Two Commuting Involutions Fixing $R P_{1}(2 m+1) \bigcup R P_{2}(2 m+1)^{*}$

Suqian ZHAO^{1} Yanying WANG^{2} Jingyan LI^{3}

Abstract

Let Z_{2} denote a cyclic group of 2 order and $Z_{2}^{2}=Z_{2} \times Z_{2}$ the direct product of groups. Suppose that (M, Φ) is a closed and smooth manifold M with a smooth Z_{2}^{2}-action whose fixed point set is the disjoint union of two real projective spaces with the same dimension. In this paper, the authors give a sufficient condition on the fixed data of the action for (M, Φ) bounding equivariantly.

Keywords Z_{2}^{2}-action, Fixed data, Characteristic number, Simultaneous bordism, Stiefel-Whitney class
2000 MR Subject Classification 57R85, 57S17, 55N22

1 Introduction

Let M be a smooth, closed manifold and $T: M \rightarrow M$ a smooth involution defined on M (i.e., Z_{2}-action, where Z_{2} denotes a cyclic group of 2 order). It is well known that the fixed point set $F=\{x \in M \mid T(x)=x\}$ of the involution T is a finite and disjoint union of closed submanifolds of M. In this setting, for a given F, one naturally considers to classify the pairs (M, T) for which the fixed point set of T is F up to equivariant bordism. Let ν denote the normal bundle of F in M. It is known that the equivariant bordism class of (M, T) is determined by the bordism class of the bundle (F, ν), and the bordism class of the bundle (F, ν) is determined by its characteristic numbers (see [2]). For the vector bundle $\nu \rightarrow F$, there are the associated sphere bundle $S(\nu) \rightarrow F$ and a fibre preserving fixed point free involution $(S(\nu), T)$ which on each fibre agree with the antipodal map of sphere. The bundle $S(\nu) / T \rightarrow F$ is denoted by $R P(\nu) \rightarrow F$; that is the real projective space bundle associated to vector bundle ν. Further, the real projective space bundle $R P(\nu)$ bounds in the bordism of the classifying space $R P(\infty)$ for Z_{2}, where the map into $R P(\infty)$ classifies the double cover of $R P(\nu)$ by the sphere bundle $S(\nu)$ (see [2, p.88]). Conversely, being given a vector bundle ξ over F for which $R P(\xi)$ bounds in the sense just described, there is an involution fixing F with normal bundle $\nu=\xi$. Using the above results, in [4], Kosniowski and Stong gave a formula to express

[^0]relationship between Stiefel-Whitney numbers of M and that of the bundle (F, ν), and proved the following result: If M^{m} is a closed and smooth m-dimensional manifold with a smooth involution $T: M^{m} \rightarrow M^{m}$ such that the fixed point set F of T has constant dimension n with $m>2 n$, then $\left(M^{m}, T\right)$ bounds equivariantly. For the fixed point set F being the disjoint union of some spaces and product spaces such as the disjoint union of projective spaces and the product spaces of projective spaces, by computing characteristic numbers and using the formula in [4], one has given equivariant bordism classification of (M, T) with a given F (see [3, 6-10, 17-18, 20-21]).

For $k>1$, let Z_{2}^{k} denote the direct product of k groups $Z_{2} . Z_{2}^{k}$ is often considered as the group generated by k smooth commuting involutions $T_{1}, T_{2}, \cdots, T_{k}$ on M^{m}. The k commuting involutions determine a smooth Z_{2}^{k}-action $\Phi: Z_{2}^{k} \times M^{m} \rightarrow M^{m}$. The fixed data of Z_{2}^{k}-action Φ consists of $\eta=\bigoplus_{\rho} \varepsilon_{\rho} \rightarrow F_{\Phi}$, where $F_{\Phi}=\left\{x \in M^{m} \mid T_{i}(x)=x, i=1,2, \cdots, k\right\}$ is the fixed point set of Z_{2}^{k}-action and $\eta=\bigoplus_{\rho} \varepsilon_{\rho}$ is the normal bundle of F_{Φ} in M decomposed into eigenbundles ε_{ρ} with ρ running through the $2^{k}-1$ nontrivial irreducible representations of Z_{2}^{k} (see [16]). An equivariant bordism classification of M^{m} with Z_{2}^{k}-actions is closely related to the fixed data of Z_{2}^{k}-action (see [19]). In a series of papers, the equivariant bordism classification of (M^{m}, Φ) with a given condition on the fixed data of Φ has been studied (see [5, 11-16, 19]). For $k>1$ and $F_{\Phi}=R P(l) \cup R P(n)$, where $R P(\cdot)$ denotes a real projective space, the classifications in cases $(l, n)=(0$, odd $),(0$, even) were completely solved in [11-13]. In [15], Pergher, Ramos and Oliveira solved the case $(l, n)=(2, n)$ (n is even), where $n \geq 4$. Later, in [16], Pergher and Ramos solved the case $(l, n)=\left(2^{s}, n\right)$ (n is even), where $s \geq 1$ and $n \geq 2^{s+1}$, which extended the previous case ($s=1$).

The purpose of this paper is to extend above results for Z_{2}^{2}-actions. Let $\Phi: Z_{2}^{2} \times M \rightarrow M$ be a smooth action of the group $Z_{2}^{2}=\left\{T_{1}, T_{2} \mid T_{i}^{2}=1, i=1,2, T_{1} T_{2}=T_{2} T_{1}\right\}$ on a smooth closed manifold M. Let $T_{3}=T_{1} T_{2}$. The fixed data of Φ is $\left(F_{\Phi} ; \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right)$, where $F_{\Phi}=\{x \in$ $\left.M \mid T_{i}(x)=x, i=1,2,3\right\}$ is the fixed point set of Z_{2}^{2}-action on $M, \varepsilon_{i}(i=1,2,3)$ is the normal bundle of F_{Φ} in $F_{T_{i}}=\left\{x \in M \mid T_{i}(x)=x\right\}$. We have the following result.

Theorem 1.1 Let (M, Φ) be a closed and smooth manifold M with a smooth Z_{2}^{2}-action whose fixed point set is the disjoint union of two real projective spaces with dimension $2 m+1$, that is, $F_{\Phi}=R P_{1}(2 m+1) \cup R P_{2}(2 m+1)$, where $R P_{i}(2 m+1)$ denotes the i-th copy. Let

$$
\left(R P_{1}(2 m+1) ; \mu_{1}, \mu_{2}, \mu_{3}\right) \cup\left(R P_{2}(2 m+1) ; \nu_{1}, \nu_{2}, \nu_{3}\right)
$$

be the fixed data of Φ, where μ_{i} and ν_{i} denote the normal bundle of components of F_{Φ} respectively. If at least two $\mu_{i}^{\prime} s$ have dimension greater than $2 m+1$, and at least one ν_{i} has dimension greater than $2 m+1$, then (M, Φ) bounds equivariantly.

Example 1.1 Let $M=R P(4 m+3) \times R P(4 m+3)$. Considering the involution T_{1} : $R P(4 m+3) \rightarrow R P(4 m+3)$ on the $(4 m+3)$-dimensional real projective space $R P(4 m+3)$ given by

$$
T_{1}\left[x_{0}, x_{1}, \cdots, x_{4 m+3}\right]=\left[-x_{0},-x_{1}, \cdots,-x_{2 m+1}, x_{2 m+2}, \cdots, x_{4 m+3}\right] .
$$

T_{1} fixes the disjoint union $R P_{1}(2 m+1) \cup R P_{2}(2 m+1)$.
A Z_{2}^{2}-action Φ is defined by $\left(T_{1} \times T_{1}, S\right)$, where $S(x, y)=(y, x)$. The fixed data of Φ is $\left(R P_{1}(2 m+1) ; \mu^{2 m+2}, \mu^{2 m+2}, \tau\left(R P_{1}(2 m+1)\right)\right) \cup\left(R P_{2}(2 m+1) ; \nu^{2 m+2}, \nu^{2 m+2}, \tau\left(R P_{2}(2 m+1)\right)\right)$, where $\tau\left(R P_{1}(2 m+1)\right.$ means the tangent bundle. (M, Φ) satisfies the hypothesis of the theorem and (M, Φ) bounds equivariantly.

