An MS-algebra (L;V,A,°,0,1) is called a decomposable MS-
algebra if for every x € L there exists d € D(L) such that © = 2°° A d.

The class of decomposable MS-algebras contains both the class M of all de Morgan algebras
and the class S of all Stone algebras.
Let L be a decomposable MS-algebra. Define a map (L) : L°° — F(D(L)) (the lattice of
all filters of D(L)) by
ap(L) =a° T ND(L), forallae L°°.

It is known that ¢(L) is a (0,1)-lattice homomorphism (see [12]).

An equivalence relation 6 on a lattice L is called a lattice congruence on L if it is compatible
with the lattice operations, that is, (a,b) € 6 and (¢,d) € 6 imply (a V ¢,bV d) € 6 and
(anc,bAd) € 0.

Let 6 be a lattice congruence on a bounded lattice (a lattice with the smallest element 0
and the greatest element 1) L. Then the subset {z € L : (x,0) € 6} is called the Kernel of 6
and is denoted by Ker 6. Also, the subset {x € L : (x,1) € 0} is called the Cokernel of # and
is denoted by Coker 6. It is clear that Ker § and Coker # are ideal and filter of L, respectively.

Theorem 2.2 (see [26]) An equivalence relation on a lattice L is a lattice congruence on
L if and only if (a,b) € 0 implies (aV ¢,bV c) € 0 and (a Ae,bAc) €0 for all c € L.

A lattice congruence 6 on an MS-algebra (L;°) is called a congruence on L if (a,b) € 0
implies (a°,b°) € 6.

The symbols V1, and Ay, will be used, as usual, for the universal congruence L x L and the
equality congruence on L, respectively.

Let L be an MS-algebra. Then, we use Con(L) to denote the congruence lattice of L and
we also use 000, 0p(r to denote the restrictions of a congruence 6 € Con(L) to L°° and D(L),
respectively. Evidently, (0rc,0p(z)) € Con(L°°) x Con(D(L)).

Now, we restrict the definition of a congruence pair of quasi-modular p-algebras (see [29,
Definition 7]) to Stone algebras.

Definition 2.2 Let L be a Stone algebra. Then the pair (01,02) € Con(L°°) x Con(D(L))
is called a congruence pair if a € L°°,u € D(L),u > a and a = 1(01) imply u = 1(62).

Definition 2.3 (see [12]) An MS-algebra (L;V,A,°,0,1) is called a principal MS-algebra
if it satisfies the following conditions:

(i) The filter D(L) is principal, i.e., there exists an element dy, € L such that D(L) = [d1.),
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(i) z = 2°° A (x Vdy) for any x € L.

It is known that any principal MS-algebra is a decomposable MS-algebra (see [12]). From

[13], we recall the definition of a congruence pair of a principal MS-algebra.

Definition 2.4 (see [13]) Let L be a principal MS-algebra with a smallest dense element
dr,. A pair of congruences (61,62) € Con(L°°) x Con(D(L)) will be called a congruence pair if

(a,b) € 01 implies (aV dr,bV dy) € 6s.

3 Congruence Pairs of a Decomposable MS-Algebra

The notion of a congruence pair was studied on various classes of algebras containing the
class S of all Stone algebras. Katrindk [27, 29] studied the congruence pairs and the lattices
of congruence pairs of certain p-algebras, El-Assar [21] characterized the congruence lattices
of quasi-modular p-algebras, Badawy and Shume [16] considered the congruence pairs and
related properties of principal p-algebras. Also, Badawy [3] presented a characterization of the
congruence lattices of principal p-algebras. Beazear [17] introduced the notion of congruence
pairs on MS-algebras from the subvariety Ko (Ks-algebras). Recently, Badawy, Haviar and
Ploscica [13] studied the concept of congruence pairs of principal MS-algebras. Also, they
characterized the congruence lattices of principal MS-algebras in terms of congruence pairs.

