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Abstract In this paper, the authors characterize Carleson measures for the weighted
Bergman spaces with Békollé weights on the unit ball. They apply the Carleson embedding
theorem to study the properties of Toeplitz-type operators and composition operators
acting on such spaces.
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1 Introduction

For a positive integer n, we let B,, denote the open unit ball in n-dimensional complex
Fuclidean space C™. Let dV be the standard Lebesgue measure on B,,. For b > —1, the
constant ¢ is chosen so that [, ¢p(1—[2[*)?dV(2) = 1. We define dvy(z) = c(1 — [2[*)*dV (2).
The Bergman space A} (B,,) is defined to be the space of holomorphic functions on B,, with
finite L} norm. That is f € A} if it is holomorphic and

£ = [ 1FPdune) < .

n

If b > —1 and u € L'(dvy) is a weight, let L?(u) denote the space of measurable functions
on B,, that are pth power integrable with respect to u(z)dvy(z). That is

1 f ey = (/ |f(2)|pu(z)dvb(z))% < 0.

n

Recall that for r > 0 and z € B, the set
Ba(z,r) :={w € B, : B(z,w) <7}

is a Bergman metric ball centered at z with radius 7.
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The Carleson tent over a non-zero z € B,, is defined to be the set:

Tz::{wGBn:‘l—%‘<l—|z|},
z

n
where 20 = ) z;w;. The Carleson tent over 0 is B,,.
=1
We define the D, 45 characteristic of two weights u, o by

[u,0]p, ,, = sup

(sz oduy, )p‘l sz udvpatp
z€B,

sz dvb sz d’l}pa+b '

Throughout the paper, we will use the notation defined in Section 2 to make this more compactly

as:
—1; \dvpa
[4,0]D,00 = sup ((0)F2)P ™" (u) 7",
z2€B,
Let p’ be the conjugate number of p. We denote by u € By if [u]p, , := [u,0]p, ,, < 00, where

’

o =u""7 is the dual weight of u. If p > 1, according to the Holder inequality one can obtain
that [u]p,, > 1. To be more precise,

/ dvb=/ u% -u_%dvb
T, T,
1 , _a
< (/Tz udvb)p . (/Tz u_%dvb) " (1.1)

Békollé and Bonami introduced these weights in [1-2], and characterized the boundedness of
the Bergman projection. The sharp dependence of the operator norm on the B, ; characteristic
was given by Pott and Reguera [10] and Rahm, Tchoundja and Wick [11]. This was proven for
the upper half plane of C in [10] and for the ball in [11].

Constantin proved Carleson-type embedding theorems for weighted Bergman spaces with
Békollé weights on the unit disk, and characterized the boundedness, compactness and Schatten
class of Toeplitz type operators, integral operators and composition operators in [3]. The goal
of this paper is to generalize these results to the setting of the unit ball. The key tool is the
“test function” (1 — zw)~° in the weighted Bergman spaces with Békollé weights.

The paper is organized as follows. In Section 2, we briefly give the preliminaries and back-
ground information. We recall a covering lemma and prove the key lemma on the norm estimate
of the test function (1 —zw)®. In Section 3, we completely characterize the Carleson embedding
theorem from A} (u) to L7(dp). In Section 4, we use the Carleson measure to study the Toeplitz
type operators. In Section 5, the boundedness and compactness of composition operators are
characterized.

Throughout the paper, for real positive quantities @1 and Qa2, we write @1 < Q2 (or
Q2 = Q1) if there is a positive constant C' (independent of the “key” variables) such that
Q1 < C- Q2. And we write Q1 ~ Q2 if Q1 S Q2 and Q1 2 Q2.

2 Preliminaries
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The following notations will be used throughout the paper. For a weight v and E C B,
we set up(E) = [y udv, and voly(E) = [, dv, and define ()5 := p(E)~" [, f(z)du(z) for
integrable f and measure pu.

Let @, be the involution of B,,. Using ®,, we define the so-called Bergman metric, 8 on B,,,
by:

L+ |2 (w)|
1- |(I)z (w)| '

Let Bg(z,r) be the ball in the Bergman metric of radius r centered at z. It is well known that
for w € Bg(z,r) there holds:

Blz,w) = 5 lo

voly(Bs(z,r)) ~ |1 — w3|”+1+b ~(1- |z|2)"+1+b ~ (1-— |w|2)”+1+b,
and the characteristic functions

ﬂBg(zJ) (’UJ) = ﬂBﬂ(ww) (Z)
We need the following covering lemma in the proofs of our main results.

