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Abstract Since the great work on holomorphic curves into algebraic varieties intersect-

ing hypersurfaces in general position established by Ru in 2009, recently there has been

some developments on the second main theorem into algebraic varieties intersecting mov-

ing hypersurfaces targets. The main purpose of this paper is to give some interesting

improvements of Ru’s second main theorem for moving hypersurfaces targets located in

subgeneral position with index.
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1 Introduction and Main Results

It is well-known that in 1933, Cartan generalized Nevanlinna theory for meromorphic func-

tions to the case of linearly nondegenerate holomorphic curves into complex projective spaces

intersecting hyperplanes in general position, and conjectured that it is still true for moving hy-

perplanes targets. From then on, higher dimensional Nevanlinna theory has been studied widely

(see [7, 11, 16]). In 2009, Ru [13] proposed a great work on second main theorem of algebraically

nondegenerate holomorphic curves into smooth complex varieties intersecting hypersurfaces in

general position, which is a generalization of the Cartan’s second main theorem and his own

former result (see [12]) completely solving the Shiffman’s conjecture (see [14]) corresponding to

the Corvaja-Zannier’s theorem (see [1]) in Diophantine approximation (see [4]).

Thus, it is natural and interesting to investigate the Ru’s second main theorem into complex

projective spaces and even into complex algebraic varieties for the moving hypersurfaces targets.

Based on their affirmation of the Shiffman’s conjecture for moving hypersurfaces targets (see

[2]), recently, Dethloff and Tan [3] continue to prove successfully the following special case where

the coefficients of the polynomials Qj’s are constant and the variety V is smooth, namely, the

Ru’s second main theorem (see [13]).
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Theorem 1.1 (see [3]) Let V ⊂ P
n(C) be an irreducible (possibly singular) variety of

dimension ℓ, and let f be a nonconstant holomorphic map of C into V. Let D = {D1, · · · , Dq}
be a family of slowly moving hypersurfaces (with respect to f) in general position, and let

Q = {Q1, · · · , Qq} be the set of the defined homogeneous polynomials of D with degQj =

dj (j = 1, · · · , q) and Qj(f) 6≡ 0 for j = 1, · · · , q. Assume that f is algebraically nondegenerate

over KQ. Then, for any ε > 0,

q∑

j=1

( 1

dj

)
mf (r,Dj) ≤ (ℓ+ 1 + ε)Tf (r) (1.1)

holds for all r outside a set with finite Lebesgue measure.

For the special case V = Pn(C), Quang [8] recently gave a second main theorem with

truncated counting functions for meromorphic mappings into Pn(C) intersecting a family of

moving hypersurfaces in subgeneral position, which any be possibly good at the uniqueness

problems of meromorphic mappings.

Theorem 1.2 (see [8]) Let f be a nonconstant meromorphic map of Cm into Pn(C). Let

{Qi}qi=1 be a collection of slowly moving hypersurfaces in N -subgeneral position with degQj =

dj (1 ≤ j ≤ q). Assume that f is algebraically nondegenerate over KQ. Then, for any ε > 0,

(q − (N − n+ 1)(n+ 1)− ε)Tf (r) ≤
q∑

i=1

1

dj
N [L0](r, f∗Qi) + o(Tf (r)) (1.2)

holds for all r outside a set with finite Lebesgue measure, where

L0 :=

(
L+ n

n

)
p
(L+n

n )
(
(L+n

n )−1
)
(qn)−2

0 − 1

with

L := (n+ 1)d+ 2(N − n+ 1)(n+ 1)3I(ε−1)d,

where d := lcm(d1, · · · , dq) is the least common multiple of all {di}, and

p0 :=
[(L+n

n

)
(
(
L+n
n

)
− 1)

(
q
n

)
− 1

log(1 + ε
3(n+1)(N−n+1))

]2
.

In this paper, we mainly combine the methods in [3, 8, 17] together and adopt the new

concept of the index of subgeneral position due to Ji-Yan-Yu [6] to obtain some interesting

developments of Ru’s second main theorem for moving hypersurfaces targets, which are im-

provements and extensions of Theorems 1.1–1.2.

According to [6], we can give a similar definition for moving hypersurfaces located in m-

subgeneral position with index k.

Definition 1.1 Let V be an algebraic subvariety of Pn(C). Let {D1, · · · , Dq} be a family of

moving hypersurfaces of Pn(C). Let N and κ be two positive integers such that N ≥ dimV ≥ κ.

(a) The hypersurfaces {D1, · · · , Dq} are said to be in general position (or say in weakly

general position) in V if there exists z ∈ Cm (if this condition is satisfied for one z ∈ Cm,
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it is also satisfied for all z except for an analytic set of codimension ≥ 2) for any subset

I ⊂ {1, · · · , q} with ♯I ≤ dimV + 1,

codim
(⋂

i∈I

Di(z) ∩ V
)
≥ ♯I.

(b) The hypersurfaces {D1, · · · , Dq} are said to be in N -subgeneral position in V if there

exists z ∈ Cm (if this condition is satisfied for one z ∈ Cm, it is also satisfied for all z except

for an analytic set of codimension ≥ 2) for any subset I ⊂ {1, · · · , q} with ♯I ≤ N + 1,

dim
(⋂

i∈I

Di(z) ∩ V
)
≤ N − ♯I.