In this section we introduce the concept of congruence pairs on decomposable MS-algebras
generalizing that for principal MS-algebras. Some properties of congruence pairs of a decom-
posable MS-algebra L will be investigated.

Definition 3.1 Let L be a decomposable MS-algebra. An arbitrary pair (61, 02) in Con(L°°)
xCon(D(L)) is called a congruence pair if a = b(01) implies aVd = bV d(02) for all d € D(L).

It is clear that if L is a principal MS-algebra with a smallest dense element d,, then Definition
2.6 implies Definition 3.1.

Lemma 3.1 Let L be a decomposable MS-algebra and (01, 62) be a congruence pair. Then
we have the following property:

a=0b(61) and ¢ = d(02) imply aV c=bV d(h2).

Proof Let a = b(61). Thus by Definition 3.1, we get aVe =bVe(f2), aVd=bVd(fs) and
hence aVeVd=bVeVd(ds) as ¢,d,cVde D(L). Then aVe=0bVe(hs) and ¢ = d(62) imply
aVe=bVevd. AlsoaVvd=bVd(f:) and ¢ = d(02) imply aVeVd=0bVd(#y). Consequently
aVe=bVd(hs).

For a Stone algebra, the following lemma shows that Definitions 2.4 and 3.1 are equivalent.

Lemma 3.2 Let L be a Stone algebra. Then (61,02) € Con(L°°) x Con(D(L)) is a con-
gruence pair according to Definition 2.4 if and only if it is a congruence pair by Definition
3.1.

Proof Let L be a Stone algebra. Then L°° is a Boolean subalgebra of L. Thus a Va® =1
for all a € L°°. Let (01,02) € Con(L°°) x Con(D(L)) be a congruence pair by Definition 2.4.
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Suppose that a = b(01). Let & = (a Vb°) A (a® VD). Then o € L°° and a Aa=aAb=aAb.
Since a V> =bV1b°(0;) =1 and a® Vb =a® Va(by) =1, we have « = 1(0;) and by Definition
24, a <aVvde D(L) implies a Vd = 1(s) for all d € D(L). Since L is a distributive lattice,

we have
aVd=(avVd)ANl=(aVd)A(aVd)(l:)=(aNa)Vd=(aAb)Vd.

In a similar way, we get bV d = (a Ab) Vd(02). Thus aVd = bV d(6s). For the converse, let a €
L°° a <we D(L) and a = 1(#1). Then we have aVd = 1V d(f2) for all d € D(L) by Definition
3.1. Without loss of generality we can take w > d. Then u =aVdVu=1VuVdb) =1.
Therefore (01, 02) is a congruence pair according to Definition 2.4.

The following theorem gives one of the main results of this paper. We give a characterization
of congruence pairs of a decomposable MS-algebra.

Theorem 3.1 Let L be a decomposable MS-algebra. Then every congruence relation 6 of L
determines a congruence pair (Opeo,0p (). Conversely, every congruence pair (01, 02) uniquely

determines a congruence relation 6 on L satisfying Orcc = 61 and 0pry = 02 by the rule
x =y(0) if and only if °° =y°°(01) and x Vd=yV d(02) foralld e D(L).

Proof Let 6 € Con(L) and a = b(fr.0) for a,b € L°°. Then a = b(#). This result implies
that a vVd=0bVd(f). Hence, aVd=0bVdpr)), where aVd,bVdec D(L). This shows that
(OLoo,0p(1)) is a congruence pair. Conversely, let (61,62) be a congruence pair and let 6 be
defined as above. It is clear that 6 is an equivalence relation. We now proceed to show that 6
is a congruence on L. Let a = b(#) and ¢ = f(0). Then we get a®°° = b°°(0;),¢°° = f°°(61) and
aVd=bVvd(#),cVd=fVd(d) for all d € D(L). Now, we have

(@Ne)®=a AN =b° N f°>01) = (bA f)°°,
(ane)vd=(aVvd)A(cvd)=bBVA AN(fVd)(B)=(OAFf)vd forallde D(L).