Lemma 2.1 (see [13, Theorem 2.23]) There exists a positive N such that for any 0 <r <1
we can find a sequence {ax} in B,, with the following properties:

(1) Bn = U Bg(ax, r);
k
(2) the sets Bg(ax, %) are mutually disjoint;
(3) each point z € B,, belongs to at most N of the sets Bg(ax, 2r).

We will also use the following class of weights which is denoted by Cj ;. A positive locally
integrable weight u belongs to C), 5, or say u satisfies C), ; condition if

[ulc,., == sup <“>dB1;b(Z,r)(<u_%>(1131;b(z7r))p_1 S1
2€B,
for some 0 < 7 < 1. Condition Cp; seems to depend on a choice of 7, but it is known that the
same class of weights is obtained for any r € (0,1) and By, C Cp; for every b > —1. To see
this, we note that for a given r, there is a o’ € B,, such that Bg(a,r) C T, with comparable
volumes. It follows that
[ulB,, = Clulc

p,b?

where the constant C' > 0 may depend on r. See the details in [6]. Interested readers can also
refer in [11] for further discussions on the D, ,; weights.

Lemma 2.2 Suppose that uw € Cp for somep > 1, and let t,s € (0,1), and z,w € B,, with
B(z,w) <r for some r > 0. Then we have

up(Bg(z,1)) ~ up(Bs(w, ),
where the constant is independent of z and w.

Proof Notice that if Bg(z,t) C Bg(w,s), then u € Cp,;, and B(z,w) < r imply that

1

up(Bg(2,1))7 < up(Bg(w, 8))7 < voly(Bg(w, 8))on(Bs(w, 5))

%
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< volb(Bﬁ(w,3))%(35(40)—# < voly(Bs(w, s))

S W%(Bﬁ(zat));

o~ ub(Bg(Z,t))%.
For general case, we have Bg(z,t), Bg(w, s) C Bg(w,t + s+ r), and hence we have
up(Ba(z,t)) ~ up(Bg(w, t + s + 1)) ~ up(Bg(w, s)).

The proof is completed.

The point evaluations on Aj(u) are bounded linear functionals for p > 0. To be more
precisely, we have the following estimate.

p/
Lemma 2.3 (see [6, Lemma 3.1]) Ifpy > 1,0 <r <1 and a weight u € Cp, p, 0 = u,
we have the following estimate

lf(2)|P < up(Bgs(z T‘))_l/ | f () [Pu(uw) oy (w) < Hf”ig(u)
~Y b 9 b < 77
e} Bg(z,r) Ub(Bg(z,r))
where the constant involved is independent of z € B,,.

If s > 0, we denote G5,(2) = (1 — zw)~® for z,w € B,,. We will make heavy use of this
function in our discussion. It is necessary to estimate its L} (u) norm.

Lemma 2.4 Letp >0, po > 1, b > —1 and the weight w € By, . We have

ub(Tw)%

(1 B |’UJ|)maX { (n+1;b)P0 )S}

1
Up T’w » s
( ))S < NG e < , @)

(1 — [wl

where the constant involved is independent of w € B, .
Proof If z € T}, then

1—|w| > ‘1—£‘ 2|1—zw|—‘zw—ﬁ
|w |w
2 1 —zw| = (1 = w]).

That is 1 — |w| > @, and it is obvious that

ub(Tw) < 1 -
__b\Tw) I -
(1 — |w|)ps ~ - |1 — Zm|psu(2)d’l)b(2) < ”GU}HLf(u)

On the other hand, we firstly consider the case when s > (n + 1 + b)%“. Denote by
Eo =T, FEj—= {zeIB%n : ‘1—%’ <2’f(1—|w|)}, E=1,2,--
w
and Eg = EO,Ek =FEi\ Ex_1, k=1,2,---. It is easy to see that
voly(Ey) ~ (2%(1 — |w]))"+1+°.

