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Abstract For the iteration of spherical average (A1)
N and the Laplace operator ∆, we

consider the boundedness of the operator ∆(A1)
N on the α-modulation spaces Ms,α

p,q . The
authors obtain some sufficient and necessary conditions to ensure the boundedness on the
α-modulation spaces. The main theorems significantly improve some known results.
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1 Introduction

Let Sn−1 be the unit sphere in the Euclidean space Rn, n ≥ 2. We define the average

operator of functions f on the unit sphere as

A1(f)(x) =

∫

Sn−1

f(x− y′)dσ(y′),

where dσ(y′) is the normalized surface Lebesgue measure.

This operator has a profound background in harmonic analysis, dating back to early 1970’s

(see [21–22]). About 120 years ago, Pearson (see [18]) first used it to study random walks in

high dimensional spaces. An N -steps uniform walk in Rn starts at the origin and consists of N

independent steps of length 1, each of which is taken into a uniformly random direction. The

probability density function pN
(
n−2
2 , x

)
of such a random walk is the Fourier inverse of (A1)

N

(see [4]), where (A1)
N denotes the N iteration of A1.

The operator A1 also plays a significant role in the approximation theory (see [1]). In

order to obtain some equivalent forms of the K-functional in Lp(Rn) spaces, Belinsky, Dai and

Ditzian [1] studied the iterates ∆(A1)
N for positive integers N , where ∆ is the Laplacian. They

obtained the following result.

Theorem A (see [1]) Let 1 ≤ p ≤ ∞, n ≥ 2 and N >
2(n+2)
n−1 . The inequality

‖∆(A1)
N (f)‖Lp(Rn) � ‖f‖Lp(Rn)

holds for all f ∈ Lp(Rn).
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Naturally, we may ask that what is the smallest positive integer N to guarantee the inequal-

ity

‖∆(A1)
N (f)‖L1(Rn) � ‖f‖L1(Rn).

Fan and Zhao in [7] answered this question by using the well known estimates of wave

operators (see [16, 19]). Recently, Fan, Lou and Wang [6] obtained the sufficient and necessary

conditions for the smallest positive integer N , which completely solved the above question. We

state their theorem as follows.

Theorem B (see [6]) Let n 6= 3, 5, and N be positive integers. The inequality

‖∆(A1)
N (f)‖L1(Rn) � ‖f‖L1(Rn)

holds if and only if N > n+3
n−1 .

Let n = 3, 5, and N be positive integers. The inequality

‖∆(A1)
N (f)‖L1(Rn) � ‖f‖L1(Rn)

holds if and only if N ≥ n+3
n−1 .

Later, in [13], Huang extended the boundedness of ∆(A1)
N on the modulation spaces M s

p,q

on full ranges of 1 ≤ p1, p2, q1, q2 ≤ ∞ and s1, s2 ∈ R. They obtained the sufficiency and

necessity for the boundedness of ∆(A1)
N from M s1

p1,q1
to M s2

p2,q2
. Moreover, he found the

smallest iterate step N which ensures that ∆(A1)
N is bounded on modulation spaces M s

p,q(R
n)

for all (p, q, s) ∈ [1,+∞) × [1,+∞) × R is 4
n−1 , which is smaller than that in L1(Rn) spaces

(see Theorem B). Precisely, the related result is stated as follows.

Theorem C (see [13]) Let σ = 2− n−1
2 N and 1 ≤ pi, qi ≤ ∞, si ∈ R for i = 1, 2. When

q1 ≤ q2, the iterated spherical average ∆(A1)
N is bounded from M s1

p1,q1
(Rn) to M s2

p2,q2
(Rn) if

and only if

p1 ≤ p2, s1 ≥ s2 + σ.

When q1 > q2, the iterated spherical average ∆(A1)
N is bounded from M s1

p1,q1
(Rn) to M s2

p2,q2
(Rn)

if and only if

p1 ≤ p2, s1 +
n

q1
> s2 +

n

q2
+ σ.

The modulation spaceM s
p,q was introduced by Feichtinger [8] in order to measure smoothness

of a function or distribution in a way different from Lp spaces. Nowadays, spaces M s
p,q are

recognized as a useful tool for studying functional analysis, pseudo-differential operators and

certain Cauchy problems of nonlinear partial differential equations (see [2, 5, 11, 15, 17, 20, 23,

24]). In addition, Gröbner in his unpublished thesis (see [9]) extended modulation space to α-

modulation space M s,α
p,q by using the α-decomposition on the frequency space. Their definitions

will be represented in Section 2. Here we first point out one of their significant properties: The

parameter α ∈ [0, 1) determines a segmentation of the frequency spaces. When α = 0, M s,0
p,q is

equivalent to the classical modulation space M s
p,q. When α → 1, M s,1

p,q is considered equivalent

to the classical Besov space. Obviously, it is proposed to be an intermediate function space

between Besov space and modulation space. Hence, it is very important to study some analysis
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and PDE’s problems in α-modulation space. Among numerous research papers, the reader may

refer to [3, 10, 12, 14, 26] and the references therein.

Motivated by the above works, in this paper, we consider the boundedness of ∆(A1)
N on

α-modulation spaces and give some sufficient and necessary conditions on the boundedness of

∆(A1)
N from M s1,α

p1,q1
to M s2,α

p2,q2
. We state our main results as follows.