(c) The hypersurfaces {D1, · · · , Dq} are said to be in N -general position with index κ in

V if D1, · · · , Dq are in N -subgeneral position and if there exists z ∈ Cm (if this condition is

satisfied for one z ∈ C
m, it is also satisfied for all z except for an analytic set of codimension

≥ 2) for any subset I ⊂ {1, · · · , q} with ♯I ≤ κ,

codim
(⋂

i∈I

Di(z) ∩ V
)
≥ ♯I

(Here we set dim ∅ = −∞).

Now, we state our main result which is an improvement and extension of the above two

theorems concerning moving hypersurfaces targets located in subgeneral position with index.

Theorem 1.1 is just the following result for the special case whenever N = dimV and κ = 1.

Theorem 1.3 Let f : Cm → V ⊂ Pn(C) be a nonconstant meromorphic map, where V

is an irreducible algebraic subvariety of dimension ℓ. Let Q = {Q1, · · · , Qq} be a collection of

slowly moving hypersurfaces in N -subgeneral position with index κ in V, and degQj = dj (j =

1, · · · , q). Assume that f : Cm → V is algebraically nondegenerate over KQ. Then, for any

ε > 0,

(
q −

(
1 +

N − ℓ

max{1,min{N − ℓ, κ}}
)
(ℓ+ 1)− ε

)
Tf (r)

≤
q∑

i=1

1

dj
N(r, f∗Qi) + o(Tf (r)) (1.3)

holds for all r outside a set with finite Lebesgue measure.

When V = Pn(C), we can have the following second main theorem with truncation, and

thus Theorem 1.2 is just the special case whenever κ = 1.

Theorem 1.4 Let f be a nonconstant meromorphic map of Cm into Pn(C). Let {Qi}qi=1 be

a collection of slowly moving hypersurfaces in N -subgeneral position with index κ, and degQj =

dj (1 ≤ j ≤ q). Assume that f is algebraically nondegenerate over KQ. Then, for any ε > 0,

(
q −

(
1 +

N − n

max{1,min{N − n, κ}}
)
(n+ 1)− ε

)
Tf (r)

≤
q∑

i=1

1

dj
N [L0](r, f∗Qi) + o(Tf (r)) (1.4)
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holds for all r outside a set with finite Lebesgue measure, where

L0 :=

(
L+ n

n

)
p
(L+n

n )
(
(L+n

n )−1
)
(qn)−2

0 − 1

with

L := (n+ 1)d+ 2
(
1 +

N − n

max{1,min{N − n, κ}}
)
(n+ 1)3I(ε−1)d,

where d := lcm(d1, · · · , dq) is the least common multiple of all {di}, and

p0 :=
[ (

L+n
n

)
(
(
L+n
n

)
− 1)

(
q
n

)
− 1

log(1 + ε
3(n+1)(1+ N−n

max{1,min{N−n,κ}}
)
)

]2
.

Remark that very recently, Yan and Yu [17] considered the nonconstant holomorphic curve

from C into Pn(C) instead of algebraically nondegenerate and improved Theorem 1.2 without

truncation. Thus it is interesting to ask the following question.

Question 1.1 In Theorem 1.3 or Theorem 1.4, is it possible to obtain a second main

theorem if the condition “f is algebraically nondegenerate over KQ” is omitted?

The remainder is the organization as follows. In the next section, we introduce some basic

notions and auxiliary results from Nevanlinna theory. Sections 3–4 are the proofs of Theorems

1.3–1.4, respecitively, in which the methods to deal with moving targets by Dethloff-Tan [3],

Yan-Yu [17], and the techniques to deal with hypersurfaces in subgeneral position instead of

Nochka’s weights owing to Quang [8–9] are used in this paper.

2 Basic Notions and Auxiliary Results from Nevanlinna Theory

2.1 The characteristic function in Nevanlinna theory

We set ‖z‖ = (‖z1‖2 + · · ·+ ‖zm‖2) 1
2 for z = (z1, · · · , zm) ∈ Cm and define

B(r) := {z ∈ C
m : ‖z‖ < r}, S(r) := {z ∈ C

m : ‖z‖ = r}, 0 < r <∞.

Define

vm−1(z) := (ddc‖z‖2)m−1,

σm(z) := dc log ‖z‖2 ∧ (ddc log ‖z‖2)m−1 on C
m\{0}.

Let F be a nonzero meromorphic function on a domain Ω in Cm. For a set α = (α1, · · · , αm)

of nonnegative integers, we set |α| = α1 + · · ·+ αm and

DαF =
∂|α|F

∂α1z1 · · ·∂αmzm
.

We denote by ν0F , ν
∞
F and νF the zero divisor, the pole divisor, and the divisor of the meromor-

phic function F , respectively.

For a divisor ν on Cm and for a positive integer M or M = ∞, we set

ν[M ](z) = min{M, ν(z)},
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n(t) =





∫

|ν|∩B(t)

ν(z)vm−1, if m ≥ 2,

∑

|z|≤t

ν(z), if m = 1.

The counting function of ν is defined by

N(r, ν) =

∫ r

1

n(t)

t2m−1
dt, 1 < r <∞.

Similarly, we define N(r, ν[M ]) and denote it by N [M ](r, ν).

Let ϕ be a nonzero meromorphic function on Cm. Define

Nϕ(r) = N(r, ν0ϕ), N [M ]
ϕ (r) = N [M ](r, ν0ϕ).

For brevity we will omit the character [M ] if M = ∞.