Then we can obtain the following estimate under this decomposition of B, .
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oIf z € Ey, |1 — zw| > 1 — |w|, and
eif z€ Ej, for k> 1,

12 = 1= 7= (0 ful) 2250~ )

Denote by

(1 =281 — |wl)) iy, 251 —|w]) <1
WE = . k
0, if 2(1 — |w|) > 1

One can easily find that
2ZWg

By, =T, :{zGBn : ‘I_W‘ < (1—|wk|)} if 28(1 — |w|) < 1
k

and By, C Ty, = To = By, if 2¥(1 — |w|) > 1. Since u € B, s, for every positive integer k, we

have
VOlb(ka )Po < voly, (ka );Do

/ u(z)dv(z)g/ u(z)dwy(2) o < o
5 () Tt (), (T
Po k — |w|))” 1+b\ po
< (WlTw)ym,, ) < (ZU0ZT0D) ++) wn(T)

voly(Ty) (1 — w|)nt1+b

_ 2kp0 (n+140d) up (Tw) )

A

Now we can estimate the norm [|G3,[| Lz () as follows:

s 1
Gl = | s ()

B, |1 — 2w[P*

oo

1
=3 o T
= 1
S 2 e v

< ub(Tw) i 1 < ub(Tw)
~ (= Jul)pe g 2030~ (1= Jw])pe”
k=0

where the final inequality follows by s > (n+ 1+ b)E2. Now we have proved that (2.1) holds
for s > (n+1+4b)E. When s = (n+1+b)E2, we have

1

ub(Tw) P

n+1+b)
HA?(U) ~ (1- |w|)(n+1+b)%0+e’

|| G(n+l+b)

gy < 271G
whenever ¢ > 0. By letting ¢ — 0 on the right hand side, we find (2.1) holds true for s =

(n+1+0b)E. Similarly, we can obtain

up(To) 7

(n+l+b)—
||A§(u) ~ (1 . |’w|)(n+1+b)pTO7

||G ||AT" )<2(n+l+b)f—s||G

when 0 < s < (n+1+b)2. That completes the proof.
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3 Embedding Theorems

In this section, we will study the boundedness and the compactness of the embedding
I: AP (u) — L9(dp). We firstly consider the case 0 < p < ¢ < c0.

Theorem 3.1 Suppose that ¢ > p >0, po > 1, u € By, is a weight and [ is a positive
Borel measure on B,,. Then the following conditions are equivalent.
(a) The embedding I : A} (u) — L(dp) is bounded, that is

1

([ 1r@man)’ < ([ eriedne)’

for all holomorphic f m B.,;

(b) u(Ty) < up(To)# for all a € By;

(c) there is an r > 0 such that u(Bg(a,r)) S ww(Bg(a,r )+ for all a € By;

(d) there is anr > 0 such that u(Bg(ax, r)) S up(Bg(ak .1))7 for the sequence {ay} described
i Lemma 2.1;

(e) whenever s > (n+1+b)E2,

/ 1—|wl?|e
sup ‘ —
weB,, JB, 1—-zw

Proof Firstly we prove (a) = (b). By choosing an s > n + 1 4+ b we get

d G31, <77
A=) ~ Jy, 1=z P& S Gl S T qw

“up(Bs(w,r)) " Edu(z) < 1.

where we use the condition (a) in the second inequality and Lemma 2.4 in the third inequality.
To prove (b) = (c), we let r be sufficiently small and fixed. It will be done to prove

p(Bs(a, 7)) S up(Bg(a,r))»

for all |a| > tanh(2r). According to [13, Lemma 5.23], there is a constant o € (0,1) which
depends only on r, such that Bg(a,r) C Ty where a/ = (1 — 1(1 — |a|))‘%‘ By [11, Lemma
2.3], we find

voly(Tw) =~ (1 — |a/|)" 10 ~ 77170 (1 — |a?)" T ~ voly(Bs(a, r)).

Then we use the condition of By, ; to get uy(Bg(a,r)) =~ up(Ty) as follows, which is analogues

to the proof of Lemma 2.2. That is

O\|"‘

up(Ba(a,m))75 < up(T) 75 S volu(Tur )y (Tur) 76 < volu(T )y (Ba(a, )7

_ VOlb(Ta/) N %
voly (B (a r)) 8@ )70 = wal(By(a, )7

A

Hence we have
w(Bg(a,r)) < p(Tar) S up(Tar) =~ up(Bs(a,r)).

