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Abstract In this paper, the author solves the Dirichlet problem for Hermitian-Poisson

metric equation
√

−1ΛωGH = λId and proves the existence of Hermitian-Poisson metrics

on flat bundles over a class of complete Hermitian manifolds. When λ = 0, the Hermitian-

Poisson metric is a Hermitian harmonic metric.
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1 Introduction

Let (X, g) be a Hermitian manifold, ω be the Kähler form related to g. Let (V,D) be a flat

bundle of rank r over X , i.e., the connection satisfies D2 = 0. For any Hermitian metric H on

V , we have the following unique decomposition:

D = DH + ψH , (1.1)

where DH is compatible with H and ψH ∈ Ω1
X(End(E)) is self-adjoint with respect to H . Set

∂H = D1,0
H , ∂H = D0,1

H , θH = ψ1,0
H , θH = ψ0,1

H . (1.2)

Define

D′′

H = ∂H + θH , D′

H = ∂H + θH (1.3)

and GH = (D′′

H)2. The harmonic metric equation is

D∗

HψH = 0. (1.4)

We say H is a harmonic metric if it satisfies the harmonic metric equation. When (X, g) is a

Kähler manifold, Kähler identity implies that D∗

HψH = 2
√
−1ΛωGH . So the harmonic metric

equation is equivalent to
√
−1ΛωGH = 0.

It is well known that there is a correspondence between flat bundles and representations of

fundamental group. Let ρ : π1(X) → GL(r,C) be the representation related to (V,D). The

Hermitian metric H induces a ρ-equivariant map

fH : X̃ → GL(r,C)/U(r), (1.5)
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where X̃ is the universal covering of X . fH is a harmonic map if and only if H is a harmonic

metric. The existence of harmonic metrics has an important application in non-abelian Hodge

theory, see [6, 13] for detail.

When the rank of the bundle equals to 1, (1.4) becomes a Poisson equation. For the high

rank case, Donaldson [4] and Corlette [2] proved the existence of harmonic metrics on semi-

simple flat bundles over compact Riemannian manifolds. Jost-Zuo proved the existence of

harmonic metrics on semi-simple flat bundles over quasi-compact Kähler manifolds in [8–9]. In

[1], Collins, Jacob and Yau considered the following Poisson metric equation over non-compact

curves:

D∗

HψH = λId. (1.6)

This is a deformation of the harmonic metric equation. They proved the existence of Poisson

metric on polystable parabolic flat bundle.

In this paper, we are interested in the following Hermitian-Poisson metric equation:

√
−1ΛωGH = λId (1.7)

over complete Hermitian manifolds. We call H on V is a Hermitian-Poisson metric if H satisfies

(1.7). When λ = 0, we call H is a Hermitian harmonic metric.

We first prove the Dirichlet problem for Hermitian-Poisson metric equation over compact

Hermitian manifolds with smooth boundary.

Theorem 1.1 Assume that (X, g) is a compact Hermitian manifold with non-empty smooth

boundary ∂X. Let (V,D) be a flat bundle over X. Then there is a unique Hermitian-Poisson

metric H on X such that H |∂X = ϕ, where ϕ is a Hermitian metric on V |∂X .

For a non-compact complete Hermitian manifold (X, g), take a compact sub-domains ex-

hausting sequence {Ωi}∞i=1 of X . Then the Poisson metric equation can be solved on Ωi for

every i. Suppose that the manifold (X, g) satisfies some suitable conditions and there exists

a good background Hermitian metric on V . Then we can deform these Poisson metrics on Ωi

into a Poisson metric on X .

Theorem 1.2 Let (X, g) be a complete non-compact Hermitian manifold of dimension n

and ∆̃ = 2
√
−1Λω∂∂. Let (V,D) be a flat bundle over X and K be a background metric. Then

(i) if ∆̃ has the positive first eigenvalue λ̃1(X), and ‖
√
−1ΛωGK − λId‖Lp < +∞ for some

p ≥ 2 and real number λ, then there exists a Poisson metric H on V .

(ii) if ∆̃ satisfies the L2-Sobolev inequality, and ‖
√
−1ΛωGK − λId‖Lp < +∞ for some

p ∈ [2, n) and real number λ, then there exists a Poisson metric H on V .

