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Abstract Recently, there are extensive studies on perfect state transfer (PST for short)
on graphs due to their significant applications in quantum information processing and
quantum computations. However, there is not any general characterization of graphs that
have PST in literature. In this paper, the authors present a depiction on weighted abelian
Cayley graphs having PST. They give a unified approach to describe the periodicity and
the existence of PST on some specific graphs.
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1 Introduction

Throughout this paper, we use Z, Q, R and C to stand for the ring of integers, the field of

rational numbers, the field of real numbers and the field of complex numbers, respectively.

A weighted graph Γ is a triple system (V,E;α), where V = {v1, · · · , vn} is a finite set, E

is a subset of V × V , and α is a complex-valued function, called a weight function, on E. The

adjacency matrix of Γ is defined as

A = [aij ]
n
i,j=1, where aij = α(vi, vj).

The eigenvalues of A will be referred to as the eigenvalues or the spectra of the graph Γ. A

graph is named an integral graph if all its eigenvalues are integers.

Suppose that G is a finite group. A weighted Cayley graph Γ = Cay(G;α) is just a triple

system (G,E;α), where E ⊆ G × G and α is a complex-valued function such that the weight

function, which is also denoted by α, satisfies

α(g, h) = α(g−1h), ∀g, h ∈ G.

We assume that there is no edge from g to gh if α(h) is zero. If the value set of the weight

function α is {0, 1} and the support set of α, i.e., S = {g ∈ G | α(g) = 1}, generates G, then
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Γ is a Cayley digraph, denoted by Cay(G,S). Particularly, if S is symmetric, i.e, S = S−1 :=

{s−1 | s ∈ S} and S does not contain the identity element of G, then Γ is an undirected graph

and is the usual Cayley graph. All the graphs considered in this paper are simple graphs, i.e,

undirected connected graphs without loops.

A continuous random walk on Γ is determined by a family of matrices of the form M(t),

indexed by the vertices of Γ and parameterized by a real positive time t. The (u, v)-entry of

M(t) represents the probability of starting at vertex u and reaching vertex v at time t. Define

a continuous random walk on Γ by setting

M(t) = exp(ıt(D −A)),

where ı =
√
−1 and D is a diagonal matrix. Then each column of M(t) corresponds to a

probability density of a walk whose initial state is the vertex indexing the column.

For quantum computations, Fahri and Gutmann [10] proposed an analogue continuous quan-

tum walk. For a connected simple graph Γ with adjacency matrix A, they define the transfer

matrix of Γ as the following n× n matrix:

H(t) := exp(ıtA) =

+∞∑

s=0

(ıtA)s

s!
= (Hg,h(t))g,h∈V , t ∈ R,

where n = |V | is the number of vertices in Γ.

Definition 1.1 Let Γ be a graph. For u, v ∈ V , we say that Γ exhibits perfect state transfer

(PST for short) from u to v at a time t (> 0) if the (u, v)-entry of H(t), denoted by H(t)uv,

has absolute value 1. Further, when |H(t)uu| = 1, we say that Γ is periodic at u with period t.

If Γ is periodic with period t at every point, then Γ is named periodic.

We say that Γ admits PST if there are two vertices u and v such that Γ has PST from u to

v at some time t > 0.

Since H(t) is a unitary matrix, if PST happens in the graph from u to v, then the entries

in the u-th row and the entries in the v-th column of H(t) are all zero except for the (u, v)-th

entry. That is, the probability starting from u to v is absolutely 1, which is an idea model of

state transferring. In other words, quantum walks on finite graphs provide useful simple models

for quantum state transport. This phenomenon was first discovered by Bose [4] and was applied

to spin chains for communication links in quantum computing. Some new quantum algorithmic

computing techniques in this aspect were provided by Childs [7] and Farhi et al [10] around

the same time. These algorithms are remarkable since they provably beat the corresponding

classical resource bounds. For more background of applications of PST, we refer the readers to

[4, 9] and the references therein.

Quantum walks on weighted graphs have been proposed as an efficient way to transfer

quantum states (and therefore quantum information) with perfect fidelity without requiring

external control (see [8]). Casaccino et al. [5] noticed that it is possible to achieve PST by using

suitable energy shifts (by adding weighted self-loops) on two vertices of complete graphs, or on

complete graphs with a missing link (even though there is no PST in certain unweighted cases).

In a previous paper [18], we presented a characterization on connected simple Cayley graphs

Γ = Cay(G,S) having PST. We gave a unified interpretation of many previously known results.

We provided several new results including the answers to the questions raised in [2, 11–12].
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However, even though there are a lot of researches on PST, there is no general characteriza-

tion on graphs which exhibit PST in literature. In this paper, we extend the results in [18] to

weighted abelian Cayley graphs. We give a unified characterization of weighted abelian Cay-

ley graphs having PST. Since weighted graphs and Cayley graphs are special kinds of weighted

Cayley graphs, we can use our main results (Theorems 2.1–2.2) to explain many prior results on

the existence of PST on circulant graphs (the underlying group is a cyclic group) and cubelike

graphs (the underlying group is the addition group of a finite field of characteristic two). In [18],

we proved that if Γ = Cay(G,S) is a connected simple abelian Cayley graph with 4 < |G| ≡ 2

(mod 4), then G cannot have PST between two distinct vertices. As an application of Theorem

2.2, we show that the same conclusion holds for integral weighted abelian Cayley graphs under

certain conditions (Theorem 2.4). Conversely, if we assign the weight function properly, then

we can get a connected simple weighted graph Γ = Cay(G;α) having PST even if the order

of G is not doubly even (Theorem 2.5). We provide a lower bound on the minimum time t at

which a weighted Cayley graph has PST between two distinct vertices (Theorem 3.1) and show

that this bound is tight (Theorem 3.2).