Then a A c =bA f(0), and therefore 6 preserves the meet operation of L. Also, § preserves the

join operation of L since the following equalities hold on L :

(a\/c>00 :aOO\/COO EbOO\/J[‘OO(Gl) — (b\/f)OO,
(@ve)vd=(avd)V(cvd) =bVd)V(fVd)b)= bV f)vd vde D).

In order to show that 6 preserves the unary operation °, we let a = b(0), then a®° = b°°(6;).
Hence, a® = a®°° = b°°°(#1) = b°. Thus by Definition 3.1, we have shown that a°Vd = b°Vd(6s)
for all d € D(L). Therefore, a® = b°(6).

Now, we proceed to show that frcc = 0y and Op(ry = 0. If a,b € L°° and a = b(6)),
then a®°° = b°°(61) and a V d = bV d(f2), the latter holds by Definition 3.1 since (61,6s) is
a congruence pair. It follows that a = b(0pe0), thus 6; < fr0.. The inequality Op.0 < 0y as
well as the equality 0p () = 02 follow straight from the definition of 6. For the uniqueness of
0, let 6 and 6 be two congruences on L with .. = Or00 = 01 and Opr) = éD(L) = 0. Let
x = y(0). Then 2°° = y°°(0rec) and  V d =y V d(0p(z)). Now, we have 2°° = y°°(fLe-) and
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xVd=yV d(éD(L)) for all d € D(L). Thus x = y(6) and 6 < 4. Similarly, we can prove that
6 < 6. Hence 6 = 6 and our proof is completed.

Corollary 3.1 Let L be a decomposable MS-algebra. Then the set A(L) of congruence pairs
of L is a bounded sublattice of Con(L°®) x Con(D(L)) and 0 — (0r0c,0p(r)) is an isomorphism
of Con(L) and A(L).

Proof It is clear that (Azeo, Ap(ry), (Vreo, Vp(r)) € A(L). Let (01,602), (v1,12) € A(L).
Then, it is easy to verify that (61 A 11,02 A 1) € A(L). Now, we proceed to show that
(01V1h1,05V1pa) € A(L). Let a = b(01Vi)1). Then there is a finite sequence a = ag, a1, - ,an, =
b in L°° such that, for each ¢ with 0 < i < n — 1, either a;—1 = a;(01) or a; = a;+1(¢1). The
ai—1Vd=a;Vd0) ora;Vd= a1 Vd(s), for every d € D(L) by Definition 3.1. Thus we
have the sequence

aVd=ayVd,a1 Vd, - ,a,Vd=0bVd in D(L).

The above result leads to a Vd = bV d(f2 V 1) and hence (61 V 11,02 V 13) € A(L). Thus we
conclude that A(L) is a bounded sublattice of Con(L°°) x Con(D(L)). It is clear that the map
0 — (0ro0,0p(ry) of Con(L) into A(L) is an isomorphism.

The next corollary follows immediately.

Corollary 3.2 Let L be a decomposable MS-algebra. Then the following statements hold:
(1) (V® € Con(D(L)))(ApLeo, ) € A(L),
(2) (YW € Con(L°°) (¥, pr)) € A(L).

4 Congruence Pairs via Central Elements of a Decomposable MS-
algebra

In this section, we investigate the relationship between the central elements of a decompos-
able MS-algebra L and the congruence pairs of L.
From [8], we recall the following.

Definition 4.1 (see [8]) An element a of an MS-algebra L is called a central element of L
if aVa® = 1. The set of all central elements of L is denoted by B(L).

Theorem 4.1 (see [8]) Let L be an MS-algebra. Then B(L) is a Boolean subalgebra of
Le°.

For each central element a of an MS-algebra L, we define a relation [a J] on L°° as follows:
(x,y)€blal] = xNna®=yANa®.

For each central element a of a decomposable MS-algebra L, we define a relation 0[ap(L)]
on D(L) as follows:

(x,y) € Olap(L)] & xANd=yAd for some d € ap(L).