Theorem 1.1 Let σ = 2 − n−1
2 N + nα

2 and 1 ≤ pi, qi ≤ ∞, si ∈ R for i = 1, 2, α ∈ [0, 1).

When

q1 ≤ q2, p1 ≤ p2, s1 −
nα

p1
≥ s2 −

nα

p2
+ σ

or

q1 > q2, p1 ≤ p2, s1 −
nα

p1
+

n(1− α)

q1
> s2 −

nα

p2
+

n(1− α)

q2
+ σ,

the iterated spherical average ∆(A1)
N is bounded from M s1,α

p1,q1
(Rn) to M s2,α

p2,q2
(Rn).

Theorem 1.2 Let 1 ≤ pi, qi ≤ ∞, si ∈ R for i = 1, 2, α ∈ [0, 1). If the iterated spherical

average ∆(A1)
N is bounded from M s1,α

p1,q1
(Rn) to M s2,α

p2,q2
(Rn), then the following conditions must

hold

p1 ≤ p2, s1 ≥ s2 + 2− n− 1

2
N, when q1 ≤ q2

or

p1 ≤ p2, s1 +
n(1− α)

q1
> s2 +

n(1− α)

q2
+ 2− n− 1

2
N, when q1 > q2.

Remark 1.1 When α = 0, we can see that the above results are sharp and coincide with

that in modulation spaces which was obtained in [13]. But for the case α ∈ (0, 1), our results are

not sharp for some technical problems. Essentially, these difficulties are due to two properties

of Bessel function. The first one is that Vδ(r) and d
drVδ(r) share the same upper bound as

r → ∞. The other fact is that the first term of asymptotic expansion of the Bessel function is√
2
πr
cos

(
r − δπ

2

)
, which exists root in every interval [2kπ, 2(k + 1)π] for k ∈ Z.

The proof of Theorem 1.1 is somewhat routine with the help of Bernstein’s multiplier theo-

rem. However the proof of Theorem 1.2 is quite involved. Based on the structure of M s,α
p,q and

the asymptotic form of the Fourier transform of ∆(A1)
N , we construct a sequence of functions

{fkj,λ} to achieve the necessary conditions.

This paper is organized as follows. In Section 2, we will introduce some preliminary knowl-

edge which includes some properties of α-modulation spaces and some useful lemmas. The

proofs of main results will be presented in Section 3.

Throughout this paper, we use the inequality A � B to mean that there is a positive number

C independent of all main variables such that A ≤ CB, and use the notation A ≃ B to mean

A � B and B � A.

2 Preliminaries and Lemmas

In this section, we give the definition and discuss some basic properties of α-modulation

spaces. Also, we will state some estimates and lemmas which will be used in our proofs.
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Definition 2.1 (α-Modulation Space) Let ρ be a nonnegative smooth radial bump function

supported in B(0, 2), satisfying ρ(ξ) = 1 for |ξ| < 1 and ρ(ξ) = 0 for |ξ| ≥ 2. For any

k = (k1, k2, · · · , kn) ∈ Zn, we set

ραk (ξ) = ρ
(ξ − 〈k〉 α

1−α k

〈k〉 α
1−α

)

and

ηαk =
ραk (ξ)∑

l∈Zn

ραl (ξ)
.

We define the ball

Br
k := {ξ ∈ Rn : |ξ − 〈k〉 α

1−α k| < r〈k〉 α
1−α }.

It is easy to check that {ηαk }k∈Zn satisfy

supp ηαk ⊂ B2
k,

ηαk (ξ) = 1, ∀ξ ∈ B1
k,∑

k∈Zn

ηαk (ξ) ≡ 1, ξ ∈ Rn

and

|∂γηαk (ξ)| ≤ C|γ|〈k〉−
α|γ|
1−α , ∀ξ ∈ Rn, γ ∈ Nn. (2.1)

This type of decomposition on frequency space is called α-decomposition which is a generaliza-

tion of the uniform decomposition and the dyadic decomposition. Corresponding to the above

sequence {ηαk }k∈Zn , we can construct an operator sequence {�α
k}k∈Zn by

�
α
k = F−1ηαkF ,

where F and F−1 denote the standard Fourier transform, and inverse Fourier transform respec-

tively. For α ∈ [0, 1), 0 < p, q ≤ ∞, s ∈ R, using this α-decomposition, we define α-modulation

space as

M s,α
p,q = {f ∈ S ′ : ‖f‖Ms,α

p,q
< ∞},

where

‖f‖Ms,α
p,q

=
( ∑

k∈Zn

〈k〉 sq
1−α ‖�α

kf‖qLp

) 1
q

and 〈k〉 =
√
1 + |k|2. See [12] for details.

We now list some basic properties about α-modulation spaces.

Proposition 2.1 (Almost Orthogonality) (see [12]) For any k ∈ Zn, we define

Λα
k = {l ∈ Zn : supp ηαl ∩ supp ηαk 6= ∅}.

Then the cardinality of Λα
k is uniformly finite for all k ∈ Zn.

Proposition 2.2 (Isomorphism) (see [12]) Let 0 < p, q ≤ ∞, s, τ ∈ R.

Jσ = (I −∆)
τ
2 : M s,α

p,q → M s−τ,α
p,q
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is an isomorphic mapping, where I is the identity mapping and ∆ is the Laplacian.

