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1 Introduction

For a positive integer n, we let Bn denote the open unit ball in n-dimensional complex

Euclidean space Cn. Let dV be the standard Lebesgue measure on Bn. For b > −1, the

constant cb is chosen so that
∫
Bn

cb(1− |z|2)bdV (z) = 1. We define dvb(z) = cb(1− |z|2)bdV (z).

The Bergman space A
p
b (Bn) is defined to be the space of holomorphic functions on Bn with

finite L
p
b norm. That is f ∈ A

p
b if it is holomorphic and

‖f‖p
A

p
b

:=

∫

Bn

|f(z)|pdvb(z) < ∞.

If b > −1 and u ∈ L1(dvb) is a weight, let Lp
b(u) denote the space of measurable functions

on Bn that are pth power integrable with respect to u(z)dvb(z). That is

‖f‖Lp
b
(u) :=

( ∫

Bn

|f(z)|pu(z)dvb(z)
) 1

p

< ∞.

Recall that for r > 0 and z ∈ Bn, the set

Bβ(z, r) := {w ∈ Bn : β(z, w) < r}

is a Bergman metric ball centered at z with radius r.
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The Carleson tent over a non-zero z ∈ Bn is defined to be the set:

Tz :=
{
w ∈ Bn :

∣∣∣1− zw

|z|

∣∣∣ < 1− |z|
}
,

where zw =
n∑

j=1

zjwj . The Carleson tent over 0 is Bn.

We define the Dp,a,b characteristic of two weights u, σ by

[u, σ]Dp,a,b
:= sup

z∈Bn

(∫
Tz

σdvb∫
Tz

dvb

)p−1
∫
Tz

udvpa+b∫
Tz

dvpa+b

.

Throughout the paper, we will use the notation defined in Section 2 to make this more compactly

as:

[u, σ]Dp,a,b
= sup

z∈Bn

(〈σ〉dvbTz
)p−1〈u〉

dvpa+b

Tz
.

Let p′ be the conjugate number of p. We denote by u ∈ Bp,b if [u]Bp,b
:= [u, σ]Dp,0,b

< ∞, where

σ = u−p′

p is the dual weight of u. If p > 1, according to the Hölder inequality one can obtain

that [u]Bp,b
≥ 1. To be more precise,

∫

Tz

dvb =

∫

Tz

u
1
p · u− 1

pdvb

≤
( ∫

Tz

udvb

) 1
p

·
(∫

Tz

u−p′

p dvb

)− 1
p′

. (1.1)

Békollé and Bonami introduced these weights in [1–2], and characterized the boundedness of

the Bergman projection. The sharp dependence of the operator norm on the Bp,b characteristic

was given by Pott and Reguera [10] and Rahm, Tchoundja and Wick [11]. This was proven for

the upper half plane of C in [10] and for the ball in [11].

Constantin proved Carleson-type embedding theorems for weighted Bergman spaces with

Békollé weights on the unit disk, and characterized the boundedness, compactness and Schatten

class of Toeplitz type operators, integral operators and composition operators in [3]. The goal

of this paper is to generalize these results to the setting of the unit ball. The key tool is the

“test function” (1− zw)−s in the weighted Bergman spaces with Békollé weights.

The paper is organized as follows. In Section 2, we briefly give the preliminaries and back-

ground information. We recall a covering lemma and prove the key lemma on the norm estimate

of the test function (1−zw)s. In Section 3, we completely characterize the Carleson embedding

theorem from A
p
b (u) to Lq(dµ). In Section 4, we use the Carleson measure to study the Toeplitz

type operators. In Section 5, the boundedness and compactness of composition operators are

characterized.

Throughout the paper, for real positive quantities Q1 and Q2, we write Q1 . Q2 (or

Q2 & Q1) if there is a positive constant C (independent of the “key” variables) such that

Q1 ≤ C ·Q2. And we write Q1 ≃ Q2 if Q1 . Q2 and Q1 & Q2.

2 Preliminaries
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The following notations will be used throughout the paper. For a weight u and E ⊂ Bn,

we set ub(E) =
∫
E
udvb and volb(E) =

∫
E
dvb and define 〈f〉dµE := µ(E)−1

∫
E
f(z)dµ(z) for

integrable f and measure µ.

Let Φz be the involution of Bn. Using Φz, we define the so-called Bergman metric, β on Bn,

by:

β(z, w) =
1

2
log

1 + |Φz(w)|

1− |Φz(w)|
.

Let Bβ(z, r) be the ball in the Bergman metric of radius r centered at z. It is well known that

for w ∈ Bβ(z, r) there holds:

volb(Bβ(z, r)) ≃ |1− wz|n+1+b ≃ (1− |z|2)n+1+b ≃ (1− |w|2)n+1+b,

and the characteristic functions

11Bβ(z,r)(w) = 11Bβ(w,r)(z).

We need the following covering lemma in the proofs of our main results.

Lemma 2.1 (see [13, Theorem 2.23]) There exists a positive N such that for any 0 < r ≤ 1

we can find a sequence {ak} in Bn with the following properties:

(1) Bn =
⋃
k

Bβ(ak, r);

(2) the sets Bβ

(
ak,

r
4

)
are mutually disjoint;

(3) each point z ∈ Bn belongs to at most N of the sets Bβ(ak, 2r).

We will also use the following class of weights which is denoted by Cp,b. A positive locally

integrable weight u belongs to Cp,b, or say u satisfies Cp,b condition if

[u]Cp,b
:= sup

z∈Bn

〈u〉dvb
Bβ(z,r)

(〈u− p′

p 〉dvb
Bβ(z,r)

)p−1 . 1

for some 0 < r < 1. Condition Cp,b seems to depend on a choice of r, but it is known that the

same class of weights is obtained for any r ∈ (0, 1) and Bp,b ⊂ Cp,b for every b > −1. To see

this, we note that for a given r, there is a a′ ∈ Bn such that Bβ(a, r) ⊂ Ta′ with comparable

volumes. It follows that

[u]Bp,b
≥ C[u]Cp,b

,

where the constant C > 0 may depend on r. See the details in [6]. Interested readers can also

refer in [11] for further discussions on the Dp,a,b weights.

