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1 Introduction

Let M be a smooth, closed manifold and T : M → M a smooth involution defined on

M (i.e., Z2-action, where Z2 denotes a cyclic group of 2 order). It is well known that the

fixed point set F = {x ∈ M | T (x) = x} of the involution T is a finite and disjoint union of

closed submanifolds of M . In this setting, for a given F , one naturally considers to classify

the pairs (M,T ) for which the fixed point set of T is F up to equivariant bordism. Let ν

denote the normal bundle of F in M . It is known that the equivariant bordism class of (M,T )

is determined by the bordism class of the bundle (F, ν), and the bordism class of the bundle

(F, ν) is determined by its characteristic numbers (see [2]). For the vector bundle ν → F , there

are the associated sphere bundle S(ν) → F and a fibre preserving fixed point free involution

(S(ν), T ) which on each fibre agree with the antipodal map of sphere. The bundle S(ν)/T → F

is denoted by RP (ν) → F ; that is the real projective space bundle associated to vector bundle

ν. Further, the real projective space bundle RP (ν) bounds in the bordism of the classifying

space RP (∞) for Z2, where the map into RP (∞) classifies the double cover of RP (ν) by

the sphere bundle S(ν) (see [2, p.88]). Conversely, being given a vector bundle ξ over F for

which RP (ξ) bounds in the sense just described, there is an involution fixing F with normal

bundle ν = ξ. Using the above results, in [4], Kosniowski and Stong gave a formula to express
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relationship between Stiefel-Whitney numbers of M and that of the bundle (F, ν), and proved

the following result: If Mm is a closed and smooth m-dimensional manifold with a smooth

involution T : Mm → Mm such that the fixed point set F of T has constant dimension n

with m > 2n, then (Mm, T ) bounds equivariantly. For the fixed point set F being the disjoint

union of some spaces and product spaces such as the disjoint union of projective spaces and

the product spaces of projective spaces, by computing characteristic numbers and using the

formula in [4], one has given equivariant bordism classification of (M,T ) with a given F (see

[3, 6–10, 17–18, 20–21]).

For k > 1, let Zk
2 denote the direct product of k groups Z2. Zk

2 is often considered as the

group generated by k smooth commuting involutions T1, T2, · · · , Tk on Mm. The k commuting

involutions determine a smooth Zk
2 -action Φ : Zk

2 ×Mm → Mm. The fixed data of Zk
2 -action Φ

consists of η =
⊕

ρ

ερ → FΦ, where FΦ = {x ∈ Mm | Ti(x) = x, i = 1, 2, · · · , k} is the fixed point

set of Zk
2 -action and η =

⊕

ρ

ερ is the normal bundle of FΦ in M decomposed into eigenbundles

ερ with ρ running through the 2k − 1 nontrivial irreducible representations of Zk
2 (see [16]). An

equivariant bordism classification of Mm with Zk
2 -actions is closely related to the fixed data of

Zk
2 -action (see [19]). In a series of papers, the equivariant bordism classification of (Mm,Φ)

with a given condition on the fixed data of Φ has been studied (see [5, 11–16, 19]). For k > 1

and FΦ = RP (l) ∪ RP (n), where RP (·) denotes a real projective space, the classifications in

cases (l, n) = (0, odd), (0, even) were completely solved in [11–13]. In [15], Pergher, Ramos and

Oliveira solved the case (l, n) = (2, n) (n is even), where n ≥ 4. Later, in [16], Pergher and

Ramos solved the case (l, n) = (2s, n) (n is even), where s ≥ 1 and n ≥ 2s+1, which extended

the previous case (s = 1).

The purpose of this paper is to extend above results for Z2
2 -actions. Let Φ : Z2

2 ×M → M

be a smooth action of the group Z2
2 = {T1, T2 | T 2

i = 1, i = 1, 2, T1T2 = T2T1} on a smooth

closed manifold M . Let T3 = T1T2. The fixed data of Φ is (FΦ; ε1, ε2, ε3), where FΦ = {x ∈

M | Ti(x) = x, i = 1, 2, 3} is the fixed point set of Z2
2 -action on M , εi (i = 1, 2, 3) is the normal

bundle of FΦ in FTi
= {x ∈ M | Ti(x) = x}. We have the following result.

Theorem 1.1 Let (M,Φ) be a closed and smooth manifold M with a smooth Z2
2 -action

whose fixed point set is the disjoint union of two real projective spaces with dimension 2m+ 1,

that is, FΦ = RP1(2m+ 1) ∪RP2(2m+ 1), where RPi(2m+ 1) denotes the i-th copy. Let

(RP1(2m+ 1);µ1, µ2, µ3) ∪ (RP2(2m+ 1); ν1, ν2, ν3)

be the fixed data of Φ, where µi and νi denote the normal bundle of components of FΦ respec-

tively. If at least two µ′

is have dimension greater than 2m+1, and at least one νi has dimension

greater than 2m+ 1, then (M,Φ) bounds equivariantly.

