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Abstract In this paper the authors first present the definition and some properties of
weak solutions to 1-D first order linear hyperbolic systems. Then they show that the
constructive method with modular structure originally given in the framework of classical
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1 Introduction

1.1 Review on the exact boundary controllability

There are many publications concerning the exact boundary controllability for linear hy-

perbolic systems. For a kind of 1-D first order linear hyperbolic system, the exact boundary

controllability was established by means of the characteristic method by Russell ([17]). Later,

the Hilbert Uniqueness Method (HUM for short), a more general and systematic framework

was introduced by J.-L. Lions for the study of linear hyperbolic systems, especially, of wave

equations ([14–15]), which builds up the relationship between the exact boundary controllabil-

ity for the system and the exact boundary observability for the adjoint system. Based on the

HUM method and Schauder’s fixed point theorem, some results were obtained on the exact

boundary controllability for semilinear wave equations by Zuazua ([19–20]). An abstract result

on the exact boundary controllability for semilinear equations was established by Lasiecka and

Triggiani in [7]. Recently, Coron and Nguyen studied the (null) controllability of a general 1-D

linear hyperbolic system using boundary controls on one side in optimal time based on the

backstepping method (see [5–6]).
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In quasi-linear case there were only few results (see [2–3]) before. Until 2002, Li and Rao

proposed a constructive method with modular structure (see [10-11]) and established a com-

plete theory on the exact boundary controllability for the general 1-D first order quasi-linear

hyperbolic system without zero eigenvalues

∂u

∂t
+A(u)

∂u

∂x
= F (u) (1.1)

with general non-linear boundary conditions based on the semi-global C1 solution theory (see

[8–9]). Under this framework, the local exact boundary controllability was realized by two-sided

controls, one-sided controls and two-sided controls with fewer boundary controls, respectively

(in the linear case, it gives actually the global controllability). In the case of two-sided controls,

the number of boundary controls is equal to the number of unknown variables, namely, the

number of all the eigenvalues. In the case of one-sided controls, all the boundary controls act

only on the side with more boundary controls, the number of which is reduced to the maximum

value of the number of positive eigenvalues and that of negative ones, but the control time must

be suitably enlarged. In particular, when the number of positive eigenvalues is equal to that of

negative ones, boundary controls can act on either side. In the case of two-sided controls with

fewer boundary controls, both the total number of boundary controls and the control time are

the same as in the case of one-sided controls, however, the side with fewer boundary controls

should be fully controlled, while the rest of boundary controls acts on the other side (see [8]).

However, in the last two cases, more strict conditions should be satisfied. For example, for

the case of one-sided controls, it requires that the boundary conditions on the side without

boundary controls should be reversible. To be explicit, these boundary conditions should be

able to be suitably rewritten so that, after adding suitable artificial boundary conditions, the

backward problem of this system is well-posed.

The requirement mentioned before doesn’t occur for the system of wave equations, since the

system of wave equations with usual boundary conditions is always time reversible, thus the

exact boundary controllability is always equivalent to the exact boundary null controllability,

namely, the system can drive any given initial data U0 at t = 0 exactly to the final data U ≡ 0

at t = T by means of boundary controls. Apparently, this equivalence is not true for the first

order hyperbolic system in general, therefore the exact boundary controllability is named as the

strong exact boundary controllability, and the exact boundary null controllability is named as

the weak exact boundary controllability in [12], respectively. The exact boundary controllability

implies the exact boundary null controllability, however, the exact boundary null controllability

implies the exact boundary controllability only if the system is time reversible (see [12], also

see Remark 4.1). On the other hand, in order to realize the one-sided exact boundary null

controllability, controls can act on any given side of the boundary, while on the other side the

boundary condition should be homogeneous, thus the number of the boundary controls can be

further reduced (see [12]).

As a tool, the duality can be used to study the controllability in the linear case, then the

study of observability is also of great importance from this point of view. Russell [17] introduced

a kind of observability in the 1-D case that for the backward problem of the first order linear

hyperbolic system, the boundary observations can uniquely determine the initial data at t = 0.

It is called as the weak exact boundary observability in [12]. Another kind of observability,



Exact Controllability First Order Hyperbolic System Weak Solutions 645

which requires that the boundary observations can uniquely determine the final data at t = T

for the backward problem, is called as the strong exact boundary observability in [12]. Both

of them can be established by a constructive method for 1-D quasi-linear hyperbolic systems

in the framework of classical solutions (see [12]), and the strong exact boundary observability

implies naturally the weak exact boundary observability, however, in general, one can not

obtain the strong exact boundary observability from the weak exact boundary observability

unless the system is time reversible (see [12], also see Remark 5.4). Moreover, in the framework

of classical solutions, for some special cases in the linear situation, the relationship between

the exact boundary (null) controllability for the original system and the strong (weak) exact

boundary observability for the adjoint system in the case of one-sided control was discussed in

[12]. We will generalize the corresponding conclusions in the framework of weak solutions.

1.2 Purpose of this paper

In this paper, we will consider the exact boundary controllability for the first order linear

hyperbolic system in the framework of weak solutions.

First, to study the controllability from coupled systems of wave equations to first order

hyperbolic systems is of great significance, since the latter has much wider connotation than

the former. For instance, in 1-D case, a wave equation can be always transformed into a first

order hyperbolic system, but the number of positive eigenvalues is always equal to that of neg-

ative ones (see [8]). If the wave equation explicitly contains the state variable U , there will

be also the zero eigenvalue in the corresponding first order hyperbolic system. But for any

given first order hyperbolic system, generally speaking, the number of positive eigenvalues is

not necessarily equal to that of negative ones, which often makes trouble in the treatment. In

this paper we only consider first order hyperbolic systems without zero eigenvalues. Besides,

for wave equations with the usual boundary conditions (Dirichlet, Neumann, Robin, even dis-

sipative boundary conditions), the whole system is always time reversible. However, first order

hyperbolic systems are not time reversible in general. In fact, when the number of positive

eigenvalues is not equal to that of negative ones, or even when they are equal to each oth-

er, but the boundary conditions don’t satisfy certain reversibility, the corresponding backward

problem will not be well-posed. Hence, first order hyperbolic systems have not only much more

abundant connotations and practical applications than wave equations, but also they have their

own difficulties: the methods to treat wave equations may not remain effective for first order

hyperbolic systems. Thus it is necessary to carry out a special research on them.

Second, we will study the controllability for first order hyperbolic systems in the framework

of weak solutions. In the present paper, we will show that the constructive method with modular

structure is very powerful and effective not only in the framework of classical solutions, but

also in the framework of weak solutions.

In what follows, we will first discuss the well-posedness for the following 1-D first order linear

hyperbolic system in the framework of weak solutions and establish some related estimates, then

we study the corresponding exact boundary controllability and exact boundary observability

by the constructive method.

The system under consideration is given by

Ut + ΛUx +AU = 0, t ∈ (0,+∞), x ∈ (0, L) (1.2)



646 X. Lu and T. T. Li

with the boundary conditions

U+(t, 0) = G0U
−(t, 0) +D0H

+(t), t ∈ (0,+∞), (1.3)

U−(t, L) = G1U
+(t, L) +D1H

−(t), t ∈ (0,+∞) (1.4)

and the initial data

U(0, x) = U0(x), x ∈ (0, L), (1.5)

where U = (u1, · · · , un)
T : (0,+∞)×(0, L) → R

n denotes the state variable, Λ = diag{Λ−,Λ+}

is a diagonal matrix of order n,

Λ− := diag{λ1, · · · , λm}, Λ+ := diag{λm+1, · · · , λn}

with λr < 0 (r = 1, · · · ,m) and λs > 0 (s = m + 1, · · · , n), the coupling matrix A = (aij) is

of order n. Let m = n −m. The boundary coupling matrices G0 and G1 are of order m ×m

and m ×m, respectively, the boundary control matrices D0 and D1 are of order m ×M0 and

m × M1 (M0 ≤ m,M1 ≤ m), respectively, both of them are full column-rank matrices. All

the matrices mentioned above are with constant elements. Moreover, U = (U−, U+)T with

U− = (u1, · · · , um)T and U+ = (um+1, · · · , un)
T , H = (H−, H+)T with H− = (h1, · · · , hM1)

T

and H+ = (hM1+1, · · · , hM )T (M = M0 +M1 ≤ n).

All the characteristics dx
dt = λs (s = m + 1, · · · , n)

(
resp. dx

dt = λr (r = 1, · · · ,m)
)

corresponding to the positive (resp. negative) eigenvalues are called to be the coming (resp.

departing) characteristics on x = 0, since they reach (resp. leave) the boundary x = 0 from

(resp. to) the interior of the domain {(t, x) | t ≥ 0, 0 ≤ x ≤ L}. Similarly, all the characteristics
dx
dt = λr (r = 1, · · · ,m)

(
resp. dx

dt = λs (s = m+1, · · · , n)
)
corresponding to the negative (resp.

positive) eigenvalues are called to be the coming (resp. departing) characteristics on x = L.

In order to guarantee the well-posedness of the mixed problem of system (1.2), the boundary

conditions should satisfy the following requirements:

1. the number of boundary conditions on each boundary is equal to the number of the

coming characteristics on this boundary;

2. the boundary conditions on each boundary can be equivalently rewritten in the form that

the state variables corresponding to the coming characteristics are explicitly expressed by the

state variables corresponding to the departing characteristics.

Boundary conditions (1.3)–(1.4) are just given according to above requirements.

2 L
2 Estimates of C1 Solutions

In the framework of classical solutions, by the theory of C1 solutions for the first order

hyperbolic system, we have

Lemma 2.1 (see [13]) For any given T > 0, for any given initial data U0 ∈ (C1[0, L])n and

any given boundary function H ∈ (C1[0, T ])M , suppose that the conditions of C1 compatibility

are satisfied at the points (t, x) = (0, 0) and (0, L), respectively:

U+
0 (0) = G0U

−
0 (0) +D0H

+(0), U−
0 (L) = G1U

+
0 (L) +D1H

−(0) (2.1)
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and

Λ+(U+
0 (0))′ +A+U0(0) +D0(H

+(0))′ = G0[Λ
−(U−

0 (0))′ +A−U0(0)],

Λ−(U−
0 (L))′ +A−U0(L) +D1(H

−(L))′ = G1[Λ
+(U+

0 (L))′ +A+U0(L)], (2.2)

where A− and A+ are the first m rows and the last m rows of A, respectively, then the mixed

problem (1.2)–(1.5) admits a unique C1 solution U = U(t, x) on R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤

x ≤ L}.

In order to define a L2 weak solution and to give its properties, in this section, we first

establish some L2 estimates on the C1 solution to problem (1.2)–(1.5).

We start with an L2 estimate of C1 solutions by the characteristic method.

Theorem 2.1 For any given T > 0, the C1 solution U = U(t, x) to the mixed problem

(1.2)–(1.5) satisfies

‖U(T, ·)‖(L2(0,L))n ≤ C(T )(‖U0‖(L2(0,L))n + ‖H‖(L2(0,T ))M ), (2.3)

here and hereafter, C(T ) > 0 denotes a different positive constant, depending only on T .