Lemma 2.2 Suppose that u ∈ Cp,b for some p > 1, and let t, s ∈ (0, 1), and z, w ∈ Bn with

β(z, w) < r for some r > 0. Then we have

ub(Bβ(z, t)) ≃ ub(Bβ(w, s)),

where the constant is independent of z and w.

Proof Notice that if Bβ(z, t) ⊂ Bβ(w, s), then u ∈ Cp,b and β(z, w) < r imply that

ub(Bβ(z, t))
1
p ≤ ub(Bβ(w, s))

1
p . volb(Bβ(w, s))σb(Bβ(w, s))

− 1
p′
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≤ volb(Bβ(w, s))σb(Bβ(z, t))
− 1

p′ .
volb(Bβ(w, s))

volb(Bβ(z, t))
ub(Bβ(z, t))

1
p

≃ ub(Bβ(z, t))
1
p .

For general case, we have Bβ(z, t), Bβ(w, s) ⊂ Bβ(w, t+ s+ r), and hence we have

ub(Bβ(z, t)) ≃ ub(Bβ(w, t + s+ r)) ≃ ub(Bβ(w, s)).

The proof is completed.

The point evaluations on A
p
b (u) are bounded linear functionals for p > 0. To be more

precisely, we have the following estimate.

Lemma 2.3 (see [6, Lemma 3.1]) If p0 > 1, 0 < r < 1 and a weight u ∈ Cp0,b, σ = u
−

p′0
p0 ,

we have the following estimate

|f(z)|p . ub(Bβ(z, r))
−1

∫

Bβ(z,r)

|f(w)|pu(w)dvb(w) .
‖f‖p

L
p
b
(u)

ub(Bβ(z, r))
,

where the constant involved is independent of z ∈ Bn.

If s > 0, we denote Gs
w(z) = (1 − zw)−s for z, w ∈ Bn. We will make heavy use of this

function in our discussion. It is necessary to estimate its Lp
b(u) norm.

Lemma 2.4 Let p > 0, p0 > 1, b > −1 and the weight u ∈ Bp0,b. We have

ub(Tw)
1
p

(1− |w|)s
. ‖Gs

w‖Lp
b
(u) .

ub(Tw)
1
p

(1− |w|)max
{

(n+1+b)p0
p

,s
} , (2.1)

where the constant involved is independent of w ∈ Bn.

Proof If z ∈ Tw, then

1− |w| ≥
∣∣∣1− zw

|w|

∣∣∣ ≥ |1− zw| −
∣∣∣zw −

zw

|w|

∣∣∣

≥ |1− zw| − (1− |w|).

That is 1− |w| ≥ |1−zw|
2 , and it is obvious that

ub(Tw)

(1− |w|)ps
.

∫

Tw

1

|1− zw|ps
u(z)dvb(z) ≤ ‖Gs

w‖
p

L
p
b
(u)

.

On the other hand, we firstly consider the case when s > (n+ 1 + b)p0

p
. Denote by

E0 = Tw, Ek =
{
z ∈ Bn :

∣∣∣1− zw

|w|

∣∣∣ < 2k(1 − |w|)
}
, k = 1, 2, · · · ,

and Ẽ0 = E0, Ẽk = Ek \ Ek−1, k = 1, 2, · · · . It is easy to see that

volb(Ek) ≃ (2k(1− |w|))n+1+b.

Then we can obtain the following estimate under this decomposition of Bn.
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• If z ∈ Ẽ0, |1− zw| ≥ 1− |w|, and

• if z ∈ Ẽk for k ≥ 1,

|1− zw| ≥
∣∣∣1− zw

|w|

∣∣∣− (1 − |w|) & 2k(1− |w|).

Denote by

wk =

{
(1− 2k(1− |w|)) w

|w| , if 2k(1− |w|) < 1;

0, if 2k(1− |w|) ≥ 1.

One can easily find that

Ek = Twk
=

{
z ∈ Bn :

∣∣∣1− zwk

|wk|

∣∣∣ < (1− |wk|)
}

if 2k(1− |w|) < 1,

and Ek ⊂ Twk
= T0 = Bn if 2k(1 − |w|) ≥ 1. Since u ∈ Bp0,b, for every positive integer k, we

have
∫

Ek

u(z)dv(z) ≤

∫

Twk

u(z)dvb(z) .
volb(Twk

)p0

(
u
−

p′0
p0

)
b
(Twk

)p0−1

≤
volb(Twk

)p0

(
u
−

p′0
p0

)
b
(Tw)p0−1

≤
(volb(Twk

)

volb(Tw)

)p0

ub(Tw) .
((2k(1− |w|))n+1+b

(1− |w|)n+1+b

)p0

ub(Tw)

= 2kp0(n+1+b)ub(Tw).

Now we can estimate the norm ‖Gs
w‖Lp

b
(u) as follows:

‖Gs
w‖

p

L
p
b
(u)

=

∫

Bn

1

|1− zw|ps
u(z)dvb(z)

=

∞∑

k=0

∫

Ẽk

1

|1− zw|ps
u(z)dvb(z)

.