Example 1.1 Let M = RP (4m + 3) × RP (4m + 3). Considering the involution T1 :

RP (4m + 3) → RP (4m + 3) on the (4m + 3)-dimensional real projective space RP (4m + 3)

given by

T1[x0, x1, · · · , x4m+3] = [−x0,−x1, · · · ,−x2m+1, x2m+2, · · · , x4m+3].
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T1 fixes the disjoint union RP1(2m+ 1) ∪RP2(2m+ 1).

A Z2
2 -action Φ is defined by (T1 × T1, S), where S(x, y) = (y, x). The fixed data of Φ is

(RP1(2m+1);µ2m+2, µ2m+2, τ(RP1(2m+1)))∪ (RP2(2m+1); ν2m+2, ν2m+2, τ(RP2(2m+1))),

where τ(RP1(2m+1) means the tangent bundle. (M,Φ) satisfies the hypothesis of the theorem

and (M,Φ) bounds equivariantly.

2 Preliminaries

Let Φ be a smooth Z2
2 -action on M with fixed data (FΦ; ε1, ε2, ε3). Each s-dimensional

component of (FΦ; ε1, ε2, ε3) can be considered as an element of Ns(BO(s1)×BO(s2)×BO(s3)),

the bordism of s-dimensional manifolds with a map into BO(s1)×BO(s2)×BO(s3), where si is

the dimension of εi over the component and BO(si) is the classifying space for si-dimensional

vector bundles (this is the simultaneous bordism between lists of vector bundles: Two lists

of vector bundles over closed n-dimensional manifolds, (Fn; ε1, ε2, ε3) and (V n;µ1, µ2, µ3), are

simultaneously bordant if there exists an (n + 1)-dimensional manifold Wn+1 with boundary

∂(Wn+1) = Fn∪V n (disjoint union) and a list of vector bundles over Wn+1, (Wn+1; η1, η2, η3),

so that ηρ (ρ = 1, 2, 3) restricted to Fn ∪ V n is equivalent to ερ ∪ µρ) (see [14]).

According to [19], the equivariant bordism class of (M,Φ) is determined by the simultaneous

bordism class of (F ; ε1, ε2, ε3). Also, if (M,Φ) has the fixed data (FΦ; ε1, ε2, ε3), which is simul-

taneously bordant to (V ;µ1, µ2, µ3), then there exists (N,Ψ) with fixed data (V ;µ1, µ2, µ3),

hence (N,Ψ) is equivariantly bordant to (M,Φ). On the other hand, as in the case k = 1,

the simultaneous bordism class of (F ; ε1, ε2, ε3) is determined by its characteristic numbers:

write W (F ) = 1 + ω1 + ω2 + · · · for the Stiefel-Whitney classes of the tangent bundle of F ,

and W (ερ) = 1 + υρ
1 + υρ

2 + · · · for the Stiefel-Whitney classes of the bundles ερ (ρ = 1, 2, 3).

Then a characteristic number of (F ; ε1, ε2, ε3) is an evaluation of the form K[F ], where K is

a product of ωi
,s and υρ,

j s, ρ ∈ {1, 2, 3}, and [F ] is the fundamental Z2-homology class of F ;

again, as in the case k = 1, K[F ] must be understood as a sum Σ
s
Ks[F

s], where F s is the

union of the s-dimensional components of F , and Ks is the part of K with degree s. If every

characteristic number of (F ; ε1, ε2, ε3) is zero, then (F ; ε1, ε2, ε3) bounds simultaneously, hence

(M,Φ) bounds equivariantly.

Now let F0 ⊂ M be any component of FT1
. Write l = dim(F0), and denote by F i

0 ⊂ F0,

0 ≤ i < l, the union of the i-dimensional components of FΦ that are contained in F0. Then,

for each 0 ≤ i < l, one has that dim(ε2) + dim(ε3) is equal to dim(M) − l over F i
0 . Let

r = dim(M) − l. Consider RP (ε1) → F i
0 , which is the real projective space bundle associated

to ε1 → F i
0, and denote by ξ → RP (ε1) line bundle of the double cover S(ε1) → RP (ε1), where

S(ε1) is the sphere bundle of ε1. Then, for each 0 ≤ i < l, one has the object

(RP (ε1); ξ, ε2 ⊕ (ε3 ⊗ ξ)),

where ε1, ε2 and ε3 are considered as bundles over F i
0 or the pull back over RP (ε1). This object

represents an element in the bordism group Nl−1(BO(1) × BO(r)). For our purpose, let us

recall the following lemmas.
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Lemma 2.1 (see [14]) The object
l−1
⋃

i=0

(RP (ε1); ξ, ε2 ⊕ (ε3 ⊗ ξ)) bounds as an element of

Nl−1(BO(1)× BO(r)).

Remark 2.1 If (FΦ; ε1, ε2, ε3) is the fixed data of a Z2
2 -action, then the same is true

for (FΦ; εi, εj , εk), where (i, j, k) is any permutation of (1, 2, 3). Then, in the above lemma,
l−1
⋃

i=0

(RP (ε1); ξ, ε2⊕ (ε3⊗ξ)) can be replaced by
l−1
⋃

i=0

(RP (εi); ξ, εj⊕ (εk⊗ξ)) for any permutation

(i, j, k) of (1, 2, 3).

