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1 Introduction

Suppose that R is a unital ∗-ring, that is a ring with unity 1 and an involution a 7→ a∗

satisfying (a∗)∗ = a, (ab)∗ = b∗a∗ and (a+ b)∗ = a∗ + b∗ for all a, b ∈ R.

Throughout this paper, we assume that R is a unital ∗-ring. Recall that an element a ∈ R

is called (von Neumann) regular if there exists some x ∈ R such that a = axa. Such an x is

called an inner inverse or {1}-inverse of a, and is denoted by a−. An element x ∈ R is called

Hermitian if x = x∗. In what follows, let e, f ∈ R be invertible Hermitian elements.

We say that a ∈ R has a weighted Moore-Penrose inverse with weights e, f if there exists

x ∈ R such that

(i) axa = a, (ii) xax = x, (iii) (eax)∗ = eax, (iv) (fxa)∗ = fxa,

where x is called a weighted Moore-Penrose inverse of a with weights e, f (abbr. weighted

Moore-Penrose inverse). It is unique if it exists, and is denoted by a
†
e,f . More generally, if

a and x satisfy (i) axa = a and (iii) (eax)∗ = eax, then x is called an {e, 1, 3}-inverse of a,

and is denoted by a
(1,3)
e . Similarly, if a and x satisfy (i) axa = a and (iv) (fxa)∗ = fxa,

then x is called an {f, 1, 4}-inverse of a, and is denoted by a
(1,4)
f . As usual, we denote by

R
†
e,f , R

(1,3)
e and R

(1,4)
f the sets of all weighted Moore-Penrose invertible, {e, 1, 3}-invertible and

{f, 1, 4}-invertible elements in R, respectively.
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Recently, Mosić et al. [5] introduced and investigated e-core inverses and f -dual core invers-

es, extending the notions of core inverses and dual core inverses in rings (see [6]). An element

a ∈ R is e-core invertible (see [5]) if there exists x ∈ R such that axa = a, xR = aR and

Rx = Ra∗e. Such x is unique if it exists, and is denoted by ae,#○. Dually, a is called f -dual

core invertible if there exists x ∈ R such that axa = a, Rx = Ra and fxR = a∗R. The unique

f -dual core inverse x of a, when exists, is denoted by af,#○. We denote by Re,#○ and Rf,#○ the

sets of all e-core invertible and f -dual core invertible elements in R. Further results on e-core

inverses and f -dual core inverses can be referred to [10].

In this paper, we mainly investigate weighted Moore-Penrose inverses, e-core inverses, f -dual

core inverses and one-sided inverses along an element in rings. The paper is organized as follows.

In Section 2, several characterizations and expressions for {e, 1, 3}-inverses and {f, 1, 4}-inverses

of elements are derived. Also, the existence criterion of the weighted Moore-Penrose inverse is

given. Moreover, it is proved that a ∈ R is weighted Moore-Penrose invertible if and only if it is

both {e, 1, 3}-invertible and {f, 1, 4}-invertible. In Section 3, we present the existence criterion

of both e-core invertible and f -dual core invertible elements. In Section 4, it is shown that

a ∈ R is weighted Moore-Penrose invertible if and only if a ∈ R is left invertible along f−1a∗e

if and only if a ∈ R is right invertible along f−1a∗e, extending [1, Theorem 3.2]. Also, it is

proved that a ∈ R is weighted Moore-Penrose invertible if and only if f−1a∗e is left invertible

along a if and only if f−1a∗e is right invertible along a. Under the assumption a ∈ R
†
e,f , we

further prove that a ∈ R is e-core invertible if and only if it is invertible along af−1a∗e, and a

is f -dual core invertible if and only if it is invertible along f−1a∗ea.

2 Characterizations for Weighted Moore-Penrose Inverses

We begin this section with several characterizations for {e, 1, 3}-inverses and {f, 1, 4}-inverses

of an element in a ring.

Proposition 2.1 Let a ∈ R and let e ∈ R be an invertible Hermitian element. Then a is

{e, 1, 3}-invertible if and only if a ∈ Ra∗ea. Moreover, if a = xa∗ea for some x ∈ R, then x∗e

is an {e, 1, 3}-inverse of a.

Proof Suppose that a is {e, 1, 3}-invertible. Then we have a = aa
(1,3)
e a = e−1(eaa

(1,3)
e )∗a =

e−1(a
(1,3)
e )∗a∗ea ∈ Ra∗ea.