2 Preliminaries

Let Φ be a smooth Z_{2}^{2}-action on M with fixed data $\left(F_{\Phi} ; \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right)$. Each s-dimensional component of $\left(F_{\Phi} ; \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right)$ can be considered as an element of $\mathscr{N}_{s}\left(\mathrm{BO}\left(s_{1}\right) \times \mathrm{BO}\left(s_{2}\right) \times \mathrm{BO}\left(s_{3}\right)\right)$, the bordism of s-dimensional manifolds with a map into $\mathrm{BO}\left(s_{1}\right) \times \mathrm{BO}\left(s_{2}\right) \times \mathrm{BO}\left(s_{3}\right)$, where s_{i} is the dimension of ε_{i} over the component and $\mathrm{BO}\left(s_{i}\right)$ is the classifying space for s_{i}-dimensional vector bundles (this is the simultaneous bordism between lists of vector bundles: Two lists of vector bundles over closed n-dimensional manifolds, $\left(F^{n} ; \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right)$ and ($V^{n} ; \mu_{1}, \mu_{2}, \mu_{3}$), are simultaneously bordant if there exists an $(n+1)$-dimensional manifold W^{n+1} with boundary $\partial\left(W^{n+1}\right)=F^{n} \cup V^{n}$ (disjoint union) and a list of vector bundles over $W^{n+1},\left(W^{n+1} ; \eta_{1}, \eta_{2}, \eta_{3}\right)$, so that $\eta_{\rho}(\rho=1,2,3)$ restricted to $F^{n} \cup V^{n}$ is equivalent to $\left.\varepsilon_{\rho} \cup \mu_{\rho}\right)$ (see [14]).

According to [19], the equivariant bordism class of (M, Φ) is determined by the simultaneous bordism class of $\left(F ; \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right)$. Also, if (M, Φ) has the fixed data $\left(F_{\Phi} ; \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right)$, which is simultaneously bordant to $\left(V ; \mu_{1}, \mu_{2}, \mu_{3}\right)$, then there exists (N, Ψ) with fixed data $\left(V ; \mu_{1}, \mu_{2}, \mu_{3}\right)$, hence (N, Ψ) is equivariantly bordant to (M, Φ). On the other hand, as in the case $k=1$, the simultaneous bordism class of $\left(F ; \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right)$ is determined by its characteristic numbers: write $W(F)=1+\omega_{1}+\omega_{2}+\cdots$ for the Stiefel-Whitney classes of the tangent bundle of F, and $W\left(\varepsilon_{\rho}\right)=1+v_{1}^{\rho}+v_{2}^{\rho}+\cdots$ for the Stiefel-Whitney classes of the bundles $\varepsilon_{\rho}(\rho=1,2,3)$. Then a characteristic number of $\left(F ; \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right)$ is an evaluation of the form $K[F]$, where K is a product of $\omega_{i}^{\prime} s$ and $v_{j}^{\rho,} s, \rho \in\{1,2,3\}$, and $[F]$ is the fundamental Z_{2}-homology class of F; again, as in the case $k=1, K[F]$ must be understood as a sum $\sum_{s} K_{s}\left[F^{s}\right]$, where F^{s} is the union of the s-dimensional components of F, and K_{s} is the part of K with degree s. If every characteristic number of $\left(F ; \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right)$ is zero, then $\left(F ; \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right)$ bounds simultaneously, hence (M, Φ) bounds equivariantly.

Now let $F_{0} \subset M$ be any component of $F_{T_{1}}$. Write $l=\operatorname{dim}\left(F_{0}\right)$, and denote by $F_{0}^{i} \subset F_{0}$, $0 \leq i<l$, the union of the i-dimensional components of F_{Φ} that are contained in F_{0}. Then, for each $0 \leq i<l$, one has that $\operatorname{dim}\left(\varepsilon_{2}\right)+\operatorname{dim}\left(\varepsilon_{3}\right)$ is equal to $\operatorname{dim}(M)-l$ over F_{0}^{i}. Let $r=\operatorname{dim}(M)-l$. Consider $R P\left(\varepsilon_{1}\right) \rightarrow F_{0}^{i}$, which is the real projective space bundle associated to $\varepsilon_{1} \rightarrow F_{0}^{i}$, and denote by $\xi \rightarrow R P\left(\varepsilon_{1}\right)$ line bundle of the double cover $S\left(\varepsilon_{1}\right) \rightarrow R P\left(\varepsilon_{1}\right)$, where $S\left(\varepsilon_{1}\right)$ is the sphere bundle of ε_{1}. Then, for each $0 \leq i<l$, one has the object

$$
\left(R P\left(\varepsilon_{1}\right) ; \xi, \varepsilon_{2} \oplus\left(\varepsilon_{3} \otimes \xi\right)\right)
$$

where $\varepsilon_{1}, \varepsilon_{2}$ and ε_{3} are considered as bundles over F_{0}^{i} or the pull back over $R P\left(\varepsilon_{1}\right)$. This object represents an element in the bordism group $\mathscr{N}_{l-1}(\mathrm{BO}(1) \times \mathrm{BO}(r))$. For our purpose, let us recall the following lemmas.

Lemma 2.1 (see [14]) The object $\bigcup_{i=0}^{l-1}\left(R P\left(\varepsilon_{1}\right) ; \xi, \varepsilon_{2} \oplus\left(\varepsilon_{3} \otimes \xi\right)\right)$ bounds as an element of $\mathcal{N}_{l-1}(\mathrm{BO}(1) \times \mathrm{BO}(r))$.

Remark 2.1 If $\left(F_{\Phi} ; \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right)$ is the fixed data of a Z_{2}^{2}-action, then the same is true for $\left(F_{\Phi} ; \varepsilon_{i}, \varepsilon_{j}, \varepsilon_{k}\right)$, where (i, j, k) is any permutation of $(1,2,3)$. Then, in the above lemma, $\bigcup_{i=0}^{l-1}\left(R P\left(\varepsilon_{1}\right) ; \xi, \varepsilon_{2} \oplus\left(\varepsilon_{3} \otimes \xi\right)\right)$ can be replaced by $\bigcup_{i=0}^{l-1}\left(R P\left(\varepsilon_{i}\right) ; \xi, \varepsilon_{j} \oplus\left(\varepsilon_{k} \otimes \xi\right)\right)$ for any permutation (i, j, k) of $(1,2,3)$.

Lemma 2.2 (see [14]) Let (M, Φ) be a Z_{2}^{2}-action with fixed data $\left(F_{\Phi} ; \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right)$. Suppose that $V \subset M$ is an h-dimensional component of F_{Φ}. Let P be the component of $F_{T_{1}}$ that contains V. Suppose that P satisfies the following conditions:
(1) $\operatorname{dim}(P)>2 h$;
(2) V is the unique component of F_{Φ} contained in P.

Then $\left(V ; \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right)$ bounds simultaneously.

3 Proof of Theorem

We review some general background information.
Let

$$
W\left(R P_{1}(2 m+1)\right)=1+w_{1}+w_{2}+\cdots+w_{2 m+1}=(1+\alpha)^{2 m+2}
$$

be the Stiefel-Whitney class of $R P_{1}(2 m+1)$ and $\lambda_{1} \rightarrow R P_{1}(2 m+1)$ the canonical real line bundle over $R P_{1}(2 m+1)$. From the structure of Grothendieck ring $K O\left(R P_{1}(2 m+1)\right)$, one has that any bundle $\mu_{i} \rightarrow R P_{1}(2 m+1)(i=1,2,3)$ is stably equivalent to $l_{i} \lambda_{1} \rightarrow R P_{1}(2 m+1)$ for some $l_{i} \geq 0$, which implies that

$$
\begin{aligned}
W\left(\mu_{i}\right) & =1+\mu_{1}^{i}+\mu_{2}^{i}+\cdots+\mu_{m_{i}}^{i}=(1+\alpha)^{l_{i}} \\
& =1+\binom{l_{i}}{1} \alpha+\binom{l_{i}}{2} \alpha^{2}+\cdots+\binom{l_{i}}{m_{i}} \alpha^{m_{i}}
\end{aligned}
$$

is the Stiefel-Whitney class of $\mu_{i} \rightarrow R P_{1}(2 m+1), i=1,2,3$, where α is the generator of $H^{1}\left(R P_{1}(2 m+1) ; Z_{2}\right), m_{i}=\operatorname{dim}\left(\mu_{i}\right)$. If 2^{a} is the greatest power of 2 of the 2 -adic expansion of $2 m+1$, and $l_{i} \equiv p\left(\bmod 2^{a+1}\right)$, then $(1+\alpha)^{l_{i}}=(1+\alpha)^{p}$. So we could assume $l_{i} \leq 2^{a+1}-1$. Throughout the paper, we use the fact that a binomial coefficient $\binom{a}{b}$ is nonzero modulo 2 if and only if the 2 -adic expansion of b is a subset of the 2 -adic expansion of a.