Proof For simplicity, we denote

H̃− = D1H
−, H̃+ = D0H

+, (2.4)

which are vectors of order m and m, respectively, and consider the following system:




Ut + ΛUx +AU = 0, t ∈ [0, T ], x ∈ [0, L],

U+(t, 0) = G0U
−(t, 0) + H̃+(t), t ∈ [0, T ],

U−(t, L) = G1U
+(t, L) + H̃−(t), t ∈ [0, T ],

(2.5)

where H̃− = (h̃1, · · · , h̃m)T , H̃+ = (h̃m+1, · · · , h̃n)
T .

Let

T1 = L min
1≤r≤m

m+1≤s≤n

{ 1

|λr|
,
1

λs

}
> 0. (2.6)

Let x = x
(0,0)
s (t) be the sth characteristic line passing through the point (t, x) = (0, 0) (s =

m+ 1, · · · , n). For any given t ∈ [0, T1], denoting x
(0,0)
s (t) = β, the line t = t can be separated

into two parts:

a. When β ≤ x ≤ L, draw the sth (s = m+ 1, · · · , n) characteristic line x = xs(t) passing

through the point (t, x), it interacts the x-axis at the point (0, αs), namely, we have




dxs

dt
= λs,

xs(0) = αs, xs(t) = x.

(2.7)

Since λs is a constant, x = xs(t) as a straight line can be rewritten as x = λs(t− t) + x, then

αs = αs(t, x) = x− λst. Along this characteristic line, the sth component us of U satisfies




dus

dst
= −AsU,

t = 0 : us = (U0)s(αs),

(2.8)
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where d
dst

= ∂
∂t

+ λs
∂
∂x

is the directional derivative with respect to t along x = xs(t), As is the

sth row of A, and (U0)s is the sth component of U0. Integrating (2.8) with respect to t along

x = xs(t) from 0 to t, we have

us(t, x) = (U0)s(αs)−

∫ t

0

AsU(τ, xs(τ))dτ, β ≤ x ≤ L, (2.9)

then

(us(t, x))
2 ≤ 2

[
((U0)s(αs(t, x)))

2 +
( ∫ t

0

AsU(τ, xs(τ))dτ
)2]

, β ≤ x ≤ L, (2.10)

hence

‖us(t, ·)‖
2
L2(β,L) ≤ 2

[ ∫ L

β

((U0)s(αs(t, x)))
2dx+

∫ L

β

( ∫ t

0

AsU(τ, xs(τ))dτ
)2

dx
]
. (2.11)

Noting αs(t, x) = x − λst, for any given t, when x runs from β to L, αs runs from 0 to

L− λst (< L), then the first integration on the right-hand side of (2.11) equals to

∫ L

β

((U0)s(x− λst))
2dx

x
△
=x−λst=

∫ L−λst

0

((U0)s(x))
2dx ≤ ‖U0‖

2
(L2(0,L))n . (2.12)

On the other hand, let x = x
(t,L)
s (t) be the sth characteristic line passing through the point

(t, L). For the second integration on the right-hand side of (2.11), noting xs(τ) = λs(τ − t)+x,

and changing the order of integration, we have

∫ L

β

(∫ t

0

AsU(τ, xs(τ))dτ
)2

dx

≤

∫ L

β

∫ t

0

|AsU(τ, xs(τ))|
2dτdx

=

∫ t

0

dτ

∫ L

β

|AsU(τ, λs(τ − t) + x)|2dx

x
△
=λs(τ−t)+x

=

∫ t

0

dτ

∫ x(t,L)
s (τ)

x
(0,0)
s (τ)

|AsU(τ, x)|2dx

≤ C

∫ t

0

‖U(τ, ·)‖2(L2(0,L))ndτ, (2.13)

here and hereafter, C stands for a different positive constant. By (2.12)–(2.13), it follows from

(2.11) that

‖us(t, ·)‖
2
L2(β,L) ≤ C

(
‖U0‖

2
(L2(0,L))n +

∫ t

0

‖U(τ, ·)‖2(L2(0,L))ndτ
)
. (2.14)

b. When 0 ≤ x ≤ β, drawing the sth (s = m+1, · · · , n) characteristic line x = xs(t) passing

through the point (t, x), it intersects the t-axis at the point (ts, 0), where ts = ts(t, x) = t− x
λs
.

That is to say, we have




dxs

dt
= λs,

xs(ts) = 0, xs(t) = x.

(2.15)
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Along this characteristic line, noting the boundary condition in (1.3), the sth component of U

satisfies




dus

dst
= −AsU,

t = ts : us(ts, 0) = (G0)sU
−(ts, 0) + h̃s(ts),

(2.16)

where (G0)s is the sth row of G0. Integrating (2.16) with respect to t along x = xs(t) from ts

to t, we have

us(t, x) = (G0)sU
−(ts, 0) + h̃s(ts)−

∫ t

ts

AsU(τ, xs(τ))dτ, 0 ≤ x ≤ β. (2.17)

For any given r (r = 1, · · · ,m), the rth characteristic line x = xr(t) passing through the point

(ts, 0) intersects the x-axis at the point (0, αr) = (0, αr(t, x)), namely, we have





dxr

dt
= λr,

xr(0) = αr, xr(ts) = 0.

(2.18)

Along x = xr(t), the rth component ur of U satisfies





dur

drt
= −ArU,

t = 0 : ur = (U0)r(αr),
t = ts : ur = ur(ts, 0).

(2.19)

Integrating (2.19) with respect to t along x = xr(t) from 0 to ts, we have

ur(ts, 0) = (U0)r(αr)−

∫ ts

0

ArU(τ, xr(τ))dτ.

Substituting it into (2.17), we get

us(t, x) =

m∑

r=1

(G0)sr

[
(U0)r(αr)−

∫ ts

0

ArU(τ, xr(τ))dτ
]
+ h̃s(ts)

−

∫ t

ts

AsU(τ, xs(τ))dτ, 0 ≤ x ≤ β, (2.20)

where (G0)sr is the component of G0 on the sth row and rth column. Similarly, we have

‖us(t, ·)‖
2
L2(0,β) ≤ C

( m∑

r=1

∫ β

0

((U0)r(αr(t, x)))
2dx+

∫ β

0

dx
( ∫ t

ts

AsU(τ, xs(τ))dτ
)2

+

m∑

r=1

∫ β

0

dx
( ∫ ts

0

ArU(τ, xr(τ))dτ
)2

+

∫ β

0

h̃2
s(ts)dx

)
, (2.21)

in which, noting ts = t− x
λs
, we have

∫ β

0

h̃2
s(ts)dx =

∫ β

0

h̃2
s

(
t−

x

λs

)
dx

τ
△
=t− x

λs= λs

∫ t

0

h̃2
s(τ)dτ = λs‖h̃s‖

2
L2(0,t). (2.22)
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Thus, in a similar way we get

‖us(t, ·)‖
2
L2(0,β) ≤ C

(
‖U0‖

2
(L2(0,L))n + ‖h̃s‖

2
L2(0,t) +

∫ t

0

‖U(τ, ·)‖2(L2(0,L))ndτ
)
. (2.23)

The combination of (2.14) and (2.23) yields

‖us(t, ·)‖
2
L2(0,L) ≤ C

(
‖U0‖

2
(L2(0,L))n + ‖h̃s‖

2
L2(0,t)

+

∫ t

0

‖U(τ, ·)‖2(L2(0,L))ndτ
)
, s = m+ 1, · · · , n. (2.24)

Similarly, we have

‖ur(t, ·)‖
2
L2(0,L) ≤ C

(
‖U0‖

2
(L2(0,L))n + ‖h̃r‖

2
L2(0,t)

+

∫ t

0

‖U(τ, ·)‖2(L2(0,L))ndτ
)
, r = 1, · · · ,m. (2.25)

Thus, we have

‖U(t, ·)‖2(L2(0,L))n ≤ C
(
‖U0‖

2
(L2(0,L))n + ‖H̃‖2(L2(0,t))n +

∫ t

0

‖U(τ, ·)‖2(L2(0,L))ndτ
)
. (2.26)

Then, by Gronwall’s inequality, we get

‖U(t, ·)‖(L2(0,L))n ≤ C(t)(‖U0‖(L2(0,L))n + ‖H̃‖(L2(0,t))n), ∀t ∈ [0, T1]. (2.27)

For any given t ∈ [T1, 2T1], take U(T1, x) as the initial data, similarly we have

‖U(t, ·)‖(L2(0,L))n ≤ C(t)(‖U(T1, ·)‖(L2(0,L))n + ‖H̃‖
(L2(T1,t))n

)

≤ C(t)(‖U0‖(L2(0,L))n + ‖H̃‖
(L2(0,t))n

), ∀t ∈ [T1, 2T1]. (2.28)

Repeat the procedure above for at most N ≤
[
T
T1

]
+ 1 times, we get

‖U(T, ·)‖(L2(0,L))n ≤ C(T )(‖U0‖(L2(0,L))n + ‖H̃‖(L2(0,T ))n), ∀T > 0. (2.29)

Noting that D0 and D1 are full column-rank, (2.29) leads to (2.3).

Next, we estimate the L2 norm of the trace of the solution on the boundary.

Theorem 2.2 For any given T > 0, the C1 solution U = U(t, x) to the mixed problem

(1.2)–(1.5) satisfies

‖U(·, 0)‖(L2(0,T ))n ≤ C(T )(‖U0‖(L2(0,L))n + ‖H‖(L2(0,T ))M ) (2.30)

and

‖U(·, L)‖(L2(0,T ))n ≤ C(T )(‖U0‖(L2(0,L))n + ‖H‖(L2(0,T ))M ). (2.31)

Proof We still consider system (2.5), and prove (2.31) only. Let

T1 = min
m+1≤s≤n

L

λs

> 0. (2.32)
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For any given t ∈ [0, T1], for each s = m + 1, · · · , n, noting (2.32), the sth characteristic line

x = xs(t) passing through the point (t, L) must intersect the x-axis at a point (0, αs), namely,

we have




dxs

dt
= λs,

xs(t) = L, xs(0) = αs,

(2.33)

thus, xs(t) = λs(t − t) + L and αs = αs(t) = L − λst. Along this characteristic line, the sth

component of U satisfies





dus

dst
= −AsU,

t = 0 : us = (U0)s(αs).