2 A Characterization on Weighted Abelian Cayley Graphs Having PST

Note that in this paper, from now on, all the groups are abelian (additive) and the identity

element of the concerned group is denoted as 0. “gcd(· · · )” stands for the greatest common

divisor of some integers. In order to compute the transfer matrix of the weighted Cayley graph,

we need to diagonalize the adjacency matrix A. Before doing that, we need some preliminaries

on the dual group of an abelian group. Assume that an abelian group G has the following

decomposition

G = Zn1
⊕ · · · ⊕ Znr

(ns ≥ 2),

where Zm = (Z/mZ,+) is a cyclic group of order m. For every x = (x1, · · · , xr) ∈ G, the

mapping

χx : G → C, χx(g) =

r∏

s=1

ωxsgs
ns

for g = (g1, · · · , gr) ∈ G

is a character of G, where ωns
= exp

(
2πı
ns

)
is a primitive ns-th root of unity in C. Obviously,

we have χx(g) = χg(x) for all x, g ∈ G.

For spectrum of the weighted Cayley graph Γ = Cay(G;α), we have the following result.

Lemma 2.1 (see [15]) Let G be an abelian group of order n and {λg | g ∈ G} be the set of

spectra of the weighted Cayley graph Γ = Cay(G;α). Then we have

λg =
∑

h∈G

α(h)χh(g), g ∈ G,

where Ĝ := {χh | h ∈ G} is the dual group of G consisting of the characters of G.

Consider the following n× n matrix

P :=
1√
n
(γg,h)g,h∈G, γg,h := χg(h), n = |G|.
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By the orthogonal relation of characters, we know that P is a unitary matrix, i.e., PP ∗ = In =

P ∗P , where P ∗ means the conjugate transpose of P .

Let D be the following diagonal matrix

D = diag(λg : g ∈ G) = (dg,h), dg,h = λgδg,h,

where δg,h = 1 if g = h and 0 otherwise. Let A be the adjacency matrix of Γ = Cay(G;α) and

let AP = (ηg,h), PD = (νg,h). Then for every g, h ∈ G,

ηg,h =
1√
n

∑

k∈G

α(g, k)γk,h =
χh(g)√

n

∑

k∈G

α(k)χh(k) =
χh(g)√

n
λh.

Note that the last equality follows from Lemma 2.1. Moreover,

νg,h =
1√
n

∑

k∈G

γg,kdk,h =
1√
n

∑

k∈G

χg(k)λkδk,h =
χh(g)√

n
λh.

Thus P ∗AP = D and

H(t) = exp(ıtA) = P exp(−ıtD)P ∗ = P · diag(exp(−ıtλg) : g ∈ G) · P ∗ = (Hg,h(t))g,h∈G,

where

Hg,h(t) =
1

n

∑

x,y∈G

γg,x exp(−ıtλx)δx,yγh,y

=
1

n

∑

x∈G

exp(−ıtλx)χg(x)χh(x)

=
1

n

∑

x∈G

exp(−ıtλx)χa(x),

where a = g − h. Therefore,

|Hg,h(t)| = 1 if and only if
∣∣∣
∑

x∈G

exp(−ıtλx)χa(x)
∣∣∣ = n.

If we further assume that α(g) = α(−g) for all g ∈ G, where the “·” means the conjugate

of a complex number, then for every h ∈ G, λh =
∑
g∈G

α(g)χh(g) =
∑
g∈G

α(−g)χh(−g) =
∑
g∈G

α(g)χh(g) = λh, and then λx is a real number. Therefore | exp(−ıtλx)χa(x)| = 1 for all

x ∈ G. Then |Hg,h(t)| = 1 if and only if all exp(−ıtλx)χa(x) (x ∈ G) are the same number.

For x = 0, we have λ0 =
∑
g∈G

α(g). Thus we obtain the following preliminary result.

Lemma 2.2 Let G be an abelian group and {λg | g ∈ G} be the set of spectra of the weighted

Cayley graph Γ = Cay(G;α). Assume that for every z ∈ G, α(z) = α(−z). For g, h ∈ G, let

a = g − h. Then the following statements are equivalent:

(1) Γ has PST between vertices g and h at time t > 0;

(2) for any x(6= 0) ∈ G, χa(x) = exp(ıt(λ0 − λx)).

As a consequence, we have the following simple corollaries.
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Corollary 2.1 Let G be an abelian group of order n. Let α be a weight function satisfying

α(z) = α(−z) for every z ∈ G and Γ = Cay(G;α) be the corresponding weighted abelian Cayley

graph. Then for g, h ∈ G, Γ has PST between g and h if and only if Γ has PST between g + z

and h+ z for all z ∈ G.

Proof It follows directly from Lemma 2.2 (2).

Corollary 2.2 Let G be an abelian group of order n and Γ = Cay(G;α) be a weighted

abelian Cayley graph with the weight function satisfying α(z) = α(−z) for every z ∈ G. Let

Γ′ = Γ′(G;α′) be another weighted graph, where the weight function α′ is defined by α′(z) =

α(z) + s for all z ∈ G, s is a real number. Suppose that nst
2π ∈ Z. Then for g, h ∈ G, the

following statements are equivalent:

(1) Γ has PST between g and h at time t > 0;

(2) Γ′ has PST between g and h at time t > 0.

Proof Assume that Γ has PST between g and h at a time t > 0. Then by Lemma 2.2 (2),

for any x(6= 0) ∈ G, χa(x) = exp(ıt(λ0 − λx)), where a = g − h. Now, α′(z) = α(z) + s =

α(−z) + s = α′(−z) for all z ∈ G and

λ′
x =

∑

z∈G

α′(z)χz(x) =
∑

z∈G

(α(z) + s)χz(x)

=
∑

z∈G

α(z)χx(z) + s
∑

z∈G

χz(x) =
∑

z∈G

α(z)χx(z) = λx,

and

λ′
0 =

∑

z∈G

α′(z) =
∑

z∈G

(α(z) + s) =
∑

z∈G

α(z) + ns = λ0 + ns.

Thus

exp(ıt(λ′
0 − λ′

x)) = exp(2πıT (λ0 − λx + ns)) = exp(2πıT (λ0 − λx)) = χa(x).

By Lemma 2.2 (2) again, Γ′ has PST between g and h at time t. By symmetry, the stated

equivalence follows. This completes the proof.

Moreover, we have the following result on weighted abelain Cayley graphs having PST.