Conversely, if a ∈ Ra∗ea, then a = xa∗ea for some x ∈ R, and hence ax∗ = xa∗eax∗ =

xa∗e(xa∗)∗. So, ax∗ is Hermitian.

It follows ax∗ea = (ax∗)∗ea = xa∗ea = a and (eax∗e)∗ = exa∗e = e(ax∗)∗e = eax∗e that

x∗e is an {e, 1, 3}-inverse of a.

Proposition 2.2 Let a ∈ R and let f ∈ R be an invertible Hermitian element. Then a is

{f, 1, 4}-invertible if and only if a ∈ af−1a∗R. Moreover, if a = af−1a∗y for some y ∈ R, then

f−1y∗ is an {f, 1, 4}-inverse of a.

It is well known that a ∈ R† if and only if a ∈ aa∗R ∩ Ra∗a. Motivated by this, we derive

the characterization of the weighted Moore-Penrose inverse.

Theorem 2.1 Let a ∈ R and let e, f ∈ R be invertible Hermitian elements. Then a ∈ R
†
e,f

if and only if a ∈ af−1a∗R ∩ Ra∗ea. Moreover, if a = xa∗ea = af−1a∗y for some x, y ∈ R,
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then a
†
e,f = f−1y∗ax∗e.

Proof Applying Propositions 2.1–2.2, it is obvious that a ∈ R
†
e,f implies a ∈ af−1a∗R ∩

Ra∗ea.

Suppose that a = xa∗ea = af−1a∗y for some x, y ∈ R. We next show that z = f−1y∗ax∗e

is the weighted Moore-Penrose inverse of a.

Note that f−1y∗ and x∗e are inner inverses of a. Then af−1y∗a = a = ax∗ea, and conse-

quently aza = af−1y∗ax∗ea = a and zaz = z.

Also, eaz = eaf−1y∗ax∗e = eax∗e = eaa
(1,3)
e , which implies eaz = (eaz)∗.

Analogously, fza = ff−1y∗ax∗ea = y∗ax∗ea = y∗a. As y∗a = y∗af−1a∗y, we get fza =

(fza)∗.

Thus, a ∈ R
†
e,f with a

†
e,f = f−1y∗ax∗e.

We next characterize the weighted Moore-Penrose inverse by ideals. Herein, a lemma is

given.

Lemma 2.1 Let a ∈ R and let e, f ∈ R be invertible Hermitian elements. We have

(i) If a = af−1a∗eax for some x ∈ R, then f−1(eax)∗ is both an {e, 1, 3}-inverse and an

{f, 1, 4}-inverse of a.

(ii) If a = yaf−1a∗ea for some y ∈ R, then (yaf−1)∗e is both an {e, 1, 3}-inverse and an

{f, 1, 4}-inverse of a.

Proof (i) By Proposition 2.2, we know that f−1(eax)∗ is an {f, 1, 4}-inverse of a. To

show that f−1(eax)∗ is also an {e, 1, 3}-inverse of a, it is sufficient to prove that eaf−1(eax)∗

is Hermitian.

By calculations, we have

eaf−1(eax)∗ = eaf−1x∗a∗e = eaf−1x∗(af−1a∗eax)∗e

= eaf−1(x∗)2a∗ea(eaf−1)∗

= eaf−1(x∗)2a∗e(af−1a∗eax)(eaf−1)∗

= eaf−1(x∗)2a∗eaf−1a∗e(af−1a∗eax)x(eaf−1)∗

= eaf−1(x∗)2a∗eaf−1a∗eaf−1a∗eax2(eaf−1)∗

= eaf−1(x∗)2a∗eaf−1a∗e(af−1a∗ea)x2(eaf−1)∗

= eaf−1(x∗)2a∗eaf−1a∗e(a∗eaf−1a∗)∗x2(eaf−1)∗.

Hence, f−1(eax)∗ is an {e, 1, 3}-inverse of a.

(ii) It can be proved similarly.

Theorem 2.2 Let a ∈ R and let e, f ∈ R be invertible Hermitian elements. Then the

following conditions are equivalent:

(i) a ∈ R
†
e,f ;

(ii) a ∈ af−1a∗eaR;

(iii) a ∈ Raf−1a∗ea.