(2.34)

Integrating (2.34) with respect to t along this characteristic line from 0 to t leads to

us(t, L) = (U0)s(αs)−

∫ t

0

AsU(τ, xs(τ))dτ, (2.35)

then

(us(t, L))
2 ≤ 2

[
((U0)s(αs(t)))

2 +
(∫ t

0

AsU(τ, xs(τ))dτ
)2]

, (2.36)

hence

‖us(·, L)‖
2
L2(0,T1)

≤ 2
[ ∫ T1

0

((U0)s(αs(t)))
2dt+

∫ T1

0

(∫ t

0

AsU(τ, xs(τ))dτ
)2

dt
]
. (2.37)

Noting that αs(t) = L−λst, when t runs from 0 to T1, αs runs from L to L−λsT1 (≤ L), then

the first integration on the right-hand side of (2.37) equals to

∫ T1

0

((U0)s(L− λst))
2dt

x
△
=L−λst=

1

λs

∫ L

L−λsT1

((U0)s(x))
2dx ≤ C‖U0‖

2
(L2(0,L))n . (2.38)

As to the second integration on the right-hand side of (2.37), let x = x
(T1,L)
s (t) be the sth

characteristic line passing through the point (T1, L). Noting xs(τ) = λs(τ−t)+L, and changing

the order of integration, we have

∫ T1

0

(∫ t

0

AsU(τ, xs(τ))dτ
)2

dt

≤

∫ T1

0

∫ t

0

|AsU(τ, xs(τ))|
2dτdt

=

∫ T1

0

dτ

∫ T1

τ

|AsU(τ, λs(τ − t) + L)|2dt

x
△
=λs(τ−t)+L

=
1

λs

∫ T1

0

dτ

∫ L

x
(T1,L)
s

|AsU(τ, x)|2dx

≤ C

∫ T1

0

‖U(τ, ·)‖2(L2(0,L))ndτ. (2.39)
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Therefore, it follows from (2.37) that

‖us(·, L)‖L2(0,T1) ≤ C
(
‖U0‖(L2(0,L))n +

(∫ T1

0

‖U(τ, ·)‖2(L2(0,L))ndτ
) 1

2
)
, (2.40)

then by (2.3) we get

‖us(·, L)‖L2(0,T1) ≤ C(T1)(‖U0‖(L2(0,L))n + ‖H̃‖(L2(0,T1))n). (2.41)

Taking U(T1, x) as the initial data, repeating the procedure above on the interval [T1, 2T1],

we get

‖us(·, L)‖L2(T1,2T1) ≤ C(2T1)(‖U(T1, ·)‖(L2(0,L))n + ‖H̃‖(L2(T1,2T1))n)

≤ C(2T1)(‖U0‖(L2(0,L))n + ‖H̃‖(L2(0,2T1))n). (2.42)

Repeating the above procedure for at most N ≤ [ T
T1
]+ 1 times, for s = m+1, · · · , n, we get

‖us(·, L)‖L2(0,T ) ≤ C(T )(‖U0‖(L2(0,L))n + ‖H̃‖(L2(0,T ))n), ∀T ≥ 0, (2.43)

namely,

‖U+(·, L)‖(L2(0,T ))m ≤ C(T )(‖U0‖(L2(0,L))n + ‖H̃‖(L2(0,T ))n), ∀T ≥ 0. (2.44)

Then, by the boundary condition at x = L in (1.4), we have

‖U−(·, L)‖(L2(0,T ))m ≤ C(T )(‖U0‖(L2(0,L))n + ‖H̃‖(L2(0,T ))n), ∀T ≥ 0. (2.45)

Noting that D0 and D1 are full column-rank, the combination of (2.44) and (2.45) gives

(2.31).

In fact, the result above is true for the trace of the solution at any given x ∈ [0, L].

Theorem 2.3 Let T > 0. Under the hypotheses of Theorem 2.1, for any given x ∈ [0, L],

the C1 solution U = U(t, x) to the mixed problem (1.2)–(1.5) satisfies

‖U(·, x)‖(L2(0,T ))n ≤ C(T )(‖U0‖(L2(0,L))n + ‖H‖(L2(0,T ))M ). (2.46)

Proof Let U = U(t, x) be the C1 solution to the mixed problem (1.2)–(1.5) on [0, T ]×[0, L].

Changing the role of t and x, U(t, x) is still the unique C1 solution to the following rightward

problem:





Ux + Λ−1Ut + Λ−1AU = 0, x ∈ [0, L], t ∈ [0, T ],
t = T : U− = U−(T, x), x ∈ [0, L],
t = 0 : U+ = U+

0 (x), x ∈ [0, L]
(2.47)

and

x = 0 : U = U(t, 0), t ∈ [0, T ]. (2.48)

For any given x ∈ [0, L], using Theorem 2.1 for problem (2.47)–(2.48), we have

‖U(·, x)‖(L2(0,T ))n ≤ C(‖U(·, 0)‖(L2(0,T ))n + ‖U+
0 ‖(L2(0,L))m + ‖U−(T, ·)‖(L2(0,L))m). (2.49)
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Noting (2.30) and (2.3) for the mixed problem (1.2)–(1.5), we have

‖U(·, 0)‖(L2(0,T ))n ≤ C(‖U0‖(L2(0,L))n + ‖H‖(L2(0,T ))M ) (2.50)

and

‖U−(T, ·)‖(L2(0,L))m ≤ C(‖U0‖(L2(0,L))n + ‖H‖(L2(0,T ))M ), (2.51)

then we get (2.46).

Besides, for any given C1 initial data U0(x) (0 ≤ x ≤ L), the Cauchy problem

Ut + ΛUx +AU = 0 (2.52)

with the initial condition (1.5) admits a unique C1 solution on the corresponding maximum

determinate domain Rc, surrounded by t = 0 (0 ≤ x ≤ L) and two characteristic lines given by




dx(1)

dt
= max

m+1≤s≤n
λs,

x(1)(0) = 0

(2.53)

and 



dx(2)

dt
= min

1≤r≤m
λr,

x(2)(0) = L,

(2.54)

where x = x(1)(t) is the rightmost characteristic line passing through the point (t, x) = (0, 0),

and x = x(2)(t) is the leftmost characteristic line passing through the point (t, x) = (0, L).

Since the solution depends only on the initial data, as a corollary of Theorem 2.1, we have

Corollary 2.1 Let (t∗, x∗) be the intersection point of x = x(1)(t) and x = x(2)(t). For any

given t ∈ [0, t∗], the C1 solution U = U(t, x) to Cauchy problem (2.52) and (1.5) satisfies

‖U(t, ·)‖(L2(x(1)(t),x(2)(t)))n ≤ C‖U0‖(L2(0,L))n , 0 ≤ t ≤ t∗. (2.55)

Similarly, by Theorem 2.3 we have

Corollary 2.2 Let (t∗, x∗) be the intersection point of x = x(1)(t) and x = x(2)(t). For any

given x ∈ [0, L], the C1 solution U = U(t, x) to Cauchy problem (2.52) and (1.5) satisfies

‖U(·, x)‖(L2(0,T∗(x)))n ≤ C‖U0‖(L2(0,L))n , 0 ≤ x ≤ L, (2.56)

where T ∗ = T ∗(x) is determined by
{
x = x(1)(T ∗), when 0 ≤ x ≤ x∗,
x = x(2)(T ∗), when x∗ ≤ x ≤ L.

(2.57)

Furthermore, let R0 be the domain surrounded by t-axis, x-axis and characteristic line

x = x(2)(t), and let RL be the domain surrounded by x-axis, x = L and characteristic line

x = x(1)(t), where x = x(1)(t) and x = x(2)(t) are given by (2.53) and (2.54), respectively. By

the theory of one-sided mixed initial-boundary value problem of first order hyperbolic systems

([8]), the unique C1 solution U = U(t, x) to problem (1.2)–(1.5) on R0 is uniquely determined

by the initial data U0 and the boundary function H+(t) on x = 0; while, U = U(t, x) on RL

is uniquely determined by the initial data U0 and the boundary function H−(t) on x = L. Let

t = ti(x) (i = 1, 2) be the inverse function of x = x(i)(t) (i = 1, 2) for x ∈ [0, L]. We have
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Theorem 2.4 Assume that U = U(t, x) is the unique C1 solution to problem (1.2)–(1.5).

(1) For any given t ∈ [0, t02] with t02 = t2(0), U = U(t, x) satisfies

‖U(t, ·)‖(L2(0,x(2)(t)))n ≤ C(‖U0‖(L2(0,L))n + ‖H+‖(L2(0,T ))M0 ). (2.58)

Moreover, for any given x ∈ [0, L], U = U(t, x) satisfies

‖U(·, x)‖(L2(0,t2(x)))n ≤ C(‖U0‖(L2(0,L))n + ‖H+‖(L2(0,T ))M0 ). (2.59)

(2) For any given t ∈ [0, tL1 ], in which tL1 = t1(L), U = U(t, x) satisfies

‖U(t, ·)‖(L2(x(1)(t),L))n ≤ C(‖U0‖(L2(0,L))n + ‖H−‖(L2(0,T ))M1 ). (2.60)

Moreover, for any given x ∈ [0, L], U = U(t, x) satisfies

‖U(·, x)‖(L2(0,t1(x)))n ≤ C(‖U0‖(L2(0,L))n + ‖H−‖(L2(0,T ))M1 ). (2.61)

3 Definition and Properties of Weak Solution

3.1 Definition of weak solution

In order to give the definition of weak solution, we first prove

Proposition 3.1 For any given T > 0, U = U(t, x) ∈ (C1([0, T ]× [0, L]))n is a C1 solution

to problem (1.2)–(1.5) if and only if U = U(t, x) satisfies

∫ L

0

ΦT (T, x)U(T, x)dx −

∫ L

0

ΦT (0, x)U0(x)dx

=

∫ T

0

∫ L

0

(ΦT
t +ΦT

xΛ− ΦTA)Udxdt

+

∫ T

0

(Φ+)T (t, 0)Λ+D0H
+(t)dt−

∫ T

0

(Φ−)T (t, L)Λ−D1H
−(t)dt (3.1)

for any given Φ ∈ (C1([0, T ]× [0, L]))n satisfying

{
Φ−(t, 0) = −(Λ−)−1GT

0 Λ
+Φ+(t, 0), t ∈ [0, T ],

Φ+(t, L) = −(Λ+)−1GT
1 Λ

−Φ−(t, L), t ∈ [0, T ].
(3.2)

Proof Assume that problem (1.2)–(1.5) admits a C1 solution U(t, x) on the domain [0, T ]×

[0, L] for any given T > 0. Let Φ ∈ (C1([0, T ]× [0, L]))n satisfy (3.2). Multiplying ΦT on both

sides of (2.52) and integrating by parts, we get

0 =

∫ L

0

ΦT (T, x)U(T, x)dx−

∫ L

0

ΦT (0, x)U0(x)dx

+

∫ T

0

ΦT (t, L)ΛU(t, L)dt−

∫ T

0

ΦT (t, 0)ΛU(t, 0)dt

−

∫ T

0

∫ L

0

(ΦT
t +ΦT

xΛ− ΦTA)Udxdt. (3.3)



Exact Controllability First Order Hyperbolic System Weak Solutions 655

Noting that Φ satisfies (3.2), using the boundary conditions in (1.3)–(1.4), we immediately get

(3.1).

On the contrary, let Φ ∈ (C1([0, T ]× [0, L]))n vanish at x = 0, L and at t = 0, T . By (3.1),

we get

∫ T

0

∫ L

0

(ΦT
t +ΦT

xΛ− ΦTA)Udxdt = 0. (3.4)

Since U(t, x) ∈ (C1([0, T ]× [0, L]))n, integrating by parts in (3.4), we get

∫ T

0

∫ L

0

ΦT (Ut + ΛUx +AU)dxdt = 0. (3.5)

Since the set of functions Φ ∈ (C1([0, T ] × [0, L]))n mentioned above is dense in (L1((0, T ) ×

(0, L)))n, (3.5) implies that

∫ T

0

∫ L

0

ΦT (Ut + ΛUx +AU)dxdt = 0, ∀Φ ∈ (L1((0, T )× (0, L)))n, (3.6)

then

Ut + ΛUx +AU = 0, t ∈ [0, T ], x ∈ [0, L]. (3.7)

Now, let Φ ∈ (C1([0, T ] × [0, L]))n satisfy (3.2). Integrating by parts and noting (3.7), it

follows from (3.1) that

∫ L

0

ΦT (0, x)[U(0, x)− U0(x)]dx

=

∫ T

0

(Φ+)T (t, 0)Λ+[G0U
−(t, 0)− U+(t, 0) +D0H

+(t)]dt

+

∫ T

0

(Φ−)T (t, L)Λ−[U−(t, L)−G1U
+(t, L)−D1H

−(t)]dt. (3.8)

Let Φ ∈ (C1([0, T ]× [0, L]))n vanish at x = 0, L, we get

∫ L

0

ΦT (0, x)[U(0, x)− U0(x)]dx = 0. (3.9)

Let B : (C1([0, T ]× [0, L]))n → (L1(0, L))n be defined by

B(Φ) := Φ(0, ·).