Lemma 2.2 (see [14]) Let (M,Φ) be a Z2
2 -action with fixed data (FΦ; ε1, ε2, ε3). Suppose

that V ⊂ M is an h-dimensional component of FΦ. Let P be the component of FT1
that contains

V . Suppose that P satisfies the following conditions:

(1) dim(P ) > 2h;

(2) V is the unique component of FΦ contained in P .

Then (V ; ε1, ε2, ε3) bounds simultaneously.

3 Proof of Theorem

We review some general background information.

Let

W (RP1(2m+ 1)) = 1 + w1 + w2 + · · ·+ w2m+1 = (1 + α)2m+2

be the Stiefel-Whitney class of RP1(2m + 1) and λ1 → RP1(2m + 1) the canonical real line

bundle over RP1(2m+1). From the structure of Grothendieck ring KO(RP1(2m+1)), one has

that any bundle µi → RP1(2m+1) (i = 1, 2, 3) is stably equivalent to liλ1 → RP1(2m+ 1) for

some li ≥ 0, which implies that

W (µi) = 1 + µi
1 + µi

2 + · · ·+ µi
mi

= (1 + α)li

= 1 +

(

li
1

)

α+

(

li
2

)

α2 + · · ·+

(

li
mi

)

αmi

is the Stiefel-Whitney class of µi → RP1(2m + 1), i = 1, 2, 3, where α is the generator of

H1(RP1(2m+1);Z2), mi = dim(µi). If 2
a is the greatest power of 2 of the 2-adic expansion of

2m+ 1, and li ≡ p (mod 2a+1), then (1 + α)li = (1 + α)p. So we could assume li ≤ 2a+1 − 1.

Throughout the paper, we use the fact that a binomial coefficient
(

a

b

)

is nonzero modulo 2 if

and only if the 2-adic expansion of b is a subset of the 2-adic expansion of a.

Let c ∈ H1(RP1(µ1);Z2) be the first Stiefel-Whitney class of the line bundle ξ → RP1(µ1)

for the double cover S(µ1) → RP (µ1). From [2, p.75] , one knows that the Stiefel-Whitney

class of RP1(µ1) is

W (RP1(µ1)) = (1 + w1 + · · ·+ w2m+1){(1 + c)m1 + µ1
1(1 + c)m1−1 + · · ·+ µ1

m1
}

= (1 + α)2m+2
{

(1 + c)m1 +

(

l1
1

)

α(1 + c)m1−1 + · · ·+

(

l1
m1

)

αm1

}

with a relation

cm1 + µ1
1c

m1−1 + µ1
2c

m1−2 + · · ·+ µ1
m1

= 0.
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The Stiefel-Whitney class of ξ is

W (ξ) = 1 + c,

and the Stiefel-Whitney class of the bundle µ2 ⊕ (µ3 ⊗ ξ) is

W (µ2 ⊕ (µ3 ⊗ ξ)) = (1 + µ2
1 + · · ·+ µ2

m2
){(1 + c)m3 + µ3

1(1 + c)m3−1 + · · ·+ µ3
m3

}

= (1 + α)l2
{

(1 + c)m3 +

(

l3
1

)

α(1 + c)m3−1 + · · ·+

(

l3
m3

)

αm3

}

.

On the component RP2(2m+ 1), we write

W (RP2(2m+ 1)) = 1 + v1 + v2 + · · ·+ v2m+1 = (1 + β)2m+2,

W (νi) = 1 + νi1 + νi2 + · · ·+ νini
= (1 + β)ti

= 1 +

(

ti
1

)

β +

(

ti
2

)

β2 + · · ·+

(

ti
ni

)

βni ,

where β ∈ H1(RP2(2m+1);Z2) is the generator, ni = dim(νi) for i = 1, 2, 3. If 2a is the greatest

power of 2 of the 2-adic expansion of 2m+1, and ti ≡ q (mod 2a+1), then (1+ β)ti = (1+ β)q .

We can assume ti ≤ 2a+1 − 1.

Also, we denote by λ → RP2(ν1) the line bundle for the double cover S(ν1) → RP (ν1), and

by

W (λ) = 1 + d

its Stiefel-Whitney class. One has

W (RP2(ν1)) = (1 + v1 + v2 + · · ·+ v2m+1){(1 + d)n1 + ν11(1 + d)n1−1 + · · ·+ ν1n1
}

= (1 + β)2m+2
{

(1 + d)n1 +

(

t1
1

)

β(1 + d)n1−1 + · · ·+

(

t1
n1

)

βn1

}

and

W (ν2 ⊕ (ν3 ⊗ λ)) = (1 + ν21 + ν22 + · · ·+ ν2n2
){(1 + d)n3 + ν31(1 + d)n3−1 + · · ·+ ν3n3

}

= (1 + β)t2
{

(1 + d)n3 +

(

t3
1

)

β(1 + d)n3−1 + · · ·+

(

t3
n3

)

βn3

}

.