To prove (a) = (e), we denote by

gu(2) = (

-

) et
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By following Lemma 2.4, we have

1— |w|? 4
ng”Lq dﬂ) —
]BTL

1—zw

—4a s
uy(Ba(w, )" 7du(z) < 1lgmll%e w =L

We can conclude (e)

= (c) by noting that (1 — |w|?)|1
and it implies that

— 2w| ™! ~ 1 whenever B(z,w) < 7,

LB, i Ul T w,r)) " v du(z
ub(Bﬁ(w’T))% ‘/Bg(w,r) (|1 - ZE|) b(BB( ’ )) d/L( )

< [ () it o) <1

The proof of (¢) = (d) is obvious.
It remains to prove (d) =

(a). If f is holomorphic in B"™, then by Lemma 2.3 we have

[erua sy [ e ([ o)

zk:/B (an,r) m(/Bﬂ(ak,?F) |f(w)|qu(w)dvb(w))dlu(z)

=y #Bslarr) (e (u
= 3 AT oy

<

~

Sgﬁmmywmmmﬁwwwmwwwm@
SMIMZ/

<171

w)[Pu(w)duvy(w)

(ak, 27’)

where the last inequality is deduced by Lemma 2.1. The proof is completed

Let us turn to the case 0 < g < p < co. We will apply Luecking’s approach in [8] which is
based on Khinchine’s inequality. Define the Rademacher functions R,, by

1

3

<t [1t]<1
- 2

o= O

Sttt <1
Rn(t) = R0(2nt), n 2 1.

Then Khinchine’s inequality is the following.

Khinchine’s Inequality For 0 < p < oo, there are constants

0 <c(p) <C(p) <oo

depending only on p such that, for all m € N and {¢;}J2; C C, we have

cp)(§|cj| % /‘ch ‘dt<C’ (Z|Cﬂ|)%
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Theorem 3.2 Let u € By for some pg > 1, and p be a positive finite Borel measure on
B,,. Assume that p > q > 0, then the embedding from A} (u) into L(dy) is bounded, to be more
precisely,

| 1) £ 1510

if and only if the function

B o BB
up(Bs(2,7))
_p_
belongs to LY~ (u) for some r € (0,1).
Proof Since u € By, 3 for some pg > 1, by Lemma 2.3 we have

a1 w)|Tu(w)dvy (w
IO S ey o, ),

The sufficiency will be clarified by the following computation:

|| 1rcrauc)

/ Ja (. 1 ()] Tu(w)dvy (w)
ub Bg(z r))

/ / Up BB w,r) HBB(ZJ’)(w)u(w)dvb(w)du(z)
= |f (w)]
_/IB IlBB(w,r)(Z) /Bn m“(w)dvb(w)du(z)

n

- Muw vp(w
_/IBn up( )) ( )/ 15, (w,r) (2)dp(z)dvs (w)

Bg(w,r

dp(z)

n

[ eBslwr))
-/ e 1 ) ) o )

w(Bg(w,r)
<o By \ 1£1%,

LP LI()

up Bﬁ w, ’I”
It remains to prove the necessity. For {c;} € P, we define
)n+1+b

= _1
)= D Ty By, 2n0)
j=1

where {a,;} C B,, and ro > 0 satisfy the conditions in Lemma 2.1. It is followed by [6, Theorem
4.1] that

1 Wy = e = 3 lesl?. (3.1)

j=1
According to the embedding condition, we now get

n+l+b

= (1—|a; _1|4
11T o) :/ }Z W ~up(Bl(aj,2r9)) " 7 | du(z).
Bn 521
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Applying Fubini’s theorem and Khinchine’s inequality, we deduce that

|a |)2(n+1+b) 1

(1= g
/n (Z| ]|2 — za; [2(n+1+0) b(Bﬂ(a/j,2T0))P) du(z)

>

1 — |a;| i

/ / ’R Jei El—za3§n+1+b ~up(B(aj,2r0)) "7 (2)
—a: "™ 1+b
R R S R K

< [ (Sleror)a= (i)
0 =1 j=1
where the last inequality follows the condition (a) and (3.1).

It is easy to see that
1— || )2(n+1+b)

15, 200 (2) S (
Bg(a;,2 0)(Z) ~ |1 —zEj|

where the constant involved depends on 7 only. Then we can obtain

Z|Cj|q aJ,QTo)) :/ i |Cj|q]lBB(aj72T0)(Z)d‘u(z)
B s(aj,2r0))?  JB, 2 us(Bglay,2ro))?