Proposition 2.1 Let Γ = Cay(G;α) be a weighted abelian Cayley graph with α(z) =

α(−z) ∈ Z for every z ∈ G and n = |G| ≥ 3. Assume that Γ has PST between a pair

(g, h) of vertices. Then

(1) Γ is an integral graph. Namely, λx ∈ Z for all x ∈ G.

(2) If a = g − h 6= 0, then the order of a is two. Consequently, |G| = n is even.

Proof (1) Suppose that Γ has PST between g and h ∈ G. By Lemma 2.2, the equality

χa(x) = exp(ıt(λ0 − λx))

holds for every x ∈ G. Let m be the order of a = g−h ∈ G. Since a 7→ χa gives an isomorphism

of G and Ĝ, the order of χa is also m. Thus we can write

χa(x) = ωia(x)
m , where ωm = exp

(2πı
m

)
, ia(x) ∈ Zm.
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Then the condition (2) of Lemma 2.2 becomes

exp(ıt(λ0 − λx)) = exp
(2πıia(x)

m

)
. (2.1)

Denote t = 2πT . From (2.1), we get

Mx := T (λ0 − λx)−
ia(x)

m
∈ Z for any (0 6=)x ∈ G. (2.2)

Thus the number M :=
∑

06=x∈G

Mx ∈ Z. On the other hand,

M =
∑

06=x∈G

(
T (λ0 − λx)−

ia(x)

m

)
= (n− 1)Tλ0 − T

∑

06=x∈G

λx − 1

m

∑

06=x∈G

ia(x),

and
∑

06=x∈G

λx =
∑

06=x∈G

∑

z∈G

α(z)χx(z) =
∑

z∈G

α(z)
∑

06=x∈G

χz(x)

= (n− 1)α(0)−
∑

06=z∈G

α(z) = nα(0)− λ0.

Thus M = n(λ0 − α(0))T − 1
m

∑
06=x∈G

ia(x) ∈ Z. Since λ0 =
∑
g∈G

α(g) ∈ Z, we know that T ∈ Q.

Then by (2.2) we get that λx ∈ Q for all x ∈ G. Now, α(g) ∈ Z for all g ∈ G implies that

λx =
∑
g∈G

α(g)χx(g) is an integral combinatorial of algebraic integers and thus an algebraic

integer. It follows that λx ∈ Z for all x ∈ G.

(2) Suppose that the order of a = g − h(6= 0) is m and so is the order of χa. Then there

exists an element x ∈ G such that χa(x) = ω
ia(x)
m with gcd(ia(x),m) = 1. Obviously, x should

be non-zero. By (2.2), we have

T (λ0 − λx)−
ia(x)

m
∈ Z. (2.3)

Now, we consider λ−x. By (1), λx ∈ Z , thus

λ−x =
∑

g∈G

α(g)χ−x(g) =
∑

g∈G

α(g)χg(−x) =
∑

g∈G

α(g)χg(x) = λx = λx,

and

ωia(−x)
m = χa(−x) = χa(x) = ω−ia(x)

m .

Thus, ia(−x) ≡ −ia(x) (mod m). By (2.3), we have

T (λ0 − λx) +
ia(x)

m
∈ Z. (2.4)

Combining (2.3) and (2.4) together, we have 2ia(x)
m

∈ Z. Since gcd(ia(x),m) = 1, we get that

m = 2.

Next, we discuss the periodicity of a simple weighted ableian Cayley graph Γ = Cay(G;α).

By Corollary 2.2, we may assume that α(g) ≥ 0 for all g ∈ G. In order to get integral graphs,

we need further assume that α(z) ∈ Z for all z ∈ G. Based on these assumptions, we can state

the following result.
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Theorem 2.1 Let G be a finite abelian group. Let α be a function on G satisfying 0 ≤
α(z) = α(−z) ∈ Z for all z ∈ G. Let Γ = Cay(G;α) be the corresponding weighted abelian

Cayley graph. Let λ0 and · · · , λn−1 be the eigenvalues of Γ and n(≥ 3) be the order of G. If Γ

is an integral graph, then for every g ∈ G, Γ is periodic at vertex g and the set

{t > 0 | Γ is periodic at g with period t}

is { 2πl
N

| l = 1, 2, · · · }, where N = gcd(λ0 − λx : 0 6= x ∈ G).

Proof Firstly, since Γ is integral, the number N = gcd(λ0−λx : 0 6= x ∈ G) is well-defined.

Secondly, from the proof of Proposition 2.1, we know that Γ has PST at the vertex g if and

only if

Mx = T (λ0 − λx)−
ia(x)

m
∈ Z

for any 0 6= x ∈ G, where a = g − g = 0 and thus ia(x) = 0. It is easy to see that Mx =

T (λ0 − λx) ∈ Z for all 0 6= x ∈ G if and only if TN ∈ Z.

Now, we consider those integral weighted abelian Cayley graphs which admit PST between

two distinct vertices g and h. Denote a = g − h. By Proposition 2.1, the order of a is two and

so is the order of χa. Therefore for every x ∈ G, we have χa(x) = ±1. Define two subsets of G

by

Ω+ := {x ∈ G | χa(x) = 1}, Ω− := {x ∈ G | χa(x) = −1}. (2.5)

It is easy to see that Ω+ is a subgroup of G and G is a disjoint union of Ω+ and Ω−. Moreover

|Ω+| = |Ω−| = |G|
2 . Denote

N0 = gcd(λ0 − λx : x ∈ Ω+), N1 = gcd(λ0 − λx : x ∈ Ω−). (2.6)

Obviously, N0 and N1 are well-defined and N = gcd(λ0 − λx : 0 6= x ∈ G) = gcd(N0, N1).

Recall that the 2-adic exponential valuation of rational numbers is defined by

v2 : Q → Z ∪ {∞}, v2(0) = ∞, v2

(
2ℓ
a

b

)
= ℓ, where a, b, ℓ ∈ Z and 26 |ab.

The evaluation v2 has the following properties. For β, β′ ∈ Q,

(P1) v2(ββ
′) = v2(β) + v2(β

′);

(P2) v2(β + β′) ≥ min(v2(β), v2(β
′)), and equality holds if v2(β) 6= v2(β

′).