Proposition 2.3 (Embedding) (see [12]) Suppose that 0 < p1 ≤ p2 ≤ ∞, 0 < q1, q2 ≤ ∞
and if

q1 ≤ q2, s1 −
nα

p
≥ s2 −

nα

p2

or

q1 > q2, s1 −
αn

p1
+

(1− α)n

q1
> s2 −

αn

p2
+

(1− α)n

q2
,

we have

M s1,α
p1,q1

⊂ M s2,α
p2,q2

.

The Fourier multiplier m(D) is a linear operator whose action on a test function f is formally

defined by

m̂(D)f(ξ) = m(ξ)f̂ (ξ).

The function m(ξ) is called the symbol or multiplier of m(D). Up to a constant multiple, m(D)

is a convolution operator with the kernel. In the sense of distribution, it is defined as

K(x) = (m(·))∨(x) =
∫

Rn

m(ξ)eiξ·xdξ.

By the Young inequality, if ‖m∨‖ ∈ L1 and f ∈ Lp, then we have

‖m(D)f‖Lp � ‖m∨‖L1‖f‖Lp

for any 1 ≤ p ≤ ∞. We will use the following Bernstein multiplier theorem to estimate ‖m∨‖L1 .

Lemma 2.1 (Bernstein’s multiplier Theorem) (see [25]) Assume that 0 < p ≤ 2 and

∂γm(ξ) ∈ L2 for all multi-indices γ with |γ| ≤
[
n
(
1
p
− 1

2

)]
+ 1. We have

‖m∨‖Lp �
∑

|γ|≤[n( 1
p
− 1

2 )]+1

‖∂γm‖L2 .

By checking the Fourier transform (see [22]), we have that

F(∆(A1)
Nf)(ξ) ≃ |ξ|2(Vn−2

2
(|ξ|))N f̂(ξ),

where

Vδ(r) =
Jδ(r)

rδ

and Jδ(r) is the Bessel function of order δ which is defined as

Jδ(r) =
1

2π

∫ 2π

0

eirsinθe−iδθdθ.

Here we state some basic properties about the Bessel function which will be used in our

proofs.
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Lemma 2.2 (see [22]) For any δ > − 1
2 , we have

dVδ(r)

dr
= −rVδ+1(r), (2.2)

Vδ(r) = O(1), if |r| � 1. (2.3)

Lemma 2.3 (see [22]) Let r > 1 and δ > − 1
2 . For any positive integer L and r ∈ [1,∞),

we have

Jδ(r) =

√
2

πr
cos

(
r − δπ

2
− π

4

)
+

L∑

j=1

aje
irr−

1
2−j +

L∑

j=1

bje
−irr−

1
2−j + E(r),

where aj and bj are constants for all j, and E(r) is a C∞ function satisfying

|E(k)(r)| � r−
1
2−L−1

for any k = 0, 1, 2, · · · .

3 Proofs of Main Results

Now we show the proof of Theorem 1.1. By the definition of α-modulation spaces, we need

to estimate ‖�α
k∆(A1)

Nf‖Lp2(Rn). First, we obtain the following lemma.

Lemma 3.1 Let 1 ≤ p2 ≤ ∞ and σ = 2− n−1
2 N + nα

2 . Then

‖�α
k∆(A1)

Nf‖Lp2(Rn) � 〈k〉 σ
1−α ‖�α

kf‖Lp2(Rn).

Proof For any k ∈ Zn, �α
k∆(A1)

Nf is a Fourier multiplier mα
k (D)(f) = Ωα

k (x) ∗ f , where

Ωα
k (x) =

∫

Rn

ηαk (ξ)|ξ|2(Vn−2
2
(|ξ|))N eiξ·xdξ. (3.1)

By the almost orthogonality of α-decomposition (Proposition 2.1), there exists an integer k0(n)

which depends only on n, such that ηαl (ξ)η
α
k (ξ) = 0 when |l − k| ≥ k0(n). By the definition of

α-decomposition, we have

∑

k∈Zn

�
α
k = I,

where I is the identity operator. Then, Young’s inequality and Minkowski’s inequality yield

‖�α
k∆(A1)

Nf‖Lp2 ≤
∑

l∈Zn,|l−k|≤k0(n)

‖�α
l ∆(A1)

N
�

α
kf‖Lp2

�
∑

l∈Zn,|l−k|≤k0(n)

‖(ηαl (ξ)|ξ|2(Vn−2
2
(|ξ|))N )∨‖L1‖�α

kf‖Lp2 .

Thus, we only need to estimate

∑

l∈Zn,|l−k|≤k0(n)

‖(ηαl (ξ)|ξ|2(Vn−2
2
(|ξ|))N )∨‖L1

for every k ∈ Zn. By Proposition 2.1, it suffices to estimate

‖(ηαl (ξ)|ξ|2(Vn−2
2
(|ξ|))N )∨‖L1 = ‖Ωα

l (x)‖L1
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for 〈l〉 ≃ 〈k〉.
When |k| < 100, by (2.3) in Lemma 2.2 and supp ηαl (ξ), we have that |Ωα

l (x)| � 1 for

|x| < 100.