Let $c \in H^{1}\left(R P_{1}\left(\mu_{1}\right) ; Z_{2}\right)$ be the first Stiefel-Whitney class of the line bundle $\xi \rightarrow R P_{1}\left(\mu_{1}\right)$ for the double cover $S\left(\mu_{1}\right) \rightarrow R P\left(\mu_{1}\right)$. From [2, p.75], one knows that the Stiefel-Whitney class of $R P_{1}\left(\mu_{1}\right)$ is

$$
\begin{aligned}
W\left(R P_{1}\left(\mu_{1}\right)\right) & =\left(1+w_{1}+\cdots+w_{2 m+1}\right)\left\{(1+c)^{m_{1}}+\mu_{1}^{1}(1+c)^{m_{1}-1}+\cdots+\mu_{m_{1}}^{1}\right\} \\
& =(1+\alpha)^{2 m+2}\left\{(1+c)^{m_{1}}+\binom{l_{1}}{1} \alpha(1+c)^{m_{1}-1}+\cdots+\binom{l_{1}}{m_{1}} \alpha^{m_{1}}\right\}
\end{aligned}
$$

with a relation

$$
c^{m_{1}}+\mu_{1}^{1} c^{m_{1}-1}+\mu_{2}^{1} c^{m_{1}-2}+\cdots+\mu_{m_{1}}^{1}=0
$$

The Stiefel-Whitney class of ξ is

$$
W(\xi)=1+c,
$$

and the Stiefel-Whitney class of the bundle $\mu_{2} \oplus\left(\mu_{3} \otimes \xi\right)$ is

$$
\begin{aligned}
W\left(\mu_{2} \oplus\left(\mu_{3} \otimes \xi\right)\right) & =\left(1+\mu_{1}^{2}+\cdots+\mu_{m_{2}}^{2}\right)\left\{(1+c)^{m_{3}}+\mu_{1}^{3}(1+c)^{m_{3}-1}+\cdots+\mu_{m_{3}}^{3}\right\} \\
& =(1+\alpha)^{l_{2}}\left\{(1+c)^{m_{3}}+\binom{l_{3}}{1} \alpha(1+c)^{m_{3}-1}+\cdots+\binom{l_{3}}{m_{3}} \alpha^{m_{3}}\right\} .
\end{aligned}
$$

On the component $R P_{2}(2 m+1)$, we write

$$
\begin{aligned}
& W\left(R P_{2}(2 m+1)\right)=1+v_{1}+v_{2}+\cdots+v_{2 m+1}=(1+\beta)^{2 m+2}, \\
& W\left(\nu_{i}\right)=1+\nu_{1}^{i}+\nu_{2}^{i}+\cdots+\nu_{n_{i}}^{i}=(1+\beta)^{t_{i}} \\
& \quad=1+\binom{t_{i}}{1} \beta+\binom{t_{i}}{2} \beta^{2}+\cdots+\binom{t_{i}}{n_{i}} \beta^{n_{i}}
\end{aligned}
$$

where $\beta \in H^{1}\left(R P_{2}(2 m+1) ; Z_{2}\right)$ is the generator, $n_{i}=\operatorname{dim}\left(\nu_{i}\right)$ for $i=1,2,3$. If 2^{a} is the greatest power of 2 of the 2 -adic expansion of $2 m+1$, and $t_{i} \equiv q\left(\bmod 2^{\text {a+1 }}\right)$, then $(1+\beta)^{t_{i}}=(1+\beta)^{q}$. We can assume $t_{i} \leq 2^{a+1}-1$.

Also, we denote by $\lambda \rightarrow R P_{2}\left(\nu_{1}\right)$ the line bundle for the double cover $S\left(\nu_{1}\right) \rightarrow R P\left(\nu_{1}\right)$, and by

$$
W(\lambda)=1+d
$$

its Stiefel-Whitney class. One has

$$
\begin{aligned}
W\left(R P_{2}\left(\nu_{1}\right)\right) & =\left(1+v_{1}+v_{2}+\cdots+v_{2 m+1}\right)\left\{(1+d)^{n_{1}}+\nu_{1}^{1}(1+d)^{n_{1}-1}+\cdots+\nu_{n_{1}}^{1}\right\} \\
& =(1+\beta)^{2 m+2}\left\{(1+d)^{n_{1}}+\binom{t_{1}}{1} \beta(1+d)^{n_{1}-1}+\cdots+\binom{t_{1}}{n_{1}} \beta^{n_{1}}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
W\left(\nu_{2} \oplus\left(\nu_{3} \otimes \lambda\right)\right) & =\left(1+\nu_{1}^{2}+\nu_{2}^{2}+\cdots+\nu_{n_{2}}^{2}\right)\left\{(1+d)^{n_{3}}+\nu_{1}^{3}(1+d)^{n_{3}-1}+\cdots+\nu_{n_{3}}^{3}\right\} \\
& =(1+\beta)^{t_{2}}\left\{(1+d)^{n_{3}}+\binom{t_{3}}{1} \beta(1+d)^{n_{3}-1}+\cdots+\binom{t_{3}}{n_{3}} \beta^{n_{3}}\right\} .
\end{aligned}
$$

For any integer r, we introduce the following characteristic classes which were initially introduced in [17],

$$
W[r]=\frac{W\left(R P_{1}\left(\mu_{1}\right)\right)}{(1+c)^{m_{1}-r}}
$$

and

$$
U[r]=\frac{W\left(\mu_{2} \oplus\left(\mu_{3} \otimes \xi\right)\right)}{(1+c)^{m_{3}-r}} .
$$

The classes $W[r]_{t}$ and $U[r]_{l}$ are polynomials in $W_{i}\left(R P_{1}\left(\mu_{1}\right)\right), c, W_{j}\left(\mu_{2} \oplus\left(\mu_{3} \otimes \xi\right)\right)$, hence they can be used to give characteristic numbers. Also, these classes satisfy the following special properties:

$$
W[r]_{2 r-1}=w_{r-1} c^{r}+\text { terms with smaller } c \text { powers },
$$

$W[r]_{2 r}=w_{r} c^{r}+$ terms with smaller c powers, $W[r]_{2 r+1}=\left(w_{r+1}+\mu_{r+1}^{1}\right) c^{r}+$ terms with smaller c powers, $W[r]_{2 r+2}=\mu_{r+1}^{1} c^{r+1}+$ terms with smaller c powers,
and in the same way,

$$
\begin{aligned}
& U[r]_{2 r-1}=\mu_{r-1}^{2} c^{r}+\text { terms with smaller } c \text { powers, } \\
& U[r]_{2 r}=\mu_{r}^{2} c^{r}+\text { terms with smaller } c \text { powers, } \\
& U[r]_{2 r+1}=\left(\mu_{r+1}^{2}+\mu_{r+1}^{3}\right) c^{r}+\text { terms with smaller } c \text { powers, } \\
& U[r]_{2 r+2}=\mu_{r+1}^{3} c^{r+1}+\text { terms with smaller } c \text { powers. }
\end{aligned}
$$

Now we consider a Z_{2}^{2}-action (M, Φ) with fixed data

$$
\left(R P_{1}(2 m+1) ; \mu_{1}, \mu_{2}, \mu_{3}\right) \cup\left(R P_{2}(2 m+1) ; \nu_{1}, \nu_{2}, \nu_{3}\right)
$$

where at least two $\mu_{i}^{\prime} s$ have dimension greater than $2 m+1$, and at least one ν_{i} has dimension greater than $2 m+1$. In order to obtain our result, we only need to prove $\left(R P_{1}(2 m+1) ; \mu_{1}, \mu_{2}, \mu_{3}\right)$ $\cup\left(R P_{2}(2 m+1) ; \nu_{1}, \nu_{2}, \nu_{3}\right)$ bounds, that is, to show that every number of $\left(R P_{1}(2 m+1) ; \mu_{1}, \mu_{2}, \mu_{3}\right)$ is equal to every characteristic number of $\left(R P_{2}(2 m+1) ; \nu_{1}, \nu_{2}, \nu_{3}\right)$. For our purpose, we need the following notations: For a sequence $\omega=\left(j_{1}, j_{2}, \cdots, j_{s}\right)$ of natural numbers, one lets $|\omega|=$ $j_{1}+j_{2}+\cdots+j_{s}$, and for $\mu=1+\mu_{1}+\cdots+\mu_{p}$, let $\mu_{\omega}=\mu_{j_{1}} \mu_{j_{2}} \cdots \mu_{j_{s}}$ be the product of the classes μ_{j}.