In this case, a
†
e,f = f−1(eax)∗ = (yaf−1)∗e, where x, y ∈ R satisfy a = af−1a∗eax =

yaf−1a∗ea.
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Proof (i) ⇒ (ii) Let a ∈ R
†
e,f . Then

a = af−1(fa†e,fa)
∗

= af−1a∗(a†e,f )
∗f

= af−1a∗(a†e,fe
−1eaa

†
e,f )

∗f

= af−1a∗(eaa†e,f )
∗(a†e,f e

−1)∗f

= af−1a∗eaa
†
e,f (a

†
e,fe

−1)∗f.

Hence, a ∈ af−1a∗eaR.

(ii) ⇔ (iii) Assume that a ∈ af−1a∗eaR. Then there exists x ∈ R such that a = af−1a∗eax,

and hence a∗ = x∗a∗eaf−1a∗. Also, we have (eax)∗a = (eax)∗af−1a∗eax, which implies that

(eax)∗a is Hermitian.

We obtain

a = af−1a∗eax = af−1(eax)∗a = af−1x∗a∗ea

= af−1x∗(x∗a∗eaf−1a∗)ea

= (af−1x∗x∗a∗e)af−1a∗ea.

Thus, a ∈ Raf−1a∗ea.

Conversely, if a ∈ Raf−1a∗ea, then we can similarly obtain a ∈ af−1a∗eaR.

(iii) ⇒ (i) As a ∈ Raf−1a∗ea, and consequently a ∈ af−1a∗eaR, then a ∈ af−1a∗R∩Ra∗ea.

It follows from Theorem 2.1 that a ∈ R
†
e,f .

By Lemma 2.1, we get that f−1(eax)∗ is both an {e, 1, 3}-inverse and an {f, 1, 4}-inverse of

a.

Applying Theorem 2.1, we have

a
†
e,f = f−1(eax)∗af−1(eax)∗ = f−1(ax)∗eaf−1(eax)∗

= f−1(ax)∗[eaf−1(eax)∗]∗ = f−1(ax)∗(eax)f−1a∗e

= f−1x∗a∗(eax)f−1a∗e = f−1x∗[af−1(eax)∗a]∗e

= f−1x∗a∗e

= f−1(eax)∗.

Dually, we can prove that a†e,f = (yaf−1)∗e.

Set e = f = 1 in Theorem 2.2, then we get the characterization for the Moore-Penrose

inverse.

Corollary 2.1 (see [9, Theorem 2.16] Let a ∈ R. Then the following conditions are equiv-

alent:

(i) a ∈ R†;

(ii) a ∈ aa∗aR;

(iii) a ∈ Raa∗a.

In this case, a† = (ax)∗ = (ya)∗, where x, y ∈ R satisfy a = aa∗ax = yaa∗a.
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In 2017, Beńıtez and Boasso [1] characterized the weighted Moore-Penrose inverse of regular

elements by the invertibility of certain elements. Inspired by this, we consider to characterize

the weighted Moore-Penrose inverse of regular elements by one-sided invertibilities of some

elements. Herein, a lemma is given.

Lemma 2.2 Let a, b ∈ R.

(i) If there exists c ∈ R such that (1 + ab)c = 1, then (1 + ba)(1− bca) = 1.

(ii) If there exists d ∈ R such that d(1 + ab) = 1, then (1− bda)(1 + ba) = 1.

It follows from Lemma 2.2 that 1 + ab is (left, right) invertible if and only if 1 + ba is (left,

right) invertible. Moreover, (1 + ba)−1 = 1 − b(1 + ab)−1a. The formula above is known as

Jacobson’s lemma.

Theorem 2.3 Let a ∈ R be regular and let e, f ∈ R be invertible Hermitian elements. Then

the following conditions are equivalent:

(i) a ∈ R
†
e,f ;

(ii) u = af−1a∗e + 1− aa− is left invertible;

(iii) v = f−1a∗ea+ 1− a−a is left invertible;

(iv) u = af−1a∗e+ 1− aa− is right invertible;

(v) v = f−1a∗ea+ 1− a−a is right invertible.

In this case, a
†
e,f = (u−1

l af−1)∗e = f−1(eav−1
r )∗, where u−1

l and v−1
r denote a left inverse of u

and a right inverse of v, respectively.