The properties of the above two relations are given in the following two lemmas, respectively.
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Lemma 4.1 Let L be an MS-algebra. Then for every a,b of B(L), we have
1) Ola }] is a congruence on L°° with Ker(fla |]) =a |,

2) a < b if and only if Ola }] C O[b }],

3) a=0b if and only if Ola |] = 0[b |],

4) 6]0 |] = Apoo and 0[1 |] = V0,

) Ola L]V O[b 1] =0[(aVDb) ],

)0

6) 0la 4] N 6lb 1] = 0](a A b) 4.

Proof (1) It is clear that fa }] is an equivalence relation on L°° for every a € B(L). Now
let (z,y) € 0la |] and ¢ € L°°. Then z A a® = y A a® and hence

(xVe)Aa® = (xNa®)V(cAa®)
=(yAa®)V(cAa®)
=(yVe)Aa
Therefore (x V ¢,y V ¢) € Ola }] for all ¢ € L°°. Also, we can deduce that (x Ac,y Ac) € 0a ]].

Then by Theorem 2.6, f[a || is a lattice congruence on L°°. To show that 6[a |] is preserved
by a unary operation ® on L°°, let (z,y) € f]a |]. Then we have:

(x,y)€llal]=zNa°=yAa°®
= (rAa®)Va=(yAa’)Va
= (xVa)A(a®°Va)=(yVa)A(a®Va)
=zxVa=yVa asa’Va=1
= (xVa)=(@yVa)°
=z2°ANa®° =9y°ANa°
= (2°,9°) € Ola .

Further,

Ker(0la l]) = {x € L°° : (x,0) € Ola ]}
={x el :xNna”=0}
={zel”:x<a}=al,

asa=aV0=aV(zAa®)=aVazimplies z < a.

(2) Let a < b and (x,y) € Ola |]. Then 2 Aa® =y Aa®. Thus z Aa® AD° =y Aa® AD°
and b° < a® imply x Ab° = y Ab°. So (z,y) € 0[b ]] and hence O[a |] C 0[b |]. Conversely,
let Ola |] C 0[b |]. As a is a central element of L, then (a Ab) Aa® = 0 = a A a®. Hence
(a Abya) € Ola |]. By hypotheses, (a Ab,a) € 0[b |]. Since b is a central element of L, then
(a AND) AD° = a Ab° implies a A b° = 0. Now, since a A b° = 0 and a, b belong to the Boolean
algebra B(L) then a < b°° =b.

(3) It is obvious.

(4) Let (x,y) € 0[0 }]. Then x = z A0° = y A0° = y. Therefore §[0 |] = Ape.. For all
x,y € L, we have £ A 1° =0 = y A 1° and hence (z,y) € 6[1 ]]. Then 0[1 || = 7 1o0.
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(5) Since a,b < a Vb, then by (2), 0[a }],0[b }] C 8[(a v b) |]. Therefore 8](a V b) |] is an
upper bound of both [a }] and 6[b |]. Suppose that 6[c |] is an upper bound of f[a || and
0[b {]. Then O[a }],0[b {] C O[c }]. Thus by (2) we get a,b < c¢. Then a Vb < c¢. Again by (2),
Ol(aVb) 1] CO[(c)}]. Therefore 8](a Vv b) }] is the least upper bound of both 8[a |] and 6[b |].
This deduces that 0[a ]V 0[b ] = 0[(a V) ]].

(6) Since aAb < a, b, then by (2), 8[(anb) ] C 0[a }],0[a }]. Thus 8[(anb) |] C Ola }]Na |].
Conversely, let (z,y) € 0[a []NO[b |]. Then

(z,y) € 0la ] N O |] = (z,y) € Ola |] and (z,y) € 0[b |]
= azANa’=yANa® and 2 Ab° =y ADb°
= (xAa®)V(zAD)=(yAa®)V(yAb°)
=z A (a® VD) =yA(a®Vb°) by distributivity of L
=2A(aAD)’=yA(aNb)°
= (2,y) € 0[(a A D) |].