Since B({Φ ∈ (C1([0, T ]× [0, L]))n, vanishing at x = 0, L}) is dense in (L1(0, L))n, (3.9) implies

∫ L

0

ΨT (x)[U(0, x) − U0(x)]dx = 0, ∀Ψ ∈ (L1(0, L))n, (3.10)

then we have

U(0, x) = U0(x). (3.11)
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Similarly, we can prove

U+(t, 0) = G0U
−(t, 0) +D0H

+(t) (3.12)

and

U−(t, L) = G1U
+(t, L) +D1H

−(t). (3.13)

Then, U = U(t, x) is a C1 solution to the mixed problem (1.2)–(1.5).

Thus, (3.1) is an equivalent definition of the C1 solution to problem (1.2)–(1.5), which is

still valid when U = U(t, x) ∈ (L2(0, T ;L2(0, L)))n. Therefore, we can give the following

Definition 3.1 For any given T > 0, U = U(t, x) ∈ (L2(0, T ;L2(0, L)))n is a weak solution

to the forward mixed problem (1.2)–(1.5), if (3.1) holds for any given Φ ∈ (C1([0, T ]× [0, L]))n

satisfying (3.2).

3.2 Existence and uniqueness of weak solution

In this section, we construct a sequence of classical solutions to approximate the weak

solution, then we prove the existence and uniqueness of weak solution and establish some

related estimates.

For any given initial data U0 ∈ (L2(0, L))n, by a mollifier procedure, there exist Uε
0 (x) in

(C∞
0 [0, L])n with ε > 0 so small that

‖Uε
0‖(L2(0,L))n ≤ ‖U0‖(L2(0,L))n (3.14)

and

Uε
0 (·) → U0(·) in (L2(0, L))n as ε → 0. (3.15)

Similarly, for any given T > 0, for any given boundary function H ∈ (L2(0, T ))M , we can find

Hε(t) ∈ (C∞
0 [0, T ])M such that

‖Hε‖(L2(0,T ))M ≤ ‖H‖(L2(0,T ))M (3.16)

and

Hε(·) → H(·) in (L2(0, T ))M as ε → 0. (3.17)

Thus, for the mixed problem (1.2)–(1.5) (in which U0(x) = Uε
0 (x) and H(t) = Hε(t)), the

conditions of C1 compatibility are always satisfied at the points (t, x) = (0, 0) and (0, L),

respectively. By Lemma 2.1, the corresponding mixed problem (1.2)–(1.5) admits a unique C1

solution Uε(t, x). By Theorem 2.1, noting (3.14) and (3.16), we have

‖Uε(t, ·)‖(L2(0,L))n ≤ C(T )(‖U0‖(L2(0,L))n + ‖H‖(L2(0,T ))M ), ∀t ∈ [0, T ], (3.18)

then, we have

‖Uε‖(L2(0,T ;L2(0,L)))n ≤ C(T )(‖U0‖(L2(0,L))n + ‖H‖(L2(0,T ))M ). (3.19)
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By the linearity, for ε1 6= ε2 > 0, we have

‖(Uε1 − Uε2)‖(L2(0,T ;L2(0,L)))n

≤ C(T )(‖Uε1
0 − Uε2

0 ‖(L2(0,L))n + ‖Hε1 −Hε2‖(L2(0,T ))M ). (3.20)

Noting (3.15) and (3.17), it follows from (3.20) that {Uε} is a Cauchy sequence in (L2(0, T ;

L2(0, L)))n, hence there exists U(t, x) ∈ (L2(0, T ;L2(0, L)))n, such that

Uε(t, x) → U(t, x) in (L2(0, T ;L2(0, L)))n as ε → 0. (3.21)

Noting (3.18), U(t, x) also satisfies (2.3).

Moreover, we have

‖Uε(·, L)‖(L2(0,T ))n ≤ C(T )(‖U0‖(L2(0,L))n + ‖H‖(L2(0,T ))M ), (3.22)

then U(t, x) satisfies (2.31). Similarly, U(t, x) satisfies (2.30).

Furthermore, by Theorem 2.3, Corollary 2.1 and Corollary 2.2, U(t, x) satisfies (2.46), (2.55)

and (2.56). By Theorem 2.4, U(t, x) satisfies (2.58)–(2.61).

Next, we prove that U(t, x) is a weak solution to problem (1.2)–(1.5). Since Uε(t, x) ∈ C1

is a C1 solution to the corresponding problem (1.2)–(1.5), by (3.1) we have

∫ L

0

ΦT (T, x)Uε(T, x)dx−

∫ L

0

ΦT (0, x)Uε
0 (x)dx

=

∫ T

0

∫ L

0

(ΦT
t +ΦT

xΛ − ΦTA)Uεdxdt

+

∫ T

0

(Φ+)T (t, 0)Λ+D0(H
ε)+(t)dt−

∫ T

0

(Φ−)T (t, L)Λ−D1(H
ε)−(t)dt (3.23)

for any given Φ ∈ (C1([0, T ]× [0, L]))n satisfying (3.2). Noting (3.15), (3.17) and (3.21), and

taking ε → 0, we immediately get the existence of weak solution.

Now we prove the uniqueness of weak solution. The idea of the proof was first proposed in

[4, pp. 27] for the transport equation, it was also mentioned in [1, pp.231] for first order homoge-

neous linear hyperbolic systems. Assume that U1 and U2 are two weak solutions corresponding

to the same initial data U0 ∈ (L2(0, L))n and the same boundary function H ∈ (L2(0, T ))M .

Let U = U1 − U2. By (3.1), for any given Φ ∈ (C1([0, T ]× [0, L]))n satisfying (3.2), we have

∫ L

0

ΦT (T, x)U(T, x)dx =

∫ T

0

∫ L

0

(ΦT
t +ΦT

xΛ− ΦTA)Udxdt. (3.24)

Let {Fn ∈ (C1
0 [0, L])

n} be a sequence of functions such that

Fn(·) → U(T, ·) in (L2(0, L))n as n → +∞. (3.25)

Consider the following problem




Ψnt + ΛΨnx +ATΨn = 0, t ∈ [0, T ], x ∈ [0, L],
Ψ+

n (t, 0) = −(Λ+)−1GT
1 Λ

−Ψ−
n (t, 0), t ∈ [0, T ],

Ψ−
n (t, L) = −(Λ−)−1GT

0 Λ
+Ψ+

n (t, L), t ∈ [0, T ],
t = 0 : Ψn(0, x) = Fn(L − x), x ∈ [0, L].

(3.26)
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Let Ψn be the C1 solution to problem (3.26) and let

Φn(t, x) := Ψn(T − t, L− x), ∀(t, x) ∈ [0, T ]× [0, L]. (3.27)

We have

Ψn(t, 0) = Φn(T − t, L) and Ψn(t, L) = Φn(T − t, 0). (3.28)

Moreover, noting (3.25), we have

Φn(T, x) = Ψn(0, L− x) = Fn(x) → U(T, x) in (L2(0, L))n, as n → +∞. (3.29)

Substituting (3.27) into (3.26), we have





Φnt + ΛΦnx −ATΦn = 0, t ∈ [0, T ], x ∈ [0, L],
Φ−

n (t, 0) = −(Λ−)−1GT
0 Λ

+Φ+
n (t, 0), t ∈ [0, T ],

Φ+
n (t, L) = −(Λ+)−1GT

1 Λ
−Φ−

n (t, L), t ∈ [0, T ].
(3.30)

Thus, Φn(t, x) satisfies (3.2), then, by (3.24) and noting (3.29), we have

∫ L

0

FT
n (x)U(T, x)dx =

∫ L

0

ΦT
n (T, x)U(T, x)dx = 0. (3.31)

Taking n → +∞, we get

∫ L

0

|U(T, x)|2dx = 0. (3.32)

Since T > 0 is arbitrarily given, we have U(t, ·) = 0 for any given t ∈ [0, T ]. The proof is

complete.

Therefore, we have

Theorem 3.1 For any given T > 0, for any given initial data U0 ∈ (L2(0, L))n and any

given boundary function H ∈ (L2(0, T ))M , the mixed problem (1.2)–(1.5) admits a unique weak

solution U = U(t, x) ∈ (L2(0, T ;L2(0, L)))n, satisfying estimates (2.3), (2.30)–(2.31), (2.46),

(2.55)–(2.56) and (2.58)–(2.61).

Remark 3.1 Assume that the conditions (2.1) of C0 compatibility at the points (t, x) =

(0, 0) and (0, L) are satisfied, respectively. Proceeding a similar procedure as above in the

function space (C0([0, T ];L2(0, L)))n, the regularity of the weak solution can be improved to

U = U(t, x) ∈ (C0([0, T ];L2(0, L)))n.

Remark 3.2 In Definition 3.1, the trace of the weak solution is not defined on any given

x ∈ [0, L], however, in Theorem 3.1, (2.46) indicates that the weak solution on any given

x ∈ [0, L] is in fact an L2 function and its L2 norm can be controlled by the L2 norm of initial

data and boundary function.

Moreover, (2.55) and (2.56) imply that for the corresponding Cauchy problem, the weak

solution on the maximum determinate domain Rc depends only on the initial data U0.

Estimates (2.58)–(2.61) in Theorem 3.1 imply the following theorem.
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Theorem 3.2 The weak solution U = U(t, x) ∈ (L2(0, T ;L2(0, L)))n to problem (1.2)–(1.5)

on the domain R0 (resp. RL), defined in Theorem 2.4, is uniquely determined by the initial

data U0 and the boundary condition H+(t) on x = 0 (resp. H−(t) on x = L).

For any given T > 0 and any given f(t, x) ∈ (L2(0, T ;L2(0, L)))n, one can consider the

inhomogeneous system

Ut + ΛUx +AU = f(t, x), t ∈ (0, T ), x ∈ (0, L) (3.33)

with the boundary conditions (1.3)–(1.4) and the initial data (1.5) by the method of operator

semigroups (see [16, 18]) to get

Theorem 3.3 For any given T > 0, for any given initial data U0 ∈ (L2(0, L))n, any given

boundary function H ∈ (L2(0, T ))M and any given f(t, x) ∈ (L2(0, T ;L2(0, L)))n, the mixed

problem (3.33) and (1.3)–(1.5) admits a unique weak solution U = U(t, x) ∈ (L2(0, T ;L2(0, L)))n,

satisfying

‖U(T, ·)‖(L2(0,L))n ≤ C(T )(‖U0‖(L2(0,L))n + ‖H‖(L2(0,T ))M + ‖f‖(L2(0,T ;L2(0,L)))n). (3.34)

3.3 Backward problem

In studying the controllability and the observability of weak solutions by the constructive

method, in order to construct the weak solution to the forward problem under consideration,

a backward problem should be solved beforehand. For this purpose, the weak solution to the

backward problem will be discussed in this subsection.