Proof (i)⇒ (ii) Suppose that a ∈ R
†
e,f . Then, by Theorem 2.2, there exists some y ∈ R such

that a = yaf−1a∗ea. Write s = a−ya+1−a−a, by a direct check, s(a−af−1a∗ea+1−a−a) = 1.

Note that a−af−1a∗ea+1− a−a = 1+ (a−af−1a∗e− a−)a. Then, from Lemma 2.2, it follows

that 1 + a(a−af−1a∗e− a−) = 1 + af−1a∗e− aa− = u is left invertible.

(ii) ⇔ (iii) It follows from Lemma 2.2.

(iii) ⇒ (i) As v, and hence u are both left invertible, then ua = af−1a∗ea, and consequently

a = u−1
l af−1a∗ea ∈ Raf−1a∗ea. Therefore, by Theorem 2.2, a ∈ R

†
e,f and a

†
e,f = (u−1

l af−1)∗e.

Analogously, we can prove (i) ⇔ (iv) ⇔ (v) and a
†
e,f = f−1(eav−1

r )∗.

Corollary 2.2 Let a ∈ R be regular and let e, f ∈ R be invertible Hermitian elements.

Then the following conditions are equivalent:

(i) a ∈ R
†
e,f ;

(ii) u = af−1a∗e + 1− aa− is invertible;

(iii) v = f−1a∗ea+ 1− a−a is invertible.

In this case, a
†
e,f = (u−1af−1)∗e = f−1(eav−1)∗.

Corollary 2.3 (see [10, Theorem 3.3]) Let a ∈ R be regular and let e, f ∈ R be invertible

Hermitian elements. Then the following conditions are equivalent:

(i) a ∈ R†;

(ii) u = aa∗ + 1− aa− is invertible;

(iii) v = a∗a+ 1− a−a is invertible.

In this case, a† = (u−1a)∗ = (av−1)∗.
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3 Characterizations of e-Core Inverses and f -Dual Core Inverses

Recall that an element a ∈ R is group invertible if there exists b ∈ R such that aba = a,

bab = b and ab = ba. Such a b is called a group inverse of a. It is unique if it exists, and is

denoted by a#. By R# we denote the set of all group invertible elements in R. It is well known

that a ∈ R# if and only if a ∈ a2R ∩ Ra2 if and only if a ∈ anR ∩ Ran for any integer n ≥ 2.

In particular, if a = a2x = ya2 for some x, y ∈ R, then a# = yax = y2a = ax2.

In [5], Mosić et al. derived characterizations of e-core inverses by group inverses and {e, 1, 3}-

inverses, and f -dual core inverses by group inverses and {f, 1, 4}-inverses in rings.

Next, we mainly investigate e-core inverses and f -dual core inverses by the intersection of

ideals and units.

Lemma 3.1 Let a ∈ R be regular. Then the following conditions are equivalent:

(i) a ∈ R#;

(ii) a+ 1− aa− is invertible;

(iii) a+ 1− a−a is invertible.

In this case, a# = (a+ 1− aa−)−2a = a(a+ 1− a−a)−2.

Lemma 3.2 (see [6, Theorem 2.1]) Let a ∈ R and let e ∈ R be an invertible Hermitian

element. Then the following conditions are equivalent:

(i) a is e-core invertible;

(ii) a ∈ R# ∩R
(1,3)
e ;

(iii) there exists x ∈ R such that (eax)∗ = eax, xa2 = a and ax2 = x;

(iv) there exists x ∈ R such that (eax)∗ = eax, xa2 = a, ax2 = x, xax = x and axa = a.

In this case, ae,#○ = a#aa
(1,3)
e .

Lemma 3.3 (see [6, Theorem 2.2]) Let a ∈ R and let f ∈ R be an invertible Hermitian

element. Then the following conditions are equivalent:

(i) a is f -dual core invertible;

(ii) a ∈ R# ∩R
(1,4)
f ;

(iii) there exists x ∈ R such that (fxa)∗ = fxa, a2x = a and x2a = x;

(iv) there exists x ∈ R such that (fxa)∗ = fxa, a2x = a, x2a = x, axa = a and xax = x.

In this case, af,#○ = a
(1,4)
f aa#.