After the above preparation, we present our main result as follows.

Theorem 2.2 Let G be an abelian group of order n and α be a function on G satisfying

α(z) = α(−z) ∈ Z for all z ∈ G. Assume that Γ = Cay(G;α) is the associated Cayley graph.

Then for g, h ∈ G, a = g − h 6= 0, Γ has PST between g and h if and only if the following three

conditions hold:

(1) Γ is an integral graph, i.e., the eigenvalues of Γ are all integers;

(2) the order of a is two;

(3) for all x ∈ Ω−, the 2-adic valuations of the numbers λ0 − λx are equal, say ρ, and

v2(N0) ≥ ρ+ 1, where N0 is defined by (2.6).

Moreover, if the conditions (1)–(3) are satisfied, then the set

{t > 0 | Γ has PST between g and h at time t}
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is
{

π
N

+ 2π
N
ℓ : ℓ = 0, 1, 2, · · ·

}
, where N = gcd(λ0 − λx : 0 6= x ∈ G).

Proof Conditions (1), (2) follow directly from Proposition 2.1. Thus Γ has PST between

g and h at the time t := 2πT if and only if the following two conditions hold:

(i) T (λ0 − λx) ∈ Z for all x ∈ Ω+;

(ii) T (λ0 − λx)− 1
2 ∈ Z for all x ∈ Ω−.

Condition (i) means that T ∈ 1
N0

Z =
{

ℓ
N0

| ℓ ∈ Z
}
. Now, we consider the condition (ii).

Suppose that x, x′ ∈ Ω−. Then T (λ0 − λx), T (λ0 − λx′) ∈ 1
2 + Z, and then T ∈ Q \ {0}

and v2(T (λ0 − λx)) = v2(T (λ0 − λx′)) = −1. Therefore we have v2(λ0 − λx) = v2(λ0 − λx′) =

−1−v2(T ). Hence, for all x ∈ Ω−, v2(λ0−λx) is a constant, say ρ. Moreover, if v2(λ0−λx) = ρ

for all x ∈ Ω−, then v2(N1) = ρ and v2(T ) = v2(T (λ0 − λx)) − v2(λ0 − λx) = −(ρ + 1). Thus

condition (ii) means that T ∈ 1
N1

(
1
2 + Z

)
=

{
1
N1

(
1
2 + ℓ

)
: ℓ ∈ Z

}
. This completes the proof.

Next, we present an example to illustrate our results.

Example 2.1 Let G = Z/6Z be a cyclic group of order 6 and the weight function is

defined by α(0) = α(3) = 0, α(1) = α(5) = 1, α(2) = α(4) = 2. Let Γ = Cay(G;α) be the

corresponding weighted Cayley graph. Then the adjacency matrix of Γ is

A =




0 1 2 0 2 1
1 0 1 2 0 2
2 1 0 1 2 0
0 2 1 0 1 2
2 0 2 1 0 1
1 2 0 2 1 0




.

The eigenvalues of A are

λ0 = 6, λ1 = λ5 = −1, λ2 = λ4 = −3, λ3 = 2.

In fact, let P = 1√
6
(γij)0≤i,j≤5, where γij = ωi·j

6 . Then P is a unitary matrix and

P ∗AP = diag(λ0, · · · , λ5).

A direct computation shows that the transfer matrix H(t) = (hij(t))1≤i,j≤6 satisfies

hii(t) =
1

6
(exp(6tı) + 2 exp(−tı) + 2 exp(−3tı) + exp(2tı)), i = 1, 2, · · · , 6

and

hi,i+3(t) =
1

6
(exp(6tı)− 2 exp(−tı) + 2 exp(−3tı)− exp(2tı)), i = 1, 2, 3.

The other entries (except for hii(t), i = 1, · · · , 6 and hi,i+3(t), hi+3,i(t), i = 1, 2, 3) have the

form 1
6 (exp(6tı)+ s1 exp(−tı)+ s2 exp(−3tı)+ s3 exp(2tı)), where s1, s2, s3 ∈ {−1, 1}, and thus

their absolute value are less than 1 for every real number t. Thus Γ cannot have PST between

vertices g and h when g − h 6= 0. But Γ is periodic at any vertex g ∈ G. These results are

consistent with Theorem 2.2. Indeed, x ∈ Ω− if and only if x ∈ {1, 3, 5}. Now, v2(λ0−λ1) = 0,

v2(λ0 − λ3) = 2. Thus the condition (3) in Theorem 2.2 does not hold and thus Γ cannot have

PST between vertices g and h when g − h 6= 0.
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In view of Theorem 2.2, we need to investigate integral weighted abelian Cayley graphs.

Note that, for abelian Cayley graph, this topic has been discussed by many authors, see for

example [1, 11, 13, 19] and the references therein.

We consider integral weighted abelian Cayley graph Γ = Cay(G;α) with the weight function

α satisfying α(z) = α(−z) ∈ Z for all z ∈ G. Let e = exp(G) be the least common multiple of

the order of the elements in G. Since the eigenvalues of Γ = Γ(G;α) are {λx : x ∈ G}, they
are contained in the cyclotomic field Q(ωe), here ωe is a primitive e-th root of unity in C. It is

well-known that Q(ωe)/Q is a Galois extension and the Galois group of this extension is

Gal(Q(ωe)/Q) = {σℓ : ℓ ∈ Z∗
e},

where Z∗
e = {1 ≤ ℓ ≤ e : gcd(ℓ, e) = 1} and σℓ is defined as ωe 7→ ωℓ

e. Therefore, Γ is integral if

and only if σℓ(λx) = λx for all x ∈ G and ℓ ∈ Z with gcd(ℓ, e) = 1. Now,

σℓ(λx) = σℓ

(∑

g∈G

α(g)χx(g)
)
=

∑

g∈G

α(g)χx(g)
ℓ =

∑

g∈G

α(g)χℓx(g) = λℓx.

Meanwhile,

σℓ(λx) = σℓ

(∑

g∈G

α(g)χx(g)
)
=

∑

g∈G

α(g)χx(ℓg) =
∑

g∈G

α(ℓ−1g)χx(g).