On the other hand, when |k| < 100 and |x| ≥ 100, without loss of generality, we may assume

|x1| ≥ |x|
n
. By the derivative formula of Vδ(r)(see (2.2) in Lemma 2.2) and taking integration

by part on ξ1 variable in (3.1), we obtain that

|Ωα
l (x)| �

1

|x1|n+1
� 1

|x|n+1

for |x| ≥ 100. This estimate implies that ‖Ωα
l (x)‖L1 � 1 when |k| < 100, since 〈l〉 ≃ 〈k〉.

Next, we consider the case |k| ≥ 100. Choosing L = 1 in Lemma 2.3, we have the following

asymptotic form of Vδ(r)

Vδ(r) = r−δ− 1
2

(√ 2

π
cos

(
r − δπ

2
− π

4

))
+O(r−δ− 3

2 )

for |r| > 1.

By the definition of {ηαk } and noticing that α ∈ [0, 1), we have that

|ξ| ∼ 〈k〉 1
1−α

for ξ ∈ supp ηαk . Therefore, when |k| > 100 and 〈l〉 ≃ 〈k〉, we have

|Vδ(|ξ|)N | � 〈l〉
(−δ− 1

2
)N

1−α ≃ 〈k〉
(−δ− 1

2
)N

1−α

for ξ ∈ supp ηαl (ξ). Now, by the chain rule and the derivative formula of Vδ(r)(see (2.2) in

Lemma 2.2) , we obtain

∂

∂ξi
(Vδ(|ξ|))N = −N(Vδ(|ξ|))N−1|ξ| · Vδ+1(|ξ|) ·

ξi

|ξ|
= −N(Vδ(|ξ|))N−1Vδ+1(|ξ|) · ξi.

By the asymptotic form of Vδ(r), we obtain that

∣∣∣ ∂

∂ξi
(Vδ(|ξ|))N

∣∣∣ � |ξ|(−δ− 1
2 )(N−1)|ξ|−δ− 3

2 |ξ| � 〈l〉
(−δ− 1

2
)N

1−α ≃ 〈k〉
(−δ− 1

2
)N

1−α

for ξ ∈ supp ηαl (ξ).

Thus, Vδ(|ξ|)N and ∂
∂ξi

(Vδ(|ξ|))N share the same upper bound which is 〈l〉
(−δ− 1

2
)N

1−α , for any

δ > − 1
2 and ξ ∈ supp ηαl (ξ). By the fact

∂γ(|ξ|2)
{
� |ξ|2−|γ|, |γ| ≤ 2,

= 0, |γ| > 2

and (2.1), using Bernstein’s multiplier Theorem (Lemma 2.1), we can obtain that

‖Ωα
l (x)‖L1 = ‖(ηαl (ξ)|ξ|2(Vn−2

2
(|ξ|))N )∨‖L1

�
∑

|γ|≤[n2 ]+1

‖∂γ(ηαl (ξ)|ξ|2(Vn−2
2
(|ξ|))N )‖L2
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�
∑

|γ|≤[n2 ]+1

∑

γ1+γ2+γ3=γ

‖∂γ1ηαl (ξ) · ∂γ2 |ξ|2 · ∂γ3(Vn−2
2
(|ξ|))N‖L2(supp ηα

l
(ξ))

�
∑

|γ|≤[n2 ]+1

‖ηαl (ξ) · |ξ|2 · ∂γ(Vn−2
2
(|ξ|))N‖L2(supp ηα

l
(ξ))

� |l|
2−n−1

2
N

1−α 〈l〉
nα

2(1−α) ≃ 〈k〉
2− n−1

2
N+nα

2
1−α

for l ∈ Λk.

Combining all the above estimates of ‖Ωα
l (x)‖L1 , we have finished the proof of Lemma 3.1.

Next, we turn to prove Theorem 1.1. By the definition of α-modulation spaces and Lemma

3.1, we have that

‖△(A1)
Nf‖Ms2,α

p2,q2

=
( ∑

k∈Zn

〈k〉
s2q2
1−α ‖�α

k△(A1)
Nf‖q2Lp2

) 1
q2

=
( ∑

|k|<100

〈k〉
s2q2
1−α ‖�α

k△(A1)
Nf‖q2Lp2 +

∑

|k|≥100

〈k〉
s2q2
1−α ‖�α

k△(A1)
Nf‖q2Lp2

) 1
q2

�
( ∑

|k|<100

〈k〉
s2q2
1−α ‖�α

k△(A1)
Nf‖q2Lp2

) 1
q2

+
( ∑

|k|≥100

〈k〉
s2q2
1−α ‖�α

k△(A1)
Nf‖q2Lp2

) 1
q2

�
( ∑

|k|<100

〈k〉
s2q2
1−α ‖�α

kf‖q2Lp2

) 1
q2

+
( ∑

|k|≥100

〈k〉
(s2+2−

n−1
2

N+nα
2

)q2
1−α ‖�α

kf‖q2Lp2

) 1
q2

� ‖f‖
M

s2+2−
n−1
2

N+nα
2

p2,q2

= ‖f‖
M

s2+σ
p2,q2

.

By the embedding properties of α-modulation spaces (Proposition 2.3), we can easily obtain

that

‖△(A1)
Nf‖Ms2,α

p2,q2
� ‖f‖

M
s2+σ,α
p2,q2

� ‖f‖Ms1,α
p1,q1

.