Therefore 0[(a }] N O L] C 0[(a Ab) || and hence O[(a AD) || = 0la ] NO[b L]

Lemma 4.2 Let L be a decomposable MS-algebra. Then for every a,b of B(L), we have
(1) Blap(L)] is a congruence on D(L) with Coker(flap(L)]) = ap(L),

(2) a < b implies Blap(L)] < 0[bp(L)],

(3) 0[(0¢(L)] = Ap(ry and [1¢(L)] = 7 p(1),

(4) Olap(L)] V O[bp(L)] = 6[(a V b)p(L)],

(5) Olap(L)] A O[bp(L)] = 6[(a A b)p(L)].

Proof (1) We know that ap(L) = a° T ND(L) is a filter of D(L). Obviously, 0[ap(L)]
is an equivalence relation on D(L). Let (z,y),(2',y’) € Olap(L)]. Thus z Ad = y A d and
¥’ Ne=1y" Ae for some d,e € ap(L). Then

(xVZYANdNe)=(xAdNe)V (Z' AdAe)
=yAdAre)V (Y NdAe)
=(yVy)A(dNre) wheredAe€ ap(L).

Hence (z vV a',y Vy') € Olap(L)]. Using a similar way, we get (z A2,y Ay') € Olap(L)], so
Olap(L)] is lattice congruence on D(L). Also, we have

Coker(8lap(L)]) ={z € D(L) : (z,1) € Olap(L)]}
={zeDL):xNd=1ANd=4d for some d € ap(L)}
={zeD(L):x>decap(L)}
= ap(L).
(2) Let a < b. Then ap(L) C bp(L). Let (x,y) € 0lap(L)]. Then x Ad =y A d for some

d € ap(L). Since d € ap(L) and ap(L) C bp(L), then d € bp(L). So, (x,y) € O[bp(L)].
Therefore O[ap(L)] C Olabp(L)].
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(3) Let (x,y) € 0[0p(L)]. Since 0p(L) = (1], then z = y and hence 0[0p(L)] = Ap(ry. Since
1p(L) = D(L), then 0[1p(L)] = 6[D(L)] = D(L) x D(L) = Vp(r)-
(4) Since a,b < a Vb, then ap(L),bp(L) C (a V b)p(L). Hence by (2), we have

Olap(L)], 01bp(L)] € 0(a v b)p(L)] .-

Then 0[(aVb)p(L)] is an upper bound of 8|ap(L)] and O[bp(L)]. Let O[cy(L)] be an upper bound
of flap(L)] and O[bp(L)]. Then Olap(L)],0[bp(L)] C Olcp(L)] implies ap(L),bp(L) C cp(L).
Thus (a V b)p(L) = ap(L) V bp(L) C cp(L) and hence 0[(a V b)p(L)] C Olcp(L)]. Therefore
O[(a V b)p(L)] is the least upper bound of both 8[ap(L)] and 8[bp(L)].

(5) Since a Ab < a,b, then by (2), 0[(a Ab)(L)] C Olap(L)],0[bp(L)] and hence 0[(a A
b)p(L)] C Olap(L)] N Obp(L)]. Conversely, let (z,y) € Olap(L)] N Olbe(L)]. Then (x,y) €
Olap(L)] and (x,y) € 0lbe(L)]. Thus 2 Ad = yAd for some d € ap(L) and zAe = yAe for some
e € bp(L). Since dVe > d,e and d € ap(L),b € bp(L), then dVe € ap(L)Nbp(L) = (aAb)p(L).
Now

\_/
Al_,\_//_\

A(dVe)=(zxAd)V(xAe) by distributivity of L

=ynd)V(yne)
=yA(dVe) wheredVee€ (anb)p(L).