Let f : Cm → Pn(C) be a meromorphic mapping. For arbitrarily fixed homogeneous

coordinates (w0 : · · · : wn) on Pn(C), we take a reduced representation f̃ = (f0, · · · , fn), which
means that each fi is a holomorphic function on C

m and f(z) = (f0(z), · · · , fn(z)) outside the

analytic set I(f) = {f0 = · · · = fn = 0} of codimension ≥ 2. Set ‖f̃‖ = (‖f0‖2 + · · ·+ ‖fn‖2)
1
2 .

The characteristic function of f is defined by

Tf(r) =

∫

S(r)

log ‖f̃‖σm −
∫

S(1)

log ‖f̃‖σm.

Let ϕ be a nonzero meromorphic function on Cm, which is occasionally regarded as a

meromorphic map into P1(C). The proximity function of ϕ is defined by

m(r, ϕ) :=

∫

S(r)

logmax(|ϕ|, 1)σm.

The Nevanlinna’s characteristic function of ϕ is defined as follows

T (r, ϕ) := N 1
ϕ
(r) +m(r, ϕ).

Then

Tϕ(r) = T (r, ϕ) +O(1).

The function ϕ is said to be small (with respect to f) if ‖Tϕ(r) = o(Tf (r)), here the notion ‖
means that the property holds possibly outside a set with finite Lebesgue measure.

We denote byM (resp. Kf ) the field of all meromorphic functions (resp. small meromorphic

functions with respect to f) on Cm.

2.2 Family of moving hypersurfaces and the first main theorem

Denote by HCm the ring of all holomorphic functions on Cm. Let Q be a homogeneous

polynomial in HCm [x0, · · · , xn] of degree d ≥ 1. Denote by Q(z) the homogeneous polynomial

over C obtained by substituting a specific point z ∈ Cm into the coefficients of Q. We also call

a moving hypersurface in Pn(C) a homogeneous polynomial Q ∈ HCm [x0, · · · , xn] such that the

common zero set of all coefficients of Q has codimension at least two.
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A moving hypersurface Q in P
n(C) of degree d (≥ 1) is defined by

Q(z) =
∑

I∈Id

aI(z)ω
I ,

where Id = {(i0, · · · , in) ∈ Nn+1
0 ; i0 + · · · + in = d}, aI ∈ HCm and ωI = ωi00 · · ·ωinn . We

consider the meromorphic mapping Q′ : Cm → PN (C), where N =
(
n+d
n

)
, given by

Q′(z) = (aI0 (z) : · · · : aIN (z)) (Id = {I0, · · · , IN}).

Here I0 < · · · < IN in the lexicographic ordering. By changing the homogeneous coordinates of

Pn(C) if necessary, we may assume that for each given moving hypersurface as above, aI0 6= 0

(note that I0 = (0, · · · , 0, d) and aI0 is the coefficient of ωdn). We set

Q̃ =

N∑

j=0

aIj
aI0

ωIj .

The moving hypersurfaces Q = {Q1, · · · , Qq} is said to be “slow” (with respect to f) if

‖TQ′(r) = o(Tf (r)). This is equivalent to ‖T aIj

aI0

(r) = o(Tf (r)) (∀1 ≤ j ≤ N), i.e.,
aIj
aI0

∈ Kf .

Let {Qi}qi=1 be a family of moving hypersurfaces in P
n(C), degQi = di. Assume that

Qi =
∑

I∈Idi

aiIω
I .

We denote by KQ the smallest subfield of meromorphic function field M which contains C

and all
aiIs
aiIt

, where aiIt 6≡ 0, i ∈ {1, · · · , q}, It, Is ∈ Idi . We say that f is linearly nondegenerate

over KQ if there is no nonzero linear form L ∈ KQ[x0, · · · , xn] such that L(f0, · · · , fn) ≡ 0,

and f is algebraically nondegenerate over KQ if there is no nonzero homogeneous polynomial

Q ∈ KQ[x0, · · · , xn] such that Q(f0, · · · , fn) ≡ 0.

Let f and Q be as above. The proximity function of f with respect to Q, denoted by

mf (r,Q), is defined by

mf (r,Q) =

∫

S(r)

λD(f̃)σm −
∫

S(1)

λD(f̃)σm,

where Q(f̃) = Q(f0, · · · , fn), and λQ(f̃) = log ‖f̃‖d‖Q‖

|Q(f̃)|
is the Weil function and ‖Q‖ =

max
I∈Id

{|aI |}, where Id := {I = (i0, · · · , in) ∈ Z
n+1
≥0 ; i0 + · · · + in = d}. This definition is in-

dependent of the choice of the reduced representation of f.

We denote by f∗Q the pullback of the divisor Q by f. We may see that f∗Q identifies with

the zero divisor ν0
Q(f̃)

of the function Q(f̃). By Jensen’s fomular, we have

NQ(f̃)(r) =

∫

S(r)

log |Q(f̃)|σm −
∫

S(1)

log |Q(f̃)|σm.

For convenience, we will denote N(r, f∗Q) = NQ(f)(r).

Theorem 2.1 (First Main Theorem) (see [9]) Let f : Cm → Pn(C) be a holomorphic map,

and let Q be a hypersurface in Pn(C) of degree d. If f(Cm) 6⊂ Q, then for every real number r

with 0 < r < +∞,

dTf (r) = mf (r,Q) +NQ(f)(r) +O(1),

where O(1) is a constant independent of r.
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2.3 Some theorems and lemmas

Let f be a nonconstant meromorphic map of Cm into Pn(C). Denote by Cf the set of all

non-negative functions h : Cm\A→ [0,+∞] ⊂ R, which are of the form

|g1|+ · · ·+ |gl|
|gl+1|+ · · ·+ |gl+k|

,

where k, l ∈ N, g1, · · · , gl+k ∈ Kf\{0} and A ⊂ Cm, which may depend on g1, · · · , gl+k, is an

analytic subset of codimension at least two. Then, for h ∈ Cf we have

∫

S(r)

log hσm = o(Tf (r)).