When

q1 ≤ q2, p1 ≤ p2, s1 −
nα

p1
≥ s2 −

nα

p2
+ σ

or

q1 > q2, p1 ≤ p2, s1 −
nα

p1
+

n(1− α)

q1
> s2 −

nα

p2
+

n(1− α)

q2
+ σ.

Thus, we have completed the proof of Theorem 1.1.

Now, we turn to prove Theorem 1.2. For this purpose, we need to establish the following

two lemmas (Lemma 3.2 and Lemma 3.3). The idea of Lemma 3.3 is derived from [13], and

Lemma 3.2 has been proved in [13]. For the sake of completeness, we will show all details in

the following text.

Lemma 3.2 For j ∈ N+, define

Λ1,j := {k ∈ Zn : |k| ∈ [jπ + 0.07, (j + 1)π − 0.07]}

and

Λ0,j := {k ∈ Zn : |k| ∈ [jπ, (j + 1)π]}.
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When j is big enough, we have

|Λ1,j| ≥ C(n)|Λ0,j |,

where C(n) is a positive constant depending only on n.

Proof The proofs for n = 2 and n > 2 share the same idea. We only prove the case n = 2

explicitly and leave the proof of another case to the reader.

By symmetry, we only need to consider the case {(x, y) ∈ R2 : x, y ≥ 0}. For j ∈ Z+, we

define

Ix>y = {(x, y) ∈ R2 : |(x, y)| ∈ [jπ, jπ + 0.07], x > y ≥ 0},
Ix≤y = {(x, y) ∈ R2 : |(x, y)| ∈ [jπ, jπ + 0.07], y ≥ x ≥ 0},
II = {(x, y) ∈ R2 : |(x, y)| ∈ [jπ + 0.07, jπ + π − 0.07], x, y ≥ 0},
IIIx>y = {(x, y) ∈ R2 : |(x, y)| ∈ [jπ + π − 0.07, jπ + π], x > y ≥ 0}

and

IIIx≤y = {(x, y) ∈ R2 : |(x, y)| ∈ [jπ + π − 0.07, jπ + π], y ≥ x ≥ 0}.

Moreover, for r, a > 0, 0 ≤ y ≤ r, we define an auxiliary function

fr,a(y) =
√
(r + a)2 − y2 −

√
r2 − y2.

Taking derivative, we know that

f ′
r,a(y) = y

( 1√
r2 − y2

− 1√
(r + a)2 − y2

)
≥ 0,

and fr,a(y) is a monotone increasing function.

Then, for any (x0, y0) ∈ Ix>y, we have

|{x : (x, y0) ∈ Ix>y}| = fjπ,0.07(y0).

Therefore,

max
(x0,y0)∈Ix>y

fjπ,0.07(y0) = fjπ,0.07

( 1√
2
(jπ + 0.07)

)

=

√
(jπ + 0.07)2 − 1

2
(jπ + 0.07)2 −

√
jπ2 − 1

2
(jπ + 0.07)2

=
0.14j + 0.072√

(jπ + 0.07)2 − 1
2 (jπ + 0.07)2 +

√
jπ2 − 1

2 (jπ + 0.07)2
.

It is obvious to see that lim
j→+∞

max
(x0,y0)∈Ix>y

fjπ,0.07(y0) =
0.14√

2
< 1. Thus, for any (x0, y0) ∈ Ix>y,

we have

|{x : (x, y0) ∈ Ix>y}| ≤ max
(x,y)∈Ix>y

fjπ,0.07(y) < 1,

when j is big enough.
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On the other hand, for any (x0, y0) ∈ II, we have

|{x : (x, y0) ∈ II}| = fjπ+0.07,π−0.14(y0).

By monotonicity of fr,a(y),

min
(x0,y0)∈II

|{x : (x, y0) ∈ II}| = fjπ+0.07,π−0.14(0) = π − 0.14 > 3. (3.2)

Thus, for every (x0, y0) ∈ Ix>y

⋂
Z2, we have

|{(x, y0) ∈ Z2 : (x, y0) ∈ Ix>y}| = |{(x0, y0)}| = 1

and

|{(x, y0) ∈ Z2 : (x, y0) ∈ II}| ≥ 3.

Combining all above analysis, we have

|{(x, y) ∈ Z2 : (x, y) ∈ II}| ≥ 3|{(x, y) ∈ Z2 : (x, y) ∈ Ix>y|.

Now, we consider the domain IIIx>y. By the same argument, for any (x0, y0) ∈ IIIx>y, we have

|{x : (x, y0) ∈ IIIx>y}| ≤ max
(x0,y0)∈IIIx>y

fjπ+π−0.07,0.07(y0)

= fjπ+π−0.07,0.07

( 1√
2
(jπ + π)

)

=

√
(jπ + π)2 − 1

2
(jπ + π)2 −

√
(jπ + π − 0.07)2 − 1

2
(jπ + π)2

=
0.14j + 0.07(2π − 0.07)√

(jπ + π)2 − 1
2 (jπ + π)2 +

√
(jπ + π − 0.07)2 − 1

2 (jπ + π)2
.

It is easy to see that

lim
j→+∞

max
(x0,y0)∈IIIx>y

fjπ+π−0.07,0.07(y0) =
0.14√

2
< 1.