∞∑

k=0

1

2kps(1− |w|)ps

∫

Ek

u(z)dvb(z)

.
ub(Tw)

(1− |w|)ps

∞∑

k=0

1

2k(ps−(n+1+b)p0)
.

ub(Tw)

(1− |w|)ps
,

where the final inequality follows by s > (n + 1 + b)p0

p
. Now we have proved that (2.1) holds

for s > (n+ 1 + b)p0

p
. When s = (n+ 1 + b)p0

p
, we have

∥∥G(n+1+b)
p0
p

w

∥∥
A

p
b
(u)

≤ 2ǫ
∥∥G(n+1+b)

p0
p
+ǫ

w

∥∥
A

p
b
(u)

.
ub(Tw)

1
p

(1− |w|)(n+1+b)
p0
p
+ǫ

,

whenever ǫ > 0. By letting ǫ → 0 on the right hand side, we find (2.1) holds true for s =

(n+ 1 + b)p0

p
. Similarly, we can obtain

‖Gs
w‖Ap

b
(u) ≤ 2(n+1+b)

p0
p
−s

∥∥G(n+1+b)
p0
p

w

∥∥
A

p

b
(u)

.
ub(Tw)

1
p

(1− |w|)(n+1+b)
p0
p

,

when 0 < s < (n+ 1 + b)p0

p
. That completes the proof.
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3 Embedding Theorems

In this section, we will study the boundedness and the compactness of the embedding

I : Ap
b(u) → Lq(dµ). We firstly consider the case 0 < p ≤ q < ∞.

Theorem 3.1 Suppose that q ≥ p > 0, p0 > 1, u ∈ Bp0,b is a weight and µ is a positive

Borel measure on Bn. Then the following conditions are equivalent.

(a) The embedding I : Ap
b(u) → Lq(dµ) is bounded, that is

( ∫

Bn

|f(z)|qdµ(z)
) 1

q

.
(∫

Bn

|f(z)|pu(z)dvb(z)
) 1

p

for all holomorphic f in Bn;

(b) µ(Ta) . ub(Ta)
q
p for all a ∈ Bn;

(c) there is an r > 0 such that µ(Bβ(a, r)) . ub(Bβ(a, r))
q
p for all a ∈ Bn;

(d) there is an r > 0 such that µ(Bβ(ak, r)) . ub(Bβ(ak, r))
q
p for the sequence {ak} described

in Lemma 2.1;

(e) whenever s ≥ (n+ 1 + b)p0

p
,

sup
w∈Bn

∫

Bn

∣∣∣1− |w|2

1− zw

∣∣∣
qs

ub(Bβ(w, r))
− q

p dµ(z) . 1.

Proof Firstly we prove (a) ⇒ (b). By choosing an s > n+ 1 + b we get

µ(Ta)

(1− |a|)qs
.

∫

Ta

1

|1− za|qs
dµ(z) . ‖Gs

a‖
q

L
q
b
(u)

.
ub(Ta)

q
p

(1− |a|)qs
,

where we use the condition (a) in the second inequality and Lemma 2.4 in the third inequality.

To prove (b) ⇒ (c), we let r be sufficiently small and fixed. It will be done to prove

µ(Bβ(a, r)) . ub(Bβ(a, r))
q
p

for all |a| ≥ tanh(2r). According to [13, Lemma 5.23], there is a constant σ ∈ (0, 1) which

depends only on r, such that Bβ(a, r) ⊂ Ta′ where a′ = (1 − 1
σ
(1 − |a|)) a

|a| . By [11, Lemma

2.3], we find

volb(Ta′) ≃ (1 − |a′|)n+1+b ≃ σ−n−1−b(1− |a|2)n+1+b ≃ volb(Bβ(a, r)).

Then we use the condition of Bp0,b to get ub(Bβ(a, r)) ≃ ub(Ta′) as follows, which is analogues

to the proof of Lemma 2.2. That is

ub(Bβ(a, r))
1
p0 ≤ ub(Ta′)

1
p0 . volb(Ta′)σb(Ta′)

− 1
p′
0 ≤ volb(Ta′)σb(Bβ(a, r))

− 1
p′
0

.
volb(Ta′)

volb(Bβ(a, r))
ub(Bβ(a, r))

1
p0 ≃ ub(Bβ(a, r))

1
p0 .

Hence we have

µ(Bβ(a, r)) ≤ µ(Ta′) . ub(Ta′) ≃ ub(Bβ(a, r)).

To prove (a) ⇒ (e), we denote by

gsw(z) =
(1− |w|

1− zw

)s

ub(Bβ(w, r))
− 1

p .
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By following Lemma 2.4, we have

‖gsw‖
q

Lq(dµ) =

∫

Bn

∣∣∣1− |w|2

1− zw

∣∣∣
qs

ub(Bβ(w, r))
− q

p dµ(z) . ‖gsw‖
q

A
p

b
(u)

≃ 1.

We can conclude (e) ⇒ (c) by noting that (1 − |w|2)|1 − zw|−1 ≃ 1 whenever β(z, w) < r,

and it implies that

µ(Bβ(w, r))

ub(Bβ(w, r))
q
p

≃

∫

Bβ(w,r)

(1− |w|2

|1− zw|

)qs

ub(Bβ(w, r))
− q

p dµ(z)

≤

∫

Bn

(1− |w|2

|1− zw|

)qs

ub(Bβ(w, r))
− q

p dµ(z) . 1.

The proof of (c) ⇒ (d) is obvious.

It remains to prove (d) ⇒ (a). If f is holomorphic in Bn, then by Lemma 2.3 we have

∫

Bn

|f(z)|qdµ(z) .
∑

k

∫

Bβ(ak,r)

1

ub(Bβ(z, r))

(∫

Bβ(z,r)

|f(w)|qu(w)dvb(w)
)
dµ(z)

.
∑

k

∫

Bβ(ak,r)

1

ub(Bβ(ak, r))

( ∫

Bβ(ak,2r)

|f(w)|qu(w)dvb(w)
)
dµ(z)

=
∑

k

µ(Bβ(ak, r))

ub(Bβ(ak, r))

∫

Bβ(ak,2r)

|f(w)|qu(w)dvb(w)

.
∑

k

∫

Bβ(ak,2r)

ub(Bβ(ak, 2r))
q−p
p |f(w)|q−p|f(w)|pu(w)dvb(w)

. ‖f‖q−p

A
p
b
(u)

∑

k

∫

Bβ(ak,2r)

|f(w)|pu(w)dvb(w)

. ‖f‖q
A

p
b
(u)

,

where the last inequality is deduced by Lemma 2.1. The proof is completed.