It is known from Theorem 2.1 that a ∈ R
†
e,f if and only if a ∈ af−1a∗R ∩Ra∗ea. We next

show that if the index n of a∗ is no less than 2, then it is the characterization of both e-core

invertible and f -dual core invertible elements. More precisely, a ∈ Re,#○ ∩ Rf,#○ if and only if

a ∈ af−1(an)∗R ∩R(an)∗ea. First, a lemma is given.

Lemma 3.4 Let a ∈ R and let e, f ∈ R be invertible Hermitian elements. Suppose that

n ≥ 2 is an integer. Then

(i) a ∈ af−1a∗R ∩Ran if and only if a ∈ af−1(a∗)nR.

(ii) a ∈ Ra∗ea ∩ anR if and only if a ∈ R(a∗)nea.

Proof (i) “ ⇒ ” If a ∈ af−1a∗R ∩ Ran, then there exist some s, t ∈ R such that a =

af−1a∗s = tan, and hence a = af−1(tan)∗s = af−1(a∗)nt∗s ∈ af−1(a∗)nR.
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“ ⇐ ” If a ∈ af−1(a∗)nR, then a = af−1(a∗)nr for some r ∈ R. This implies a ∈ af−1a∗R

and a ∈ R
(1,4)
f by Proposition 2.2. Moreover, f−1((a∗)n−1r)∗ is an {f, 1, 4}-inverse of a. Hence,

we have a = aa
(1,4)
f a = af−1((a∗)n−1r)∗a = af−1r∗an ∈ Ran.

(ii) It can be proved by a similar way as (i).

Theorem 3.1 Let a ∈ R and let e, f ∈ R be invertible Hermitian elements. Suppose that

n ≥ 2 is an integer. Then the following conditions are equivalent:

(i) a ∈ Re,#○ ∩Rf,#○;

(ii) a ∈ af−1(an)∗R ∩R(an)∗ea.

Proof From Theorem 2.1 and Lemmas 3.2–3.3, it is known that a ∈ Re,#○ ∩ Rf,#○ if and

only if a ∈ R
†
e,f ∩R# if and only if a ∈ af−1a∗R ∩Ra∗ea ∩ anR ∩Ran. Again by Lemma 3.4,

a ∈ Re,#○ ∩Rf,#○ if and only if a ∈ af−1(an)∗R ∩R(an)∗ea, as required.

The following result gives the characterization of both e-core invertible and f -dual core

invertible elements by units in a ring R.

Theorem 3.2 Let a ∈ R be regular and let e, f ∈ R be invertible Hermitian elements. Then

the following conditions are equivalent:

(i) a ∈ R# ∩R
†
e,f ;

(ii) a ∈ Re,#○ ∩Rf,#○;

(iii) u = af−1a∗ea+ 1− aa− is invertible;

(iv) v = f−1a∗ea2 + 1− a−a is invertible;

(v) s = af−1a∗ea+ 1− a−a is invertible;

(vi) t = a2f−1a∗e+ 1− aa− is invertible.

In this case, ae,#○ = u−1af−1a∗e and af,#○ = f−1a∗eas−1.

Proof (i) ⇔ (ii) It follows from Theorem 2.1 and Lemmas 3.2–3.3.

(ii) ⇒ (iii) As a ∈ Re,#○ ∩ Rf,#○, and hence a ∈ R# ∩ R
†
e,f . By Lemma 3.1, a ∈ R#

implies that a + 1 − aa− is invertible. Also, a ∈ R
†
e,f guarantees that af−1a∗e + 1 − aa− is

invertible by Corollary 2.2, and hence af−1a∗eaa− + 1 − aa− is invertible by Lemma 2.2. So,

(af−1a∗eaa− + 1− aa−)(a+ 1− aa−) = af−1a∗ea+ 1− aa− = u is invertible.

(iii) ⇔ (iv) By Lemma 2.2.

(iv) ⇒ (i) Since v = f−1a∗ea2 + 1 − a−a is invertible, we have av = af−1a∗ea2 and hence

a = af−1a∗ea2v−1 ∈ af−1a∗eaR. Hence, a ∈ R
†
e,f and a

†
e,f = f−1(ea2v−1)∗ by Theorem 2.2.

Again, from Corollary 2.2 and Lemma 2.2, we obtain that af−1a∗eaa− + 1− aa− is invertible,

and consequently a+ 1− aa− = (af−1a∗eaa− + 1− aa−)−1u is invertible, which gives a ∈ R#

by Lemma 3.1. Hence, a ∈ R# ∩R
†
e,f .