Thus, for any (x0, y0) ∈ IIIx>y, we have

|{x : (x, y0) ∈ IIIx>y}| ≤ max
(x,y)∈Ix>y

fjπ+π−0.07,0.07(y) < 1,

when j is big enough. Moreover, it is obvious

1√
2
(jπ + π) < jπ + 0.07,

when j ≥ 3. So, for every (x0, y0) ∈ IIIx>y,

|{x : (x, y0) ∈ II}| = fjπ+0.07,π−0.14(y0),

when j ≥ 3. By (3.2), we can also obtain

|{(x, y) ∈ Z2 : (x, y) ∈ II}| ≥ 3|{(x, y) ∈ Z2 : (x, y) ∈ IIIx>y|.
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On the other hand, for Iy≥x and IIIy≥x, by the same method on the auxiliary function

gr,a(x) =
√
(r + a)2 − x2 −

√
r2 − x2,

we can obtain that

|{(x, y) ∈ Z2 : (x, y) ∈ II}| ≥ 3|{(x, y) ∈ Z2 : (x, y) ∈ Ix≤y|

and

|{(x, y) ∈ Z2 : (x, y) ∈ II}| ≥ 3|{(x, y) ∈ Z2 : (x, y) ∈ IIIx≤y|.

Combining all above estimates, we have

|Λ1,j | ≥
3

7
|Λ0,j|.

Lemma 3.3 Let 1 ≤ p ≤ ∞. These exists a constant ρ = ρ(n) > 0 which only depends on

n and a subsequence {kj} ⊆ Zn such that

‖�α
kj
∆(A1)

Ngkj
‖Lp ≃ 〈kj〉

2−n−1
2

N

1−α ‖gkj
‖Lp ,

where {gkj
(x)} is a sequence of Schwartz functions with supp ĝkj

(ξ) ⊂ {ξ ∈ Rn : |ξ−〈kj〉
α

1−α kj | ≤
ρ}.

Proof Let δ(ξ) be a smooth function with supp δ(ξ) ⊂ {ξ : |ξ| ≤ 2ρ} and δ(ξ) ≡ 1 for

ξ ∈ {ξ : |ξ| ≤ ρ}. We define

δk(ξ) = δ(ξ − 〈k〉 α
1−α k), k ∈ Zn.

For any gk with supp ĝk(ξ) ⊂ {ξ ∈ Rn : |ξ − 〈k〉 α
1−α k| ≤ ρ}, we have

δk(ξ)ĝk(ξ) = ĝk(ξ).

By the same method as in Lemma 3.1, it is easy to get

‖�α
k∆(A1)

Ngk‖Lp = ‖(|ξ|2(Vn−2
2
(|ξ|))Nηαk (ξ)ĝk(ξ))

∨‖Lp

= ‖(|ξ|2(Vn−2
2
(|ξ|))Nηαk (ξ)δk(ξ)ĝk(ξ))

∨‖Lp

= ‖(δk(ξ)|ξ|2(Vn−2
2
(|ξ|))N )∨‖L1‖�α

kgk‖Lp .

By the definition of δk(ξ) and Bernstein’s multiplier Theorem (Lemma 2.1), we have

‖(δk(ξ)|ξ|2(Vn−2
2
(|ξ|))N )∨‖L1 �

∑

|γ|≤[n( 1
p
− 1

2 )]+1

‖∂γ(δk(ξ)|ξ|2(Vn−2
2
(|ξ|))N )‖L2

�
∑

|γ|≤[n( 1
p
− 1

2 )]+1

∑

γ1+γ2+γ3=γ

‖∂γ1δk(ξ) · ∂γ2 |ξ|2 · ∂γ3(Vn−2
2

(|ξ|))N‖L2

�
∑

|γ|≤[n( 1
p
− 1

2 )]+1

∑

γ1+γ2=γ

‖|ξ|2 · ∂γ1δk(ξ) · ∂γ2(Vn−2
2
(|ξ|))N‖L2(supp δk(ξ))

� 〈k〉
2−

n−1
2

N

1−α



732 Q. Huang and X. M. Wu

for all k ∈ Zn. Therefore, for ∀k ∈ Zn, we have

‖�α
k∆(A1)

Ngk‖Lp � 〈k〉
2−n−1

2
N

1−α ‖�α
kgk‖Lp , (3.3)

when supp ĝk(ξ) ⊂ {ξ ∈ Rn : |ξ − 〈k〉 α
1−α k| ≤ ρ}.

Thus, we only need to prove the inverse inequality. By Lemma 2.3, we have

Vn−2
2
(r) = r−

n−1
2

√
2

π
cos

(
r − nπ

4
+

π

4

)
+O(r−

n+1
2 )

= r−
n−1
2

√
2

π
sin

(
r − nπ

4
+

3π

4

)
+O(r−

n+1
2 )

for |r| > 1. We consider

u(r) := sin
(
r − nπ

4
+

3π

4

)

in every semiperiod r − nπ
4 + 3π

4 ∈ [jπ, (j + 1)π], j = 1, 2, · · · .
Choosing ε0 = sin(0.07), we have

|u(r)| ≥ ε0

for r − nπ
4 + 3π

4 ∈ [jπ + 0.07, jπ + π − 0.07], which is equivalent to

r ∈
[
jπ +

nπ

4
− 3π

4
+ 0.07, jπ + π +

nπ

4
− 3π

4
− 0.07

]
.