Since the coming characteristics and the departing characteristics change their roles for

backward problem, for any given T > 0, we consider the following backward system:





Ut + ΛUx +AU = 0, t ∈ (0, T ), x ∈ (0, L),

U−(t, 0) = Ĝ0U
+(t, 0) +H−(t), t ∈ (0, T ),

U+(t, L) = Ĝ1U
−(t, L) +H+(t), t ∈ (0, T )

(3.35)

with the final data

t = T : U(T, x) = UT (x), x ∈ (0, L), (3.36)

where the boundary coupling matrices Ĝ0 and Ĝ1 with constant elements are any given matrices

of order m × m and m × m, respectively, H = (H−, H+)T with H− = (h1, · · · , hm)T and

H+ = (hm+1, · · · , hn)
T .

Let Ψ be any given function in (C1([0, T ]× [0, L]))n, satisfying

{
Ψ+(t, 0) = −(Λ+)−1ĜT

0 Λ
−Ψ−(t, 0), t ∈ [0, T ],

Ψ−(t, L) = −(Λ−)−1ĜT
1 Λ

+Ψ+(t, L), t ∈ [0, T ].
(3.37)

We have

Definition 3.2 For any given T > 0, U = U(t, x) ∈ (L2(0, T ;L2(0, L)))n is a weak solution

to the backward mixed problem (3.35)–(3.36), if we have

∫ L

0

ΨT (T, x)UT (x)dx −

∫ L

0

ΨT (0, x)U(0, x)dx
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=

∫ T

0

∫ L

0

(ΨT
t +ΨT

xΛ−ΨTA)Udxdt

+

∫ T

0

(Ψ−)T (t, 0)Λ−H−(t)dt−

∫ T

0

(Ψ+)T (t, L)Λ+H+(t)dt (3.38)

for any given Ψ ∈ (C1([0, T ]× [0, L]))n satisfying (3.37).

Theorem 3.4 For any given T > 0, for any given final data UT ∈ (L2(0, L))n and any

given boundary function H ∈ (L2(0, T ))n, the backward problem (3.35)–(3.36) admits a unique

weak solution U = U(t, x) ∈ (L2(0, T ;L2(0, L)))n, satisfying

‖U(t, ·)‖(L2(0,L))n ≤ C(T )(‖UT ‖(L2(0,L))n + ‖H‖(L2(0,T ))n), ∀t ∈ [0, T ]. (3.39)

If we take t = T − t, x = L − x in (3.35)–(3.36) and W (t, x) = U(T − t, L − x), then, the

backward problem (3.35)–(3.36) can be formally transformed into a forward problem previously

considered:




Wt + ΛWx −AW = 0, t ∈ (0, T ), x ∈ (0, L),

W+(t, 0) = Ĝ1W
−(t, 0) +H+(T − t), t ∈ (0, T ),

W−(t, L) = Ĝ0W
+(t, L) +H−(T − t), t ∈ (0, T )

(3.40)

with the initial data

t = 0 : W (0, x) = UT (L− x), x ∈ (0, L). (3.41)

We now verify the validity of this consideration. In fact, by Theorem 3.1, problem (3.40)–(3.41)

admits a unique weak solution W = W (t, x) ∈ (L2(0, T ;L2(0, L)))n, satisfying

‖W (t, ·)‖(L2(0,L))n ≤ C(T )(‖UT ‖(L2(0,L))n + ‖H‖(L2(0,T ))n), ∀t ∈ [0, T ], (3.42)

such that
∫ L

0

ΦT (T, x)W (T, x)dx−

∫ L

0

ΦT (0, x)UT (L− x)dx

=

∫ T

0

∫ L

0

(ΦT
t
+ΦT

xΛ + ΦTA)Wdxdt

+

∫ T

0

(Φ+)T (t, 0)Λ+H+(T − t)dt−

∫ T

0

(Φ−)T (t, L)Λ−H−(T − t)dt (3.43)

holds for any given Φ ∈ (C1([0, T ]× [0, L]))n satisfying

{
Φ−(t, 0) = −(Λ−)−1ĜT

1 Λ
+Φ+(t, 0), t ∈ [0, T ],

Φ+(t, L) = −(Λ+)−1ĜT
0 Λ

−Φ−(t, L), t ∈ [0, T ].
(3.44)

Let t = T − t and x = L− x in (3.43)–(3.44), and let

U(t, x) = W (T − t, L− x) and Ψ(t, x) = Φ(T − t, L− x). (3.45)

It easily follows from (3.43)–(3.44) that U = U(t, x) satisfies (3.38), and Ψ ∈ (C1([0, T ]×[0, L]))n

satisfies (3.37). Therefore, by Definition 3.2, U = U(t, x) is the weak solution to the backward

problem (3.35)–(3.36). Noting (3.42) and (3.45), U = U(t, x) satisfies (3.39).
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Remark 3.3 By the same manner as estimating the solution to the forward problem, under

the assumptions of Theorem 3.4, similar estimates as (2.30)–(2.31), (2.46), (2.55)–(2.56) and

(2.58)–(2.61) are valid for the backward problem (3.35)–(3.36), for example, we have

‖U(·, 0)‖(L2(0,T ))n ≤ C(T )(‖UT ‖(L2(0,L))n + ‖H‖(L2(0,T ))n) (3.46)

and

‖U(·, L)‖(L2(0,T ))n ≤ C(T )(‖UT ‖(L2(0,L))n + ‖H‖(L2(0,T ))n). (3.47)

Remark 3.4 Assume that the backward problem of system (1.2)–(1.4) is solvable, namely,

assume that the number of positive eigenvalues is equal to that of negative ones, andGi (i = 0, 1)

are reversible, namely,

m = m and rank(G0) = rank(G1) = m. (3.48)

Then system (1.2)–(1.4) can be equivalently rewritten as





Ut + ΛUx +AU = 0, t ∈ (0, T ), x ∈ (0, L),
U−(t, 0) = G−1

0 U+(t, 0)−G−1
0 D0H

+(t), t ∈ (0, T ),
U+(t, L) = G−1

1 U−(t, L)−G−1
1 D1H

−(t), t ∈ (0, T ).
(3.49)

By Theorem 3.4, the backward problem (3.49) and (3.36) is well-posed. Moreover, by the

approximation of classical solutions and the uniqueness of weak solution, it is easy to prove

that if U = Û(t, x) is the weak solution to problem (1.2)–(1.5), then it is also the weak solution

to backward problem (3.49) with the final condition

t = T : U(T, x) = Û(T, x), x ∈ (0, L),

and vice versa. Hence, system (1.2)–(1.4) is time reversible.

We point out that, making an equivalent algebraic transformation by multiplying a full rank

matrix from the left on the boundary condition of the system doesn’t influence the definition

and the properties of the weak solution. In the following discussion, this property was used and

will be used from time to time.

3.4 Some related results

In order to prove the controllability for system (1.2)–(1.4) and the observability for the

adjoint system (4.1) by the constructive method, we prepare some useful lemmas in this section.

First of all, for any given T > 0, assume that Φ = Φ̂(t, x) ∈ (L2(0, T ;L2(0, L)))n is a weak

solution to the following homogeneous backward system





Φt + ΛΦx −ATΦ = 0, t ∈ (0, T ), x ∈ (0, L),

x = 0 : Φ−(t, 0) = Ĝ0Φ
+(t, 0), t ∈ (0, T ),

x = L : Φ+(t, L) = Ĝ1Φ
−(t, L), t ∈ (0, T )

(3.50)

with

t = T : Φ(T, x) = Φ̂T (x), x ∈ (0, L), (3.51)
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where the boundary coupling matrices Ĝ0 and Ĝ1 with constant elements are any given matrices

of order m×m and m×m, respectively. Assume furthermore that

m ≤ m (i.e, n ≤ 2m) and rank(Ĝ0) = m, (3.52)

without loss of generality, we assume that Ĝ0 =
(

(Ĝ01)m×m

(Ĝ02)(m−m)×m

)
, where Ĝ01 is an reversible

matrix of order m. Thus the boundary condition on x = 0 in (3.50) implies

x = 0 : Φ+(t, 0) = G̃0Φ
−(t, 0), ∀t ∈ (0, T ), (3.53)

where G̃0 =
(
Ĝ−1

01 0
)
. Then we can consider the following forward mixed problem:





Φt + ΛΦx −ATΦ = 0, t ∈ (0, T ), x ∈ (0, L),

x = 0 : Φ+(t, 0) = G̃0Φ
−(t, 0), t ∈ (0, T ),

x = L : Φ−(t, L) = Φ̂−(t, L), t ∈ (0, T ),

t = 0 : Φ = Φ̂(0, x), x ∈ (0, L).

(3.54)

We have

Theorem 3.5 Under the assumptions mentioned above, assume furthermore that (3.52)

holds, then the weak solution Φ = Φ̂(t, x) ∈ (L2(0, T ;L2(0, L)))n to the backward problem

(3.50)–(3.51) is the weak solution to the forward problem (3.54).

Proof By Definition 3.1, Φ = Φ(t, x) ∈ (L2(0, T ;L2(0, L)))n is a weak solution to problem

(3.54), if

∫ L

0

ΨT (T, x)Φ(T, x)dx −

∫ L

0

ΨT (0, x)Φ̂(0, x)dx

=

∫ T

0

∫ L

0

(ΨT
t +ΨT

xΛ +ΨTAT )Φdxdt−

∫ T

0

(Ψ−)T (t, L)Λ−Φ̂−(t, L)dt (3.55)

holds for any given Ψ ∈ (C1([0, T ]× [0, L]))n satisfying

{
Ψ−(t, 0) = −(Λ−)−1G̃T

0 Λ
+Ψ+(t, 0), t ∈ [0, T ],

Ψ+(t, L) = 0, t ∈ [0, T ].
(3.56)

Let Φ = Φ̂(t, x) ∈ (L2(0, T ;L2(0, L)))n be the weak solution to the backward problem (3.50)–

(3.51). By the uniqueness of weak solution, it suffices to prove that Φ = Φ̂(t, x) satisfies (3.55)

for any given Ψ ∈ (C1([0, T ]× [0, L]))n satisfying (3.56). By the procedure of approximation

mentioned in Section 3.2, we can find a sequence of C1 solutions Φk(t, x) of problem (3.50)–

(3.51) that converges to Φ̂(t, x) in (L2(0, T ;L2(0, L)))n as k → ∞, such that

(Φk)−(t, L) → Φ̂−(t, L) in (L2(0, T ))m as k → ∞ (3.57)

and

Φk(0, x) → Φ̂(0, x), Φk(T, x) → Φ̂(T, x) in (L2(0, L))n as k → ∞. (3.58)

It is easy to check that Φ = Φk(t, x) satisfies

Φt + ΛΦx −ATΦ = 0, t ∈ (0, T ), x ∈ (0, L). (3.59)
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Moreover, noting the boundary condition on x = 0 in (3.50), by (3.52), Φ = Φk(t, x) satisfies

(3.53). Thus, Φ = Φk(t, x) is the C1 solution to system (3.59) and

{
x = 0 : Φ+(t, 0) = G̃0Φ

−(t, 0), t ∈ (0, T ),
x = L : Φ−(t, L) = (Φk)−(t, L), t ∈ (0, T )

(3.60)

with the initial data

t = 0 : Φ = Φk(0, x), x ∈ (0, L). (3.61)

By Proposition 3.1, Φk(t, x) satisfies

∫ L

0

ΨT (T, x)Φk(T, x)dx−

∫ L

0

ΨT (0, x)Φk(0, x)dx (3.62)

=

∫ T

0

∫ L

0

(ΨT
t +ΨT

xΛ +ΨTAT )Φkdxdt−

∫ T

0

(Ψ−)T (t, L)Λ−(Φk)−(t, L)dt

for any given Ψ ∈ (C1([0, T ]× [0, L]))n satisfying (3.56). Taking k → ∞ in (3.62) and noting

(3.57) and (3.58), we get (3.55), then Φ = Φ̂(t, x) is the weak solution to problem (3.54).