Analogously, we can prove (i) ⇔ (v) ⇔ (vi).

As a# = (u−1af−1a∗e)2a and a = u−1af−1a∗ea2, by applying Lemma 3.2, we get

ae,#○ = a#aa
†
e,f

= (u−1af−1a∗e)2a2a†e,f

= u−1af−1a∗e(u−1af−1a∗ea2)a†e,f

= u−1af−1a∗eaa
†
e,f

= u−1af−1a∗(eaa†e,f )
∗
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= u−1af−1(eaa†e,fa)
∗

= u−1af−1(ea)∗

= u−1af−1a∗e.

Also, as a = a2(f−1a∗eas−1), we obtain a# = a(f−1a∗eas−1)2 and

af,#○ = a
†
e,faa

#

= a
†
e,fa

2(f−1a∗eas−1)2

= a
†
e,f (a

2f−1a∗eas−1)f−1a∗eas−1

= a
†
e,faf

−1a∗eas−1

= f−1fa
†
e,faf

−1a∗eas−1

= f−1(fa†e,fa)
∗(af−1)∗eas−1

= f−1(af−1fa
†
e,fa)

∗eas−1

= f−1a∗eas−1.

The proof is completed.

If e = 1, then the e-core inverse is just the core inverse. If f = 1, then the f -dual core

inverse is the dual core inverse. By R#○ and R#○ we denote the sets of all core invertible and

dual core invertible elements in R.

Corollary 3.1 (see [2, Theorem 5.6]) Let a ∈ R be regular. Then the following conditions

are equivalent:

(i) a ∈ R# ∩R†;

(ii) a ∈ R#○ ∩R#○;

(iii) u = aa∗a+ 1− aa− is invertible;

(iv) v = a∗a2 + 1− a−a is invertible;

(v) s = aa∗a+ 1− a−a is invertible;

(vi) t = a2a∗ + 1− aa− is invertible.

In this case, a#○ = u−1aa∗ and a#○ = a∗as−1.

By Corollary 3.1, we know that the core and dual core inverses of a are characterized by the

invertibility of a2a∗ + 1− aa−. In [3, Theorem 4.1], Li and Chen proved that the result is true

when the quadratic component a2a∗ in a2a∗ + 1 − aa− is changed to a(a∗)2. More precisely,

a ∈ R#○ ∩ R#○ if and only if a(a∗)2 + 1 − aa− is invertible if and only if (a∗)2a + 1 − a−a is

invertible.

For the case of the e-core inverse and the f -dual core inverse, one can also get their similar

characterizations.

Theorem 3.3 Let a ∈ R be regular and let e, f ∈ R be invertible Hermitian elements. Then

the following conditions are equivalent:

(i) a ∈ Re,#○ ∩Rf,#○;

(ii) u = f−1(a2)∗ea+ 1− a−a is invertible;

(iii) v = af−1(a2)∗e+ 1− aa− is invertible.
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Proof It follows from Lemma 2.2 that (ii) ⇔ (iii).

(i) ⇒ (ii) Note that the equality a2f,#○a = af,#○. Then a2f,#○a
2 = af,#○a. Write s =

a−aae,#○(a2f,#○e
−1)∗f + 1− af,#○a, by a direct check, we get us = 1. Indeed,

us = (f−1(a2)∗ea+ 1− a−a)(a−aae,#○(a2f,#○e
−1)∗f + 1− af,#○a)

= f−1(a2)∗eaae,#○(a2f,#○e
−1)∗f + 1− af,#○a

= f−1(a2)∗(eaae,#○)∗(a2f,#○e
−1)∗f + 1− af,#○a

= f−1(a2)∗(fa2f,#○e
−1eaae,#○)∗ + 1− af,#○a

= f−1(fa2f,#○aa
e,#○a2)∗ + 1− af,#○a

= f−1(fa2f,#○a
2)∗ + 1− af,#○a

= f−1(faf,#○a)
∗ + 1− af,#○a

= f−1faf,#○a+ 1− af,#○a

= af,#○a+ 1− af,#○a

= 1.

So, u is right invertible and s is a right inverse of u.

Similarly, set t = e−1((ae,#○)2)∗faf,#○aa
− + 1 − aae,#○, we can prove tv = 1. Hence, v =

af−1(a2)∗e+ 1− aa− is left invertible, and consequently u is left invertible by Lemma 2.2.