Since Q = {Q1, · · · , Qq} are in N -subgeneral position, we have the following lemma.

Lemma 2.1 (see [2, 8, 17]) For any Qj1 , · · · , QjN+1 ∈ Q, there exist functions h1, h2 ∈ Cf
such that

h2‖f‖d ≤ max
k∈{1,··· ,N+1}

|Qjk(f0, · · · , fn)| ≤ h1‖f‖d.

Lemma 2.2 (Lemma on Logarithmic Derivative) (see [6]) Let f be a nonzero meromorphic

function on Cm. ∥∥∥m
(
r,
Dα(f)

f

)
= O(log+ T (r, f)) (α ∈ Zm+ ).

Proposition 2.1 (see [5]) Let Φ1, · · · ,Φk be meromorphic functions on Cm such that

{Φ1, · · · ,Φk} is linearly independent over C. Then there exists an admissible set

{αi = (αi1, · · · , αim)}ki=1 ⊂ Zm+

with |αi| =
m∑
j=1

|αij | ≤ i− 1 (1 ≤ i ≤ k) such that the following are satisfied:

(i) {DαiΦ1, · · · ,DαiΦk}ki=1 is linearly independent over M, i.e., det(DαiΦj) 6≡ 0,

(ii) det(Dαi(hΦj)) = hk · det(DαiΦj) for any nonzero meromorphic function h on Cm.

Theorem 2.2 (see [10, Theorem 2.31]) Let f be a linearly nondegenerate meromorphic

mapping of Cm into Pn(C) with a reduced representation f̃ = (f0, · · · , fn) and let H1, · · · , Hq

be q arbitrary hyperplanes in P
n(C). Then we have

∥∥∥
∫

S(r)

max
K

log
( ∏

j∈K

‖f̃‖ · ‖Hj‖
|Hj(f̃)|

)
σm ≤ (n+ 1)Tf(r) −NWα(fi)(r) + o(Tf (r)),

where α is an admissible set with respect to f̃ (as in Proposition 2.1) and the maximum is taken

over all subsets K ⊂ {1, · · · , q} such that {Hj ; j ∈ K} is linearly independent.

3 Proof of Theorem 1.3

Firstly, we may assume that Q1, · · · , Qq have the same degree degQj = dj = d. Set

Qj(z) =
∑

I∈Id

ajI(z)x
I , j = 1, · · · , q.
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For each j, there exists ajIj (z), one of the coefficients in Qj(z), such that ajIj (z) 6≡ 0. We fix

this ajIj , then set ãjI(z) =
ajI (z)
ajIj (z)

and

Q̃j(z) =
∑

I∈Id

ãjI(z)x
I ,

which is a homogeneous polynomial in KQ[x0, · · · , xn]. By definition of the proximity function

and Weil function, we have

λQ̃j
(f) = log

‖f‖d‖Qj‖
|Qj(f)|

= log
‖f‖d‖Q̃j‖
|Q̃j(f)|

for j = 1, · · · , q.
For a fixed point z ∈ Cm \

q⋃
i=1

Q̃i(f̃)
−1({0,∞}). We may assume that there exists a renum-

bering {1, · · · , q} such that

|Q̃1(z)(f̃)(z)| ≤ |Q̃2(z)(f̃)(z)| ≤ · · · ≤ |Q̃q(z)(f̃)(z)|.

By Lemma 2.1, we have max
j∈{1,··· ,N+1}

|Q̃j(z)(f̃)(z)| = |Q̃N+1(z)(f̃)(z)| ≥ h‖f̃‖d for some h ∈ Cf ,
i.e.,

‖f̃(z)‖d
|Q̃N+1(z)(f̃)(z)|

≤ 1

h(z)
.

Hence

q∏

j=1

‖f̃(z)‖d
|Q̃j(f̃)(z)|

≤ 1

hq−N (z)

N∏

j=1

‖f̃(z)‖d
|Q̃j(z)(f̃)(z)|

. (3.1)

Let KQ be an arbitrary field over Cm generated by a set of meromorphic function on C
m.

Let V be a sub-variety in Pn(C) of dimension ℓ defined by the homogenous ideal I(V ) ⊂
C[x0, · · · , xn]. Denote by IKQ(V ) the ideal in KQ[x0, · · · , xn] generated by I(V ). Since f :

Cm → V ⊂ Pn(C) is algebraically nondegenerate over KQ, there is no homogeneous polynomial

P ∈ KQ[x0, · · · , xn]/IKQ(V ) such that P (f0, · · · , fn) ≡ 0.

For a positive integer L, letKQ[x0, · · · , xn]L be the vector space of homogeneous polynomials

of degree L, and let IKQ(V )L := IKQ(V ) ∩ KQ[x0, · · · , xn]L. Set

VL := KQ[x0, · · · , xn]L/IKQ(V )L.

Denote by [g] the projection of g in VL. We have the following basic fact from the theory of

Hilbert polynomials (see [15]).

Lemma 3.1 M := dimKQVL = ∆Lℓ

ℓ! + ρ(L), where ρ(L) is an O(Lℓ−1) function depending

on the variety V . Moreover, there exists an integer L0 such that ρ(L) is a polynomial function

of L for L > L0.