Thus, λx ∈ Z for all x ∈ G if and only if
∑
g∈G

(α(ℓ−1g) − α(g))χx(g) = 0 for all ℓ ∈ Z with

gcd(ℓ, e) = 1 and all x ∈ G. By the orthogonality of characters, λx ∈ Z for all x ∈ G if and

only if α(ℓg) = α(g) for all g ∈ G and ℓ ∈ Z with gcd(ℓ, e) = 1.

We define an equivalent relation “∼” on G by setting g ∼ h if and only if there exists an

element ℓ ∈ Z∗
e such that g = ℓh. The equivalent class containing g is denoted by [g]. A function

f is called a c-function if it is a constant on each equivalent class. That is, if f is a c-function,

and g ∼ h, then f(g) = f(h). Using this notation, we have the following result.

Theorem 2.3 Assume that Γ = Cay(G;α) is a weighted abelian Cayley graph, where the

weight function α satisfies α(z) = α(−z) ∈ Z for all z ∈ G. Then the following statements are

equivalent:

(1) Γ is integral, i.e., λx =
∑
g∈G

α(g)χx(g) is an integer for all x ∈ G;

(2) λx = λℓx for all x ∈ G and ℓ ∈ Z∗
e , that is, λx is a c-function defined on G;

(3) α(g) = α(ℓg) for all g ∈ G and ℓ ∈ Z∗
e , that is, α(g) is a c-function defined on G.

We note that, when Γ is an abelian Cayley graph Cay(G;S), then Theorem 2.3 is reduced

to the following result obtained independently by Bridge [3] and Klotz [14].

Corollary 2.3 (see [3, 14]) Let G be a finite abelian group, S ⊆ G. Then the Cayley graph

Γ = Cay(G;S) is integral if and only if S is a disjoint union of several equivalent classes of G.

We have shown that if a weighted abelian Cayley graph Γ = Cay(G;α) has PST between

two distinct vertices g and g+a in G, then the order of a should be two and then the order of G

is even. For integral circulant Cayley graphs Cay(G,S) having PST, Petkovic [17] proved that

the order of G should be doubly even, i.e., 4||G|. In [18], we proved that if Γ = Cay(G,S) is a
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connected simple abelian Cayley graph with 4 ≤ |G| ≡ 2 (mod 4), then G cannot have PST be-

tween two distinct vertices. In other words, we generalized Petkovic’s result (see [17]) to abelian

Cayley graphs. As another application of Theorem 2.2, we can show that the same conclusion

holds for integral weighted abelian Cayley graphs under certain conditions. Conversely, if we

assign the weight function suitably, then we can get a simple weighted graph Γ = Cay(G;α)

having PST even if the order of G is not doubly even.

Theorem 2.4 Let Γ = Γ(G;α) be a connected weighted integral abelian Cayley (simple)

graph and 4 < n = |G| ≡ 2 (mod 4). Let a ∈ G be the unique element of order 2. Then Γ has no

PST between distinct vertices if there is an element g(6= a) ∈ G such that v2(α(g)) ≤ v2(α(a)).

Proof We use Theorem 2.2 to prove this result. Since 4 < n = |G| ≡ 2 (mod 4), we can

write G = Z2

⊕
H , where H is an abelian group, and |H | := m is odd. Then a = (1, 0). If

Γ has PST between g and g + a′, then a′ is of order two, and thus a′ = a = (1, 0) ∈ G. The

character group of G is Ĝ = {ηiχh | i = 0, 1, and h ∈ H}, where 〈η〉 = Ẑ2, Ĥ = {χh : h ∈ H}.
For any element (x, y) ∈ G,

(ηiχh)((x, y)) =

{
χh(y), if i = 0,
(−1)xχh(y), otherwise.

Thus, by (2.5), we know that

Ω+ = {(0, h) | h ∈ H}, Ω− = {(1, h) | h ∈ H}.

By Theorems 2.2–2.3, we can obtain v2(λx − λy) = ρ for all x ∈ Ω+, y ∈ Ω− and the weight

function α is a class function. Letting x = (0, h) ∈ Ω+, y = (1, h) ∈ Ω−, we get

λx =
∑

g∈G

α(g)χx(g) =
∑

g=(0,g′)∈Ω+

α(g)χh(g
′) +

∑

g=(1,g′)∈Ω−

α(g)χh(g
′)

and

λy =
∑

g∈G

α(g)χx(g) =
∑

g=(0,g′)∈Ω+

α(g)χh(g
′)−

∑

g=(1,g′)∈Ω−

α(g)χh(g
′).

Therefore, we have

λx − λy = 2
∑

g=(1,g′)∈Ω−

α(g)χh(g
′)

and

v2

( ∑

g=(1,g′)∈Ω−

α(g)χh(g
′)
)
= ρ− 1 for any h ∈ H.

Particularly, taking h = 0, we get

v2

( ∑

g∈Ω−

α(g)
)
= ρ− 1.

Since for every ℓ ∈ Z∗
2m, ℓΩ+ = {ℓz : z ∈ Ω+} = Ω+, ℓΩ− = {ℓz : z ∈ Ω−} = Ω−, we have

σℓ

( ∑

g=(1,g′)∈Ω−

α(g)χh(g
′)
)
=

∑

g=(1,g′)∈Ω−

α(g)χh(g
′)ℓ =

∑

g=(1,g′)∈Ω−

α(g)χh(g
′), for all h ∈ H.
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Thus
∑

g=(1,g′)∈Ω−

α(g)χh(g
′) ∈ Z. Similarly, we have

∑
g=(0,g′)∈Ω+

α(g)χh(g
′) ∈ Z. From (??), it

follows that

∑

g=(1,g′)∈Ω−

α(g)χh(g
′) ≡ 2ρ−1 (mod 2ρ) for all h ∈ H. (2.7)

Since a = (1, 0) is the unique element in Ω− whose equivalent class has odd size (if z ∈ Ω−,

then the size of [z] is ϕ(ord(z)), here ϕ is the Euler phi-function). Since Ω− is a union of some

equivalent classes, we obtain that |Ω−| is odd. Moreover, α is a c-function on G, we know that∑
g∈Ω−

α(g) ≡ α(a) (mod 2). We define a function f on H as follows:

f : H → Z, f(z) =

{
α((1, z)), if (1, z) ∈ Ω−,
0, otherwise.