Let us turn to the case 0 < q < p < ∞. We will apply Luecking’s approach in [8] which is

based on Khinchine’s inequality. Define the Rademacher functions Rn by

R0(t) =





1, 0 ≤ t− [t] <
1

2
,

−1,
1

2
≤ t− [t] < 1;

Rn(t) = R0(2
nt), n ≥ 1.

Then Khinchine’s inequality is the following.

Khinchine’s Inequality For 0 < p < ∞, there are constants

0 < c(p) ≤ C(p) < ∞

depending only on p such that, for all m ∈ N and {cj}
m
j=1 ⊂ C, we have

c(p)
( m∑

j=1

|cj |
2
) p

2

≤

∫ 1

0

∣∣∣
m∑

j=1

cjRj(t)
∣∣∣
p

dt ≤ C(p)
( m∑

j=1

|cj |
2
) p

2

.
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Theorem 3.2 Let u ∈ Bp0,b for some p0 > 1, and µ be a positive finite Borel measure on

Bn. Assume that p > q > 0, then the embedding from A
p
b(u) into Lq(dµ) is bounded, to be more

precisely, ∫

Bn

|f(z)|qdµ(z) . ‖f‖q
A

p

b
(u)

if and only if the function

Bn ∋ z 7→
µ(Bβ(z, r))

ub(Bβ(z, r))

belongs to L
p

p−q

b (u) for some r ∈ (0, 1).

Proof Since u ∈ Bp0,b for some p0 > 1, by Lemma 2.3 we have

|f(z)|q .
1

ub(Bβ(z, r))

∫

Bβ(z,r)

|f(w)|qu(w)dvb(w).

The sufficiency will be clarified by the following computation:

∫

Bn

|f(z)|qdµ(z)

.

∫

Bn

∫
Bβ(z,r)

|f(w)|qu(w)dvb(w)

ub(Bβ(z, r))
dµ(z)

.

∫

Bn

∫

Bn

|f(w)|q

ub(Bβ(w, r))
11Bβ(z,r)(w)u(w)dvb(w)dµ(z)

=

∫

Bn

11Bβ(w,r)(z)

∫

Bn

|f(w)|q

ub(Bβ(w, r))
u(w)dvb(w)dµ(z)

=

∫

Bn

|f(w)|q

ub(Bβ(w, r))
u(w)

∫

Bn

11Bβ(w,r)(z)dµ(z)dvb(w)

=

∫

Bn

µ(Bβ(w, r))

ub(Bβ(w, r))
|f(w)|qu(w)dvb(w)

≤
∥∥∥ µ(Bβ(w, r))

ub(Bβ(w, r))

∥∥∥
L

p
p−q
b

(u)
‖f‖q

A
p
b
(u)

.

It remains to prove the necessity. For {cj} ∈ ℓp, we define

f(z) =

∞∑

j=1

cj
(1− |aj |)

n+1+b

(1− zaj)n+1+b
· ub(B(aj , 2r0))

− 1
p ,

where {aj} ⊂ Bn and r0 > 0 satisfy the conditions in Lemma 2.1. It is followed by [6, Theorem

4.1] that

‖f‖p
A

p
b
(u)

= ‖{cj}‖
p
ℓp ≃

∞∑

j=1

|cj |
p. (3.1)

According to the embedding condition, we now get

‖f‖q
Lq(dµ) =

∫

Bn

∣∣∣
∞∑

j=1

cj
(1 − |aj |)

n+1+b

(1 − zaj)n+1+b
· ub(B(aj , 2r0))

− 1
p

∣∣∣
q

dµ(z).
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Applying Fubini’s theorem and Khinchine’s inequality, we deduce that

∫

Bn

( ∞∑

j=1

|cj |
2 (1 − |aj |)

2(n+1+b)

|1− zaj |2(n+1+b)

1

ub(Bβ(aj , 2r0))
2
p

) q
2

dµ(z)

.

∫

Bn

∫ 1

0

∣∣∣Rj(t)cj
(1 − |aj |)

n+1+b

(1 − zaj)n+1+b
· ub(B(aj , 2r0))

− 1
p

∣∣∣
q

dtdµ(z)

=

∫ 1

0

∫

Bn

∣∣∣Rj(t)cj
(1 − |aj |)

n+1+b

(1 − zaj)n+1+b
· ub(B(aj , 2r0))

− 1
p

∣∣∣
q

dµ(z)dt

.

∫ 1

0

( ∞∑

j=1

|cjRj(t)|
p
) q

p

dt =
( ∞∑

j=1

|cj |
p
) q

p

,

where the last inequality follows the condition (a) and (3.1).

It is easy to see that

11Bβ(aj ,2r0)(z) .
( 1− |aj |

|1− zaj |

)2(n+1+b)

where the constant involved depends on r only. Then we can obtain

∞∑

j=1

|cj |
q ·

µ(Bβ(aj , 2r0))

ub(Bβ(aj , 2r0))
q
p

=

∫

Bn

∞∑

j=1

|cj |
q11Bβ(aj ,2r0)(z)

ub(Bβ(aj , 2r0))
q
p

dµ(z)

.

∫

Bn

( ∞∑

j=1

|cj |
211Bβ(aj ,2r0)(z)

ub(Bβ(aj , 2r0))
2
p

) q
2

dµ(z)

.

∫

Bn

( ∞∑

j=1

|cj |
2

ub(Bβ(aj , 2r0))
2
p

·
( 1− |aj |

|1− zaj |

)2(n+1+b)) q
2

dµ(z)

.
( ∞∑

j=1

|cj |
p
) q

p

.