Taking sequences $\omega=\left(j_{1}, j_{2}, \cdots, j_{s}\right)$ and $\omega_{i}=\left(j_{1}^{i}, j_{2}^{i}, \cdots, j_{s}^{i}\right)$ for $i=1,2,3$, with $|\omega|+$ $\sum_{i=1}^{3}\left|\omega_{i}\right|=2 m+1$, we consider the characteristic numbers

$$
W\left(R P_{1}(2 m+1)\right)_{\omega} \prod_{i=1}^{3} W\left(\mu_{i}\right)_{\omega_{i}}\left[R P_{1}(2 m+1)\right]
$$

and

$$
W\left(R P_{2}(2 m+1)\right)_{\omega} \prod_{i=1}^{3} W\left(\nu_{i}\right)_{\omega_{i}}\left[R P_{2}(2 m+1)\right]
$$

We will prove

$$
\begin{aligned}
& W\left(R P_{1}(2 m+1)\right)_{\omega} \prod_{i=1}^{3} W\left(\mu_{i}\right)_{\omega_{i}}\left[R P_{1}(2 m+1)\right] \\
= & W\left(R P_{2}(2 m+1)\right)_{\omega} \prod_{i=1}^{3} W\left(\nu_{i}\right)_{\omega_{i}}\left[R P_{2}(2 m+1)\right]
\end{aligned}
$$

For $i=1,2,3$, denote by P_{i} the component of $F_{T_{i}}$ containing $R P_{1}(2 m+1)$ and Q_{i} the component of $F_{T_{i}}$ containing $R P_{2}(2 m+1)$. Then either $P_{i}=Q_{i}$ or $P_{i} \cap Q_{i}=\varnothing$.

Suppose that $P_{i} \cap Q_{i}=\varnothing$ holds for some $i \in\{1,2,3\}$. Let us suppose first that this number is 2 or 3 . Because of the hypothesis concerning the number of bundles with dimension greater than $2 m+1$, there exists $i \in\{1,2,3\}$ such that $P_{i} \cap Q_{i}=\varnothing$ and $\operatorname{dim}\left(\mu_{i}\right)>2 m+1$. By
applying Lemma 2.2 on the component $R P_{1}(2 m+1) \subset P_{i}$, one concludes that $\left(R P_{1}(2 m+\right.$ 1); $\mu_{1}, \mu_{2}, \mu_{3}$) bounds simultaneously, thus it can be equivariantly removed to give a Z_{2}^{2}-action (N, Ψ), equivariantly bordant to (M, Φ), and with fixed data $\left(R P_{2}(2 m+1) ; \nu_{1}, \nu_{2}, \nu_{3}\right)$. Since at least one ν_{j} has $\operatorname{dim}\left(\nu_{j}\right)>2 m+1$, using Lemma 2.2 on the component $R P_{2}(2 m+1) \subset Q_{j}$, one concludes that $\left(R P_{2}(2 m+1) ; \nu_{1}, \nu_{2}, \nu_{3}\right)$ bounds simultaneously. It follows that (N, Ψ) (and thus $(M, \Phi))$ bounds equivariantly, and the theorem is proved.

In this way, we could suppose that there exists a unique $i \in\{1,2,3\}$ such that $P_{i} \cap Q_{i}=\varnothing$ or $P_{i}=Q_{i}$.

By making permutation on $i \in\{1,2,3\}$ if necessary, we can suppose with out loss that

$$
P_{1}=Q_{1}, \quad P_{2} \cap Q_{2}=\varnothing\left(\text { or } P_{2}=Q_{2}\right), \quad P_{3}=Q_{3}, \quad m_{1}>2 m+1, m_{3}>2 m+1 .
$$

Since $P_{1}=Q_{1}$ and $P_{3}=Q_{3}$, one has $\operatorname{dim}\left(\nu_{1}\right)=m_{1}$ and $\operatorname{dim}\left(\nu_{3}\right)=m_{3}$. Now

$$
2 m+1+m_{1}+m_{2}+m_{3}=2 m+1+m_{1}+\operatorname{dim}\left(\nu_{2}\right)+m_{3},
$$

thus $\operatorname{dim}\left(\nu_{2}\right)=m_{2}$.
From Lemma 2.1 (with $F_{0}=P_{1}$ and $\bigcup_{i=0}^{l-1} F_{0}^{i}=R P_{1}(2 m+1) \cup R P_{2}(2 m+1)$), one has that

$$
\left(R P\left(\mu_{1}\right) ; \xi, \mu_{2} \oplus\left(\mu_{3} \otimes \xi\right)\right)
$$

is bordant to

$$
\left(R P\left(\nu_{1}\right) ; \lambda, \nu_{2} \oplus\left(\nu_{3} \otimes \lambda\right)\right)
$$

in the bordism group

$$
N_{2 m+m_{1}}\left(\mathrm{BO}(1) \times \mathrm{BO}\left(m_{2}+m_{3}\right)\right)
$$

Then any class of dimension $2 m+m_{1}$ given by a product of the class

$$
W_{i}\left(R P\left(\mu_{1}\right)\right), c, W_{j}\left(\mu_{2} \oplus\left(\mu_{3} \otimes \xi\right)\right)
$$

evaluated on $\left[R P\left(\mu_{1}\right)\right]$, gives the same characteristic number as the one obtained by the corresponding product of the classes

$$
W_{i}\left(R P\left(\nu_{1}\right)\right), d, W_{j}\left(\nu_{2} \oplus\left(\nu_{3} \otimes \lambda\right)\right)
$$

evaluated on $\left[R P\left(\nu_{1}\right)\right]$. To find the value of such numbers, we have a formula of Conner (see [1, Lemma 3.1]),

$$
\alpha^{i} c^{j}\left[R P\left(\mu_{1}\right)\right]= \begin{cases}\alpha^{i} \bar{W}_{j-m_{1}+1}\left(\mu_{1}\right)\left[R P_{1}(2 m+1)\right], & j \geq m_{1}-1, \\ 0, & j<m_{1}-1,\end{cases}
$$

where $i+j=2 m+m_{1}$ and $\bar{W}\left(\mu_{1}\right)=\frac{1}{W\left(\mu_{1}\right)}$ is the dual Stiefel-Whitney class of μ_{1}.

$$
\beta^{i} d^{j}\left[R P\left(\nu_{1}\right)\right]= \begin{cases}\beta^{i} \bar{W}_{j-n_{1}+1}\left(\nu_{1}\right)\left[R P_{2}(2 m+1)\right], & j \geq n_{1}-1, \\ 0, & j<n_{1}-1,\end{cases}
$$

where $i+j=2 m+n_{1}$ and $\bar{W}\left(\nu_{1}\right)=\frac{1}{W\left(\nu_{1}\right)}$ is the dual Stiefel-Whitney class of ν_{1}. We apply the above equations to prove that

$$
\left(R P_{1}(2 m+1) ; \mu_{1}, \mu_{2}, \mu_{3}\right) \cup\left(R P_{2}(2 m+1) ; \nu_{1}, \nu_{2}, \nu_{3}\right)
$$

bounds.
We know $W\left(\mu_{1}\right)=(1+\alpha)^{l_{1}}, W\left(\mu_{2}\right)=(1+\alpha)^{l_{2}}, W\left(\mu_{3}\right)=(1+\alpha)^{l_{3}}$, $W\left(\nu_{1}\right)=(1+$ $\beta)^{t_{1}}, W\left(\nu_{2}\right)=(1+\beta)^{t_{2}}, W\left(\nu_{3}\right)=(1+\beta)^{t_{3}}$. If t_{1}, t_{2} and t_{3} are even (or l_{1}, l_{2} and l_{3} are even), one concludes that $\left(R P_{2}(2 m+1) ; \nu_{1}, \nu_{2}, \nu_{3}\right)$ (or $\left.\left(R P_{1}(2 m+1) ; \mu_{1}, \mu_{2}, \mu_{3}\right)\right)$ bounds simultaneously, thus it can be equivariantly removed to give a Z_{2}^{2}-action (N, Ψ), equivariantly bordant to (M, Φ), and with fixed data $\left(R P_{1}(2 m+1) ; \mu_{1}, \mu_{2}, \mu_{3}\right)$ (or $\left.\left(R P_{2}(2 m+1) ; \nu_{1}, \nu_{2}, \nu_{3}\right)\right)$. Since at least two μ_{i}^{\prime} s (or one ν_{i}) have $\operatorname{dim}\left(\mu_{i}\right)>2 m+1$ (has $\operatorname{dim}\left(\nu_{i}\right)>2 m+1$), using Lemma 2.2 on the component $R P_{1}(2 m+1) \subset P_{i}$ (or $\left.R P_{2}(2 m+1) \subset Q_{i}\right)$, one concludes that $\left(R P_{1}(2 m+1) ; \mu_{1}, \mu_{2}, \mu_{3}\right)\left(\left(R P_{2}(2 m+1) ; \nu_{1}, \nu_{2}, \nu_{3}\right)\right)$ bounds simultaneously. It follows that (N, Ψ) (and thus $(M, \Phi))$ bounds equivariantly, and the theorem is proved. So, we always suppose that not all l_{1}, l_{2} and l_{3} are even (or t_{1}, t_{2} and t_{3} are even). In this case, we only need to prove $l_{1}=t_{1}, l_{2}=t_{2}, l_{3}=t_{3}$. The proof is divided into several cases.