The Fourier transformation of f(z) is

F (h) =
∑

z∈H

f(z)χz(h) =
∑

g=(1,z)∈Ω−

α(g)χh(z) ≡ 2ρ−1 (mod 2ρ) for all h ∈ H.

By inverse Fourier transformation,

mf(z) =
∑

h∈H

F (h)χh(z) ≡ 2ρ−1
∑

h∈H

χh(z) (mod 2ρ).

If z 6= 0, then
∑
h∈H

χh(z) = 0 and f(z) ≡ 0 (mod 2ρ) since m is odd. Thus for every (1, z) ∈ Ω−,

and z 6= 0, one has that f(z) = α((1, z)) ≡ 0 (mod 2ρ). By (2.7), we have

α(a) ≡ 2ρ−1 (mod 2ρ) and α((1, h)) ≡ 0 (mod 2ρ) for all 0 6= h ∈ H. (2.8)

By Theorem 2.2, for any x = (0, h) ∈ Ω+, y = (1, h) ∈ Ω−, we have v2(λ0 − λx) ≥ ρ + 1,

v2(λ0 − λy) = ρ. By Property (P2), it follows that

ρ = v2(2λ0 − (λx + λy)) = v2

(
2λ0 − 2

∑

g=(0,h)∈Ω+

α(g)χh(h)
)
.

Thus

v2

(
λ0 −

∑

g=(0,z)∈Ω+

α(g)χh(z)
)
= ρ− 1.

Therefore,

∑

g=(0,z)∈Ω+

α(g)χh(z) ≡ 2ρ−1 − λ0 (mod 2ρ) for all h ∈ H. (2.9)

We define a function g on H as follows:

g : H → Z, g(z) =

{
α((0, z)), if (0, z) ∈ Ω+,
0, otherwise.
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The Fourier transformation of g(z) is

G(h) =
∑

z∈H

g(z)χz(h) =
∑

g=(0,z)∈Ω+

α(g)χh(z) ≡ 2ρ−1 − λ0 (mod 2ρ) for all h ∈ H.

By inverse Fourier transformation again,

mg(z) =
∑

h∈H

G(h)χh(z) ≡ (2ρ−1 − λ0)
∑

h∈H

χh(z) (mod 2ρ).

For z(6= 0) ∈ H , we have g(z) = α((0, z)) ≡ 0 (mod 2ρ). By (2.9), we have

α((0, 0)) ≡ 2ρ−1 − λ0 (mod 2ρ) and α((0, h)) ≡ 0 (mod 2ρ) for all (0 6=)h ∈ H. (2.10)

Since Γ is a simple graph, α((0, 0)) = 0, we get that λ0 ≡ 2ρ−1 (mod 2ρ).

Combining (2.8) and (2.10), we get

α(a) = α((1, 0)) ≡ 2ρ−1 (mod 2ρ) and α(g) ≡ 0 (mod 2ρ) for all (a 6=)g ∈ G.

Thus we get a contradiction with the assumption that there exists an element g ∈ G such that

v2(α(g)) ≤ v2(a).

For the converse of Theorem 2.4, we show that for some abelian groups of order 2m with odd

integer m, there exists a weight function α such that Γ = Cay(G;α) has PST. More specifically,

we have the following result.

Theorem 2.5 Let G = (Z2m,+) be an abelian group, where m > 1 is an odd integer. Let

Γ = Γ(G;α) be a weighted (simple) graph, where the weight function α is defined by α(0) =

0, α(m) = 1, α(g) = 2 for all g ∈ G and g 6= 0,m. Then for every g ∈ G, Γ has PST between g

and g +m at time π
2 .

Proof Since G is in fact a cyclic group, the dual group of G is also cyclic. By Lemma 2.1,

a direct calculation shows that the eigenvalues of Γ are

λ0 = 4m− 3,

λ2k−1 = −1, 1 ≤ k ≤ m,

λ2k = −3, 1 ≤ k ≤ m− 1.

And it is easy to see that

Ω+ = {2k − 1 : 1 ≤ k ≤ m}, Ω− = {2k : 1 ≤ k ≤ m− 1}.

Therefore,

v2(λ0 − λx) = v2(4m) = 2 for all 0 6= x ∈ Ω+, and

v2(λ0 − λy) = v2(2(2m− 1)) = 1 for all y ∈ Ω−.

By Theorem 2.2, we know that Γ has PST between two distinct vertices at time π
2 .

For the graph in the Example 2.1, if we change the weight function according to Theorem

2.5, then we get the following weighted graph which has PST.
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Example 2.2 Let G = Z/6Z be a cyclic group of order 6 and the weight function is defined

by α(0) = 0, α(3) = 1, α(1) = α(5) = α(2) = α(4) = 2. Let Γ = Cay(G;α) be the corresponding

weighted Cayley graph. Then the adjacency matrix of Γ is

A =




0 2 2 1 2 2
2 0 2 2 1 2
2 2 0 2 2 1
1 2 2 0 2 2
2 1 2 2 0 2
2 2 1 2 2 0




.

The eigenvalues of A are

λ0 = 9, λ1 = λ3 = λ5 = −1, λ2 = λ4 = −3.

Note that

v2(λ0 − λx) = v2(12) = 2 for all x ∈ Ω+ \ {0} = {2, 4},

and

v2(λ0 − λy) = v2(10) = 1 for all y ∈ Ω− = {1, 3, 5}.

By Theorem 2.2, there exists PST between g and g + 3 for every g ∈ G. Indeed, let P =
1√
6
(γij)0≤i,j≤5, where γij = ωi·j

6 . Then P is a unitary matrix and

A = Pdiag(λ0, · · · , λ5)P
∗.