Since the sequence {cj} is chosen arbitrarily from ℓp, the sequence

{ µ(Bβ(aj , 2r0))

ub(Bβ(aj , 2r0))
q
p

}
∈ ℓ

p
p−q = (ℓ

p
q )∗.

That is
∞∑

j=1

( µ(Bβ(aj , 2r0))

ub(Bβ(aj , 2r0))

) p
p−q

· ub(Bβ(aj , 2r0)) < ∞.

Now we consider the L
p

p−q norm of the function

z 7→
µ(Bβ(z, r))

ub(Bβ(z, r))
,

where 0 < r < r0
r0+1 . It is easy to see that Bβ(z, r) ⊂ Bβ(w, 2r0) for those z ∈ Bβ(w, r0). Hence

we obtain that
∫

Bn

( µ(Bβ(z, r))

ub(Bβ(z, r))

) p
p−q

u(z)dvb(z)

.

∞∑

j=1

∫

Bβ(aj ,r0)

( µ(Bβ(z, r))

ub(Bβ(z, r))

) p
p−q

u(z)dvb(z)
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.

∞∑

j=1

( µ(Bβ(aj , 2r0))

ub(Bβ(aj , 2r0))

) p
p−q

∫

Bβ(aj ,2r0)

u(z)dvb(z) < ∞.

That completes the proof.

The measure µ characterized in Theorems 3.1–3.2 is called a (Ap
b (u), q)-Carleson measure.

Using very similar methods to those above, one can also characterize the compactness of the

embedding map from A
p
b(u) to Lq(dµ), where the measure µ is also called the (Ap

b (u), q)-

vanishing Carleson measure. We just include the statements without the proofs.

Theorem 3.3 Suppose that q ≥ p > 0, p0 > 1, r > 0, u ∈ Bp0,b is a weight and µ is a

positive Borel measure on Bn. Then the following conditions are equivalent.

(a) The embedding I : Ap
b(u) → Lq(dµ) is compact, that is

lim
k→∞

∫

Bn

|fk(z)|
qdµ(z) = 0,

whenever {fk} is bounded in A
p
b(u) that converges to 0 uniformly on compact subsets of Bn;

(b)
µ(Ta)

ub(Ta)
q
p

→ 0 as |a| → 1;

(c)
µ(Bβ(a, r))

ub(Bβ(a, r))
q
p

→ 0 as |a| → 1;

(d)
µ(Bβ(ak, r))

ub(Bβ(ak, r))
q
p

→ 0 as k → ∞,

where {ak} is the sequence described in Lemma 2.1.

Theorem 3.4 Suppose that p > q > 0, r > 0, u ∈ Bp0,b is a weight and µ is a positive

Borel measure on Bn. Then the embedding I : Ap
b(u) → Lq(dµ) is compact if and only if I is

bounded.

4 Toeplitz-Type Operators

In this section, we will characterize the boundedness, compactness and Schatten class of

Toeplitz type operators on A2
b(u) for the Békollé weight u.

If f, g ∈ A2
b(u), the inner product is given by

〈f, g〉A2
b
(u) =

∫

Bn

f(w)g(w)u(w)dvb(w).

According to Lemma 2.3, the reproducing kernel of A2
b(u) will be denoted by K(z, w). Given

a positive Borel measure µ on Bn, the Toeplitz operator Tµ associated with µ on A2
b(u) is the

linear transformation defined by

Tµf(z) :=

∫

Bn

f(w)K(z, w)dµ(w), z ∈ Bn.
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For every f, g ∈ A2
b(u), we have

〈Tµf, g〉A2
b
(u) =

∫

Bn

Tµf(z)g(z)u(z)dvb(z)

=

∫

Bn

∫

Bn

f(w)K(z, w)dµ(w)g(z)u(z)dvb(z)

=

∫

Bn

f(w)

∫

Bn

g(z)K(w, z)u(z)dvb(z)dµ(w)

=

∫

Bn

f(w)g(w)dµ(w).

By the straightforward computation above, one can get

〈Tµf, g〉A2
b
(u) = 〈f, g〉L2(dµ). (4.1)

According to that observation and applying Theorems 3.1 and 3.3, one can get the following

characterization of Toeplitz operators.

Theorem 4.1 If p0 > 1 and u ∈ Bp0,b. Let µ be a positive Borel measure on Bn. Then the

following are equivalent:

(a) The Toeplitz operator Tµ is bounded on A2
b(u);

(b) µ(Tz) . ub(Tz) for every z ∈ Bn;

(c) µ(Bβ(z, r)) . ub(Bβ(z, r)) for every z ∈ Bn and r > 0;

(d) µ(Bβ(ak, r) . ub(Bβ(ak, r)) for the sequence {ak} described in Lemma 2.1.

Furthermore, the following are equivalent:

(a) The Toeplitz operator Tµ is compact on A2
b(u);

(b)
µ(Ta)

ub(Tz)
→ 0 as |z| → 1;

(c)
µ(Bβ(z, r))

ub(Bβ(z, r))
→ 0 as |z| → 1;

(d)
µ(Bβ(ak, r))

ub(Bβ(ak, r))
→ 0 as k → ∞,

where {ak} is the sequence described in Lemma 2.1.

Proof We note that Tµ = I∗I from (4.1), where I∗ is the adjoint operator of the embedding

I : A2
b(u) → L2(dµ). The proof is completed.

It is well known that the Berezin trasform plays a role in the theory of Toeplitz operator.