(ii) ⇒ (i) As u, and hence v are both invertible, also, we have au = af−1(a2)∗ea = va.

Hence, a = af−1(a2)∗eau−1 = v−1af−1(a2)∗ea, which implies a ∈ af−1(a2)∗R∩R(a2)∗ea, and

by Theorem 3.1, a ∈ Re,#○ ∩Rf,#○.

4 Relations with (one-sided) Inverses along an Element

Given a, d ∈ R, a is left invertible along d (see [7]) if there exists b ∈ R such that bad = d

and b ∈ Rd. Such b is called a left inverse of a along d, and is denoted by a
‖d
l . Dually, we call a

is right invertible along d (see [7]) if there exists b ∈ R satisfying dab = b and b ∈ dR. A right

inverse of a along d is denoted by a
‖d
r .

Lemma 4.1 (see [9, Theorems 2.3–2.4]) Let a, d ∈ R. Then

(i) a is left invertible along d if and only if d ∈ Rdad.

(ii) a is right invertible along d if and only if d ∈ dadR.

An element a ∈ R is called invertible along d if there exists b ∈ R such that bad = d = dab

and b ∈ dR ∩Rd. The inverse of a along d is unique if it exists, and is denoted by a‖d. Hence,

if a is both left and right invertible along d, then a is invertible along d and a‖d = a
‖d
l = a

‖d
r .

Also, it follows from Lemma 4.1 that a is invertible along d if and only if d ∈ dadR ∩ Rdad.

More results on the inverse along an element can be referred to [9–11].

Recently, Beńıtez and Boasso derived the equivalence between a
†
e,f and a‖f

−1a∗e (see [1,

Theorem 3.2]). We next consider to characterize a†e,f by one-sided inverse of a along f−1a∗e.

Theorem 4.1 Let a ∈ R and let e, f ∈ R be invertible Hermitian elements. Then the

following conditions are equivalent:

(i) a ∈ R
†
e,f ;

(ii) a is left invertible along f−1a∗e;
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(iii) a is right invertible along f−1a∗e.

In this case, a
†
e,f = a

‖f−1a∗e

l = a
‖f−1a∗e
r .

Proof (i) ⇔ (ii) Suppose that a
†
e,f exists. Then, by Theorem 2.2, a ∈ af−1a∗eaR,

which yields a∗ ∈ Ra∗eaf−1a∗. As f is invertible, a∗ ∈ Rf−1a∗eaf−1a∗ and hence a∗e ∈

Rf−1a∗eaf−1a∗e. Thus, we get f−1a∗e ∈ f−1Rf−1a∗eaf−1a∗e = Rf−1a∗eaf−1a∗e. It follows

from Lemma 4.1 that a is left invertible along f−1a∗e.

Conversely, as a is left invertible along f−1a∗e, by Lemma 4.1, f−1a∗e ∈ Rf−1a∗eaf−1a∗e,

and consequently a∗ ∈ Rf−1a∗eaf−1a∗. So, a ∈ af−1a∗eaf−1R = af−1a∗eaR. Again, apply-

ing Theorem 2.2, a ∈ R
†
e,f .

(i) ⇔ (iii) It can be proved analogously.

Let a
‖f−1a∗e

l = b. Then there exists some x ∈ R such that b = xf−1a∗e. Since f−1a∗e =

baf−1a∗e = (xf−1a∗e)af−1a∗e, multiplying the above equality by f on the left and e−1 on

the right gives a∗ = fxf−1a∗eaf−1a∗ and hence a = af−1a∗eaf−1x∗f . We obtain a
†
e,f =

f−1(eaf−1x∗f)∗ = xf−1a∗e = a
‖f−1a∗e

l by Theorem 2.2.

Dually, we can get a†e,f = a
‖f−1a∗e
r .

The following result shows that a ∈ R
†
e,f if and only if f−1a∗e is left (resp. right) invertible

along a, whose proof is essentially the same as Theorem 4.1 above.

Theorem 4.2 Let a ∈ R and let e, f ∈ R be invertible Hermitian elements. Then the

following conditions are equivalent:

(i) a ∈ R
†
e,f ;

(ii) f−1a∗e is left invertible along a;

(iii) f−1a∗e is right invertible along a.

In this case, a
†
e,f = (f−1a∗e)

‖a
l = (f−1a∗e)

‖a
r .