Therefore (x,y) € 0[(a A b)p(L)] and hence Olap(L)] N Olbe(L)] C O[(a A b)p(L)].
Let L be a decomposable MS-algebra. Consider the subsets B and D of Con(L°°) and

Con(D(L)), respectively as follows:
B={0lal]:acB(L)}, D={0lap(L)]:ac B(L)}.
The proof of the following theorem is a consequence of Lemmas 4.3—4.4.

Theorem 4.2 Let L be a decomposable MS-algebra. Then
(1) (B,V, A, , Ao,V 1oo) is a Boolean algebra, where (8]a |]) = 0[a® 1],
(2) (D,V, A, Apr), V(1)) is a Boolean algebra, where (0lap(L)])" = 0a®p(L)].

Now, we observe that every central element a of a decomposable MS-algebra L associated

with the congruence pair (0a }], 0lap(L)]).

Theorem 4.3 Let L be a decomposable MS-algebra and a € L°°. Then a is a central
element of L if and only if (0]a |],0lap(L)]) is a congruence pair of L.

Proof Let a be a central element of L. By Lemmas 4.3(1) and 4.4(1), 0[a }] and 0[ap(L)]
are congruences on L°° and D(L), respectively. To show that (8[a |],0lap(L)]) is a congruence
pair, let (b,¢) € 8]a }]. Then

(b,e) €0lal]=bAa° =cAa®
= (bAa’)Vd=(cANa’)Vd forallde D(L)
= bVd) A@Vd) =(cVd) A(a°Vd wherea®Vdel[a®)ND(L)=ap(L)
= (bVvd,cVd) € blap(L)].
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Thus (f[a 1], 0lap(L)]) € A(L). Conversely, let (0]a ], 0[ap(L)]) € A(L). Since (a,0) € 0[a }],
then a Aa® =0Aa° =0. Now, aVa® = (a° Aa)® =0°=1. Therfore a € B(L).

Let L be a decomposable MS-algebra. Consider the set
A'(L) = {(0[a |],0lap(L)]) : a € B(L)}.
From Theorems 4.5-4.6, we observe the following important results.

Theorem 4.4 Let L be a decomposable MS-algebra. Then (A'(L);V, N, ,04/(1), 1ar(ry) is

a Boolean algebra, where

(0[a 1], 0[ap(L)]) v (0[b 1], 0[bp(L)]) = (0[(a V b) 1],0[(a V b)e(L)]),
(0a 11, Olap(L)]) A (06 1], 0lbe(L)]) = (0[(a Ab) 1], 0[(a A b)p(L)]),
(0la 1], 0lap(L)])" = (0[a® 1], 0[a°p (L)),
Lary = (Vioo, Vipry)s
Oar(r) = (Apes, Apry).

Theorem 4.5 Let L be a decomposable MS-algebra. Then B(L) is isomorphic to A’'(L)
under the isomorphism a — (0]a }], 0lap(L)]).

5 Congruence Permutable of Decomposable MS-Algebras

El-Assar [21] studied the notion of n-permutability of congruences of p-algebras satisfying
certain condition. Also, El-Assar and Abd El-Hakim [24] characterized the permutability of
congruences of modular p-algebras. Badawy and Shume [16] characterized the permutability of
congruences of the class of principal p-algebras.

Let L be an algebra. We say that 6,1 € Con(L) permute if for any a,b,c € L with (a,b) € 0
and (b, ¢) € v, there exists h € L such that (a, h) € ¢ and (h,c) € 0, that is Qo1 = 1) o, where
0 o v is the relational product of 6 and .

An algebra L is said to be congruence permutable (briefly, permutable) if every pair of
congruences on it is permutable.

We characterize the congruence permutable of a decomposable MS-algebra in the following

theorem.

Theorem 5.1 Let L be a decomposable MS-algebra. Then the following conditions are
equivalent:
(1) L has congruence permutable,

(2) L°° and D(L) both are congruence permutable.