The Berezin transform of the Toeplitz operator Tµ is given by

µ̃(z) := 〈Tµkz, kz〉A2
b
(u), z ∈ Bn,

where kz(w) :=
K(w,z)

‖K(·,z)‖
A2

b
(u)

is the normalized reproducing kernel of A2
b(u). It follows (4.1) that

the Berezin transform µ̃ is obtained by

µ̃(z) =

∫

Bn

|kz(w)|
2dµ(w), z ∈ Bn.
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Proposition 4.1 If p0 > 1 and u ∈ Bp0,b. Let µ be a positive Borel measure on Bn. If Tµ

is bounded on A2
b(u), then the Berezin transform µ̃ is bounded on Bn.

Proof Since u ∈ Bp0,b, by Lemma 2.3 one gets that:

|kz(w)|
2 .

1

ub(Bβ(w, r))

∫

Bβ(w,r)

|kz(ζ)|
2u(ζ)dvb(ζ),

where z ∈ Bn and r > 0. Let {aj} and r > 0 be chosen as in Lemma 2.1. We have

µ̃(z) ≤

∞∑

j=1

∫

Bβ(aj ,r)

|kz(w)|
2dµ(w)

.

∞∑

j=1

∫

Bβ(aj ,r)

1

ub(Bβ(w, r))

∫

Bβ(w,r)

|kz(ζ)|
2u(ζ)dvb(ζ)dµ(w)

. sup
j

µ(Bβ(aj , r))

ub(Bβ(aj , r))

∞∑

j=1

∫

Bβ(aj,2r)

|kz(ζ)|
2u(ζ)dvb(ζ)

. sup
j

µ(Bβ(aj , r))

ub(Bβ(aj , r))
.

The proof is completed.

Recall that if {ek} is an orthonormal basis of A2
b(u), then the Bergman kernel in A2

b(u) is

given by

K(z, w) =
∑

k

ek(z)ek(w),

and

K(z, z) =
∑

k

|ek(z)|
2.

If p ≥ 1, the Toeplitz operator Tµ ∈ Sp if and only if

∑

k

|〈Tµek, ek〉A2
b
(u)|

p < ∞. (4.2)

Lemma 4.1 Suppose that p0 > 1 and u ∈ Bp0,b. Then there is an r ∈ (0, 1) such that

K(z, z) ≃ ub(Bβ(z, r))
−1, z ∈ Bn. (4.3)

Proof By Lemma 2.3, we have

|K(w, z)| .
‖K(·, z)‖A2

b
(u)

ub(Bβ(w, r))
1
2

=

√
K(z, z)

ub(Bβ(w, r))
1
2

.

Then we will get one of the inequalities in (4.3).

To prove the reverse inequality, by choosing s ≥ (n+ 1 + b)p0

2 , the function

Fw(z) :=
(1− |w|2)s

ub(Tw)
1
2 (1− zw)s

belongs to A2
b(u) according to Lemma 2.4. We can find a dyadic tent covering Tw with

comparable volume by [11, Lemma 2.5], and we denote it by K̂w. Then it is followed by
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[11, Lemma 2.3(i)] that there are constants r′ and r depending only on λ and θ such that

Bβ(w, r
′) ⊂ K̂w ⊂ Bβ(w, r). Let

fw(z) :=
(1− |w|2)s

ub(Bβ(w, r))
1
2 (1− zw)s

,

then fw ∈ A2
b(u) with ‖fw‖A2

b
(u) ≃ ‖Fw‖A2

b
(u). We have

1

ub(Bβ(w, r))
1
2

= fw(w) = 〈fw,K(·, w)〉A2
b
(u)

≤ ‖fw‖A2
b
(u)‖K(·, w)‖A2

b
(u) .

√
K(w,w).

The proof is completed.

Now we turn to characterize the measure µ so that Tµ belongs to the Schatten class Sp,

p ≥ 1. We aim to extend the results in the setting of standard Bergman spaces (see [7, 9]) to

the Bergman spaces with Békollé weights.

Theorem 4.2 If p0 > 1 and u ∈ Bp0,b. Let µ be a positive Borel measure on Bn. Then

Toeplitz operator Tµ belongs to the Schatten class Sp for some p ≥ 1, if and only if

∑

j

( µ(Bβ(aj , r))

ub(Bβ(aj , r))

)p

< ∞, (4.4)

where the sequence {aj} and r > 0 satisfy the conditions in Lemma 2.1.

Proof We firstly prove the sufficiency. Since u ∈ Bp0,b, one can employ Lemma 2.3 to get

that

|ek(z)|
2 .

1

ub(Bβ(z, r))

∫

Bβ(z,r)

|ek(w)|
2u(w)dvb(w)

for every positive integer k. Since (4.4) implies that Tµ is compact on A2
b(u), we have

( ∫

Bn

|ek(z)|
2dµ(z)

)p

.
( ∫

Bn

1

ub(Bβ(z, r))

∫

Bβ(z,r)

|ek(w)|
2u(w)dvb(w)dµ(z)

)p

.
( ∫

Bn

∫

Bn

11Bβ(z,r)(w)

ub(Bβ(w, r))
|ek(w)|

2u(w)dvb(w)dµ(z)
)p

=
( ∫

Bn

1

ub(Bβ(w, r))
|ek(w)|

2u(w)

∫

Bn

11Bβ(w,r)(z)dµ(z)dvb(w)
)p

=
( ∫

Bn

µ(Bβ(w, r))

ub(Bβ(w, r))
|ek(w)|

2u(w)dvb(w)
)p

.

∫

Bn

( µ(Bβ(w, r))

ub(Bβ(w, r))

)p

|ek(w)|
2u(w)dvb(w) ·

( ∫

Bn

|ek(w)|
2u(w)dvb(w)

)p′

=

∫

Bn

( µ(Bβ(w, r))

ub(Bβ(w, r))

)p

|ek(w)|
2u(w)dvb(w).

Plugging this into (4.2), we have

∑

k

|〈Tµek, ek〉A2
b
(u)|

p =
∑

k

(∫

Bn

|ek(z)|
2dµ(z)

)p
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.
∑

k

∫

Bn

( µ(Bβ(w, r))

ub(Bβ(w, r))

)p

|ek(w)|
2u(w)dvb(w)

=

∫

Bn

( µ(Bβ(w, r))

ub(Bβ(w, r))

)p

K(w,w)u(w)dvb(w)

.