Remark 1.1 Suppose that X is a Kähler manifold and λ = 0. Then Theorem 1.1 is a special

case of Dirichlet problem for harmonic map equation from compact manifolds with smooth

boundary to complete Riemannian manifold with nonpositive sectional curvature. Theorem 1.2

should be a special case of harmonic map equation from complete noncompact manifolds to

complete Riemannian manifold with nonpositive sectional curvature. See [3] for detail (see [7,

10] for Hermitian harmonic map).
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This paper is organized as follows. In Section 2, we introduce a heat flow about Poisson

metric equation and prove the long time existence of its solution. In Section 3, we prove

Theorem 1.1, and in Section 4, we prove Theorem 1.2.

2 Heat Flow on Compact Manifolds with Boundary

LetX be a complex manifold with non-empty smooth boundary ∂X . Define the holomorphic

Laplace operator for functions as ∆̃f = 2
√
−1Λω∂∂f . Let (V,D) be a flat bundle over X .

Consider the following flow on V,





H−1(t)

∂H(t)

∂t
= 4(

√
−1ΛωGH(t) − λId),

H(t)|t=0 = H0, H |∂X = H0|∂X ,
(2.1)

where H0 is a background metric on V . It is not hard to check that this is a nonlinear parabolic

equation, so the solution exists for short time.

Proposition 2.1 Let H(t) be the solution of (2.1). Then

( ∂
∂t

− ∆̃
)
|Φ(H(t))|2H(t) ≤ 0, (2.2)

where Φ(H(t)) =
√
−1ΛωGH(t) − λId, and

sup
X

|Φ(H(t))|H(t) ≤ sup
X

|Φ(H0)|H0
. (2.3)

Proof When there is no confusion, we omit the parameter t in the computations for

simplicity. Under the local flat basis of (V,D), we have

∂H = ∂ +
1

2
H−1∂H, θH = −1

2
H−1∂H. (2.4)

A direct computation implies

∂

∂t
∂H =

1

2
∂H

(
H−1 ∂H

∂t

)
− 1

2

[
θH , H

−1 ∂H

∂t

]
(2.5)

and

∂

∂t
θH = −1

2
∂H

(
H−1 ∂H

∂t

)
+

1

2

[
θH , H

−1 ∂H

∂t

]
. (2.6)

So

∂Φ(H)

∂t
=

√
−1ΛωD

′′

H

(∂D′′

H

∂t

)

=
1

2

√
−1ΛωD

′′

H

{
D′′

H

(
H−1 ∂H

∂t

)
−D′

H

(
H−1 ∂H

∂t

)}

= −1

2

√
−1ΛωD

′′

HD
′

H

(
H−1 ∂H

∂t

)
, (2.7)

where in the last equality we have used the fact that
[√

−1ΛωGH , H
−1 ∂H

∂t

]
= 0. On the other

hand, notice that Φ(H)∗H = Φ(H), so

−
√
−1Λω∂∂|Φ(H)|2H = −

√
−1Λω∂∂tr(Φ(H) ◦ Φ(H))
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= −
√
−1Λω∂tr{D′

HΦ(H) ◦ Φ(H) + Φ(H) ◦D′

HΦ(H)}
= −

√
−1Λωtr{D′′

HD
′

HΦ(H) ◦ Φ(H)−D′

HΦ(H) ∧D′′

HΦ(H)

+D′′

HΦ(H) ∧D′

HΦ(H) + Φ(H) ◦D′′

HD
′

HΦ(H)}. (2.8)

Combining all the above, we have

( ∂
∂t

− 2
√
−1Λω∂∂

)
|Φ(H)|2H

= 2tr
(∂Φ(H)

∂t
◦ Φ(H)

)
− 2

√
−1Λω∂∂|Φ(H)|2H

= −4|D′

HΦ(H)|2H . (2.9)

On the boundary ∂X we know Φ(H(t)) = 0. By the maximum principle, (2.3) holds.

Definition 2.1 For any two Hermitian metrics H and K on V , define

σ(H,K) = tr(H−1K) + tr(K−1H)− 2rank(V ). (2.10)

Let h = K−1H and Dc
K = D′′

K −D′

K . Then we find

D′′

H −D′′

K =
1

2
h−1Dc

Kh,
√
−1Λω(GH −GK) =

1

4

√
−1ΛωD(h−1Dc

Kh). (2.11)

Lemma 2.1 Let H and K be two Hermitian-Poisson metrics. Then we have

∆̃σ(H,K) ≥ 0. (2.12)

Proof From (2.11), one can see that

h(Φ(H)− Φ(K)) = −1

4

√
−1ΛωDhh

−1Dc
Kh+

1

4

√
−1ΛωDD

c
Kh. (2.13)

Taking trace of both sides, we get

1

4

√
−1Λωdd

ctr(h)− 1

4
|Dhh− 1

2 |2K ≥ −tr(h)(|Φ(H)|H + |Φ(K)|K). (2.14)

Also, we can derive

1

4

√
−1Λωdd

ctr(h−1)− 1

4
|Dh−1h

1

2 |2K ≥ −tr(h−1)(|Φ(H)|H + |Φ(K)|K). (2.15)

Since Φ(H) = Φ(K) = 0, this lemma follows.