Proof To show the equivalence of the conditions (1) and (2), we have to show that t-
wo congruences 6,1 € Con(L) are permutable if and only if their restrictions 6pe0, 900 and
Op(r), ¥p(r) both are congruence permutable on L°° and D(L), respectively. Let 6,1 be per-
mutable on L. Firstly, we will prove that 600,100 are permutable on L°°. Let a,b,c € L°°
be such that (a,b) € 000 and (b,c) € Ypeo. Then (a,b) € 6 and (b,c) € . Since 0,7 are
permutable, then there exists x € L such that (a,2) € ¥ and (x,¢) € 0. Thus (a,2°°) € ¢ and
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(x°°,¢) € 0. Then (a,z°°) € Yoo and (2°°,¢) € Opoo as x°° € L°°. Therefore 00,100 are
permutable on L°°. Now we prove that permutability of 6 and ¢ implies permutability of 0z
and ¢p(ry. Let 2,9,z € D(L) be such that (x,y) € Op) and (y,2) € ¥p(ry. Then (z,y) € 0
and (y,z) € ¥. Since 6,1 are permutable, then there exists a € L such that (z,a) € ¥ and
(a,z) € 6. Then for every d € D(L), we have (zVd,aVd) € and (aVd,zVd) €. We can
choose d < x,z. Then (z,a V d) € ¥pr) and (a V d,z) € Op(ry with a VvV d € D(L). Therefore
Op(ry and 0p(r) both are congruence permutable on D(L).

Conversely, let 0,7 € Con(L) such that 0rco,¢rec and Op(ry,¥p(r) are congruence per-
mutable on L°° and D(L) respectively. Consider the elements z,y,z € L with (z,y) € 6 and
(y,z) € 1. By Theorem 3.4, we get (2°°,y°°) € Opo0, (¥°°,2°°) € oo and (zV d,yVd) €
Opry, (yVd,zVd) € p for all d € D(L). Since Or00,9 100 are permutable, then there exists
a € L°° with (2°°,a) € 9o and (a,2°°) € Opoo. Since Op(r),¥p(r) are permutable congru-
ences on D(L), then there exists e € D(L) such that (z Vv d,e) € ¥p(ry and (e,2V d) € Op(z).
It follows that

(x°°,a) €, (a,2°°) €0, and (xVd,e)cv, (e,zVd) €.

Since L is a decomposable MS-algebra, then there exist di,ds € D(L) such that x = 2°° A dy
and z = 2°° Ads. Hence x < d; and z < dsy. Since 6 and v are compatible with the A operation,

then we have
(z°°,a) €y and (xVdi,e) € imply (z,aie)=(x°°A(xVdi),aNe)eEp,
and
(a,2°°) €0 and (e,zVds) €6 imply (aAe,z)=(aNe z°A(zVds)) €.

Consequently, we deduce that (z,a Ae) € ¢ and (a A e, z) € 0. Therefore 6,1 are permutable.
Let L be an MS-algebra. Define the relation ® on L as follows:

(x,y) € P& 2°° =y°°.
It is known that ® is a congruence relation on L (see [18]). Then & satisfies the following
property.

Corollary 5.1 Let L be a decomposable MS-algebra. Then the congruence relation ® per-
mutes with any element of Con(L), as ®reo = Areo and ®pr) = Vp(r).

6 Strong Extensions of Decomposable MS-Algebras

It is known that the class of distributive lattices satisfies the Congruence Extension Property
(CEP for short) briefly. Luo [30] proved that the class MS of all MS-algebras satisfies the CEP.
The notion of a strong extension of algebras was first introduced by Varlet [32]. EL-Assar and
Abd El-Hakim [24] studied the strong extension for modular p-algebras. Also EL-Assar [22]
introduced the strong extension for quasi-modular p-algebras. Now we recall the following two
definitions.
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Definition 6.1 (see [28]) An algebra A satisfies the CEP if for every subalgebra B of A

and every 0 of B, 0 extends to a congruence of A.