∞∑

j=1

( µ(Bβ(w, r))

ub(Bβ(w, r))

)p
∫

Bβ(aj ,r)

ub(Bβ(w, r))
−1u(w)dvb(w)

.

∞∑

j=1

( µ(Bβ(w, r))

ub(Bβ(w, r))

)p

ub(Bβ(aj , r))
−1

∫

Bβ(aj ,r)

u(w)dvb(w)

=

∞∑

j=1

( µ(Bβ(w, r))

ub(Bβ(w, r))

)p

,

which proves the sufficiency.

To prove the necessity, assume Tµ ∈ Sp. Setting s ≥ (n + 1 + b)p0

2 , we firstly define an

operator A on the othonormal basis of A2
b(u) then extend linearly to the whole space as follows:

Aej(z) =
(1− |aj |)

s

(1− zaj)s
·

1

ub(Bβ(aj , r))
1
2

, z ∈ Bn, j = 1, 2, · · · .

By [6, Theorem 4.1], A is surjective, hence A∗TµA ∈ Sp. That is

∑

j

|〈A∗TµAej , ej〉A2
b
(u)|

p < ∞.

On the other hand, we have

∑

j

|〈A∗TµAej , ej〉A2
b
(u)|

p =
∑

j

|〈TµAej , Aej〉A2
b
(u)|

p

=
∑

j

( ∫

Bn

(1 − |aj |)
2s

(1 − zaj)2s
·

dµ(z)

ub(Bβ(aj , r))

)p

≥
∑

j

( ∫

Bβ(aj ,r)

(1 − |aj |)
2s

(1 − zaj)2s
·

dµ(z)

ub(Bβ(aj , r))

)p

≃
∑

j

( µ(Bβ(aj , r))

ub(Bβ(aj , r))

)p

,

which completes the proof.

Proposition 4.2 If p0 > 1 and u ∈ Bp0,b. Let µ be a positive Borel measure on Bn. If

Tµ ∈ Sp(A2
b(u)), then the Berezin transform µ̃ ∈ L

p
b(u) for 0 < p < ∞.

Proof Firstly, we fix r as stated in Lemma 4.1. Suppose Tµ ∈ Sp, that is

∑

j

( µ(Bβ(aj , r))

ub(Bβ(aj , r))

)p

< ∞,

where {aj} and r > 0 satisfy the conditions in Lemma 2.1. By Lemma 4.1, we have

∫

Bn

µ̃(z)pu(z)dvb(z)
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.

∫

Bn

(∑

j

∫

Bβ(aj ,r)

|kz(w)|
2dµ(w)

)p

u(z)dvb(z)

≤

∫

Bn

(∑

j

∫

Bβ(aj ,r0)

‖K(·, w)‖2dµ(w)
)p

u(z)dvb(z)

≃

∫

Bn

(∑

j

∫

Bβ(aj ,r)

ub(Bβ(w, r))
−1

dµ(w)
)p

u(z)dvb(z)

.

∫

Bn

(∑

j

µ(Bβ(aj , r))

ub(Bβ(aj , r))

)p

u(z)dvb(z)

.
∑

j

( µ(Bβ(aj , r))

ub(Bβ(aj , r))

)p
∫

Bn

u(z)dvb(z) < ∞.

That completes the proof.

5 Composition Operators

Every holomorphic ϕ : Bn → Bn induces a composition operator

Cϕ : H(Bn) → H(Bn),

namely, Cϕf = f ◦ ϕ. When n = 1, it is well known that Cϕ is always bounded on A
p
b(D), and

Cϕ is compact on A
p
b (D) if and only if

lim
|z|→1

1− |z|2

1− |ϕ(z)|2
= 0.

When n > 1, there are lots of unbounded composition operators on classical Bergman spaces

with standard weights Ap(Bn, dvb). Interested readers can see more details in [4, 13].

For a positive weight function u on Bn, we consider the pullback measure of dub = udvb

under the map ϕ : Bn → Bn, given by

µϕ,u,b(E) = ub(ϕ
−1(E))

for any Borel subset E of Bn.

By the embedding theorems in Section 3, one can get the characterization of bounded and

compact composition operators between different weighted Bergman spaces.

Theorem 5.1 Let 0 < p ≤ q < ∞, p0 > 1 and u be a Bp0,b weight. If ϕ : Bn → Bn is a

holomorphic map, and let µϕ,u,b be the pullback measure defined above. Then the following are

equivalent:

(a) Composition operator Cϕ : Ap
b(u) → A

q
b(u) is bounded;

(b) the pullback measure µϕ,u,b is a Carleson measure:

µϕ,u,b(Tw)

ub(Tw)
q
p

. 1;

(c) when s ≥ (n+ 1 + b)p0

p
, the equality

(1− |w|2)qs

(ub(Tw))
q
p

∫

Bn

u(z)dvb(z)

|1− wϕ(z)|qs
. 1

holds for all w ∈ Bn.
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Proof The proof of (b)⇒(a) follows directly from the definition of the pullback measures

and the characterization of the Carleson measures in Theorem 3.1.

To prove (a)⇒(c), we denote by

fw(z) =
(1− |w|2)s

ub(Tw)
1
p (1− wz)s

for some s ≥ (n + 1 + b)p0

p
and w ∈ Bn. It follows from Lemma 2.4 that fw ∈ A

p
b (u) for all

w ∈ Bn. Let Cϕ act on fw. Then we have

∫

Bn

(1− |w|2)qs

ub(Tw)
q
p |1− wϕ(z)|qs

u(z)dvb(z) = ‖Cϕ(fw)(z)‖
q

A
q
b
(u)

≤ ‖Cϕ‖
q‖fw‖

q

A
p
b
(u)

.