For any integer r, we introduce the following characteristic classes which were initially

introduced in [17],

W [r] =
W (RP1(µ1))

(1 + c)m1−r

and

U [r] =
W (µ2 ⊕ (µ3 ⊗ ξ))

(1 + c)m3−r
.

The classes W [r]t and U [r]l are polynomials in Wi(RP1(µ1)), c,Wj(µ2 ⊕ (µ3 ⊗ ξ)), hence

they can be used to give characteristic numbers. Also, these classes satisfy the following special

properties:

W [r]2r−1 = wr−1c
r + terms with smaller c powers,
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W [r]2r = wrc
r + terms with smaller c powers,

W [r]2r+1 = (wr+1 + µ1
r+1)c

r + terms with smaller c powers,

W [r]2r+2 = µ1
r+1c

r+1 + terms with smaller c powers,

and in the same way,

U [r]2r−1 = µ2
r−1c

r + terms with smaller c powers,

U [r]2r = µ2
rc

r + terms with smaller c powers,

U [r]2r+1 = (µ2
r+1 + µ3

r+1)c
r + terms with smaller c powers,

U [r]2r+2 = µ3
r+1c

r+1 + terms with smaller c powers.

Now we consider a Z2
2 -action (M,Φ) with fixed data

(RP1(2m+ 1);µ1, µ2, µ3) ∪ (RP2(2m+ 1); ν1, ν2, ν3),

where at least two µ′

is have dimension greater than 2m+ 1, and at least one νi has dimension

greater than 2m+1. In order to obtain our result, we only need to prove (RP1(2m+1);µ1, µ2, µ3)

∪(RP2(2m+1); ν1, ν2, ν3) bounds, that is, to show that every number of (RP1(2m+1);µ1, µ2, µ3)

is equal to every characteristic number of (RP2(2m + 1); ν1, ν2, ν3). For our purpose, we need

the following notations: For a sequence ω = (j1, j2, · · · , js) of natural numbers, one lets |ω| =

j1 + j2 + · · ·+ js, and for µ = 1 + µ1 + · · · + µp, let µω = µj1µj2 · · ·µjs be the product of the

classes µj .

Taking sequences ω = (j1, j2, · · · , js) and ωi = (ji1, j
i
2, · · · , j

i
s) for i = 1, 2, 3, with |ω| +

3
∑

i=1

|ωi| = 2m+ 1, we consider the characteristic numbers

W (RP1(2m+ 1))ω

3
∏

i=1

W (µi)ωi
[RP1(2m+ 1)]

and

W (RP2(2m+ 1))ω

3
∏

i=1

W (νi)ωi
[RP2(2m+ 1)].

We will prove

W (RP1(2m+ 1))ω

3
∏

i=1

W (µi)ωi
[RP1(2m+ 1)]

= W (RP2(2m+ 1))ω

3
∏

i=1

W (νi)ωi
[RP2(2m+ 1)].

For i = 1, 2, 3, denote by Pi the component of FTi
containing RP1(2m + 1) and Qi the

component of FTi
containing RP2(2m+ 1). Then either Pi = Qi or Pi ∩Qi = ∅.

Suppose that Pi∩Qi = ∅ holds for some i ∈ {1, 2, 3}. Let us suppose first that this number

is 2 or 3. Because of the hypothesis concerning the number of bundles with dimension greater

than 2m + 1, there exists i ∈ {1, 2, 3} such that Pi ∩ Qi = ∅ and dim(µi) > 2m + 1. By
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applying Lemma 2.2 on the component RP1(2m + 1) ⊂ Pi, one concludes that (RP1(2m +

1);µ1, µ2, µ3) bounds simultaneously, thus it can be equivariantly removed to give a Z2
2 -action

(N,Ψ), equivariantly bordant to (M,Φ), and with fixed data (RP2(2m + 1); ν1, ν2, ν3). Since

at least one νj has dim(νj) > 2m+ 1, using Lemma 2.2 on the component RP2(2m+ 1) ⊂ Qj ,

one concludes that (RP2(2m+1); ν1, ν2, ν3) bounds simultaneously. It follows that (N,Ψ) (and

thus (M,Φ)) bounds equivariantly, and the theorem is proved.

In this way, we could suppose that there exists a unique i ∈ {1, 2, 3} such that Pi ∩Qi = ∅

or Pi = Qi.

By making permutation on i ∈ {1, 2, 3} if necessary, we can suppose with out loss that

P1 = Q1, P2 ∩Q2 = ∅ (or P2 = Q2), P3 = Q3, m1 > 2m+ 1, m3 > 2m+ 1.

Since P1 = Q1 and P3 = Q3, one has dim(ν1) = m1 and dim(ν3) = m3. Now

2m+ 1 +m1 +m2 +m3 = 2m+ 1 +m1 + dim(ν2) +m3,

thus dim(ν2) = m2.

From Lemma 2.1
(

with F0 = P1 and
l−1
⋃

i=0

F i
0 = RP1(2m+ 1) ∪RP2(2m+ 1)

)

, one has that

(RP (µ1); ξ, µ2 ⊕ (µ3 ⊗ ξ))

is bordant to

(RP (ν1);λ, ν2 ⊕ (ν3 ⊗ λ))

in the bordism group

N2m+m1
(BO(1)× BO(m2 +m3)).