Next, we prove the following lemma concerning on the hypersurfaces located inN -subgeneral

position with index κ, which plays the role in this paper. The method of it is originally from

Quang [9–10].
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Lemma 3.2 Let Q̃1, · · · , Q̃N+1 be homogeneous polynomials in KQ[x0, · · · , xn] of the same

degree d ≥ 1, in (weakly) N -subgeneral position with index κ in V. For each point a ∈ Cm

satisfying the following conditions:

(i) The coefficients of Q̃1, · · · , Q̃N+1 are holomorphic at a;

(ii) Q̃1(a), · · · , Q̃N+1(a) have no non-trivial common zeros in V ;

then there exist homogeneous polynomials P̃1(a) = Q̃1(a), · · · , P̃κ(a) = Q̃κ(a), P̃κ+1(a), · · · ,
P̃ℓ+1(a) ∈ C[x0, · · · , xn] with

P̃t(a) =
N−ℓ+t∑

j=κ+1

ctjQ̃j(a), ctj ∈ C, t ≥ κ+ 1

such that
( ℓ+1⋂

t=1

P̃t(a)
)
∩ V = ∅.

Proof We assume that Q̃i (1 ≤ i ≤ N + 1) has the following form

Q̃i =
∑

I∈τd

aiIω
I .

By the definition of the N -subgeneral position, there exists a point a ∈ C such that the following

system of equations

Q̃i(a)(ω0, · · · , ωn) = 0, 1 ≤ i ≤ N + 1

has only trivial solution (0, · · · , 0). We may assume that Q̃i(a) 6≡ 0 for all 1 ≤ i ≤ N + 1.

For each homogeneous polynomial Q̃ ∈ C[x0, · · · , xn], we denote by D the fixed hypersurface

in Pn(C) defined by Q̃, i.e.,

D = {(ω0, · · · , ωn) ∈ P
n(C) | Q̃(ω0, · · · , ωn) = 0}.

Setting P̃1(a) = Q̃1(a), · · · , P̃κ(a) = Q̃κ(a), we see that

dim
( t⋂

i=1

Di(a) ∩ V
)
≤ N − t, t = N − ℓ+ κ+ 1, · · · , N + 1,

where dim ∅ = −∞. According to the definition of N -subgeneral position with index κ, we have

dim
( κ⋂
j=1

Dj(a) ∩ V
)
≤ ℓ − κ.

Step 1 We will construct P̃κ+1 as follows. For each irreducible componet Γ of dimension

ℓ− κ of
( κ⋂
i=1

P̃i(a) ∩ V
)
, we put

V1Γ =
{
c = (cκ+1, · · · , cN−ℓ+κ+1) ∈ C

N−ℓ+1,Γ ⊂ Dc(a),

where Q̃c =

N−ℓ+κ+1∑

j=κ+1

cjQ̃j

}
.

By definition, V1Γ is a subspace of CN−ℓ+1. Since

dim
(N−ℓ+κ+1⋂

i=1

Di(a) ∩ V
)
≤ ℓ− κ− 1,



762 L. B. Xie and T. B. Cao

there exists i ∈ {κ + 1, · · · , N − ℓ + κ + 1} such that Γ 6⊂ Di(a). This implies that V1Γ is

a proper subspace of CN−ℓ+1. Since the set of irreducible components of dimension ℓ − κ of
( κ⋂
i=1

P̃i(a) ∩ V
)
is at most countable, we have

C
N−ℓ+κ \

⋃

Γ

V1Γ 6= ∅.

Hence, there exists (c1(κ+1), · · · , c1(N−ℓ+κ+1)) ∈ CN−ℓ+1 such that Γ 6⊂ P̃κ+1(a), where P̃κ+1 =
N−ℓ+κ+1∑
j=κ+1

c1jQ̃j, for all irreducible components of dimension ℓ−κ of
( κ⋂
i=1

P̃i(a)∩V
)
. This clearly

implies that

dim
( κ+1⋂

i=1

P̃i(a) ∩ V
)
≤ ℓ− (κ+ 1).

Step 2 We will construct P̃κ+2 as follows. For each irreducible componet Γ′ of dimension

ℓ− κ− 1 of
( κ+1⋂
i=1

P̃i(a) ∩ V
)
, we put

V2Γ′ = {c = (cκ+1, · · · , cN−ℓ+κ+2) ∈ C
N−ℓ+2,Γ′ ⊂ Dc(a),

where Q̃c =

N−ℓ+κ+2∑

j=κ+1

cjQ̃j}.

Then V2Γ′ is a subspace of CN−ℓ+2. Since dim
(N−ℓ+κ+2⋂

i=1

Di(a) ∩ V
)
≤ ℓ − κ − 2, there exists

i ∈ {κ+1, · · · , N − ℓ+κ+2} such that Γ′ 6⊂ Di(a). This implies that V2Γ′ is a proper subspace

of CN−ℓ+2. Since the set of irreducible components of dimension ℓ − κ− 1 of
( κ+1⋂
i=1

P̃i(a) ∩ V
)

is at most countable, we also have

C
N−ℓ+κ+1 \

⋃

Γ′

V2Γ′ 6= ∅.

Hence, there exists (c2(κ+1), · · · , c2(N−ℓ+κ+2)) ∈ CN−ℓ+2 such that Γ′ 6⊂ P̃κ+2(a), where P̃κ+2 =
N−ℓ+κ+2∑
j=κ+1

c2jQ̃j, for all irreducible components of dimension ℓ − κ− 1 of
( κ+1⋂
i=1

P̃i(a) ∩ V
)
. This

clearly implies that

dim
( κ+2⋂

i=1

P̃i(a) ∩ V
)
≤ ℓ− (κ+ 2).