It remains to prove (c)⇒(b). Just note that

1 &
(1− |w|2)qs

ub(Tw)
q
p

∫

Bn

u(z)dvb(z)

|1 − wϕ(z)|qs

=
(1− |w|2)qs

ub(Tw)
q
p

∫

Bn

dµϕ,u,b(z)

|1 − wz|qs
≥

(1− |w|2)qs

ub(Tw)
q
p

∫

Tw

dµϕ,u,b(z)

|1− wz|qs

≃
µϕ,u,b(Tw)

ub(Tw)
q
p

,

which completes the proof.

Remark 5.1 We can deduce from the proof above that

‖Cϕ‖
p

A
p

b
(u)

& sup
z∈Bn

µϕ,u,b(Tw)

ub(Tw)
.

A similar argument gives the following characterization of the compactness of Cϕ on A
p
b (u).

Theorem 5.2 Let 0 < p ≤ q < ∞, p0 > 1 and u be a Bp0,b weight. If ϕ : Bn → Bn is a

holomorphic map, and let µϕ,u,b be the pullback measure. Then Cϕ : Ap
b(u) → A

q
b(u) is compact

if and only if µϕ,u,b is a vanishing Carleson measure if and only if

lim
|w|→1

(1− |w|2)qs

ub(Tw)
q
p

∫

Bn

u(z)dvb(z)

|1− wϕ(z)|qs
= 0 (5.1)

for s ≥ (n+ 1 + b)p0

p
.

Now we turn to the case 0 < q < p < ∞. The following result is a direct consequence of

Theorems 3.2 and 3.4.

Theorem 5.3 Let 0 < q < p < ∞, p0 > 1 and u be a Bp0,b weight. If ϕ : Bn → Bn is a

holomorphic map, and let µϕ,u,b be the pullback measure defined above. Then the following are

equivalent:

(a) The operator Cϕ : Ap
b(u) → A

q
b(u) is bounded;

(b) the operator Cϕ : Ap
b(u) → A

q
b(u) is compact;

(c) the function on Bn,

z 7→
µϕ,u,b(Bβ(z, r))

ub(Bβ(z, r))

belongs to L
p

p−q (u), for some r ∈ (0, 1).
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At the end of this section, we consider the Schatten class membership ofCϕ : A2
b(u) → A2

b(u).

Theorem 5.4 If p ≥ 2, p0 > 1 and u ∈ Bp0,b. Suppose ϕ is a holomorphic self-map of Bn,

and µϕ,u,b is the pullback measure. Then Cϕ : A2
b(u) → A2

b(u) belongs to Sp if and only if

∑

j

(µϕ,u,b(Bβ(aj , r))

ub(Bβ(aj , r))

) p
2

< ∞,

where the sequence {aj} and r > 0 satisfy the conditions in Lemma 2.1.

Proof Note that K(z, w) is the reproducing kernel of A2
b(u). The adjoint operator C

∗
ϕ may

be computed as

C∗
ϕf(z) = 〈C∗

ϕf,K(·, z)〉A2
b
(u) = 〈f, CϕK(·, z)〉A2

b
(u) = 〈f,K(ϕ(·), z)〉A2

b
(u)

=

∫

Bn

f(w)K(z, ϕ(w))u(w)dvb(w).

So we have

C∗
ϕCϕf(z) =

∫

Bn

f(w)K(z, w)dµϕ,u,b(w) = Tµϕ,u,b
f(z).

Then it is clear that Cϕ ∈ Sp if and only if Tµϕ,u,b
∈ S

p
2 . The proof is completed.

6 Final Remarks

In [14], Zhu characterizes the Schatten p class of Toeplitz operator on the standard weighted

Bergman spaces A2
b when 0 < p < 1. The situation on the weighted Bergman spaces A2

b(u)

with Békollé weights u seems rather different. One of the obstacles is that we can not compute

u(Φζ(w)) directly when we change the variable by the möbius automorphisms z = Φζ(w).

Meanwhile, in Zhu’s paper [14], making the change of variables by the automorphisms of the

unit ball is of importance to control the ℓp norm of the sequence {µ̂r(ak)} by the Schatten

p norm of the Toeplitz operator. To make matters worse, there is no evidence that we have

enough ingredients to estimate the integral after making the change of variables. According to

the definition of the Békollé weights, the reason seems to be clear in the spirit of the following

two aspects.

(1) We have the local conditions on the weight u. So the weight u behaves “stable” if we

only do the analysis on the small local pieces of the unit ball.

(2) We lack the global property of the weight u. The möbius automorphism can map 0 to

any other point in the unit ball. So u could be hard to control when we change the variables

by möbius automorphisms. The original piece can be transferred to any other new piece of the

ball.

It is well known that the Berezin transform is a powerful tool to study the Toeplitz operators

on the standard weighted Bergman spaces. Our results Propositions 4.1–4.2 give the necessary

conditions of the boundedness and Schatten class of the Toeplitz operators in terms of the

Berezin transforms. The sufficient parts seem to be rather different to the case of the standard

weighted Bergman spaces, especially in several complex variables. In the proof of the standard

weighted Bergman spaces, the reproducing kernel of A2
b is 1

(1−zw)2+b . It is relatively easy to
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estimate the kernel from below. In the setting of Békollé weights, we also need to estimate the

reproducing kernel of A2
b(u) from below. Because it is uncertain that the kernel coincides with

any explicit function. We have to estimate the kernel without any explicit computation. By

generalizing the results in [5], on the unit disk, we have settled the estimate of the kernel from

below and completely characterized the Toeplitz operator in terms of the Berezin transform

(see [12]). Unfortunately, the method seems to be invalid on the unit ball, because the zeros

distribution of the holomorphic functions in several complex variables varies the case in the one

complex variable.
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