Then any class of dimension 2m+m1 given by a product of the class

Wi(RP (µ1)), c,Wj(µ2 ⊕ (µ3 ⊗ ξ))

evaluated on [RP (µ1)], gives the same characteristic number as the one obtained by the corre-

sponding product of the classes

Wi(RP (ν1)), d,Wj(ν2 ⊕ (ν3 ⊗ λ))

evaluated on [RP (ν1)]. To find the value of such numbers, we have a formula of Conner (see

[1, Lemma 3.1]),

αicj [RP (µ1)] =

{

αiW j−m1+1(µ1)[RP1(2m+ 1)], j ≥ m1 − 1,
0, j < m1 − 1,

where i+ j = 2m+m1 and W (µ1) =
1

W (µ1)
is the dual Stiefel-Whitney class of µ1.

βidj [RP (ν1)] =

{

βiW j−n1+1(ν1)[RP2(2m+ 1)], j ≥ n1 − 1,
0, j < n1 − 1,
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where i + j = 2m+ n1 and W (ν1) =
1

W (ν1)
is the dual Stiefel-Whitney class of ν1. We apply

the above equations to prove that

(RP1(2m+ 1);µ1, µ2, µ3) ∪ (RP2(2m+ 1); ν1, ν2, ν3)

bounds.

We know W (µ1) = (1 + α)l1 ,W (µ2) = (1 + α)l2 ,W (µ3) = (1 + α)l3 , W (ν1) = (1 +

β)t1 ,W (ν2) = (1 + β)t2 ,W (ν3) = (1 + β)t3 . If t1, t2 and t3 are even (or l1, l2 and l3 are

even), one concludes that (RP2(2m + 1); ν1, ν2, ν3) (or (RP1(2m + 1);µ1, µ2, µ3)) bounds si-

multaneously, thus it can be equivariantly removed to give a Z2
2 -action (N,Ψ), equivariantly

bordant to (M,Φ), and with fixed data (RP1(2m+1);µ1, µ2, µ3) (or (RP2(2m+1); ν1, ν2, ν3)).

Since at least two µ′

is (or one νi) have dim(µi) > 2m + 1 (has dim(νi) > 2m + 1), using

Lemma 2.2 on the component RP1(2m + 1) ⊂ Pi (or RP2(2m+ 1) ⊂ Qi), one concludes that

(RP1(2m + 1);µ1, µ2, µ3) ((RP2(2m + 1); ν1, ν2, ν3)) bounds simultaneously. It follows that

(N,Ψ) (and thus (M,Φ)) bounds equivariantly, and the theorem is proved. So, we always sup-

pose that not all l1, l2 and l3 are even (or t1, t2 and t3 are even). In this case, we only need to

prove l1 = t1, l2 = t2, l3 = t3. The proof is divided into several cases.

Proposition 3.1 l1 = t1.

Proof If l1 6= t1, we will prove that there does not exist Z2
2 -action (M,Φ). We divided the

arguments into the following cases.

(1) l1 is odd and t1 is even. Then on RP1(2m+ 1),

W [0]1 = α.

On RP2(2m+ 1),

W [0]1 = 0.

We form the class (W [0]1)
2m+1cm1−1 on RP1(2m+1), and the corresponding class on RP2(2m+

1) is (W [0]1)
2m+1dm1−1, then

(W [0]1)
2m+1cm1−1[RP (µ1)] = α2m+1cm1−1[RP (µ1)] = 1,

(W [0]1)
2m+1dm1−1[RP (ν1)] = 0.

In the same way, we can prove the case that l1 is even and t1 is odd.

This is a contradiction.

(2) l1 is odd and t1 is odd and l1 6= t1. Let

2s = min
{

2x
∣

∣

∣

(

l1
2x

)

6=

(

t1
2x

)

}

.

We suppose
(

l1
2s

)

= 1,
(

t1
2s

)

= 0. Then on RP1(2m+ 1),

W [0]1 = α,

W [2s − 1]2(2s−1)+2 =

(

l1
2s

)

α2sc2
s

+ terms with smaller c powers



Two Commuting Involutions Fixing RP1(2m + 1)
⋃

RP2(2m + 1) 745

= α2sc2
s

+ terms with smaller c powers.

On RP2(2m+ 1),

W [0]1 = β,

W [2s − 1]2(2s−1)+2 =

(

t1
2s

)

β2sd2
s

+ terms with smaller d powers

= 0β2sd2
s

+ terms with smaller d powers.

We form the class (W [0]1)
2m+1−2sW [2s − 1]2(2s−1)+2c

m1−1−2s on RP1(2m+ 1), and the corre-

sponding class on RP2(2m+ 1) is (W [0]1)
2m+1−2sW [2s − 1]2(2s−1)+2d

m1−1−2s . Then

(W [0]1)
2m+1−2sW [2s − 1]2(2s−1)+2c

m1−1−2s [RP (µ1)]

= α2m+1−2sα2sc2
s

cm1−1−2s [RP (µ1)]

= α2m+1cm1−1[RP (µ1)]

= 1,

(W [0]1)
2m+1−2sW [2s − 1]2(2s−1)+2d

m1−1−2s [RP (ν1)] = 0.