Now we assume that U = Û(t, x) ∈ (L2(0, T ;L2(0, L)))n is a weak solution to problem

(1.2)–(1.5). Noticing λi 6= 0 (i = 1, · · · , n), and changing the role of t and x in (1.2), we

consider the following rightward problem:

Ux + Λ−1Ut + Λ−1AU = 0, x ∈ (0, L), t ∈ (0, T ) (3.63)

with the boundary condition

{
t = 0 : U+ = Û+(0, x), x ∈ (0, L),

t = T : U− = Û−(T, x), x ∈ (0, L)
(3.64)

and with the initial data

x = 0 : U = Û(t, 0), t ∈ (0, T ). (3.65)

We have

Theorem 3.6 Under the assumptions mentioned above, the weak solution U = Û(t, x) ∈

(L2(0, T ;L2(0, L)))n to the forward problem (1.2)–(1.5) is also the weak solution to the rightward

problem (3.63)–(3.65).

Proof Multiplying ΦT on both sides of (3.63), and using the boundary conditions (3.64),

it is easy to check that U = U(t, x) ∈ (L2(0, T ;L2(0, L)))n is a weak solution to problem

(3.63)–(3.65) if

0 =

∫ T

0

ΦT (t, L)U(t, L)dt−

∫ T

0

ΦT (t, 0)Û(t, 0)dt

+

∫ L

0

(Φ−)T (T, x)Λ−1Û−(T, x)dx −

∫ L

0

(Φ+)T (0, x)Λ−1Û+(0, x)dx

−

∫ T

0

∫ L

0

(ΦT
x +ΦT

t Λ
−1 − ΦTΛ−1A)Udxdt (3.66)
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holds for any given Φ ∈ (C1([0, T ]× [0, L]))n satisfying

{
Φ−(0, x) = 0, x ∈ [0, L],
Φ+(T, x) = 0, x ∈ [0, L].

(3.67)

Let U = Û(t, x) ∈ (L2(0, T ;L2(0, L)))n be the weak solution to problem (1.2)–(1.5). By the

uniqueness of weak solution, it suffices to prove that U = Û(t, x) satisfies (3.66) for any given

Φ ∈ (C1([0, T ] × [0, L]))n satisfying (3.67). By the procedure of approximation mentioned in

Section 3.2, we can find a sequence of C1 solutions Uk(t, x) of problem (1.2)–(1.5) that converges

to Û(t, x) in (L2(0, T ;L2(0, L)))n as k → ∞, such that

(Uk)+(t, 0) → Û+(t, 0) in (L2(0, T ))m; (Uk)−(t, L) → Û−(t, L) in (L2(0, T ))m (3.68)

and

Uk(0, x) → Û(0, x) in (L2(0, L))n; Uk(T, x) → Û(T, x) in (L2(0, L))n (3.69)

as k → ∞. It is easy to check that U = Uk(t, x) solves the rightward problem of system (3.63)

with the boundary condition

{
t = 0 : U+ = (Uk)+(0, x), x ∈ (0, L),
t = T : U− = (Uk)−(T, x), x ∈ (0, L)

(3.70)

and the initial data

x = 0 : U = Uk(t, 0), t ∈ (0, T ). (3.71)

By Proposition 3.1, Uk(t, x) satisfies

0 =

∫ T

0

ΦT (t, L)Uk(t, L)dt−

∫ T

0

ΦT (t, 0)Uk(t, 0)dt

+

∫ L

0

(Φ−)T (T, x)Λ−1(Uk)−(T, x)dx −

∫ L

0

(Φ+)T (0, x)Λ−1(Uk)+(0, x)dx

−

∫ T

0

∫ L

0

(ΦT
x +ΦT

t Λ
−1 − ΦTΛ−1A)Ukdxdt (3.72)

for any given Φ ∈ (C1([0, T ]× [0, L]))n satisfying (3.67). Taking k → ∞ in (3.72) and noting

(3.68)–(3.69), we have

0 =

∫ T

0

ΦT (t, L)Û(t, L)dt−

∫ T

0

ΦT (t, 0)Û(t, 0)dt

+

∫ L

0

(Φ−)T (T, x)Λ−1Û−(T, x)dx −

∫ L

0

(Φ+)T (0, x)Λ−1Û+(0, x)dx

−

∫ T

0

∫ L

0

(ΦT
x +ΦT

t Λ
−1 − ΦTΛ−1A)Ûdxdt (3.73)

for any given Φ ∈ (C1([0, T ] × [0, L]))n satisfying (3.67), then Û(t, x) is the weak solution to

problem (3.63)–(3.65).

Similarly to the proof of Theorem 3.6, we have
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Theorem 3.7 Assume that U = Û(t, x) ∈ (L2(0, T ;L2(0, L)))n is a weak solution to the

backward problem (3.35)–(3.36), then it is also the weak solution to the rightward problem

(3.63)–(3.65).

Similarly, for the leftward problem of system (3.63) with the boundary conditions
{
t = 0 : U− = Û−(0, x), x ∈ (0, L),

t = T : U+ = Û+(T, x), x ∈ (0, L)
(3.74)

and the initial data

x = L : U = Û(t, L), t ∈ (0, T ), (3.75)

we have

Theorem 3.8 Under the assumptions mentioned above, the weak solution U = Û(t, x) ∈

(L2(0, T ;L2(0, L)))n to problem (1.2)–(1.5) is also the weak solution to the leftward problem

(3.63) and (3.74)–(3.75).

Theorem 3.9 Assume that U = Û(t, x) ∈ (L2(0, T ;L2(0, L)))n is a weak solution to the

backward problem (3.35)–(3.36), then it is also the weak solution to the leftward problem (3.63)

and (3.74)–(3.75).

4 Exact Boundary (Null) Controllability of Weak Solutions by the
Constructive Method

In this paper, we will discuss the exact boundary (resp. null) controllability for system

(1.2)–(1.4) and the strong (resp. weak) exact boundary observability for the corresponding

adjoint system




Φt + ΛΦx −ATΦ = 0, t ∈ (0, T ), x ∈ (0, L),
Φ−(t, 0) = −(Λ−)−1GT

0 Λ
+Φ+(t, 0), t ∈ (0, T ),

Φ+(t, L) = −(Λ+)−1GT
1 Λ

−Φ−(t, L), t ∈ (0, T )
(4.1)

with the final data

t = T : Φ(T, x) = ΦT (x), x ∈ (0, L). (4.2)

As mentioned in Introduction, first order hyperbolic systems are not always time reversible,

then the exact boundary controllability and the exact boundary null controllability for system

(1.2)–(1.4) are not equivalent to each other in general (see [12]), hence they should be discussed

separately. Correspondingly, for the adjoint system (4.1), the strong exact boundary observabil-

ity and the weak exact boundary observability should be taken into consideration respectively,

too.

Based on Theorem 3.2 and Theorems 3.5–3.9, the constructive method in the framework of

classical solutions (see [8, 12]) can also be used in the framework of weak solutions to prove the

exact boundary (null) controllability and the strong (weak) exact boundary observability for

1-D first order hyperbolic systems.

In this section and in the next section, we will first list some results on controllability and

observability obtained by the constructive method in the framework of weak solutions. The
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procedure of proofs is similar to that in the framework of classical solutions by the constructive

method (see [8, 12]). In what follows, we only prove the one-sided exact boundary controllability

of weak solutions for system (1.2)–(1.4) and the one-sided strong exact boundary observability

of weak solutions for the adjoint system (4.1) to show how the constructive method works.

Lemma 4.1 (Two-sided exact boundary controllability) Let T ≥ T0, where

T0 = L max
1≤r≤m

m+1≤s≤n

{ 1

|λr|
,
1

λs

}
> 0. (4.3)

If M = n, namely, M0 = rank(D0) = m and M1 = rank(D1) = m, then for any given initial

data U0(x) ∈ (L2(0, L))n and final data UT (x) ∈ (L2(0, L))n, there exists a boundary control

H ∈ (L2(0, T ))n, satisfying

‖H‖(L2(0,T ))n ≤ C(‖U0‖(L2(0,L))n + ‖UT ‖(L2(0,L))n), (4.4)

here and hereafter, C > 0 denotes a constant depending only on T , such that the mixed problem

(1.2)–(1.5) admits a unique weak solution U = U(t, x), satisfying exactly the final state at the

time t = T :

U(T, x) = UT (x), 0 < x < L. (4.5)

Lemma 4.2 (One-sided exact boundary controllability) Assume that the number of positive

eigenvalues is not larger than that of negative ones:

m ≤ m (i.e., n ≤ 2m). (4.6)

Assume furthermore that

rank(G0) = m. (4.7)

Let T ≥ T 0, where

T 0 = L
(

max
1≤r≤m

1

|λr|
+ max

m+1≤s≤n

1

λs

)
> 0. (4.8)

If M = M1 = rank(D1) = m, then for any given initial data U0(x) ∈ (L2(0, L))n and final

data UT (x) ∈ (L2(0, L))n, for any given boundary function H+(t) ∈ (L2(0, T ))m, there exists a

boundary control H−(t) ∈ (L2(0, T ))m, satisfying

‖H−‖(L2(0,T ))m ≤ C(‖U0‖(L2(0,L))n + ‖UT‖(L2(0,L))n + ‖H+‖(L2(0,T ))m), (4.9)

such that system (1.2)–(1.4) is exactly controllable at the time t = T.