< > |Cj|2]lBB(aj72ro)(Z) %d
< 7 ) du(z)
B, j=1 Ub(B,@(aj,27‘0))P

oo

12 _ (n+1+4b)
</ GF (Al Y )
B, 571 up(Bgs(aj,2ro))” 11— za;|

(Dcm)%

Since the sequence {c¢;} is chosen arbitrarily from ¢7, the sequence

#B5(a5,210) \ ( pat _ g8y
{Ub(B,@(aja27'O))z } : o

That is

Now we consider the L7—7 norm of the function

1(Bg(z,7))
up(Bg(2,7))’

(z,7) C Bg(w,2rg) for those z € Bg(w, o). Hence

we obtain that
w(Bg(z,r)
v(Bg(z,1))

) v u(z)dvp(2)

J.

(LB
< i/ #(Bp(z,7)) )ﬁu(z)dvb(z)
~ B (a;,r0) Ub up(Ba(z,7))

j=1
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That completes the proof.

The measure p characterized in Theorems 3.1-3.2 is called a (A} (u), ¢)-Carleson measure.
Using very similar methods to those above, one can also characterize the compactness of the
embedding map from A} (u) to L(du), where the measure p is also called the (A} (u),q)-
vanishing Carleson measure. We just include the statements without the proofs.

Theorem 3.3 Suppose that ¢ > p > 0,pg > 1, r > 0, u € Bp,p 5 a weight and 1 is a
positive Borel measure on B,,. Then the following conditions are equivalent.
(a) The embedding I : A} (u) — L(dp) is compact, that is

lim [ |f(2)dp(z) =0,

k—oo Jp

whenever {f,} is bounded in A} (u) that converges to 0 uniformly on compact subsets of By;

(b)
7N(Ta)g =0 aslal =1
Up\La)?
(c)
#(Bs(a,1)) =0 aslal = 1;
up(Bg(a,r »
(d)
1(Bg(ak, ))

—0 ask— oo,
up(Bp(ax, 7))

where {ay} is the sequence described in Lemma 2.1.

Theorem 3.4 Suppose that p > q¢ > 0, » > 0, u € By, is a weight and p is a positive
Borel measure on B,,. Then the embedding I : A}(u) — L9(dp) is compact if and only if I is
bounded.

4 Toeplitz-Type Operators

In this section, we will characterize the boundedness, compactness and Schatten class of
Toeplitz type operators on A7 (u) for the Békollé weight w.
If f,g € A(u), the inner product is given by

(f, ) a2y = / £ (w)g(w)u(w)do (w).

According to Lemma 2.3, the reproducing kernel of A?(u) will be denoted by K(z,w). Given
a positive Borel measure p on B,,, the Toeplitz operator T}, associated with p on A7 (u) is the
linear transformation defined by

z) = /Bn fW)K(z,w)dp(w), =z € B,.
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For every f,g € AZ(u), we have

= [ ] S@E G w)duwisGuE)an(:)

(T f ) a0y = / T,/ (2)g(2)u(z)dus(2)

- / f(w) / 9(2) K (w, z)u(z)dvp (=) dp(w)
B, B,
- / f(w)g(@)du(w).

By the straightforward computation above, one can get

<Tp«f7 g>A§(u) = <f7 g>L2(d,u)~ (41)

According to that observation and applying Theorems 3.1 and 3.3, one can get the following
characterization of Toeplitz operators.

Theorem 4.1 Ifpy > 1 and u € By, . Let i be a positive Borel measure on B,,. Then the
following are equivalent:

(a) The Toeplitz operator T}, is bounded on A (u);

(b) w(T.) S up(Ty) for every z € By;

(c) w(Ba(z,r)) S us(Bpg(z,r)) for every z € By, and r > 0;

(d) u(Bslak,r) S up(Bg(ak,r)) for the sequence {ax} described in Lemma 2.1.

Furthermore, the following are equivalent:

(a) The Toeplitz operator T}, is compact on A?(u);

(b) )
HLa .
(L) =0 aslz]—>1;
“ (Bs(z,1))
HADBAET)) as |z :
w(Ba(zr) 0 sl =1
(d)

w(Bg(ag, 7))
up(Bg(ag,r))

where {ay} is the sequence described in Lemma 2.1.

—0 ask— o0,

Proof We note that T), = I'*I from (4.1), where I* is the adjoint operator of the embedding
I: AZ(u) — L*(du). The proof is completed.