This is a contradiction.

(3) l1 and t1 are even and l1 6= t1. Let

2s = min
{

2x |

(

l1
2x

)

6=

(

t1
2x

)

}

.

We suppose
(

l1
2s

)

= 1,
(

t1
2s

)

= 0.

Since not all l1, l2 and l3 are even, one of l2 and l3 must be odd. If l2 is odd, then on

RP1(2m+ 1),

W [2s − 1]2(2s−1)+2 =

(

l1
2s

)

α2sc2
s

+ terms with smaller c powers

= α2sc2
s

+ terms with smaller c powers,

U [1]2 = αc+ terms with smaller c powers.

On RP2(2m+ 1),

W [2s − 1]2(2s−1)+2 =

(

t1
2s

)

β2sd2
s

+ terms with smaller d powers

= 0β2sd2
s

+ terms with smaller d powers,

U [1]2 =

(

t2
1

)

βd+ terms with smaller d powers.

We form the class (U [1]2)
2m+1−2sW [2s − 1]2(2s−1)+2c

m1−2m−2 on RP1(2m+1), and the corre-

sponding class on RP2(2m+ 1) is (U [1]2)
2m+1−2sW [2s − 1]2(2s−1)+2d

m1−2m−2. Then

(U [1]2)
2m+1−2sW [2s − 1]2(2s−1)+2c

m1−2m−2[RP (µ1)]
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= α2m+1−2sc2m+1−2sα2sc2
s

cm1−2m−2[RP (µ1)]

= α2m+1cm1−1[RP (µ1)]

= 1,

(U [1]2)
2m+1−2sW [2s − 1]2(2s−1)+2d

m1−2m−2[RP (ν1)] = 0.

This is a contradiction.

If l3 is odd, on RP1(2m+ 1),

W [2s − 1]2(2s−1)+2 =

(

l1
2s

)

α2sc2
s

+ terms with smaller c powers

= α2sc2
s

+ terms with smaller c powers,

U [0]2 = αc+ terms with smaller c powers.

On RP2(2m+ 1),

W [2s − 1]2(2s−1)+2 =

(

t1
2s

)

β2sd2
s

+ terms with smaller d powers

= 0β2sd2
s

+ terms with smaller d powers,

U [0]2 =

(

t3
1

)

βd+ terms with smaller d powers.

We form the class (U [0]2)
2m+1−2sW [2s − 1]2(2s−1)+2c

m1−2m−2 on RP1(2m+1), and the corre-

sponding class on RP2(2m+ 1) is (U [0]2)
2m+1−2sW [2s − 1]2(2s−1)+2d

m1−2m−2. Then

(U [0]2)
2m+1−2sW [2s − 1]2(2s−1)+2c

m1−2m−2[RP (µ1)]

= α2m+1−2sc2m+1−2sα2sc2
s

cm1−2m−2[RP (µ1)]

= α2m+1cm1−1[RP (µ1)]

= 1,

(U [0]2)
2m+1−2sW [2s − 1]2(2s−1)+2d

m1−2m−2[RP (ν1)] = 0.

This is a contradiction.

Proposition 3.1 holds.

Proposition 3.2 l2 = t2.

Proof If l2 6= t2, we will prove that there does not exist Z2
2 -action (M,Φ). We divided the

arguments into the following cases.

(1) l2 is odd and t2 is even. Then on RP1(2m+ 1),

U [1]2 = αc+ terms with smaller c powers.

On RP2(2m+ 1),

U [1]2 = 0βd+ terms with smaller d powers.
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We form the class (U [1]2)
2m+1cm1−2m−2 on RP1(2m + 1), and the corresponding class on

RP2(2m+ 1) is (U [1]2)
2m+1dm1−2m−2. Then

(U [1]2)
2m+1cm1−2m−2[RP (µ1)] = α2m+1cm1−1[RP (µ1)] = 1,

(U [1]2)
2m+1dm1−2m−2[RP (ν1)] = 0.

In the same way, we can prove the case that l2 is even and t2 is odd.

This is a contradiction.

(2) l2 is odd and t2 is odd and l2 6= t2. Let

2s = min
{

2x
∣

∣

∣

(

l2
2s

)

6=

(

t2
2x

)

}

.

We suppose
(

l2
2s

)

= 1,
(

t2
2s

)

= 0.

On RP1(2m+ 1),

U [1]2 = αc+ terms with smaller c powers,

U [2s]2s+1 =

(

l2
2s

)

α2sc2
s

+ terms with smaller c powers

= α2sc2
s

+ terms with smaller c powers.

On RP2(2m+ 1),

U [1]2 = βd+ terms with smaller d powers,

U [2s]2s+1 =

(

t2
2s

)

β2sd2
s

+ terms with smaller d powers

= 0β2sd2
s

+ terms with smaller d powers.