Proposition $3.1 l_{1}=t_{1}$.
Proof If $l_{1} \neq t_{1}$, we will prove that there does not exist Z_{2}^{2}-action (M, Φ). We divided the arguments into the following cases.
(1) l_{1} is odd and t_{1} is even. Then on $R P_{1}(2 m+1)$,

$$
W[0]_{1}=\alpha
$$

On $R P_{2}(2 m+1)$,

$$
W[0]_{1}=0 .
$$

We form the class $\left(W[0]_{1}\right)^{2 m+1} c^{m_{1}-1}$ on $R P_{1}(2 m+1)$, and the corresponding class on $R P_{2}(2 m+$ $1)$ is $\left(W[0]_{1}\right)^{2 m+1} d^{m_{1}-1}$, then

$$
\begin{aligned}
& \left(W[0]_{1}\right)^{2 m+1} c^{m_{1}-1}\left[R P\left(\mu_{1}\right)\right]=\alpha^{2 m+1} c^{m_{1}-1}\left[R P\left(\mu_{1}\right)\right]=1, \\
& \left(W[0]_{1}\right)^{2 m+1} d^{m_{1}-1}\left[R P\left(\nu_{1}\right)\right]=0 .
\end{aligned}
$$

In the same way, we can prove the case that l_{1} is even and t_{1} is odd.
This is a contradiction.
(2) l_{1} is odd and t_{1} is odd and $l_{1} \neq t_{1}$. Let

$$
2^{s}=\min \left\{2^{x} \left\lvert\,\binom{ l_{1}}{2^{x}} \neq\binom{ t_{1}}{2^{x}}\right.\right\} .
$$

We suppose $\binom{l_{1}}{2^{s}}=1,\binom{t_{1}}{2^{s}}=0$. Then on $R P_{1}(2 m+1)$,

$$
\begin{aligned}
& W[0]_{1}=\alpha, \\
& W\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2}=\binom{l_{1}}{2^{s}} \alpha^{2^{s}} c^{2^{s}}+\text { terms with smaller } c \text { powers }
\end{aligned}
$$

$$
=\alpha^{2^{s}} c^{2^{s}}+\text { terms with smaller } c \text { powers. }
$$

On $R P_{2}(2 m+1)$,

$$
\begin{aligned}
& W[0]_{1}=\beta, \\
& \begin{aligned}
W\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} & =\binom{t_{1}}{2^{s}} \beta^{2^{s}} d^{2^{s}}+\text { terms with smaller } d \text { powers } \\
& =0 \beta^{2^{s}} d^{2^{s}}+\text { terms with smaller } d \text { powers. }
\end{aligned}
\end{aligned}
$$

We form the class $\left(W[0]_{1}\right)^{2 m+1-2^{s}} W\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} c^{m_{1}-1-2^{s}}$ on $R P_{1}(2 m+1)$, and the corresponding class on $R P_{2}(2 m+1)$ is $\left(W[0]_{1}\right)^{2 m+1-2^{s}} W\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} d^{m_{1}-1-2^{s}}$. Then

$$
\begin{aligned}
& \left(W[0]_{1}\right)^{2 m+1-2^{s}} W\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} c^{m_{1}-1-2^{s}}\left[R P\left(\mu_{1}\right)\right] \\
= & \alpha^{2 m+1-2^{s}} \alpha^{2^{s}} c^{2^{s}} c^{m_{1}-1-2^{s}}\left[R P\left(\mu_{1}\right)\right] \\
= & \alpha^{2 m+1} c^{m_{1}-1}\left[R P\left(\mu_{1}\right)\right] \\
= & 1, \\
& \left(W[0]_{1}\right)^{2 m+1-2^{s}} W\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} d^{m_{1}-1-2^{s}}\left[R P\left(\nu_{1}\right)\right]=0 .
\end{aligned}
$$

This is a contradiction.
(3) l_{1} and t_{1} are even and $l_{1} \neq t_{1}$. Let

$$
2^{s}=\min \left\{2^{x} \left\lvert\,\binom{ l_{1}}{2^{x}} \neq\binom{ t_{1}}{2^{x}}\right.\right\} .
$$

We suppose $\binom{l_{1}}{2^{s}}=1,\binom{t_{1}}{2^{s}}=0$.
Since not all l_{1}, l_{2} and l_{3} are even, one of l_{2} and l_{3} must be odd. If l_{2} is odd, then on $R P_{1}(2 m+1)$,

$$
\begin{aligned}
W\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} & =\binom{l_{1}}{2^{s}} \alpha^{2^{s}} c^{2^{s}}+\text { terms with smaller } c \text { powers } \\
& =\alpha^{2^{s}} c^{2^{s}}+\text { terms with smaller } c \text { powers },
\end{aligned}
$$

$U[1]_{2}=\alpha c+$ terms with smaller c powers.
On $R P_{2}(2 m+1)$,

$$
\begin{aligned}
& \begin{aligned}
W\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} & =\binom{t_{1}}{2^{s}} \beta^{2^{s}} d^{2^{s}}+\text { terms with smaller } d \text { powers } \\
& =0{\beta^{2^{s}} d^{2^{s}}+\text { terms with smaller } d \text { powers, }}_{U[1]_{2}=\binom{t_{2}}{1} \beta d+\text { terms with smaller } d \text { powers. }}
\end{aligned} .
\end{aligned}
$$

We form the class $\left(U[1]_{2}\right)^{2 m+1-2^{s}} W\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} c^{m_{1}-2 m-2}$ on $R P_{1}(2 m+1)$, and the corresponding class on $R P_{2}(2 m+1)$ is $\left(U[1]_{2}\right)^{2 m+1-2^{s}} W\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} d^{m_{1}-2 m-2}$. Then

$$
\left(U[1]_{2}\right)^{2 m+1-2^{s}} W\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} c^{m_{1}-2 m-2}\left[R P\left(\mu_{1}\right)\right]
$$

$$
\begin{aligned}
= & \alpha^{2 m+1-2^{s}} c^{2 m+1-2^{s}} \alpha^{2^{s}} c^{2^{s}} c^{m_{1}-2 m-2}\left[R P\left(\mu_{1}\right)\right] \\
= & \alpha^{2 m+1} c^{m_{1}-1}\left[R P\left(\mu_{1}\right)\right] \\
= & 1 \\
& \left(U[1]_{2}\right)^{2 m+1-2^{s}} W\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} d^{m_{1}-2 m-2}\left[R P\left(\nu_{1}\right)\right]=0 .
\end{aligned}
$$

This is a contradiction.
If l_{3} is odd, on $R P_{1}(2 m+1)$,

$$
\begin{aligned}
W\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} & =\binom{l_{1}}{2^{s}} \alpha^{2^{s}} c^{2^{s}}+\text { terms with smaller } c \text { powers } \\
& =\alpha^{2^{s}} c^{2^{s}}+\text { terms with smaller } c \text { powers },
\end{aligned}
$$

$$
U[0]_{2}=\alpha c+\text { terms with smaller } c \text { powers. }
$$

On $R P_{2}(2 m+1)$,

$$
\begin{aligned}
& \begin{aligned}
& W\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2}=\binom{t_{1}}{2^{s}} \beta^{2^{s}} d^{2^{s}}+\text { terms with smaller } d \text { powers } \\
&=0 \beta^{2^{s}} d^{2^{s}}+\text { terms with smaller } d \text { powers, } \\
& U[0]_{2}=\binom{t_{3}}{1} \beta d+\text { terms with smaller } d \text { powers. }
\end{aligned} .
\end{aligned}
$$