Repeat again the above steps, after (ℓ + 1 − κ)-th step we get the hypersurfaces P̃κ+1(a),

· · · , P̃ℓ+1(a) satisfying that

dim
( t⋂

j=1

P̃j(a) ∩ V
)
≤ ℓ− t,

where t = κ+ 1, · · · , ℓ+ 1.

In particular,
( ℓ+1⋂
j=1

P̃j(a)∩V
)
= ∅. This yields that P̃1(a), · · · , P̃ℓ+1(a) are in general position.

We complete the proof of the lemma.
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Since there are only finitely many choices of N + 1 polynomials from Q̃1, · · · , Q̃q, the total

number of such P̃ ′
js is finite, so there exists a constant C > 0, for t = κ+1, · · · , ℓ and all z ∈ Cm

(excluding all zeros and poles of all Q̃j(f)), by Lemma 3.2 we can construct P̃1(z) = Q̃1(z), · · · ,
P̃κ(z) = Q̃κ(z), P̃(κ+1)(z), · · · , P̃(ℓ+1)(z) from Q̃1(z), · · · , Q̃(N+1)(z) such that

|P̃t(z)(f̃)(z)| ≤ C max
κ+1≤j≤N−ℓ+t

|Q̃j(z)(f̃)(z)| = C|Q̃(N−ℓ+t)(z)(f̃)(z)|

for κ+ 1 ≤ t ≤ ℓ, and thus,

λQ̃(N−ℓ+t)(z)(f̃)(z)
≤ λP̃t(z)(f̃)(z)

+ log h′′, h′′ ∈ Cf for κ+ 1 ≤ t ≤ ℓ.

Combining the above inequality with (3.1), we have

q∑

j=1

λQ̃j(z)(f̃)(z)

≤
κ∑

j=1

λQ̃j(z)(f̃)(z)
+

N−ℓ+κ∑

j=κ+1

λQ̃j(z)(f̃)(z)
+

N∑

N−ℓ+κ+1

λQ̃j(z)(f̃)(z)
+ log h′

≤
κ∑

j=1

λQ̃j(z)(f̃)(z)
+

N−ℓ+κ∑

j=κ+1

λQ̃j(z)(f̃)(z)
+

ℓ∑

j=κ+1

λP̃j(z)(f̃)(z)
+ log h′′,

=

ℓ∑

j=1

λP̃j(z)(f̃)(z)
+

N−ℓ+κ∑

j=κ+1

λQ̃j(z)(f̃)(z)
+ log h′′.

This gives that if N − ℓ ≤ κ, we have

q∑

j=1

λQ̃j(z)(f̃)(z)
≤

ℓ∑

j=1

λP̃j(z)(f̃)(z)
+
N−ℓ∑

j=1

λQ̃j(z)(f̃)(z)
+ log h′′

=
ℓ∑

j=1

λP̃j(z)(f̃)(z)
+
N−ℓ∑

j=1

λP̃j(z)(f̃)(z)
+ log h′′, (3.2)

and if N − ℓ ≥ κ, we get

q∑

j=1

λQ̃j(z)(f̃)(z)
≤

ℓ∑

j=1

λP̃j(z)(f̃)(z)
+

N−ℓ∑

j=1

λQ̃j(z)(f̃)(z)
+ log h′′

≤
ℓ∑

j=1

λP̃j(z)(f̃)(z)
+
N − ℓ

κ

κ∑

j=1

λQ̃j(z)(f̃)(z)
+ log h′′′

=

ℓ∑

j=1

λP̃j(z)(f̃)(z)
+
N − ℓ

κ

κ∑

j=1

λP̃j(z)(f̃)(z)
+ log h′′′, (3.3)

where h′′′ ∈ Cf . Hence, by (3.2)–(3.3), we get

q∑

j=1

λQ̃j(z)(f̃)(z)

≤
ℓ∑

j=1

λP̃j(z)(f̃)(z)
+

N − ℓ

max{1,min{N − ℓ, κ}}

ℓ∑

j=1

λP̃j(z)(f̃)(z)
+ log h∗
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=
(
1 +

N − ℓ

max{1,min{N − ℓ, κ}}
) ℓ∑

j=1

λP̃j(z)(f̃)(z)
+ log h∗, (3.4)

where h∗ = max{h′′, h′′′} ∈ Cf .

Fix a basis {[φ1], · · · , [φM ]} of VL with [φ1], · · · , [φM ] ∈ KQ[x0, · · · , xn], and let

F = [φ1(f̃), · · · , φM (f̃)] : C → P
M−1(C).

Since f̃ satisfies P (f̃) 6≡ 0 for all homogeneous polynomials P ∈ KQ[x0, · · · , xn]/IKQ(V ), F is

linearly nondegenerate over KQ. We have

TF (r) = LTf(r) + o(Tf (r)). (3.5)

For every positive integer L divided by d, we use the following filtration of the vector space VL

with respect to P̃1(z), · · · , P̃ℓ(z). This is a generalization of Corvaja-Zannier’s filtration [1], see

in the three references [3, 12, 17].

We arrange, by the lexicographic order, the ℓ-tuples i = (i1, · · · , iℓ) of non-negative integers
and set ‖i‖ =

∑
j

ij .