We form the class U [2s]2s+1(U [1]2)
2m+1−2scm1−2m−2 on RP1(2m + 1), and the corresponding

class on RP2(2m+ 1) is U [2s]2s+1(U [1]2)
2m+1−2sdm1−2m−2. Then

U [2s]2s+1(U [1]2)
2m+1−2scm1−2m−2[RP (µ1)]

= α2sc2
s

α2m+1−2sc2m+1−2scm1−2m−2[RP (µ1)]

= α2m+1cm1−1[RP (µ1)]

= 1,

U [2s]2s+1(U [1]2)
2m+1−2sdm1−2m−2[RP (ν1)] = 0.

This is a contradiction.

(3) l2 and t2 are even and l2 6= t2. Let

2s = min
{

2x
∣

∣

∣

(

l2
2x

)

6=

(

t2
2x

)

}

.

We suppose
(

l2
2s

)

= 1,
(

t2
2s

)

= 0.
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Since not all l1, l2 and l3 are even, one of l1 and l3 must be odd. If l1 is odd, then on

RP1(2m+ 1),

W [0]2 = αc+ terms with smaller c powers,

U [2s]2s+1 =

(

l2
2s

)

α2sc2
s

+ terms with smaller c powers

= α2sc2
s

+ terms with smaller c powers.

On RP2(2m+ 1), since l1 = t1, so

W [0]2 = βd+ terms with smaller d powers,

U [2s]2s+1 =

(

t2
2s

)

β2sd2
s

+ terms with smaller d powers

= 0β2sd2
s

+ terms with smaller d powers.

We form the class (W [0]2)
2m+1−2sU [2s]2s+1cm1−2m−2 on RP1(2m+ 1), and the corresponding

class on RP2(2m+ 1) is (W [0]2)
2m+1−2sU [2s]2s+1dm1−2m−2. Then

(W [0]2)
2m+1−2sU [2s]2s+1cm1−2m−2[RP (µ1)]

= α2m+1−2sc2m+1−2sα2sc2
s

cm1−2m−2[RP (µ1)]

= α2m+1cm1−1[RP (2m+ 1)]

= 1,

(W [0]2)
2m+1−2sU [2s]2s+1dm1−2m−2[RP (ν1)] = 0.

This is a contradiction.

If l3 is odd, on RP1(2m+ 1),

U [0]2 = αc+ terms with smaller c powers,

U [2s]2s+1 = α2sc2
s

+ terms with smaller c powers.

On RP2(2m+ 1),

U [0]2 =

(

t3
1

)

βd+ terms with smaller d powers,

U [2s]2s+1 = 0β2sd2
s

+ terms with smaller d powers.

We form the class (U [0]2)
2m+1−2sU [2s]2s+1c

m1−2m−2 on RP1(2m+ 1), and the corresponding

class on RP2(2m+ 1) is (U [0]2)
2m+1−2sU [2s]2s+1d

m1−2m−2. Then

(U [0]2)
2m+1−2sU [2s]2s+1c

m1−2m−2[RP (µ1)]

= α2m+1−2sc2m+1−2sα2sc2
s

cm1−2m−2[RP (µ1)]

= α2m+1cm1−1[RP (µ1)]
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= 1,

(U [0]2)
2m+1−2sU [2s]2s+1d

m1−2m−2[RP (ν1)] = 0.

This is a contradiction.

Proposition 3.2 holds.

Proposition 3.3 l3 = t3.

Proof If l3 6= t3, we will prove there does not exist Z2
2 -action (M,Φ). We divided the

arguments into the following cases.

(1) l3 is odd and t3 is even. Then on RP1(2m+ 1),

U [0]2 = αc+ terms with smaller c powers.

On RP2(2m+ 1),

U [0]2 = 0βd+ terms with smaller d powers.

We form the class (U [0]2)
2m+1cm1−2m−2 on RP1(2m + 1), and the corresponding class on

RP2(2m+ 1) is (U [0]2)
2m+1dm1−2m−2. Then

(U [0]2)
2m+1cm1−2m−2[RP (µ1)] = α2m+1cm1−1[RP (µ1)] = 1,

(U [0]2)
2m+1dm1−2m−2[RP (ν1)] = 0.

In the same way, we can prove the case that l3 is even and t3 is odd.

This is a contradiction.

(2) l3 is odd and t3 is odd and l3 6= t3. Let

2s = min
{

2x
∣

∣

∣

(

l3
2x

)

6=

(

t3
2x

)

}

.

We suppose
(

l3
2s

)

= 1,
(

t3
2s

)

= 0. Then on RP1(2m+ 1),

U [0]2 = αc+ terms with smaller c powers,

U [2s − 1]2(2s−1)+2 =

(

l3
2s

)

α2sc2
s

+ terms with smaller c powers

= α2sc2
s

+ terms with smaller c powers.

On RP2(2m+ 1),

U [0]2 = βd+ terms with smaller d powers,

U [2s − 1]2(2s−1)+2 =

(

t3
2s

)

β2sd2
s

+ terms with smaller d powers

= 0β2sd2
s

+ terms with smaller d powers.