It is well known that the Berezin trasform plays a role in the theory of Toeplitz operator.
The Berezin transform of the Toeplitz operator 7}, is given by

ﬁ(z) = <T#kz, kZ>A§(u)7 z €B,,

where k,(w) := % is the normalized reproducing kernel of A?(u). It follows (4.1) that

the Berezin transform g is obtained by

i(z) = / ke (w)Pdu(w), = € By

n
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Proposition 4.1 Ifpo > 1 and u € By, 5. Let p be a positive Borel measure on B,,. If T},
is bounded on A%(u), then the Berezin transform fi is bounded on B,,.

Proof Since u € By, 5, by Lemma 2.3 one gets that:

1

w 2 e —— 2U v
b 5 iy o OO0

where z € B,, and 7 > 0. Let {a;} and r > 0 be chosen as in Lemma 2.1. We have

The proof is completed.

Recall that if {ex} is an orthonormal basis of A?(u), then the Bergman kernel in A7 (u) is
given by

K(z,w) = Z er(2)er(w),
k

and

K(z,2) =) lex(2)”.
k
If p > 1, the Toeplitz operator 7, € S? if and only if

S [ Ters ex) azl? < oc. (4.2)
k

Lemma 4.1 Suppose that po > 1 and u € By, . Then there is an r € (0,1) such that
K(z,2) ~up(Bs(z,r))™, 2z€B,. (4.3)
Proof By Lemma 2.3, we have

o IEC 2 az K(z,2)
~ uy(Bg(w, )z up(Ba(w, 1))z

K (w, 2)]
Then we will get one of the inequalities in (4.3).
To prove the reverse inequality, by choosing s > (n + 1+ )£, the function

(1 - Jw]?)’
up(Tp) 2 (1 — 27)°

Fy(z) =

belongs to A7(u) according to Lemma 2.4. We can find a dyadic tent covering T, with
comparable volume by [11, Lemma 2.5], and we denote it by K,. Then it is followed by
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[11, Lemma 2.3(i)] that there are constants r’ and r depending only on A and 6 such that
Bg(w,r") C K, C Bg(w, ). Let
(1= Jwf?)®
up(Bs(w, )2 (1 — 2w)5
then f,, € Af(u) with || fullaz(u) = [|Full a2 (). We have
1
up(Bg(w,r))?

fuw(z) =

= fuw(w) = <fw7K('aw)>A§(u)

< M fwllaz @ K w)llazw) S VE(w,w).
The proof is completed.

Now we turn to characterize the measure p so that 7}, belongs to the Schatten class SP,
p > 1. We aim to extend the results in the setting of standard Bergman spaces (see [7, 9]) to
the Bergman spaces with Békollé weights.

Theorem 4.2 Ifpg > 1 and u € By, . Let p be a positive Borel measure on B,,. Then
Toeplitz operator T), belongs to the Schatten class SP for some p > 1, if and only if

p(Bp(aj,r)) \P
Xj:(ub(Bg(aj,r))) <OO7 (4.4)

where the sequence {a;} and r > 0 satisfy the conditions in Lemma 2.1.

Proof We firstly prove the sufficiency. Since v € B, 5, one can employ Lemma 2.3 to get

that
1

2 e erlw 2’LL’U} Up W
4 S G o, e @)

for every positive integer k. Since (4.4) implies that 7}, is compact on A7 (u), we have

(] leciPan)”
(/m%n up Bg Z.7)) /BB(Z , |ek(w)|2u(w)dvb(w)du(z))P
S (/n /n UIZBE;:L ” |€k(w)|2u(w)dvb(w)du(z))p
(
(

/IB%n Up B@ w, 7)) v irprompmul CACOIRCIC /]Bn ]IBB(WW)(Z)d.u(Z)d'Ub(w))
/ 1% Bﬂ w T)) | k(w)|2u(w)d’l)b(u}))p

<[ (£ Bﬂ ) Bt eww)Putw)duntw) - ([ lentw)Pulwidow)’
:/ A Bﬂ T )) leso ()] 2u(w)dvy (w).

u (Bg(w,))

’

Plugging this into (4.2), we have

S ewenbagl = 30 ([ lenPantz))”
k

Lk Bn



596 C. Z. Tong and J. F. Li

up(Bs(w, ) u(w)dvy (w)

up(Bs (az, 7))~ /B L)

)
B0 ) i

)