Definition 3.1 (see [3, 12, 17]) (i) For each i ∈ Zℓ≥0 and non-negative integer L with

L ≥ d‖i‖, denote by I iL the subspace of KQ[x0, · · · , xn]L−d‖i‖ consisting of all

γ ∈ KQ[x0, · · · , xn]L−d‖i‖

such that

P̃ i11(z) · · · P̃
iℓ
ℓ(z)γ −

∑

e=(e1,··· ,eℓ)>i

P̃ e11(z) · · · P̃
eℓ
ℓ(z)γe ∈ IKQ(V )L

(or [P̃ i11(z) · · · P̃
iℓ
ℓ(z)γ] =

[ ∑

e=(e1,··· ,eℓ)>i

P̃ e11(z) · · · P̃
eℓ
ℓ(z)γe

]
on VL)

for some γe ∈ KQ[x0, · · · , xn]L−d‖e‖.
(ii) Denote by I i the homogeneous ideal in KQ[x0, · · · , xn] generated by

⋃
L≥d‖i‖

I iL.

Remark 3.1 (see [3, 12, 17]) From this definition, we have the following properties.

(i) (IKQ(V ), P̃1(z) · · · P̃ℓ(z))L−d‖i‖ ⊂ I iL ⊂ KQ[x0, · · · , xn]L−d‖i‖, where (IKQ(V ), P̃1(z)

· · · P̃ℓ(z)) is denoted to be the ideal in KQ[x0, · · · , xn] generated by IKQ(V ) ∪ {P̃1(z) · · · P̃ℓ(z)}.
(ii) I i ∩ KQ[x0, · · · , xn]L−d‖i‖ = I iL.

(iii) KQ[x0,··· ,xn]
Ii

is a graded module over KQ[x0, · · · , xn].
(iv) If i1− i2 := (i1,1− i2,1, · · · , i1,ℓ− i2,ℓ) ∈ Zℓ≥0, then I

i2
L ⊂ I i1L+d‖i1‖−d‖i2‖. Hence I

i2 ⊂ I i1 .

Lemma 3.3 (see [3, 12, 17]) {I i | i ∈ Zℓ≥0} is a finite set.

Denote by

∆i
L := dimKQ

KQ[x0, · · · , xn]L−d‖i‖
I iL

. (3.6)
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Lemma 3.4 (see [3, 12, 17]) (i) There exists a positive integer L0 such that, for each

i ∈ Zℓ≥0, ∆
i
L is independent of L for all L satisfying L− d‖i‖ > L0.

(ii) There is an integer ∆ such that ∆i
L ≤ ∆ for all i ∈ Zℓ≥0 and L satisfies L− d‖i‖ > 0.

Set ∆0 := min
i∈Zℓ

≥0

∆i = ∆i0 for some i0 ∈ Zℓ≥0.

Remark 3.2 (see [3, 12, 17]) By (iv) of Remark 3.1, if i− i0 ∈ Zℓ≥0, then ∆i ≤ ∆i0 .

Now, for an integer L big enough, divisible by d, we construct the following filtration of VL

with respect to {P̃1(z) · · · P̃ℓ(z)}. Denote by τL the set of i ∈ Zℓ≥0 with L − d‖i‖ > 0, arranged

by the lexicographic order. Define the spaces Wi =WL,i by

Wi =
∑

e>i

P̃ e11(z) · · · P̃
eℓ
ℓ(z) · KQ[x0, · · · , xn]L−d‖e‖.

Clearly,W(0,··· ,0) = KQ[x0, · · · , xn]L andWi ⊃Wi′ if i
′ > i, so {Wi} is a filtration of KQ[x0, · · · ,

xn]L. Set W
∗
i = {[g] ∈ VL | g ∈ Wi}. Hence,{W ∗

i } is a filtration of VL.

Lemma 3.5 (see [3, 12, 17]) Suppose that i′ follows i in the lexicographic order, then

W ∗
i

W ∗
i′

∼=
KQ[x0, · · · , xn]L−d‖i‖

I iL
.

Combining with the notation (3.6), we have

dim
W ∗

i

W ∗
i′
= ∆i

L.

Set

τ0L = {i ∈ τL | L− d‖i‖ > L0 and i− i0 ∈ Zℓ≥0}.
We have the following properties.

Lemma 3.6 (see [3, 12, 17]) (i) ∆0 = ∆i for all i ∈ τ0L.

(ii) ♯τ0L = 1
dℓ
Lℓ

ℓ! +O(Lℓ − 1).

(iii) ∆i
L = ∆dℓ for all i ∈ τ0L.

We can choose a basis B = {[ψ1], · · · , [ψM ]} of VL with respect to the above filtration. Let

[ψs] be an element of the basis, which lies inW ∗
i /W

∗
i′ , we may write ψs = P̃ e11(z) · · · P̃

eℓ
ℓ(z)γ, where

γ ∈ KQ[x0, · · · , xn]L−d‖i‖. For every 1 ≤ j ≤ ℓ, we have

∑

i∈τL

∆i
Lij =

∆Lℓ+1

(ℓ+ 1)!d
+O(Lℓ) (3.7)

(The proof of (3.7) can be found in [12, (3.6)]). Hence, by (3.7) and the definition of the Weil

function, we obtain

M∑

s=1

λψs
(f̃(z)) ≥

( ∆Lℓ+1

(ℓ + 1)!d
+O(Lℓ)

)
·
ℓ∑

j=1

λP̃j(z)
(f̃(z)) + log h∗∗, (3.8)

where h∗∗ ∈ Cf . The basis {[ψ1], · · · , [ψM ]} can be written as linear forms L1, · · · , LM (over