We form the class (U [0]2)
2m+1−2sU [2s − 1]2(2s−1)+2c

m1−2m−2 on RP1(2m+ 1), and the corre-

sponding class on RP2(2m+ 1) is (U [0]2)
2m+1−2sU [2s − 1]2(2s−1)+2d

m1−2m−2. Then

(U [0]2)
2m+1−2sU [2s − 1]2(2s−1)+2c

m1−2m−2[RP (µ1)]
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= α2m+1−2sc2m+1−2sα2sc2
s

cm1−2m−2[RP (µ1)]

= α2m+1cm1−1[RP (µ1)]

= 1,

(U [0]2)
2m+1−2sU [2s − 1]2(2s−1)+2d

m1−2m−2[RP (ν1)] = 0.

This is a contradiction.

(3) l3 and t3 are even and l3 6= t3. Let

2s = min
{

2x
∣

∣

∣

(

l3
2x

)

6=

(

t3
2x

)

}

.

We suppose
(

l3
2s

)

= 1,
(

t3
2s

)

= 0.

Since not all l1, l2 and l3 are even, one of l1 and l2 must be odd. If l1 is odd, then on

RP1(2m+ 1),

W [0]2 = αc+ terms with smaller c powers,

U [2s − 1]2(2s−1)+2 =

(

l3
2s

)

α2sc2
s

+ terms with smaller c powers

= α2sc2
s

+ terms with smaller c powers.

On RP2(2m+ 1),

W [0]2 = βd+ terms with smaller c powers,

U [2s − 1]2(2s−1)+2 =

(

t3
2s

)

β2sd2
s

+ terms with smaller d powers

= 0β2sd2
s

+ terms with smaller d powers.

We form the class (W [0]2)
2m+1−2sU [2s − 1]2(2s−1)+2c

m1−2m−2 on RP1(2m+1), and the corre-

sponding class on RP2(2m+ 1) is (W [0]2)
2m+1−2sU [2s − 1]2(2s−1)+2c

m1−2m−2. Then

(W [0]2)
2m+1−2sU [2s − 1]2(2s−1)+2c

m1−2m−2[RP (µ1)]

= α2m+1−2sc2m+1−2sα2sc2
s

cm1−2m−2[RP (µ1)]

= α2m+1cm1−1[RP (µ1)]

= 1,

(W [0]2)
2m+1−2sU [2s − 1]2(2s−1)+2d

m1−2m−2[RP (ν1)] = 0.

This is a contradiction.

If l2 is odd, on RP1(2m+ 1),

U [1]2 = αc+ terms with smaller c powers,

U [2s − 1]2(2s−1)+2 =

(

l3
2s

)

α2sc2
s

+ terms with smaller c powers

= α2sc2
s

+ terms with smaller c powers.
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On RP2(2m+ 1), since l2 = t2, so

U [1]2 = βd+ terms with smaller d powers,

U [2s − 1]2(2s−1)+2 =

(

t3
2s

)

β2sd2
s

+ terms with smaller d powers

= 0β2sd2
s

+ terms with smaller d powers.

We form the class (U [1]2)
2m+1−2sU [2s − 1]2(2s−1)+2c

m1−2m−2 on RP1(2m+ 1), and the corre-

sponding class on RP2(2m+ 1) is (U [1]2)
2m+1−2sU [2s − 1]2(2s−1)+2d

m1−2m−2. Then

(U [1]2)
2m+1−2sU [2s − 1]2(2s−1)+2c

m1−2m−2[RP (µ1)]

= α2m+1−2sc2m+1−2sα2sc2
s

cm1−2m−2[RP (µ1)]

= α2m+1cm1−1[RP (µ1)]

= 1,

(U [1]2)
2m+1−2sU [2s − 1]2(2s−1)+2d

m1−2m−2[RP (ν1)] = 0.

This is a contradiction.

Proposition 3.3 holds.

From above discussions, we know that l1 = t1, l2 = t2 and l3 = t3. If we take any sequences

ω = (j1, j2, · · · , js) and ωi = (ji1, j
i
2, · · · , j

i
s) for i = 1, 2, 3 with |ω|+

3
∑

i=1

|ωi| = 2m+ 1, we have

W (RP1(2m+ 1))ω

3
∏

i=1

W (µi)ωi
[RP1(2m+ 1)]

= W (RP2(2m+ 1))ω

3
∏

i=1

W (µi)ωi
[RP2(2m+ 1)].

That is,

W (RP1(2m+ 1))ω

3
∏

i=1

W (µi)ωi
[RP1(2m+ 1)]

+W (RP2(2m+ 1))ω

3
∏

i=1

W (µi)ωi
[RP2(2m+ 1)] = 0.

We conclude that every characteristic number of (RP1(2m + 1);µ1, µ2, µ3) is equal to the

characteristic number of (RP2(2m+1), ν1, ν2, ν3). By [19] (RP1(2m+1), µ1, µ2, µ3)∪(RP2(2m+

1), ν1, ν2, ν3) bounds simultaneously, (M,Φ) bounds equivariantly, and the theorem is proved.
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