We form the class $\left(U[0]_{2}\right)^{2 m+1-2^{s}} W\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} c^{m_{1}-2 m-2}$ on $R P_{1}(2 m+1)$, and the corresponding class on $R P_{2}(2 m+1)$ is $\left(U[0]_{2}\right)^{2 m+1-2^{s}} W\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} d^{m_{1}-2 m-2}$. Then

$$
\begin{aligned}
& \left(U[0]_{2}\right)^{2 m+1-2^{s}} W\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} c^{m_{1}-2 m-2}\left[R P\left(\mu_{1}\right)\right] \\
= & \alpha^{2 m+1-2^{s}} c^{2 m+1-2^{s}} \alpha^{2^{s}} c^{2^{s}} c^{m_{1}-2 m-2}\left[R P\left(\mu_{1}\right)\right] \\
= & \alpha^{2 m+1} c^{m_{1}-1}\left[R P\left(\mu_{1}\right)\right] \\
= & 1, \\
& \left(U[0]_{2}\right)^{2 m+1-2^{s}} W\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} d^{m_{1}-2 m-2}\left[R P\left(\nu_{1}\right)\right]=0 .
\end{aligned}
$$

This is a contradiction.
Proposition 3.1 holds.
Proposition $3.2 l_{2}=t_{2}$.
Proof If $l_{2} \neq t_{2}$, we will prove that there does not exist Z_{2}^{2}-action (M, Φ). We divided the arguments into the following cases.
(1) l_{2} is odd and t_{2} is even. Then on $R P_{1}(2 m+1)$,

$$
U[1]_{2}=\alpha c+\text { terms with smaller } c \text { powers. }
$$

On $R P_{2}(2 m+1)$,

$$
U[1]_{2}=0 \beta d+\text { terms with smaller } d \text { powers. }
$$

We form the class $\left(U[1]_{2}\right)^{2 m+1} c^{m_{1}-2 m-2}$ on $R P_{1}(2 m+1)$, and the corresponding class on $R P_{2}(2 m+1)$ is $\left(U[1]_{2}\right)^{2 m+1} d^{m_{1}-2 m-2}$. Then

$$
\begin{aligned}
& \left(U[1]_{2}\right)^{2 m+1} c^{m_{1}-2 m-2}\left[R P\left(\mu_{1}\right)\right]=\alpha^{2 m+1} c^{m_{1}-1}\left[R P\left(\mu_{1}\right)\right]=1, \\
& \left(U[1]_{2}\right)^{2 m+1} d^{m_{1}-2 m-2}\left[R P\left(\nu_{1}\right)\right]=0 .
\end{aligned}
$$

In the same way, we can prove the case that l_{2} is even and t_{2} is odd.
This is a contradiction.
(2) l_{2} is odd and t_{2} is odd and $l_{2} \neq t_{2}$. Let

$$
2^{s}=\min \left\{2^{x} \left\lvert\,\binom{ l_{2}}{2^{s}} \neq\binom{ t_{2}}{2^{x}}\right.\right\} .
$$

We suppose $\binom{l_{2}}{2^{s}}=1,\binom{t_{2}}{2^{s}}=0$.
On $R P_{1}(2 m+1)$,

$$
\begin{aligned}
& U[1]_{2}=\alpha c+\text { terms with smaller } c \text { powers }, \\
& \begin{aligned}
U\left[2^{s}\right]_{2^{s+1}} & =\binom{l_{2}}{2^{s}} \alpha^{2^{s}} c^{2^{s}}+\text { terms with smaller } c \text { powers } \\
& =\alpha^{2^{s}} c^{2^{s}}+\text { terms with smaller } c \text { powers. }
\end{aligned}
\end{aligned}
$$

On $R P_{2}(2 m+1)$,

$$
\begin{aligned}
& U[1]_{2}=\beta d+\text { terms with smaller } d \text { powers, } \\
& \begin{aligned}
U\left[2^{s}\right]_{2^{s+1}} & =\binom{t_{2}}{2^{s}} \beta^{2^{s}} d^{2^{s}}+\text { terms with smaller } d \text { powers } \\
& =0 \beta^{2^{s}} d^{2^{s}}+\text { terms with smaller } d \text { powers. }
\end{aligned}
\end{aligned}
$$

We form the class $U\left[2^{s}\right]_{2^{s+1}}\left(U[1]_{2}\right)^{2 m+1-2^{s}} c^{m_{1}-2 m-2}$ on $R P_{1}(2 m+1)$, and the corresponding class on $R P_{2}(2 m+1)$ is $U\left[2^{s}\right]_{2^{s+1}}\left(U[1]_{2}\right)^{2 m+1-2^{s}} d^{m_{1}-2 m-2}$. Then

$$
\begin{aligned}
& U\left[2^{s}\right]_{2^{s+1}}\left(U[1]_{2}\right)^{2 m+1-2^{s}} c^{m_{1}-2 m-2}\left[R P\left(\mu_{1}\right)\right] \\
= & \alpha^{2^{s}} c^{2^{s}} \alpha^{2 m+1-2^{s}} c^{2 m+1-2^{s}} c^{m_{1}-2 m-2}\left[R P\left(\mu_{1}\right)\right] \\
= & \alpha^{2 m+1} c^{m_{1}-1}\left[R P\left(\mu_{1}\right)\right] \\
= & 1, \\
& U\left[2^{s}\right]_{2^{s+1}}\left(U[1]_{2}\right)^{2 m+1-2^{s}} d^{m_{1}-2 m-2}\left[R P\left(\nu_{1}\right)\right]=0 .
\end{aligned}
$$

This is a contradiction.
(3) l_{2} and t_{2} are even and $l_{2} \neq t_{2}$. Let

$$
2^{s}=\min \left\{2^{x} \left\lvert\,\binom{ l_{2}}{2^{x}} \neq\binom{ t_{2}}{2^{x}}\right.\right\} .
$$

We suppose $\binom{l_{2}}{2^{s}}=1,\binom{t_{2}}{2^{s}}=0$.

Since not all l_{1}, l_{2} and l_{3} are even, one of l_{1} and l_{3} must be odd. If l_{1} is odd, then on $R P_{1}(2 m+1)$,

$$
\begin{aligned}
& W[0]_{2}=\alpha c+\text { terms with smaller } c \text { powers, } \\
& \begin{aligned}
U\left[2^{s}\right]_{2^{s+1}} & =\binom{l_{2}}{2^{s}} \alpha^{2^{s}} c^{2^{s}}+\text { terms with smaller } c \text { powers } \\
& =\alpha^{2^{s}} c^{2^{s}}+\text { terms with smaller } c \text { powers. }
\end{aligned}
\end{aligned}
$$

On $R P_{2}(2 m+1)$, since $l_{1}=t_{1}$, so

$$
\begin{aligned}
& W[0]_{2}=\beta d+\text { terms with smaller } d \text { powers, } \\
& \begin{aligned}
U\left[2^{s}\right]_{2^{s+1}} & =\binom{t_{2}}{2^{s}} \beta^{2^{s}} d^{2^{s}}+\text { terms with smaller } d \text { powers } \\
& =0 \beta^{2^{s}} d^{2^{s}}+\text { terms with smaller } d \text { powers. }
\end{aligned}
\end{aligned}
$$

We form the class $\left(W[0]_{2}\right)^{2 m+1-2^{s}} U\left[2^{s}\right]_{2^{s+1}} c^{m_{1}-2 m-2}$ on $R P_{1}(2 m+1)$, and the corresponding class on $R P_{2}(2 m+1)$ is $\left(W[0]_{2}\right)^{2 m+1-2^{s}} U\left[2^{s}\right]_{2^{s+1}} d^{m_{1}-2 m-2}$. Then

$$
\begin{aligned}
&\left(W[0]_{2}\right)^{2 m+1-2^{s}} U\left[2^{s}\right]_{2^{s+1}} c^{m_{1}-2 m-2}\left[R P\left(\mu_{1}\right)\right] \\
&= \alpha^{2 m+1-2^{s}} c^{2 m+1-2^{s}} \alpha^{2^{s}} c^{2^{s}} c^{m_{1}-2 m-2} \\
&\left.R P\left(\mu_{1}\right)\right] \\
&= \alpha^{2 m+1} c^{m_{1}-1}[R P(2 m+1)] \\
&= 1, \\
&\left(W[0]_{2}\right)^{2 m+1-2^{s}} U\left[2^{s}\right]_{2^{s+1}} d^{m_{1}-2 m-2}\left[R P\left(\nu_{1}\right)\right]=0 .
\end{aligned}
$$

This is a contradiction.
If l_{3} is odd, on $R P_{1}(2 m+1)$,

$$
\begin{aligned}
& U[0]_{2}=\alpha c+\text { terms with smaller } c \text { powers } \\
& U\left[2^{s}\right]_{2^{s+1}}=\alpha^{2^{s}} c^{2^{s}}+\text { terms with smaller } c \text { powers. }
\end{aligned}
$$