Proof Let

T 1 = L max
1≤r≤m

1

|λr|
(4.10)

and

T 2 = T − L max
m+1≤s≤n

1

λs

. (4.11)
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First, for any given initial data U0(x) ∈ (L2(0, L))n and boundary function H+(t) ∈

(L2(0, T ))m on x = 0, we consider the forward problem (1.2)–(1.3) and (1.5) with the fol-

lowing artificial boundary condition on x = L:

x = L : U−(t, L) = F (t), 0 < t < T 1, (4.12)

where F (t) ∈ (L2(0, T 1))
m is any given function of t, satisfying

‖F‖(L2(0,T 1))m
≤ C(‖U0‖(L2(0,L))n + ‖UT ‖(L2(0,L))n + ‖H+‖(L2(0,T ))m). (4.13)

By Theorem 3.1, there exists a unique weak solution U = Uf (t, x) ∈ (L2(0, T 1;L
2(0, L)))n on

Rf = {(t, x)|0 ≤ t ≤ T 1, 0 ≤ x ≤ L}, satisfying

‖Uf‖(L2(0,T 1;L2(0,L)))n ≤ C(‖U0‖(L2(0,L))n + ‖UT‖(L2(0,L))n + ‖H+‖(L2(0,T ))m), (4.14)

and we can determine the value of U = Uf(t, x) on x = 0 as

x = 0 : Uf (t, 0) = a(t), 0 < t < T 1 (4.15)

with a(t) ∈ (L2(0, T 1))
n satisfying

‖a‖(L2(0,T 1))n
≤ C(‖U0‖(L2(0,L))n + ‖UT‖(L2(0,L))n + ‖H+‖(L2(0,T ))m). (4.16)

Second, noting (4.7), without loss of generality, we may assume that

G0 =
(
(G01)m×m (G02)m×(m−m)

)
,

where G01 is reversible. Then the boundary condition (1.3) on x = 0 can be equivalently

rewritten as

x = 0 :




u1

...
um


 (t, 0) = G−1

01 U
+(t, 0)−G−1

01 G02




um+1

...
um


 (t, 0)−G−1

01 D0H
+(t). (4.17)

For any given final data UT (x) ∈ (L2(0, L))n, we consider the backward problem (2.52) with

final data (4.5), boundary condition (4.17) and the following artificial boundary conditions

x = 0 :




um+1

...
um


 (t, 0) = P (t), T 2 < t < T (4.18)

and

x = L : U+(t, L) = Q(t), T 2 < t < T, (4.19)

where P (t) ∈ (L2(T 2, T ))
(m−m) and Q(t) ∈ (L2(T 2, T ))

m are any given function of t, satisfying

‖P‖(L2(T 2,T ))(m−m) ≤ C(‖U0‖(L2(0,L))n + ‖UT‖(L2(0,L))n + ‖H+‖(L2(0,T ))m) (4.20)

and

‖Q‖(L2(T 2,T ))m ≤ C(‖U0‖(L2(0,L))n + ‖UT ‖(L2(0,L))n + ‖H+‖(L2(0,T ))m). (4.21)
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By Theorem 3.1, there exists a unique weak solution U = Ub(t, x) ∈ (L2(T 2, T ;L
2(0, L)))n on

Rb = {(t, x) | T 2 ≤ t ≤ T, 0 ≤ x ≤ L}, satisfying

‖Ub‖(L2(T 2,T ;L2(0,L)))n ≤ C(‖U0‖(L2(0,L))n + ‖UT‖(L2(0,L))n + ‖H+‖(L2(0,T ))m). (4.22)

Then, we can determine the value of U = Ub(t, x) on x = 0 as

x = 0 : Ub(t, 0) = b(t), T 2 < t < T (4.23)

with b(t) ∈ (L2(T 2, T ))
n satisfying

‖b‖(L2(T 2,T ))n ≤ C(‖U0‖(L2(0,L))n + ‖UT ‖(L2(0,L))n + ‖H+‖(L2(0,T ))m). (4.24)

It is easy to check that both a(t) and b(t) satisfy the boundary condition (1.3) on x = 0.

Noting (4.8) and (4.10)–(4.11), we may find c(t) ∈ (L2(0, T ))n satisfying the boundary condition

(1.3) on x = 0 and

‖c‖(L2(0,T ))n ≤ C(‖U0‖(L2(0,L))n + ‖UT ‖(L2(0,L))n + ‖H+‖(L2(0,T ))m), (4.25)

such that

c(t) =

{
a(t), 0 < t < T 1;
b(t), T 2 < t < T.

(4.26)

We now change the status of t and x and consider a rightward problem for system (3.63)

with the initial data

x = 0 : U(t, 0) = c(t), 0 < t < T (4.27)

and the boundary conditions

t = 0 : U+ = U+
0 (x), x ∈ (0, L) (4.28)

and

t = T : U− = U−
T (x), x ∈ (0, L). (4.29)

Again, by Theorem 3.1, there exists a unique weak solution U = U(t, x) ∈ (L2(0, T ;L2(0, L)))n

on R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L}, satisfying

‖U‖(L2(0,T ;L2(0,L)))n ≤ C(‖U0‖(L2(0,L))n + ‖UT‖(L2(0,L))n + ‖H+‖(L2(0,T ))m). (4.30)

We first prove that U = U(t, x) satisfies the initial condition (1.5) and the final condition

(4.5). In fact, by Theorem 3.6, U = Uf (t, x) is also the solution to the rightward problem (3.63)

with (4.28),

t = T 1 : U− = U−
f (T 1, x), x ∈ (0, L) (4.31)

and

x = 0 : U(t, 0) = c(t), 0 < t < T 1 (4.32)
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on the domain Rf . However, noting (4.10), by Theorem 3.2, the solution to the rightward

problem (3.63) with (4.28), (4.31) and (4.32) is uniquely determined on the domain

R0 =
{
(t, x)

∣∣∣0 ≤ t <
T 1

L
(L − x), 0 ≤ x ≤ L

}

by (4.28) and (4.32), which are just the initial data and the boundary condition on t = 0 for

the rightward problem (3.63) and (4.27)–(4.29). Hence,

U(t, x) = Uf(t, x) (4.33)

on the domain R0. In particular, we have (1.5).

On the other hand, by Theorem 3.7, U = Ub(t, x) is also the solution to the rightward

problem (3.63) with (4.29),

t = T 2 : U+ = U+
b (T 2, x), x ∈ (0, L) (4.34)

and

x = 0 : U(t, 0) = c(t), T 2 < t < T (4.35)

on the domain Rb. However, noting (4.11), by Theorem 3.2, the solution to the rightward

problem (3.63) with (4.35)–(4.34) is uniquely determined on the domain

RT =
{
(t, x)

∣∣∣T −
T − T 2

L
(L− x) < t ≤ T, 0 ≤ x ≤ L

}

by (4.29) and (4.35). Similarly, we have

U(t, x) = Ub(t, x) (4.36)

on the domain Rb. In particular, we have the final condition (4.5).

We now prove that U = U(t, x) satisfies

∫ L

0

ΦT (T, x)UT (x)dx −

∫ L

0

ΦT (0, x)U0(x)dx

=

∫ T

0

∫ L

0

(ΦT
t +ΦT

xΛ − ΦTA)Udxdt

+

∫ T

0

(Φ+)T (t, 0)Λ+D0H
+(t)dt−

∫ T

0

ΦT (t, L)ΛU(t, L)dt (4.37)

for any given Φ ∈ (C1([0, T ]× [0, L]))n satisfying

Φ−(t, 0) = −(Λ−)−1GT
0 Λ

+Φ+(t, 0), t ∈ [0, T ], (4.38)

namely, U = U(t, x) satisfies (1.2)–(1.3) with (1.5) and (4.5) in the sense of weak solutions.

(The equivalent integral equation (4.37) is formed by a similar manner of (3.1) in Definition

3.1.)

Regarding the following forward problem




Wt + ΛWx +AW = 0, t ∈ (0, T ), x ∈ (0, L),
x = 0 : W+(t, 0) = U+(t, 0), t ∈ (0, T ),
x = L : W−(t, L) = U−(t, L), t ∈ (0, T ),
t = 0 : W = U0(x)

(4.39)
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as the ’leftward’ problem of the rightward problem (3.63) and (4.27)–(4.29), noting (1.5) and

by Theorem 3.8, U(t, x) is also the weak solution to the forward problem (4.39), we have

W (t, x) = U(t, x), then, by Definition 3.1, we get

∫ L

0

ΦT (T, x)U(T, x)dx−

∫ L

0

ΦT (0, x)U0(x)dx

=

∫ T

0

∫ L

0

(ΦT
t +ΦT

xΛ− ΦTA)Udxdt

+

∫ T

0

ΦT (t, 0)ΛU(t, 0)dt−

∫ T

0

ΦT (t, L)ΛU(t, L)dt (4.40)

for any given Φ ∈ (C1([0, T ] × [0, L]))n. Let Φ ∈ (C1([0, T ] × [0, L]))n satisfy (4.38). Noting

U(t, 0) = c(t), by its construction, c(t) satisfies the boundary condition (1.3) on x = 0, and

noticing (4.5), (4.37) follows from (4.40) immediately.

Finally, we determine the boundary control function by

H−(t) = D−1
1 (U−(t, L)−G1U

+(t, L)), t ∈ (0, T ), (4.41)

and, noting (4.25), it follows from Theorem 3.1 that

‖H−‖(L2(0,T ))m ≤ C‖U(·, L)‖(L2(0,T ))n

≤ C(‖U0‖(L2(0,L))n + ‖UT‖(L2(0,L))n + ‖c‖(L2(0,T ))n)

≤ C(‖U0‖(L2(0,L))n + ‖UT‖(L2(0,L))n + ‖H+‖(L2(0,T ))m). (4.42)

As a conclusion, for any given initial data U0(x) ∈ (L2(0, L))n, any given final data UT (x) ∈

(L2(0, L))n and any given boundary function H+(t) ∈ (L2(0, T ))m, we can construct a function

U = U(t, x) ∈ (L2(0, T ;L2(0, L)))n, which satisfies exactly (1.2)–(1.3), (1.5) and (4.5) in the

sense of weak solutions, and by restricting U = U(t, x) on the boundary x = L, we obtain

a boundary control function H−(t) ∈ (L2(0, T ))m given by (4.41). Thus, with this boundary

control H−(t), U = U(t, x) is the weak solution to problem (1.2)–(1.5), which satisfies exactly

the final data (4.5) at the time t = T . Hence, system (1.2)–(1.4) is exactly controllable at the

time t = T .

Remark 4.1 Assumptions (4.6)–(4.7) guarantee that the constructive method with suit-

able artificial boundary conditions can be applied to system (1.2)–(1.4) for realizing the exact

boundary controllability for weak solutions.

Remark 4.2 The case of two-sided exact boundary controllability with fewer boundary

controls can be similarly discussed by the constructive method.

The constructive method can be also applied to prove the exact boundary null controllability

for system (1.2)–(1.4). Taking the one-sided controls case as an example, we have

Lemma 4.3 (One-sided exact boundary null controllability) Let T ≥ T 0, where T 0 is

given by (4.8). Assume that H−(t) ≡ 0 (resp. H+(t) ≡ 0), if M = M0 = rank(D0) = m (resp.

M = M1 = rank(D1) = m), then for any given initial data U0(x) ∈ (L2(0, L))n, there exists a

boundary control H+(t) ∈ (L2(0, T ))m (resp. H−(t) ∈ (L2(0, T ))m), satisfying

‖H+‖(L2(0,T ))m ≤ C‖U0‖(L2(0,L))n (resp. ‖H−‖(L2(0,T ))m ≤ C‖U0‖(L2(0,L))n), (4.43)
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such that the corresponding mixed problem (1.2)–(1.5) admits a unique weak solution U =

U(t, x), satisfying exactly the null final state at the time t = T :

U(T, x) ≡ 0, 0 < x < L. (4.44)

Remark 4.3 Under the assumptions of Lemma 4.3, since the system has homogeneous

boundary conditions on the side without controls, we can set U ≡ 0 in Rb, instead of solving a

backward problem as in the proof of Lemma 4.2, hence assumptions (4.6)–(4.7) are not required.

Moreover, for system with homogenous boundary conditions on the side without controls,

boundary controls can be acted on either side of the boundary, so that the number of boundary

controls can be further reduced to m (≤ m).