A direct computation shows that the transfer matrix H(t) = (hij(t))1≤i,j≤6 satisfies

hi,i+3(t) =
1

6
(e9ıt − 3e−ıt + 2e−3ıt), i = 0, 1, 2,

and
∣∣hi,i+3

(
π
2

)∣∣ = |ı| = 1. Therefore, Γ has PST between vertices i and i+ 3 for i = 0, 1, 2.

In [18], we showed that if Γ = Cay(G,S) is a cubelike abelian Cayley graph with |S| ≥ 1,

then N = gcd(λ0−λx, x ∈ G) is a power of two. Next, we show that this result can be extended

to weighted Cayley graphs. We believe that the following result has its own independent interest

in graph theory.

Lemma 2.3 Let G be an abelian group and α be a weight function from G to Z. Assume

that gcd(α(z) : z ∈ G) = 1 and let Γ = Cay(G;α) be a simple weighted Cayley graph. Then

N = gcd(λ0−λx, x ∈ G) is a divisor of |G|. Consequently, if G is a p-group, then N is a power

of p.

Proof By definition, we know that for any x ∈ G, N | (λ0 − λx). Assume that λx =

λ0 −Nθ(x), θ(x) ∈ Z. Noticing that

λz =
∑

g∈G

α(g)χz(g)

is the Fourier transform of α(z), by the inverse transform formula, we get

|G|α(z) =
∑

g∈G

λgχg(z) =
∑

g∈G

(λ0 −Nθ(g))χg(z) = −N
∑

g∈G

θ(g)χg(z). (2.11)
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Due to gcd(α(z) : z ∈ G) = 1, there exist |G| integers ℓ(z), z ∈ G such that
∑
z∈G

ℓ(z)α(z) = 1.

From (2.11), we get

|G|
N

= −
∑

z∈G

∑

g∈G

ℓ(z)θ(g)χg(z). (2.12)

The right hand side of (2.12) is an algebraic integer, and the left hand side of (2.12) is a rational

number. Thus both of them are integers. This completes the proof.

The following corollary follows immediately.

Corollary 2.4 Suppose that Γ = Cay(G,S) is an integral abelian Cayley graph with |S| = s

and λ0(= s), λ1, · · · , λr are the eigenvalues of Γ. Then N = gcd(s− λi : 1 ≤ i ≤ r) is a divisor

of |G|.

3 PST on Weighted Cubelike Cayley Graphs

In this section, we let G be the additive group of the finite field Fq, where q = 2n. Let α

be a weight function from G to Z. We can view Fq as an n-dimensional vector space over F2.

There are two ways to represent the additive characters of Fq. The first one is

Ĝ = {χx : x ∈ Fq}, where χx(z) = (−1)x·z for all x, z ∈ Fn
2 ,

in which x · z is the usual inner product of x, z ∈ Fn
2 . The second one is

Ĝ = {χx : x ∈ Fq}, where χx(z) = (−1)tr(xz) for all x, z ∈ Fq,

here tr(·) is the trace mapping.

In 2012, Godsil [12] raised a question: Are there some cubelike graphs that have PST at time

t, which can be arbitrarily small? In 2013, Chan [6] gave a confirmative answer to this question

by presenting some deterministic constructions of such graphs. She utilized some Hamming

schemes to get an infinite family of graphs having PST at an arbitrarily small time. In this

section, we also give positive answers to the above mentioned question. By Theorems 2.1–2.2,

the minimum time t of PST in cubelike graph Γ = Cay(G,α) is π
N
, where N = gcd(λ0 − λz :

z(6= 0) ∈ G). Firstly, we know that N should be a power of 2 (see Lemma 2.3). Then we

provide a lower bound on the time t such that Γ = Cay(G,α) has PST between two distinct

vertices (see Theorem 3.1) and show that this lower bound is tight (see Theorem 3.2).

First of all, we have the following two lemmas.

Lemma 3.1 Let G = (Fq,+) be the additive group of Fq, q = 2n and Γ = Cay(G;α) be a

weighted abelian Cayley graph with α(z) ∈ Z for every z ∈ G. Let c ∈ F∗
q and Γ′ = Γ′(G;α′) be

another weighted graph, where the weight function α′ is defined by α′(z) = α(cz) for all z ∈ G.

Then the following statements are equivalent:

(1) Γ has PST between g and h at time t > 0;

(2) Γ′ has PST between c−1g and c−1h at time t > 0.

Proof It is easy to see that the spectrum of Γ′ is

λ′
x =

∑

g∈G

α′(g)χx(g) =
∑

g∈G

α(g)χx(c
−1g) =

∑

g∈G

α(g)χc−1x(g) = λc−1x, for all x ∈ G.
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Thus by Lemma 2.2, Γ′ has PST between c−1g and c−1h at time t > 0 if and only if for all

x ∈ G, it holds that

χa′(x) = exp(ıt(λ′
0 − λ′

x)),

where

a′ = c−1(g − h) = c−1a, λ′
0 = λ0, λ′

x = λc−1x;

if and only if

χa(c
−1x) = exp(ıt(λ0 − λc−1x)) for all x ∈ G;

if and only if Γ has PST between g and h at the time t > 0.

Lemma 3.2 Let G = (Fq,+) be the additive group of Fq, q = 2n and Γ = Cay(G;α) be

a weighted abelian Cayley graph with α(z) ∈ Z for every z ∈ G. Assume that gcd(α(z) : z ∈
G) = d and let Γ′ = Cay(G;α′) be a cubelike weighted Cayley graph, where the weight function

α′ is defined by α′(z) = α(z)
d

. Then the following statements are equivalent:

(1) Γ has PST between g and h at time t > 0;

(2) Γ′ has PST between g and h at time dt > 0.

The proof of Lemma 3.2 is straightforward and thus is omitted. Thus, without loss of

generality, we assume that gcd(α(z) : z ∈ G) = 1 in the following context.

Theorem 3.1 Let G = Fn
2 and α be a weight function from G to Z satisfying gcd(α(z) :

z ∈ G) = 1. Let Γ = Cay(G;α) be a connected simple weighted Cayley graph and 0 6= a ∈ Fn
2 .

If Γ has PST between g and g+ a at time t > 0, then the minimum time t is π
N
, where N = 2ℓ.