On $R P_{2}(2 m+1)$,

$$
\begin{aligned}
U[0]_{2} & =\binom{t_{3}}{1} \beta d+\text { terms with smaller } d \text { powers, } \\
U\left[2^{s}\right]_{2^{s+1}} & =0 \beta^{2^{s}} d^{2^{s}}+\text { terms with smaller } d \text { powers. }
\end{aligned}
$$

We form the class $\left(U[0]_{2}\right)^{2 m+1-2^{s}} U\left[2^{s}\right]_{2^{s}+1} c^{m_{1}-2 m-2}$ on $R P_{1}(2 m+1)$, and the corresponding class on $R P_{2}(2 m+1)$ is $\left(U[0]_{2}\right)^{2 m+1-2^{s}} U\left[2^{s}\right]_{2^{s}+1} d^{m_{1}-2 m-2}$. Then

$$
\begin{aligned}
& \left(U[0]_{2}\right)^{2 m+1-2^{s}} U\left[2^{s}\right]_{2^{s}+1} c^{m_{1}-2 m-2}\left[R P\left(\mu_{1}\right)\right] \\
= & \alpha^{2 m+1-2^{s}} c^{2 m+1-2^{s}} \alpha^{2^{s}} c^{2^{s}} c^{m_{1}-2 m-2}\left[R P\left(\mu_{1}\right)\right] \\
= & \alpha^{2 m+1} c^{m_{1}-1}\left[R P\left(\mu_{1}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
= & 1 \\
& \left(U[0]_{2}\right)^{2 m+1-2^{s}} U\left[2^{s}\right]_{2^{s}+1} d^{m_{1}-2 m-2}\left[R P\left(\nu_{1}\right)\right]=0 .
\end{aligned}
$$

This is a contradiction.
Proposition 3.2 holds.
Proposition $3.3 l_{3}=t_{3}$.
Proof If $l_{3} \neq t_{3}$, we will prove there does not exist Z_{2}^{2}-action (M, Φ). We divided the arguments into the following cases.
(1) l_{3} is odd and t_{3} is even. Then on $R P_{1}(2 m+1)$,

$$
U[0]_{2}=\alpha c+\text { terms with smaller } c \text { powers. }
$$

On $R P_{2}(2 m+1)$,

$$
U[0]_{2}=0 \beta d+\text { terms with smaller } d \text { powers. }
$$

We form the class $\left(U[0]_{2}\right)^{2 m+1} c^{m_{1}-2 m-2}$ on $R P_{1}(2 m+1)$, and the corresponding class on $R P_{2}(2 m+1)$ is $\left(U[0]_{2}\right)^{2 m+1} d^{m_{1}-2 m-2}$. Then

$$
\begin{aligned}
& \left(U[0]_{2}\right)^{2 m+1} c^{m_{1}-2 m-2}\left[R P\left(\mu_{1}\right)\right]=\alpha^{2 m+1} c^{m_{1}-1}\left[R P\left(\mu_{1}\right)\right]=1, \\
& \left(U[0]_{2}\right)^{2 m+1} d^{m_{1}-2 m-2}\left[R P\left(\nu_{1}\right)\right]=0 .
\end{aligned}
$$

In the same way, we can prove the case that l_{3} is even and t_{3} is odd.
This is a contradiction.
(2) l_{3} is odd and t_{3} is odd and $l_{3} \neq t_{3}$. Let

$$
2^{s}=\min \left\{2^{x} \left\lvert\,\binom{ l_{3}}{2^{x}} \neq\binom{ t_{3}}{2^{x}}\right.\right\} .
$$

We suppose $\binom{l_{3}}{2^{s}}=1,\binom{t_{3}}{2^{s}}=0$. Then on $R P_{1}(2 m+1)$,

$$
\begin{aligned}
& U[0]_{2}=\alpha c+\text { terms with smaller } c \text { powers }, \\
& \begin{aligned}
U\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} & =\binom{l_{3}}{2^{s}} \alpha^{2^{s}} c^{2^{s}}+\text { terms with smaller } c \text { powers } \\
& =\alpha^{2^{s}} c^{2^{s}}+\text { terms with smaller } c \text { powers. }
\end{aligned}
\end{aligned}
$$

On $R P_{2}(2 m+1)$,

$$
\begin{aligned}
& U[0]_{2}=\beta d+\text { terms with smaller } d \text { powers }, \\
& \begin{aligned}
U\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} & =\binom{t_{3}}{2^{s}} \beta^{2^{s}} d^{2^{s}}+\text { terms with smaller } d \text { powers } \\
& =0 \beta^{2^{s}} d^{2^{s}}+\text { terms with smaller } d \text { powers. }
\end{aligned}
\end{aligned}
$$

We form the class $\left(U[0]_{2}\right)^{2 m+1-2^{s}} U\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} c^{m_{1}-2 m-2}$ on $R P_{1}(2 m+1)$, and the corresponding class on $R P_{2}(2 m+1)$ is $\left(U[0]_{2}\right)^{2 m+1-2^{s}} U\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} d^{m_{1}-2 m-2}$. Then

$$
\left(U[0]_{2}\right)^{2 m+1-2^{s}} U\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} c^{m_{1}-2 m-2}\left[R P\left(\mu_{1}\right)\right]
$$

$$
\begin{aligned}
= & \alpha^{2 m+1-2^{s}} c^{2 m+1-2^{s}} \alpha^{2^{s}} c^{2^{s}} c^{m_{1}-2 m-2}\left[R P\left(\mu_{1}\right)\right] \\
= & \alpha^{2 m+1} c^{m_{1}-1}\left[R P\left(\mu_{1}\right)\right] \\
= & 1, \\
& \left(U[0]_{2}\right)^{2 m+1-2^{s}} U\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} d^{m_{1}-2 m-2}\left[R P\left(\nu_{1}\right)\right]=0 .
\end{aligned}
$$

This is a contradiction.
(3) l_{3} and t_{3} are even and $l_{3} \neq t_{3}$. Let

$$
2^{s}=\min \left\{2^{x} \left\lvert\,\binom{ l_{3}}{2^{x}} \neq\binom{ t_{3}}{2^{x}}\right.\right\} .
$$

We suppose $\binom{l_{3}}{2^{s}}=1,\binom{t_{3}}{2^{s}}=0$.
Since not all l_{1}, l_{2} and l_{3} are even, one of l_{1} and l_{2} must be odd. If l_{1} is odd, then on $R P_{1}(2 m+1)$,

$$
\begin{aligned}
& W[0]_{2}=\alpha c+\text { terms with smaller } c \text { powers }, \\
& \begin{aligned}
U\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} & =\binom{l_{3}}{2^{s}} \alpha^{2^{s}} c^{2^{s}}+\text { terms with smaller } c \text { powers } \\
& =\alpha^{2^{s}} c^{2^{s}}+\text { terms with smaller } c \text { powers. }
\end{aligned}
\end{aligned}
$$

On $R P_{2}(2 m+1)$,

$$
\begin{aligned}
& W[0]_{2}=\beta d+\text { terms with smaller } c \text { powers }, \\
& \begin{aligned}
U\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} & =\binom{t_{3}}{2^{s}} \beta^{2^{s}} d^{2^{s}}+\text { terms with smaller } d \text { powers } \\
& =0 \beta^{2^{s}} d^{2^{s}}+\text { terms with smaller } d \text { powers. }
\end{aligned}
\end{aligned}
$$

We form the class $\left(W[0]_{2}\right)^{2 m+1-2^{s}} U\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} c^{m_{1}-2 m-2}$ on $R P_{1}(2 m+1)$, and the corresponding class on $R P_{2}(2 m+1)$ is $\left(W[0]_{2}\right)^{2 m+1-2^{s}} U\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} c^{m_{1}-2 m-2}$. Then

$$
\begin{aligned}
& \left(W[0]_{2}\right)^{2 m+1-2^{s}} U\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} c^{m_{1}-2 m-2}\left[R P\left(\mu_{1}\right)\right] \\
= & \alpha^{2 m+1-2^{s}} c^{2 m+1-2^{s}} \alpha^{2^{s}} c^{2^{s}} c^{m_{1}-2 m-2}\left[R P\left(\mu_{1}\right)\right] \\
= & \alpha^{2 m+1} c^{m_{1}-1}\left[R P\left(\mu_{1}\right)\right] \\
= & 1, \\
& \left(W[0]_{2}\right)^{2 m+1-2^{s}} U\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} d^{m_{1}-2 m-2}\left[R P\left(\nu_{1}\right)\right]=0 .
\end{aligned}
$$

This is a contradiction.
If l_{2} is odd, on $R P_{1}(2 m+1)$,

$$
U[1]_{2}=\alpha c+\text { terms with smaller } c \text { powers },
$$

$U\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2}=\binom{l_{3}}{2^{s}} \alpha^{2^{s}} c^{2^{s}}+$ terms with smaller c powers $=\alpha^{2^{s}} c^{2^{s}}+$ terms with smaller c powers.