Lemma 2.2 Let H(t) and K(t) be two solutions of (2.1). Then

( ∂
∂t

− ∆̃
)
σ(H(t),K(t)) ≤ 0. (2.16)

Proof Let h(t) = K−1(t)H(t). Note that

∂

∂t
tr(h(t)) = 4tr(h(t)(Φ(H(t)) − Φ(K(t)))) (2.17)

and

1

4

√
−1Λωdd

ctr(h(t)) − 1

4
|Dh(t)h− 1

2 (t)|2K(t) = tr(h(t)(Φ(H(t)) − Φ(K(t)))). (2.18)

This finishes the proof.

We will show the long-time existence of the solution in the following.
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Proposition 2.2 If H(t) is a solution of the parabolic equation (2.1) defined for 0 ≤ t < T ,

then H(t) approaches a continuous non-degenerate limit HT in C0-norm as t→ T .

Proof Given ǫ > 0, by the continuity at t = 0 we can find a δ such that

sup
X

σ(H(t0), H(t1)) ≤ ǫ (2.19)

for 0 < t0, t1 < δ. Then Lemma 2.2 and the maximum principle imply that

sup
X

σ(H(s), H(t)) ≤ ǫ (2.20)

for all s, t > T − δ. Then H(t) are uniform Cauchy sequence and converge to a continuous

limiting metric HT . Set h(t) = K−1H(t). A direct calculation shows

∣∣∣
∂

∂t
log tr(h(t))

∣∣∣ ≤ 4|Φ(H(t))|H(t) (2.21)

and
∣∣∣
∂

∂t
log tr(h−1(t))

∣∣∣ ≤ 4|Φ(H(t))|H(t). (2.22)

This together with Proposition 2.1 means that HT is non-degenerate.

Following Simpson’s argument (see [12, Lemma 6.4 ]), we can conclude the following lemma.

Lemma 2.3 Suppose that H(t) is a family of metrics on V over X with H(t) → HT in

C0-norm. If H(t) satisfy Dirichlet boundary conditions, and if supX |ΛωGH(t)|H(t) is bounded

uniformly in t, then H(t) are bounded in Lp
2 uniformly in t.

Corollary 2.1 The parabolic equation (2.1) has a unique solution H(t) which exists for

0 ≤ t < +∞.

3 Proof of Theorem 1.1

In this section we will consider the Dirichlet boundary problem for Hermitian-Poisson metric

equation and use the heat equation method to deform an arbitrary initial metric to the desired

one. The main points in the discussion are similar to that in [5] or [12]. Let X be a compact

Hermitian manifolds with smooth boundary ∂X . For any Hermitian metric ϕ on V |∂X over

∂X. We can extend it to V over X , denoted by H0. Let H(t) be the solution of (2.1).

Proof of Theorem 1.1 By a direct calculation, one can check that

|d|γ|H(t)|2 ≤ |DH(t)γ|2H(t) (3.1)

for any section γ ∈ Γ(X,V ). According to Proposition 2.1, we have

( ∂
∂t

− ∆̃
)
|Φ(H(t))|H(t) ≤ 0. (3.2)

Let v be a solution of the following equation (see [14, Chapter 5, Proposition 1.8] for the

existence of v):

{
∆̃v = −|Φ(K)|K ,
v|∂X = 0.

(3.3)
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Set w(x, t) =
∫ t

0 |Φ(H)|H(x, s)ds− v(x). Since Φ(H(t)) = 0 on ∂X , we have





( ∂
∂t

− ∆̃
)
w ≥ 0,

w|t=0 = −v,
w|∂X = 0.