Moreover, ℓ ≤ ⌊log2(2M
√
L)⌋, where M = max{|α((1, z))| : z ∈ Fn−1

2 }, L is the number of

elements z ∈ Fn−1
2 such that α((1, z)) 6= 0, and ⌊x⌋ is the floor function which is defined as the

least integer greater than or equal to x.

Proof Without loss of generality, we can assume that a = (1, 0, · · · , 0) ∈ Fn
2 by Lemma

3.1. In this case, we can find that (see (2.5))

Ω+ = {z ∈ Fn
2 : χz(a) = 1} = (0,Fn−1

2 ),

Ω− = {z ∈ Fn
2 : χz(a) = −1} = (1,Fn−1

2 ).

If Γ has PST between g and g + a, then by Theorem 2.2, there is a nonnegative integer ρ

such that v2(λ0 − λy) = ρ for all y ∈ Ω− and v2(λ0 − λx) ≥ ρ + 1 for all x ∈ Ω+. Therefore

min(v2(λ0−λz), z ∈ G) = ρ. By Lemma 2.3, we have 2ℓ = N = 2ρ and thus ρ = ℓ. By Theorems

2.2–2.3, we obtain that v2(λx − λy) = ρ for all x ∈ Ω+, y ∈ Ω−. Taking x = (0, h) ∈ Ω+ and

y = (1, h) ∈ Ω−, we get

λx =
∑

z∈G

α(z)χx(z) =
∑

z′∈F
n−1

2

α((0, z′))(−1)h·z
′

+
∑

z′∈F
n−1

2

α((1, z′))(−1)h·z
′

and

λy =
∑

z∈G

α(z)χy(z) =
∑

z′∈F
n−1

2

α((0, z′))(−1)h·z
′ −

∑

z′∈F
n−1

2

α((1, z′))(−1)h·z
′

.
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Thus for all h ∈ Fn−1
2 , we have

v2

( ∑

z′∈F
n−1

2

α((1, z′))(−1)h·z
′

)
= ρ− 1.

Thus there exists an odd integer θ(h) such that
∑

z′∈F
n−1

2

α((1, z′))(−1)h·z
′

= 2ρ−1θ(h).

By the inverse formula, we have

α(1, z) = 2ρ−n
∑

h∈F
n−1

2

θ(h)(−1)h·z, ∀z ∈ Fn−1
2 .

Therefore,
∑

z∈F
n−1

2

α((1, z))2 = 22ρ−2n
∑

h1,h2∈F
n−1

2

θ(h1)θ(h2)
∑

z∈F
n−1

2

(−1)(h1−h2)·z

= 22ρ−n−1
∑

h∈F
n−1

2

θ(h)2 (and by (3), 26 | θ(h))

≥ 22ρ−2.

Thus

LM2 ≥ 22ρ−2.

That is, ρ ≤ log2(2M
√
L).

Remark 3.1 When Γ is a cubelike Cayley graph, then the parameter M in Theorem 3.1 is

1, and then we have ℓ = ⌊n
2 ⌋. In [18], we provided some graphs which exhibit PST at the time

meeting the lower bound in Theorem 3.1 when n is even. This means that the upper bound for

ℓ in Theorem 3.1 is tight.

In what follows, we present a result which shows that the upper bound for ℓ in Theorem 3.1

is also tight when n is odd. Before doing that, we need some preparations.

Definition 3.1 Let n be a positive integer, f : Fn
2 → F2 be a Boolean function. The Walsh

transformation of f is Wf : Fn
2 → Z defined by

Wf (y) =
∑

x∈F
n

2

(−1)f(x)+x·y for all y ∈ Fn
2 .

If n = 2m and |Wf (y)| = 2m for all y ∈ Fn
2 , then f is called a bent function.

It is well-known that bent functions exist in F2m
2 for all m ≥ 1 and many classes of bent

functions have been constructed, see [16].

Theorem 3.2 Let m ≥ 2 be a positive integer and n = 2m + 1. Let f be a bent function

mapping from F2m
2 to F2 and f(0) = 0. Suppose that G = (Fn

2 ,+) and α is the weight function

defined by

α(0) = 0, and α(0, z) = (−1)f(z), α(1, z) = (−1)f(z)+1 for all z ∈ F2m
2 .
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Let Γ = Cay(G;α) be the cubelike weighted Cayley graph associated with the weight function α.

Then

(1) the graph Γ is connected;

(2) for a = (1, 0, · · · , 0) ∈ Fn
2 , Γ has PST between g and g+ a for any g ∈ Fn

2 at time π
2m+1 ;

(3) the minimum period of any vertex in Γ is π
2m .

Proof (1) Since Γ is a complete graph, it is obviously connected.

(2) By (2.5), it is easy to see that

Ω+ = (0,F2m
2 ), Ω− = (1,F2m

2 ).

For x = (0, x′) ∈ Ω+, y = (1, y′) ∈ Ω−, we have

λx =
∑

z∈G

α(z)χx(z)

=
∑

z∈F
2m
2

α((0, z))(−1)(0,z)·(0,x
′) +

∑

z∈F
2m
2

α((1, z))(−1)(1,z)·(0,x
′)

=
∑

z∈F
2m
2

\{0}
(−1)f(z)+z·x′

+
∑

z∈F
2m
2

(−1)1+f(z)+z·x′

= −1.

Particularly, λ0 = −1. Meanwhile,

λy =
∑

z∈G

α(z)χy(z)

=
∑

z∈F
2m
2

α((0, z))(−1)(0,z)·(1,y
′) +

∑

z∈F
2m
2

α((1, z))(−1)(1,z)·(1,y
′)

=
∑

z∈F
2m
2

\{0}
(−1)f(z)+z·y′

+
∑

z∈F
2m
2

(−1)f(z)+z·y′

= −1 + 2Wf (y
′).

Since f is a bent function, Wf (y
′) = ±2m, thus we get that

λ0 − λx = 0, v2(λ0 − λy) = m+ 1.

By Theorem 2.2 and Lemma 2.3, we can get the result in the item (2).

(3) It is a direct consequence of Theorem 2.1.
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