On $R P_{2}(2 m+1)$, since $l_{2}=t_{2}$, so

$$
\begin{aligned}
& U[1]_{2}=\beta d+\text { terms with smaller } d \text { powers, } \\
& \begin{aligned}
U\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} & =\binom{t_{3}}{2^{s}} \beta^{2^{s}} d^{2^{s}}+\text { terms with smaller } d \text { powers } \\
& =0 \beta^{2^{s}} d^{2^{s}}+\text { terms with smaller } d \text { powers. }
\end{aligned}
\end{aligned}
$$

We form the class $\left(U[1]_{2}\right)^{2 m+1-2^{s}} U\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} c^{m_{1}-2 m-2}$ on $R P_{1}(2 m+1)$, and the corresponding class on $R P_{2}(2 m+1)$ is $\left(U[1]_{2}\right)^{2 m+1-2^{s}} U\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} d^{m_{1}-2 m-2}$. Then

$$
\begin{aligned}
& \left(U[1]_{2}\right)^{2 m+1-2^{s}} U\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} c^{m_{1}-2 m-2}\left[R P\left(\mu_{1}\right)\right] \\
= & \alpha^{2 m+1-2^{s}} c^{2 m+1-2^{s}} \alpha^{2^{s}} c^{2^{s}} c^{m_{1}-2 m-2} \\
= & \alpha^{2 m+1} c^{m_{1}-1}\left[R P\left(\mu_{1}\right)\right] \\
= & 1, \\
& \left(U[1]_{2}\right)^{2 m+1-2^{s}} U\left[2^{s}-1\right]_{2\left(2^{s}-1\right)+2} d^{m_{1}-2 m-2}\left[R P\left(\nu_{1}\right)\right]=0 .
\end{aligned}
$$

This is a contradiction.
Proposition 3.3 holds.
From above discussions, we know that $l_{1}=t_{1}, l_{2}=t_{2}$ and $l_{3}=t_{3}$. If we take any sequences $\omega=\left(j_{1}, j_{2}, \cdots, j_{s}\right)$ and $\omega_{i}=\left(j_{1}^{i}, j_{2}^{i}, \cdots, j_{s}^{i}\right)$ for $i=1,2,3$ with $|\omega|+\sum_{i=1}^{3}\left|\omega_{i}\right|=2 m+1$, we have

$$
\begin{aligned}
& W\left(R P_{1}(2 m+1)\right) \omega \prod_{i=1}^{3} W\left(\mu_{i}\right)_{\omega_{i}}\left[R P_{1}(2 m+1)\right] \\
= & W\left(R P_{2}(2 m+1)\right) \omega \prod_{i=1}^{3} W\left(\mu_{i}\right)_{\omega_{i}}\left[R P_{2}(2 m+1)\right] .
\end{aligned}
$$

That is,

$$
\begin{aligned}
& W\left(R P_{1}(2 m+1)\right) \omega \prod_{i=1}^{3} W\left(\mu_{i}\right)_{\omega_{i}}\left[R P_{1}(2 m+1)\right] \\
& +W\left(R P_{2}(2 m+1)\right) \omega \prod_{i=1}^{3} W\left(\mu_{i}\right) \omega_{\omega_{i}}\left[R P_{2}(2 m+1)\right]=0 .
\end{aligned}
$$

We conclude that every characteristic number of $\left(R P_{1}(2 m+1) ; \mu_{1}, \mu_{2}, \mu_{3}\right)$ is equal to the characteristic number of $\left(R P_{2}(2 m+1), \nu_{1}, \nu_{2}, \nu_{3}\right)$. By [19] $\left(R P_{1}(2 m+1), \mu_{1}, \mu_{2}, \mu_{3}\right) \cup\left(R P_{2}(2 m+\right.$ 1), $\nu_{1}, \nu_{2}, \nu_{3}$) bounds simultaneously, (M, Φ) bounds equivariantly, and the theorem is proved.

Acknowledgement The authors would like to thank the anonymous reviewers for their careful reading and valuable suggestions.

References

[1] Conner, P. E., The bordism class of a bundle space, Michigan Math. J., 14, 1967, 289-303.
[2] Conner, P. E., Differentiable Periodic Maps, Springer-Verlag, Berlin, 1979.
[3] Hou, D. and Torrence, B., Involutions fixing the disjoint union of odd-dimensional projective spaces, Canad. Math. Bull., 37, 1994, 66-74.
[4] Kosniowski, C. and Stong, R. E., Involutions and characteristic numbers, Topology, 17, 1978, 309-330.
[5] Kosniowski, C. and Stong, R. E., $\left(Z_{2}\right)^{k}$-actions and characteristic numbers, Indiana Univ. Math. J., 28, 1979, 725-743.
[6] Li, J. Y. and Wang, Y. Y., Characteristic classes of vector bundles over $R P(h) \times H P(k)$, Topology Appl., 154, 2007, 1778-1793.
[7] Li, J. Y. and Wang, Y. Y., Involutions fixing $R P(2 m+1) \times C P(k)$, Chin. Ann. Math., 29A, 2008, 485-498.
[8] Lü, Z., Involutions fixing $R P^{\text {odd }} \sqcup P(h, i)$, I, Transactions Amer. Math. Soc.,354, 2002, 4539-4570.
[9] Lü, Z., Involutions fixing $R P^{\text {odd }} \sqcup P(h, i)$, II, Transactions Amer. Math. Soc., 356, 2004, 1291-1314.
[10] Meng, Y. Y. and Wang, Y. Y., Involutions with fixed point set $R P(2 m) \bigsqcup P(2 m, 2 n+1)$, Acta Mathematica Scientia B, 34, 2014, 331-342.
[11] Pergher, P. L. Q., The union of a connected manifold and a point as fixed set of commuting involutions, Topology Appl., 69, 1996, 71-81.
[12] Pergher, P. L. Q., Bordism of two commuting involutions, Proc. Amer. Math. Soc., 126, 1998, 2141-2149.
[13] Pergher, P. L. Q., $\left(Z_{2}\right)^{k}$-actions whose fixed data has a section, Trans. Amer. Math. Soc., 353, 2001, 175-189.
[14] Pergher, P. L. Q. and Figueira, F. G., Two commuting involutions fixing $F^{n} \cup F^{n-1}$, Geometriae Dedicata, 117, 2006, 181-193.
[15] Pergher, P. L. Q, Ramos, A, and Oliveira, R., Z_{2}^{k}-actions fixing $R P^{2} \cup R P^{\text {even }}$, Algebr. Geom. Topol., 7 , 2007, 29-45.
[16] Pergher, P. L. Q. and Ramos, A., Z_{2}^{k}-actions fixing $K_{d} P^{2^{s}} \cup K_{d} P^{\text {even }}$, Topology Appl., 156, 2009, 629-642.
[17] Pergher, P. L. Q. and Stong, R. E., Involutions fixing (point) $\cup F^{n}$, Transformation Groups, 6, 2001, 78-85.
[18] Royster, D. C., Involutions fixing the disjoint union of two projective spaces, Indiana Univ. Math. J., 29, 1980, 267-276.
[19] Stong, R. E., Equivariant bordism and $\left(Z_{2}\right)^{k}$-actions, Duke Math. J., 37, 1970, 779-785.
[20] Stong, R. E., Involutions fixing products of circles, Proc. Amer. Math. Soc., 119, 1993, 1005-1008.
[21] Zhao, S. Q. and Wang, Y. Y., Involutions fixing $\bigcup_{i=1}^{m} C P_{i}(1) \times H P_{i}(n)$, Acta Mathematica Scientia B, 32, 2012, 1021-1034.

[^0]: Manuscript received August 31, 2019. Revised December 19, 2020.
 ${ }^{1}$ School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China.
 E-mail: suqianzhao@126.com
 ${ }^{2}$ Corresponding author. School of Mathematical Sciences, Hebei Normal University, Shijiazhuang 050024, China. E-mail: yywang@hebtu.edu.cn
 ${ }^{3}$ School of Mathematical Sciences, Hebei Normal University, Shijiazhuang 050024, China.
 E-mail: yanjinglee@163.com
 *This work was supported by the National Natural Science Foundation of China (No. 11771116).