By Lemma 3.2, for every j ∈ N+, the set

Λ1,j :=
{
k ∈ Zn : |k| ∈

[
jπ +

nπ

4
− 3π

4
+ 0.07, jπ + π +

nπ

4
− 3π

4
− 0.07

]}

is not empty. So, there exists a subsequence of integer {kj}, such that kj ∈ Λ1,j and

|u(|kj |)| ≥ ε0.

Moreover,

|u′(r)| =
∣∣∣ cos

(
r − nπ

4
+

3π

4

)∣∣∣ ≤ 1,

which means that

|u(r)| ≥ ε0

2

for

r ∈
[
|kj | −

ε0

4
, |kj |+

ε0

4

]

and

|kj | ∈
[
jπ +

nπ

4
− 3π

4
+ 0.07, jπ + π +

nπ

4
− 3π

4
− 0.07

]
.

For the remainder O(r−
n+1
2 ) in the expansion of Vn−2

2
(r), it is obvious that, when r is large

enough,

O(r−
n+1
2 ) ≤ ε0

4
r−

n−1
2 .
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Let ǫ, ρ = ε0
4 . We obtain that there exist some constants ǫ, ρ > 0 and a subsequence

{kj} ⊆ Z+ such that

|Vn−2
2
(|ξ|)| ≥ ǫ|ξ|−n−1

2 (3.4)

for ξ ∈ {ξ : |ξ − 〈kj〉
α

1−α kj | ≤ ρ} when j is large enough. Moreover the subsequence {kj} ⊆ Zn

satisfies

|kj | ∈
[
jπ +

nπ

4
− 3π

4
+ 0.07, jπ + π +

nπ

4
− 3π

4
− 0.07

]
, (3.5)

when the positive integer j is large enough.

Therefore, when ξ ∈ {ξ : |ξ − 〈kj〉
α

1−α kj | ≤ ρ} and N ∈ Z+, we have

|Vn−2
2
(|ξ|)−N | � |ξ|(n−1

2 )N ≃ 〈kj〉
(
n−1
2

)N

1−α .

Using the chain rule and the derivative formula of Vδ(t),

∂

∂ξi
(Vn−2

2
(|ξ|))−N = −N(Vn−2

2
(|ξ|))−(N+1)Vn−2

2 +1(|ξ|) · ξi.

By the asymptotic form of Vδ(r) and (3.4), we have

∣∣∣ ∂

∂ξi
(Vn−2

2
(|ξ|))−N

∣∣∣ � |ξ|(−n−1
2 )(−N−1)|ξ|−n+1

2 |ξ| ≃ 〈kj〉
( n−1

2
)N

1−α ,

when ξ ∈ {ξ : |ξ − 〈kj〉
α

1−α kj | ≤ ρ}. As a result, Vn−2
2
(|ξ|)−N and ∂

∂ξi
(Vn−2

2
(|ξ|))−N share the

same upper bound which is 〈kj〉
( n−1

2
)N

1−α , for ξ ∈ {ξ : |ξ − 〈kj〉
α

1−α kj | ≤ ρ}.
Moreover, since ρ = 1

4 sin(0.07) <
1
4 , for the definition of α-decomposition {ηαk } (see Defini-

tion 2.1), we have that

ηαkj
(ξ)ĝkj

(ξ) = ĝkj
(ξ),

with

supp ĝkj
(ξ) ⊂ {ξ : |ξ − 〈kj〉

α
1−α kj | ≤ ρ}.

Therefore, by the definition of δk(ξ), Bernstein multiplier theorem (Lemma 2.1) and (3.4), we

obtain that

‖gkj
‖Lp = ‖(ĝkj

)∨‖Lp

= ‖(ηαkj
(ξ)|ξ|−2(Vn−2

2
(|ξ|))−N · |ξ|2(Vn−2

2
(|ξ|))N δkj

(ξ)ĝkj
(ξ))∨‖Lp

� ‖(δkj
(ξ)|ξ|−2(Vn−2

2
(|ξ|))−N )∨‖L1‖�α

kj
∆(A1)

Ngkj
‖Lp

�
∑

|γ|≤[n( 1
p
− 1

2 )]+1

‖∂γ(δkj
(ξ)|ξ|−2(Vn−2

2
(|ξ|))−N )‖L2‖�α

kj
∆(A1)

Ngkj
‖Lp

�
∑

|γ|≤[n( 1
p
− 1

2 )]+1

∑

γ1+γ2+γ3=γ

‖∂γ1δkj
(ξ) · ∂γ2 |ξ|−2 · ∂γ3(Vn−2

2
(|ξ|))−N‖L2‖�α

kj
∆(A1)

Ngkj
‖Lp

�
∑

|γ|≤[n( 1
p
− 1

2 )]+1

∑

γ1+γ2=γ

‖|ξ|−2 · ∂γ1δkj
(ξ) · ∂γ2(Vn−2

2
(|ξ|))−N‖L2‖�α

kj
∆(A1)

Ngkj
‖Lp
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� 〈kj〉−
(2−

n−1
2

N)

1−α ‖�α
kj
∆(A1)

Ngkj
‖Lp .

Combining the above estimate with (3.3), Lemma 3.2 is proved.