In general, the one-sided exact boundary controllability and the one-sided exact boundary

null controllability are not equivalent. If system (1.2)–(1.4) is exactly controllable, then it

must be exactly null controllable. However, in order to deduce the one-sided exact boundary

controllability from the one-sided exact boundary null controllability for system (1.2)–(1.4), the

number of positive eigenvalues of Λ should be equal to that of negative ones, and the boundary

coupling matrices G0 and G1 should be reversible, namely, we have

Theorem 4.1 The one-sided exact boundary controllability and the one-sided exact bound-

ary null controllability are equivalent if the following hypotheses are satisfied:

1. m = m; 2. rank(G0) = rank(G1) = m. (4.45)

Remark 4.4 Under the assumptions of Theorem 4.1, controls can apply on either side of

the boundary, and the number of boundary controls is equal to M = m = m.

5 Strong (weak) Exact Boundary Observability for the Adjoint System
by the Constructive Method

For any given final data ΦT ∈ (L2(0, L))n, the well-posedness of the backward problem

(4.1)–(4.2) in the sense of weak solutions is guaranteed by Theorem 3.4. By the constructive

method, we have the following result on the strong observability of the adjoint system (4.1).

Lemma 5.1 (Two-sided strong exact boundary observability) Assume T ≥ T0, where T0

is given by (4.3). Assume that Φ = Φ(t, x) is the weak solution to the adjoint problem (4.1)–

(4.2). For any given final data ΦT (x) ∈ (L2(0, L))n, the boundary observations Φ−(t, L) and

Φ+(t, 0) corresponding to the departing characteristics on x = L and on x = 0, respectively,

on the interval (0, T ) can be used to uniquely determine the final data ΦT (x), and we have the

following strong observability inequality:

‖ΦT ‖(L2(0,L))n ≤ C(‖Φ−(·, L)‖(L2(0,T ))m + ‖Φ+(·, 0)‖(L2(0,T ))m). (5.1)

In particular, if

M = n, namely, M0 = rank(D0) = m and M1 = rank(D1) = m, (5.2)

then (5.1) can be written as

‖ΦT‖(L2(0,L))n ≤ C(‖DT
0 Λ

+Φ+(·, 0)‖(L2(0,T ))m + ‖DT
1 Λ

−Φ−(·, L)‖(L2(0,T ))m). (5.3)
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Lemma 5.2 (One-sided strong exact boundary observability) Let T ≥ T 0, where T 0 is

given by (4.8). Assume that Φ = Φ(t, x) is the weak solution to the adjoint problem (4.1)–(4.2).

Assume furthermore that (4.6)–(4.7) hold. For any given final data ΦT (x) ∈ (L2(0, L))n, the

boundary observation Φ−(t, L) corresponding to the departing characteristics on x = L (the side

with fewer coming characteristics) on the interval (0, T ) can be used to uniquely determine the

final data ΦT (x), and we have the following strong observation inequality:

‖ΦT‖(L2(0,L))n ≤ C‖Φ−(·, L)‖(L2(0,T ))m . (5.4)

In particular, if

M = M1 = rank(D1) = m, (5.5)

then (5.4) can be written as

‖ΦT ‖(L2(0,L))n ≤ C‖DT
1 Λ

−Φ−(·, L)‖(L2(0,T ))m . (5.6)

Proof Assume that Φ = Φ̂(t, x) ∈ (L2(0, T ;L2(0, L)))n is a weak solution to the backward

problem (4.1)–(4.2) with the final data Φ̂T ∈ (L2(0, L))n.

Noting λi 6= 0 (i = 1, · · · , n), the following leftward problem





Φx + Λ−1Φt − Λ−1ATΦ = 0, x ∈ (0, L), t ∈ (0, T ),

t = 0 : Φ− = Φ̂−(0, x), x ∈ (0, L),

t = T : Φ+ = Φ̂+
T , x ∈ (0, L)

(5.7)

and

x = L : Φ = Φ̂(t, L), t ∈ (0, T ) (5.8)

admits a unique weak solution. By Theorem 3.9, the weak solution Φ = Φ̂(t, x) to the backward

problem (4.1)–(4.2) is also the weak solution to the leftward problem (5.7)–(5.8).

Without loss of generality, assume that

max
1≤r≤m

1

|λr|
=

1

|λm|
, max

m+1≤s≤n

1

λs

=
1

λm+1
. (5.9)

Drawing the mth and the (m + 1)th characteristic lines x = xm(t) and x = xm+1(t) passing

through the point (0, L) and (T, L), respectively, we have





dxm(t)

dt
= λm,

xm(0) = L

and





dxm+1(t)

dt
= λm+1,

xm+1(T ) = L.

(5.10)

Noting (4.8), the triangular domain Rl, surrounded by x = xm(t), x = xm+1(t) and x = L,

intersects x = 0 (see Figure 1).

By (2.56) in Theorem 3.1 for the Cauchy problem, the solution Φ = Φ̂(t, x) on Rl is uniquely

determined by (5.8). Then, noting the boundary conditions in (4.1), there exists t = t∗ (0 <

t∗ < T ) such that

‖Φ̂(t∗, ·)‖(L2(0,L))n ≤ C‖Φ̂(·, L)‖(L2(0,T ))n ≤ C‖Φ̂−(·, L)‖(L2(0,T ))m . (5.11)
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Figure 1 Triangular domain Rl

By (4.6)–(4.7), the boundary condition on x = 0 in (4.1) implies that there exists an m×m

matrix G̃0 such that

Φ+(t, 0) = G̃0Φ
−(t, 0), ∀t ∈ (0, T ) (5.12)

(see (3.53)). Taking Φ = Φ̂(t∗, x) (x ∈ (0, L)) as the initial data, we solve the following forward

problem on Rf = {(t, x) | t∗ < t < T, 0 < x < L} :





Φt + ΛΦx −ATΦ = 0, t ∈ (t∗, T ), x ∈ (0, L),

x = 0 : Φ+ = G̃0Φ
−(t, 0), t ∈ (t∗, T ),

x = L : Φ− = Φ̂−(t, L), t ∈ (t∗, T ),

t = t∗ : Φ = Φ̂(t∗, x), x ∈ (0, L).

(5.13)

By Theorem 3.5, Φ = Φ̂(t, x)|Rf
is the solution to problem (5.13). By Theorem 3.1, we have

‖Φ̂T ‖(L2(0,L))n = ‖Φ̂(T, ·)‖(L2(0,L))n ≤ C(‖Φ̂(t∗, ·)‖(L2(0,L))n + ‖Φ̂−(·, L)‖(L2(0,T ))m), (5.14)

then, noting (5.11), we get immediately

‖Φ̂T‖(L2(0,L))n ≤ C‖Φ̂−(·, L)‖(L2(0,T ))m . (5.15)

In particular, under assumption (5.5), D1 is reversible, and Λ− is also reversible, hence it

follows from (5.15) that

‖Φ̂T ‖(L2(0,L))n ≤ C‖DT
1 Λ

−Φ̂−(·, L)‖(L2(0,T ))m . (5.16)

The proof is complete.

Remark 5.1 In Lemma 5.2, assumptions (4.6) and (4.7) guarantee that we can apply the

constructive method with suitable boundary observations to get the observability for the adjoint

system.
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Remark 5.2 We can similarly discuss the two-sided strong exact boundary observability

with fewer boundary observations.

Remark 5.3 The weak exact boundary observability for the adjoint system (4.1) can be

similarly studied by means of the constructive method. In this case, the initial data of the

solution to the backward adjoint problem (4.1)–(4.2) can be uniquely determined by bound-

ary observations. In one-sided observation case, differently from Lemma 5.2, we don’t need

assumptions (4.6)–(4.7) for the weak exact boundary observability, boundary observations can

be on either side of the boundary, and the number of boundary observations is equal to m or

m, respectively.

Correspondingly, we have

Lemma 5.3 (One-sided weak exact boundary observability) Let T ≥ T 0, where T 0 is

given by (4.8). For any given initial data Φ0(x) ∈ (L2(0, L))n,

(1) the boundary observation Φ−(t, L) corresponding to all the departing characteristics on

x = L on the interval (0, T ) can be used to uniquely determine the initial data Φ0(x) at t = 0,

and we have the following weak observability inequality:

‖Φ0‖(L2(0,L))n ≤ C‖Φ−(·, L)‖(L2(0,T ))m . (5.17)

In particular, if M = M1 = rank(D1) = m, then (5.17) can be written as

‖Φ0‖(L2(0,L))n ≤ C‖DT
1 Λ

−Φ−(·, L)‖(L2(0,T ))m ; (5.18)

(2) the boundary observation Φ+(t, 0) corresponding to all the departing characteristics on

x = 0 on the interval (0, T ) can be used to uniquely determine the initial data Φ0(x) at t = 0,

and we have the following weak observability inequality:

‖Φ0‖(L2(0,L))n ≤ C‖Φ+(·, 0)‖(L2(0,T ))m . (5.19)

In particular, if M = M0 = rank(D0) = m, then (5.19) can be written as

‖Φ0‖(L2(0,L))n ≤ C‖DT
0 Λ

+Φ+(·, 0)‖(L2(0,T ))m . (5.20)

Remark 5.4 Apparently, if system (4.1) possesses the strong exact boundary observability,

then it must possess the weak exact boundary observability. Conversely, in order to obtain

the one-sided strong exact boundary observability from the one-sided weak exact boundary

observability, system (4.1) should satisfy (4.45), namely, it is time reversible. In this case,

observations can be on either side of the boundary, and the number of boundary observations

M = m = m.

Lemma 5.4 If system (1.2)–(1.4) is exactly null controllable under boundary controls H(t) ∈

(L2(0, T ))M (M = M0 + M1 ≤ n), then the adjoint system (4.1) satisfies the following weak

D0/D1-observability:

If DT
0 Λ

+Φ+(t, 0) = 0 and DT
1 Λ

−Φ−(t, L) = 0, then Φ(0, x) ≡ 0. (5.21)
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Proof By Definition 3.1, and noting the adjoint system (4.1), if system (1.2)–(1.4) is exactly

boundary null controllable, then for any given initial data U0(x) ∈ (L2(0, L))n and null final

data UT (x) ≡ 0, there exist boundary controls H(t) ∈ (L2(0, T ))M , such that

∫ L

0

Φ(0, x)TU0(x)dx

= −

∫ T

0

(Φ+)T (t, 0)Λ+D0H
+(t)dt+

∫ T

0

(Φ−)T (t, L)Λ−D1H
−(t)dt. (5.22)

If DT
0 Λ

+Φ+(t, 0) = 0 and DT
1 Λ

−Φ−(t, L) = 0, then the left-hand side of (5.22) is equal to zero

for any given initial data U0(x) in (L2(0, L))n, thus Φ(0, t) ≡ 0. The proof is complete.

Combining Lemmas 5.3–5.4, we have

Corollary 5.1 If the number of boundary observations can not be reduced for the one-sided

weak exact boundary observability for the adjoint system (4.1), then the number of boundary

controls can not be reduced for the one-sided exact boundary null controllability for system

(1.2)–(1.4).

References

[1] Bastin, G. and Coron, J.-M., Stability and Boundary Stabilization of 1-D Hyperbolic Systems, Birkhäuser
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[2] Cirinà, M., Boundary controllability of nonlinear hyperbolic systems, SIAM J. Control Optim., 7, 1969,
198–212.
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