)

which proves the sufficiency.
To prove the necessity, assume 7, € SP. Setting s > (n + 1 + b)&, we firstly define an
operator A on the othonormal basis of AZ(u) then extend linearly to the whole space as follows:

(1l ))° 1
Aegle) = (1—2@;)°  wy(Bg(aj,r))z

By [6, Theorem 4.1], A is surjective, hence A*T), A € SP. That is

> (AT, Aej, ) a2 ()P < o0
j

) Zeanj:1727"'

On the other hand, we have

Z |<A*TMAej7 ej>A§(u)|p = Z | T Aej7 Aej>A2(u)|p

(1—lay])? dp(z) p
- (/ (1— za;)?s . ub(Bg(aj,r)))

J

- (/ (1 —Ja;D)*  du(z) )P
N 7 Bg(aj,r) 1 — zaj )25 ’U,b(BB(aj,’f’))
=Y (L)
o ; up Bﬁ aj, ’

which completes the proof.

Proposition 4.2 If po > 1 and u € By, . Let p be a positive Borel measure on B,,. If
T, € SP(A%(u)), then the Berezin transform p € LY (u) for 0 < p < co.

Proof Firstly, we fix r as stated in Lemma 4.1. Suppose T}, € S, that is
Bg(aj, P
Z(M( 5(a, 7’))) < oo,
— \up(Bg(a;,7))
where {a;} and r > 0 satisfy the conditions in Lemma 2.1. By Lemma 4.1, we have

/ i(2)Pu(z)dup(z)
B,
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/ 2 / o e Pde()) u(eun(z)

That completes the proof.

5 Composition Operators

Every holomorphic ¢ : B,, — B,, induces a composition operator
Cy,:H(B,) — H(B,),

namely, C, f = foy. When n = 1, it is well known that C,, is always bounded on A} (D), and
C, is compact on AP (D) if and only if
lim 1_7|Z|2 =
21 1= |(2)[?
When n > 1, there are lots of unbounded composition operators on classical Bergman spaces
with standard weights AP (B,,, dvy). Interested readers can see more details in [4, 13].
For a positive weight function v on B,,, we consider the pullback measure of du, = uduvy
under the map ¢ : B,, — B,,, given by

,uap,u.,b(E) = Ub(%’_l (E))

for any Borel subset F of B,,.
By the embedding theorems in Section 3, one can get the characterization of bounded and
compact composition operators between different weighted Bergman spaces.

Theorem 5.1 Let 0 < p < g < o0, po > 1 and u be a By, p weight. If ¢ : B, — B, is a
holomorphic map, and let py . be the pullback measure defined above. Then the following are
equivalent:

(a) Composition operator Cy, : AV (u) — Al(u) is bounded;

(b) the pullback measure , 1 is a Carleson measure:

toatu) o,

ub(Tw)E
(c) when s = (n+1+b)E, the equality

(1 — |w]?)e / u(z)dvy(2)
(ub(Tw))% B, |1 —Ucp(z)|qs ~

holds for all w € B,.
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Proof The proof of (b)=-(a) follows directly from the definition of the pullback measures
and the characterization of the Carleson measures in Theorem 3.1.
To prove (a)=-(c), we denote by

(1 —Jwf?)®
up(Tyw)? (1 — wz)*

fu(z) =

for some s > (n +1+b)2 and w € B,,. It follows from Lemma 2.4 that f,, € Af(u) for all
w € B,. Let C, act on f,,. Then we have

(1 — Jw?)® B
/ms wp(To) ¥ |1 — Wp(z )|qsu(z)dvb(z)_ 1€ (fu) (M ha y < NCN N fuoll g -

It remains to prove (¢)=-(b). Just note that

(o) [ u(z)du(2)
12 /

up(Tw)?  Jo, |1 —Wp(2)|7°
_ (1- |w|2)qs/ dttep,u,p(2) < (1- |w| )as / At up(2)
up(Tp)? o, 11 =027 = wy(T,,)%  Jr, [1— w2
Msaub(T )
ub(T )% ’

which completes the proof.

Remark 5.1 We can deduce from the proof above that

,Usa,u-,b(Tw)
C,lP, | > sup 272,
1€eWage = 500 =0T,

A similar argument gives the following characterization of the compactness of Cy, on A} (u).