Now, we continue to prove Theorem 1.2. We first consider the case q1 ≤ q2. Let f(x) be a

nonzero Schwartz function with supp f̂(ξ) ⊂ {ξ : |ξ| < 1
2}. Define

f̂kj ,λ(ξ) = f̂
(ξ − 〈kj〉

α
1−α kj

λ

)
(3.6)

for λ ∈ (0, ρ], where ρ and {kj} are defined in Lemma 3.3. By the definition of fkj ,λ(x), we

have

�
α
kj
fkj ,λ = fkj ,λ (3.7)

and

�
α
i fkj ,λ(x) = 0, if i 6= kj . (3.8)

Then, by Lemma 3.3, we have

‖∆(A1)
Nfkj ,λ‖Ms2,α

p2,q2
= 〈kj〉

s2
1−α ‖�α

kj
∆(A1)

Nfkj ,λ‖Lp2

≃ 〈kj〉
s2+2−n−1

2
N

1−α ‖fkj ,λ‖Lp2

≃ 〈kj〉
s2+2−n−1

2
N

1−α λ
n(1− 1

p2
)
.

On the other hand,

‖fkj,λ‖Ms1,α
p1,q1

= 〈kj〉
s1

1−α ‖�α
kj
fkj ,λ‖Lp1

≃ 〈kj〉
s1

1−α ‖fkj ,λ‖Lp1

≃ 〈kj〉
s1

1−αλ
n(1− 1

p1
)
.

By the assumption that ∆(A1)
N is bounded from M s1,α

p1,q1
to M s2,α

p2,q2
, we have that

〈kj〉s2+2−n−1
2 Nλ

n(1− 1
p2

) � 〈kj〉s1λn(1− 1
p1

)

for all |kj | sufficiently large and 0 < λ ≤ ρ. Fix kj and let λ → 0. We have

λ
n(1− 1

p2
) � λ

n(1− 1
p1

) for 0 < λ ≤ ρ.

Thus, the condition p1 ≤ p2 must be held. Moreover, when λ is fixed and kj goes to infinity,

we have

〈kj〉s2+2−n−1
2 N � 〈kj〉s1 , as kj → +∞,

which yields s2 + 2− n−1
2 N ≤ s1.

Next, we consider the case q1 > q2. Let M be a large positive number. Define

FM (x) =
∑

100<|kj |<M

ajfkj ,ρ(x),
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where aj > 0 are constants to be chosen later and fkj ,ρ(x) are defined in (3.6) with all kj
satisfying

|kj | ∈ [Lπ + 0.07, Lπ + π − 0.07]

for some L ∈ N+.

By (3.7)–(3.8) and the almost orthogonality of {ηαk }, we have

‖∆(A1)
NFM‖Ms2,α

p2,q2
=

( ∑

k∈Zn

a
q2
j 〈k〉

s2q2
1−α ‖�α

k∆(A1)
NFM‖q2Lp2

) 1
q2

≃
( ∑

100<|kj |<M

a
q2
j 〈kj〉

s2q2
1−α 〈kj〉

(2− n−1
2

N)q2
1−α ‖fkj,ρ(x)‖q2Lp2

) 1
q2

≃
( ∑

100<|kj |<M

a
q2
j 〈kj〉

s2q2+(2−n−1
2

N)q2
1−α

) 1
q2

and

‖FM‖Ms1,α
p1,q1

=
( ∑

k∈Zn

a
q1
j 〈k〉

s1q1
1−α ‖�α

kFM‖q1Lp1

) 1
q1

≃
( ∑

100<|kj |<M

a
q1
j 〈kj〉

s1q1
1−α ‖fj,ρ(x)‖q1Lp1

) 1
q1

≃
( ∑

100<|kj |<M

a
q1
j 〈kj〉

s1q1
1−α

) 1
q1
.

By the assumption that ∆(A1)
N is bounded from M s1,α

p1,q1
to M s2,α

p2,q2
, we have

( ∑

100<|kj |<M

a
q2
j 〈kj〉s2q2+(2−n−1

2 N)q2
) 1

q2 �
( ∑

100<|kj |<M

a
q1
j 〈kj〉s1q1

) 1
q1
.

By choosing aj = 〈kj〉
s1q1−(s2+(2−n−1

2
N))q2

(1−α)(q1−q2) , we obtain

( ∑

100<|kj |<M

〈kj〉
[s1−(s2+2−n−1

2
N)]q1q2

(1−α)(q2−q1)

) 1
q2 �

( ∑

100<|kj |<M

〈kj〉
[s1−(s2+2−n−1

2
N)]q1q2

(1−α)(q2−q1)

) 1
q1
.

By the assumption q1 > q2, the above series must be convergent as M → +∞. By Lemma 3.2,

we have

∑

100<|kj |<M

〈kj〉
[s1−(s2+2−n−1

2
N)]q1q2

(1−α)(q2−q1) ≃
∑

100<|k|<M

〈k〉
[s1−(s2+2−n−1

2
N)]q1q2

(1−α)(q2−q1) .

Therefore, it must yield

[s1 − (s2 + 2− n−1
2 N)]q1q2

(1 − α)(q2 − q1)
< −n,

which is equivalent to s1 +
n(1−α)

q1
> s2 +

n(1−α)
q2

+ 2− n−1
2 N . Theorem 1.2 is proved.
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