(3.4)

The maximum principle implies

∫ t

0

|Φ(H)|H(x, s)ds ≤ sup
X

v (3.5)

for any 0 ≤ t < +∞. Let 0 ≤ t1 ≤ t and h(t) = H−1(t1)H(t). Then

h
−1

(t)
∂h(t)

∂t
= 4Φ(H(t)) (3.6)

and

∂

∂t
log tr(h(t)) ≤ 4|Φ(H(t))|H(t). (3.7)

From the above formula, we see

tr(H−1(t1)H(t)) ≤ r exp
(
4

∫ t

t1

|Φ(H)|Hds
)
. (3.8)

We have a similar estimate for tr(H−1(t)H(t1)). This gives us that

σ(H(t), H(t1)) ≤ 2r
{
exp

(
4

∫ t

t1

|Φ(H)|Hds
)
− 1

}
. (3.9)

Combining (3.5) and (3.9), we deduce that H(t) converge in the C0 topology to some continuous

metric H∞ as t → +∞. Using Lemma 2.3 again, one can find that H(t) are bounded in

Lp
2 uniformly in t. By the heat equation, |H−1 ∂H

∂t
| is bounded. Then, the standard elliptic

regularity implies that there exists a subsequence H(t) → H∞ in C∞ topology. Due to formula

(3.5), we know that H∞ satisfies

√
−1ΛωGH∞

= λId. (3.10)

From Lemma 2.1 and the maximum principle, it is easy to conclude the uniqueness of solution.

4 Proof of Theorem 1.2

In this section, we study the existence of the Hermitian-Poisson metrics on some complete

Hermitian manifolds. The argument is similar to that used by Zhang in [15] (also in [11, 16]).

Suppose that X is a complete noncompact Hermitian manifold. Let {Ωi}∞i=1 be an exhaust-

ing sequence of compact sub-domains of X , and K be a Hermitian metric on V . In Section 3,

we have already shown that the following Dirichlet problem is solvable on Ωi, i.e., there exists

a Hermitian metric Hi such that
{√

−1ΛωGHi
= λId,

Hi|∂Ωi
= K|∂Ωi

.
(4.1)
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In order to prove that we can pass to limit and eventually obtain a solution on the whole

manifold X , we need to establish some estimates. Denote hi = K−1Hi and σ̃i = σ̃(Hi,K) =

log(tr(hi) + tr(h−1
i ))− log(2r). Then we have

{
∆̃σ̃i ≥ −4|Φ(K)|K ,
σ̃i|∂Ωi

= 0.
(4.2)

Definition 4.1 We say that ∆̃ has the positive first eigenvalue if there exists a constant

c > 0 such that for any smooth function ρ with compact support, one has

∫

X

(−∆̃ρ)ρ ≥ c

∫

X

ρ2. (4.3)

And the supremum of c is denoted by λ̃1(X).

Definition 4.2 We say that ∆̃ satisfies L2-Sobolev inequality if there exists a constant S(X)

such that for any smooth function ρ with compact support, one has

∫

X

(−∆̃ρ)ρ ≥ S(X)
(∫

X

|ρ| 4m
2m−2

) 2m−2

2m

. (4.4)

Lemma 4.1 (see [15]) Let X be an n-dimensional complete Hermitian manifold, and the

holomorphic Laplace operator ∆̃ has the positive first eigenvalue λ̃1(X). Then for a nonnegative

continuous function f , the equation

∆̃u = −f (4.5)

has a nonnegative solution u ∈ L2n
2,loc ∩C

1,α
loc (0 < α < 1) if f ∈ Lp(X) for some p ≥ 2.

Lemma 4.2 (see [15]) Let X be an n-dimensional complete Hermitian manifold, and the

holomorphic Laplace operator ∆̃ satisfies the L2-Sobolev inequality. Then for a nonnegative

continuous function f , the equation

∆̃u = −f (4.6)

has a nonnegative solution u ∈ L2n
2,loc ∩C

1,α
loc (0 < α < 1) if f ∈ Lp(X) for some n > p ≥ 2.

Proof of Theorem 1.2 (i) By Lemma 4.1 (Lemma 4.2 for (ii)), (4.2) and the maximum

principle, we conclude that

σ(Hi,K) ≤ 2r exp(u)− 2r (4.7)

on Ωi, and u is the solution of ∆̃u = −4|Φ(K)|K . After a similar argument with [15], we can

show that the C1-norm of Hi are uniformly bounded on any bounded open subset. Then the

standard elliptic theory tells us that, by passing a subsequence, Hi converge uniformly on any

compact sub-domain of X to a smooth Hermitian metric H∞ satisfying

√
−1ΛωGH∞

= λId. (4.8)
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