Theorem 5.2 Let 0 < p < g < o0, po > 1 and u be a By, p weight. If ¢ : B, — B, is a
holomorphic map, and let fi, b be the pullback measure. Then Cy, = A} (u) — Al (u) is compact
if and only if e up 95 @ vanishing Carleson measure if and only if

N (1—|w|2)q5/ u(z)dvy(2) —0 (5.1)
B

wi=1  uy(Ty)?  Je, |1 —Dp(2)]

Po
fors = (n+1+b)E2.

Now we turn to the case 0 < ¢ < p < oco. The following result is a direct consequence of
Theorems 3.2 and 3.4.

Theorem 5.3 Let 0 < ¢ < p < 00, po > 1 and u be a By, weight. If ¢ : B, — B, is a
holomorphic map, and let py . be the pullback measure defined above. Then the following are
equivalent:

(a) The operator Cy : AY(u) — Af(u) is bounded;

(b) the operator C, : A} (u) — Al (u) is compact;

(c) the function on B,
foub(Bs(z,1))

= Ty (Bs(z,m)

belongs to Lv—a (u), for some r € (0,1).



Carleson Measures on the Weighted Bergman Spaces 599

At the end of this section, we consider the Schatten class membership of C,, : A7 (u) — A (u).

Theorem 5.4 Ifp > 2, pg > 1 and u € By, p. Suppose ¢ is a holomorphic self-map of By,
and fip b 15 the pullback measure. Then Cy, : AZ(u) — AZ(u) belongs to SP if and only if

e

2
) < 00,

,Uap.,u,b(Bﬁ (ajv T))
Z ( up(Bg(a;,r))

where the sequence {a;} and r > 0 satisfy the conditions in Lemma 2.1.

Proof Note that K (z,w) is the reproducing kernel of A7 (u). The adjoint operator Cy may
be computed as

Cof(2) = (Cof K(2)) azquy = (s Co K (-, 2)) az(uy = (f, K (), 2)) a2 (w)

=/ f(w)K (2, p(w))u(w)dvy (w).
So we have

CoCof(2) = : f(w)K (2, w)dpgup(w) =Ty, ., f(2)-

Then it is clear that C, € SP if and only if T}, € 8%. The proof is completed.

w,u,b

6 Final Remarks

In [14], Zhu characterizes the Schatten p class of Toeplitz operator on the standard weighted
Bergman spaces A7 when 0 < p < 1. The situation on the weighted Bergman spaces AZ(u)
with Békollé weights u seems rather different. One of the obstacles is that we can not compute
u(Pe(w)) directly when we change the variable by the mobius automorphisms z = @ (w).
Meanwhile, in Zhu’s paper [14], making the change of variables by the automorphisms of the
unit ball is of importance to control the (P norm of the sequence {fi,.(ar)} by the Schatten
p norm of the Toeplitz operator. To make matters worse, there is no evidence that we have
enough ingredients to estimate the integral after making the change of variables. According to
the definition of the Békollé weights, the reason seems to be clear in the spirit of the following
two aspects.

(1) We have the local conditions on the weight u. So the weight u behaves “stable” if we
only do the analysis on the small local pieces of the unit ball.

(2) We lack the global property of the weight u. The mdbius automorphism can map 0 to
any other point in the unit ball. So u could be hard to control when we change the variables
by mobius automorphisms. The original piece can be transferred to any other new piece of the
ball.

It is well known that the Berezin transform is a powerful tool to study the Toeplitz operators
on the standard weighted Bergman spaces. Our results Propositions 4.1-4.2 give the necessary
conditions of the boundedness and Schatten class of the Toeplitz operators in terms of the
Berezin transforms. The sufficient parts seem to be rather different to the case of the standard
weighted Bergman spaces, especially in several complex variables. In the proof of the standard
weighted Bergman spaces, the reproducing kernel of A? is W It is relatively easy to



600 C. Z. Tong and J. F. Li

estimate the kernel from below. In the setting of Békollé weights, we also need to estimate the
reproducing kernel of A?(u) from below. Because it is uncertain that the kernel coincides with
any explicit function. We have to estimate the kernel without any explicit computation. By
generalizing the results in [5], on the unit disk, we have settled the estimate of the kernel from
below and completely characterized the Toeplitz operator in terms of the Berezin transform
(see [12]). Unfortunately, the method seems to be invalid on the unit ball, because the zeros
distribution of the holomorphic functions in several complex variables varies the case in the one
complex variable.
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