Mary and Patŕıcio [4] derived the characterization for the existence of a‖d, i.e., a is invertible

along d if and only if u = da+1− dd− is invertible, provided that d is regular. Hence, af−1a∗e

is invertible along a if and only if a2f−1a∗e+ 1− aa− is invertible.

It follows from Theorem 3.2 that a ∈ Re,#○ ∩ Rf,#○ if and only if a2f−1a∗e + 1 − aa− is

invertible. Hence, a is both e-core and f -dual core invertible if and only if af−1a∗e is invertible

along a.

It is natural to consider whether we can characterize the e-core inverse (resp. the f -dual

core inverse) by the inverse of an element. We next show the fact that a is e-core invertible

if and only if it is invertible along af−1a∗e, and a is f -dual core invertible if and only if it is

invertible along f−1a∗ea, under the assumption a ∈ R
†
e,f .

Theorem 4.3 Let a ∈ R
†
e,f . Then a is e-core invertible if and only if it is invertible along

af−1a∗e. In this case, ae,#○ = a‖af
−1a∗e.

Proof Suppose that a is invertible along af−1a∗e with x = a‖af
−1a∗e. Then, we have

xa2f−1a∗e = af−1a∗e = af−1a∗eax, x ∈ af−1a∗eR ∩Raf−1a∗e.

By a direct calculation, it follows

eax = (eaa†e,f )
∗ax = (a†e,f )

∗a∗eax
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= (fa†e,f )
∗f−1a∗eax

= (fa†e,faa
†
e,f )

∗f−1a∗eax

= (a†e,f )
∗fa

†
e,f (af

−1a∗eax)

= (a†e,f )
∗fa

†
e,f (af

−1a∗e)

= (a†e,f )
∗(f−1fa

†
e,fa)

∗a∗e

= (a†e,faa
†
e,f )

∗a∗e

= (a†e,f )
∗a∗e

= (eaa†e,f )
∗

= eaa
†
e,f ,

which implies eax = (eax)∗.

As e is an invertible Hermitian element, ax = aa
†
e,f and hence axa = a. Since x ∈ af−1a∗eR,

there exists some y ∈ R such that x = af−1a∗ey = axaf−1a∗ey = ax2.

Similarly, we get

xa2 = xa2f−1fa
†
e,fa

= xa2f−1a∗(a†e,f )
∗f

= (xa2f−1a∗e)e−1(a†e,f )
∗f

= af−1a∗ee−1(a†e,f )
∗f

= af−1(fa†e,fa)
∗

= a.

Therefore, x = a‖af
−1a∗e is the e-core inverse of a.

Conversely, suppose that a ∈ Re,#○ with ae,#○ = z. Then, by Lemma 3.2, aza = a, zaz = a,

az2 = z, za2 = a and eaz = (eaz)∗. To show that z is the inverse of a along d = af−1a∗e, it is

sufficient to prove zad = d = daz and z ∈ dR ∩Rd.

We get zad = zaaf−1a∗e = za2f−1a∗e = af−1a∗e and daz = af−1a∗eaz = af−1a∗(eaz)∗ =

af−1(eaza)∗ = af−1(ea)∗ = af−1a∗e = d.

Since az = aa
(1,3)
e = aa

†
e,f and z = az2, we have

z = aa
†
e,fz

= af−1(fa†e,fa)
∗a

†
e,fz

= af−1a∗(a†e,f )
∗fa

†
e,fz

= af−1a∗(a†e,fe
−1eaa

†
e,f )

∗fa
†
e,fz

= af−1a∗eaa
†
e,fe

−1(a†e,f )
∗fa

†
e,fz,

which gives z ∈ dR.

Also, note the equality z = zaz, we can obtain z ∈ Rd.

Therefore, a is invertible along af−1a∗e.

Theorem 4.4 Let a ∈ R
†
e,f . Then a is f -dual core invertible if and only if it is invertible

along f−1a∗ea. In this case, af,#○ = a‖f
−1a∗ea.
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Corollary 4.1 (see [8, Theorem 4.3]) Let a ∈ R†. Then

(i) a is core invertible if and only if it is invertible along aa∗. In this case, a#○ = a‖aa
∗

.

(ii) a is dual core invertible if and only if it is invertible along a∗a. In this case, a#○ = a‖a
∗a.
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