Definition 6.2 (see [28]) An algebra L is said to be a strong extension of the algebra M,

if M is a subalgebra of L and every congruence of M has at most one extension to L.

In the following theorem, we study strong extensions of decomposable MS-algebras using

the congruence pairs technique.

Theorem 6.1 Let L be a subalgebra of a decomposable MS-algebra Li. Then Ly is a strong
extension of L if and only if the following conditions hold:
(1) D(L1) is a strong extension of D(L),

(2) LY° is a strong extension of L°°.

Proof Let L; be a strong extension of L. Let 62 € Con(D(L)). Then 6, has an extension
to D(L1). Since CEP holds for the class of distributive lattices, we have to verify that 65 has a
unique extension to D(L,). Let 8,0, € Con(D(L,)) such that 8 | D(L) = 6, | D(L) = 0. By
Corollary 3.6 (1), we have (Apee,05), (ALclm,ég) € A(Ly) and (Apeo,02) € A(L). By Theorem
3.4, there exist 0 and 6 € Con(L;) and @ € Con(L) determined by the congruence pairs
(Apoe,B2), (Apoe,B2) and (Ageo,6s), respectively. Now, we deduce that § | L =6 | L = 0,
but 6 has at most one extension to Li. Thus 6 = é, and this result leads to 05 = ég, proving
(1). Now we prove that L{° is a strong extension of L°°. Let #; € Con(L°°). Then 6; has
an extension to L{°, because the class of de Morgan algebras satisfies the CEP. We will show
that this extension is unique. Let 81,6, € Con(LS°) with 81 | L°® = 6, | L°° = 6;. Then by
Corollary 3.6 (2), it is clear that (1, V(r,)) and (él, Vp(r,)) are congruence pairs of L; and
(01, Vp(ry) is a congruence pair of L. Now, by Theorem 3.4, there exist # and 6 of Con(Ly)
corresponding to (61, Vp(z,)) and (61, V(L)) respectively and 6 of Con(L) corresponding to
(01, Vp(r,))- Then 0| L = 0| L = 6, which gives 0; = ;. Therefore L$° is a strong extension
of L°°. Conversely, suppose that the conditions (1) and (2) hold and let 8 € Con(L). Then 6
has an extension to L1, because the class of MS-algebras satisfies the CEP. We will show that
this extension is unique. Assume that 8 and 6 of Con(L;) such that 0 | L = 0 | L = 6. By
Theorem 3.4, these can be represented by congruence pairs as = (51,52),9 = (él,ég) and
0 = (01,0,), where 0, | L°® = 6, | L°° = 6, and 0, | D(L) = 05 | D(L) = 5. By the conditions
(1) and (2), we get 0, = 6, and 05 = 5. Therefore § = 6.

Corollary 6.1 Let L1 and L be decomposable MS-algebras. If Ly is a strong extension of
L, then Con(L1) = Con(L).

Proof Since the class of MS-algebras satisfies the CEP, then every congruence of L has an
extension. By hypotheses this extension is unique. Then Con(L;) 2 Con(L).

7 Conclusion

In this paper, we introduced the notion of congruence pairs of decomposable MS-algebras. It
is proved that every congruence relation # on a decomposable MS-algebra L can be represented
by a unique congruence pair (61, 62), where 6, is a congruence relation on the de Morgan algebra
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L°° and 05 is a lattice congruence relation on the lattice D(L). Also, it is observed that Con(L),
the lattice of all congruences of a decomposable MS-algebra L, is isomorphic to A(L), the lattice
of all congruence pairs of L. It is observed that there is a one to one correspondence between
the set B(L) of central elements of a decomposable MS-algebra L and the set of congruence
pairs of the form (0[a ||, 8[ap(L)]), where a € B(L). Permutability of congruences and strong
extensions of decomposable MS-algebras are considered in terms of congruence pairs. In a
future work, we will describe the congruence lattices of decomposable MS-algebras by means

of congruence pairs.
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