KQ) in the basis {[φ1], · · · , [φM ]} and ψs(f̃) = Ls(f̃). Since there are only finitely many choices

of Q̃1(z), · · · , Q̃(N+1)(z), the collection of all possible linear forms Ls (1 ≤ s ≤M) is a finite set,

and denote it by L := {Lµ}Λµ=1 (Λ < +∞). It is easy to see that KL ⊂ KQ.
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Lemma 3.7 (Product to the Sum Estimate, see [10]) Let H1, · · · , Hq be hyperplanes in

Pn(C) located in general position. Denote by T the set of all injective maps µ : {0, 1, · · · , n} →
{1, · · · , q}. Then

q∑

j=1

mf (r,Hj) ≤
∫ 2π

0

max
µ∈T

n∑

i=0

λH̃µ(i)
(f(reiθ))

dθ

2π
+O(1)

holds for all r outside a set with finite Lebesgue measure.

By (3.4), (3.8) and Lemma 3.7, taking integration on the sphere of radius r, we have

∆Lℓ+1

(ℓ+ 1)!d
(1 +O(1)) ·

q∑

j=1

mf (r, Q̃j) ≤
( N − ℓ

max{1,min{N − ℓ, κ}} + 1
)

·
∫ 2π

0

max
K

∑

j∈K

λLj
(f̃(reiθ))

dθ

2π
+ o(Tf (r)) (3.9)

for all r outside a set with finite Lebesgue measure, where the set K ranges over all subsets of

{1, · · · ,Λ} such that the linear forms {Lj}j∈K are linearly independent.

By Theorem 2.2, we have, for any ε > 0,

∫ 2π

0

max
K

∑

j∈K

λLj
(f̃(reiθ))

dθ

2π
≤ (M + ε)TF (r) −NW (r, 0) + o(Tf (r)) (3.10)

holds for all r outside a set E with finite Lebesgue measure. Taking ε = 1
2 in (3.10), and using

(3.5) and (3.9), we obtain

∆Lℓ+1

(ℓ+ 1)!d
(1 +O(1)) ·

q∑

j=1

mf (r, Q̃j)

≤
( N − ℓ

max{1,min{N − ℓ, κ}} + 1
)
((M + ε)TF (r) −NW (r, 0) + o(Tf (r)))

≤
( N − ℓ

max{1,min{N − ℓ, κ}} + 1
)(∆Lℓ

ℓ!
+ ρ(L) + ε

)
LTf(r) + o(Tf (r))

holds for all r 6∈ E, where W is the Wronskian of F1, · · · , FM .
Take L large enough such that ε <

(
N−ℓ

max{1,min{N−ℓ,κ}} + 1
)
o(1), where ε > 0 is any given

constant in the theorem. Then we have

q∑

j=1

1

d
mf (r, Q̃j) ≤

(( N − ℓ

max{1,min{N − ℓ, κ}} + 1
)
(ℓ + 1) + ε

)
Tf (r) (3.11)

holds for all r 6∈ E.

And by the first main theorem, (3.11) can be written

(
q −

( N − ℓ

max{1,min{N − ℓ, κ}} + 1
)
(ℓ+ 1)− ε

)
Tf(r) ≤

q∑

j=1

1

d
Nf (r, Q̃j).

Secondly, for the general case whenever all Qj may not have the same degree, considering

Q
d
dj

j instead ofQj , we haveNf (r,Qj) =
dj
d Nf

(
r,Q

d
dj

j

)
. Then the theorem is proved immediately.
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4 Proof of Theorem 1.4

Replacing Qi by Q
d
di

i if necessary with the note that

1

d
N [L0]

(
r, f ∗Q

d
di

i

)
≤ 1

di
N [L0](r, f ∗Qi),

we may assume that all hypersurfaces Qi (1 ≤ i ≤ q) are of the same degree d. We may also

assume that q >
(

N−n
max{1,min{N−n,κ}} + 1

)
(n+ 1).

Consider a reduced representation f̃ = (f0, · · · , fn) : C → C
n+1 of f. We also note that

N
[L0]

Qi(f̃)
(r) = N

[L0]

Q̃i(f̃)
(r) + o(Tf (r)).

Then without loss of generality we may assume that Qi ∈ Kf [x0, · · · , xn].
We set

I = {(i1, · · · , iN+1) ; 1 ≤ ij ≤ q, ij 6= it, ∀j 6= t}.

For each I = (i1, · · · , iN+1) ∈ I, we denote by PI1, · · · , PI(n+1) the moving hypersurfaces

obtained in Lemma 3.2 with respect to the family of moving hypersurfaces {Qi1 , · · · , QiN+1}.
It is easy to see that there exists a positive function h ∈ Cf such that

|PIt(ω)| ≤ h max
κ+1≤j≤N+1−n+t

|Qij (ω)|, κ+ 1 ≤ t ≤ n

for all I ∈ I and ω = (ω0, · · · , ωn) ∈ Cn+1.

For a fixed point z ∈ Cm \
q⋃
i=1

Qi(f̃)
−1({0,∞}), we may assume that

|Qi1(f̃)(z)| ≤ |Qi2(f̃)(z)| ≤ · · · ≤ |Qiq (f̃)(z)|.

Let I = (i1, · · · , iN+1). Since PI1, · · · , PI(n+1) are in weakly general position, there exist func-

tions g0, g ∈ Cf , which may be chosen independent of I and z, such that

‖f̃(z)‖d ≤ g0(z) max
1≤j≤n+1

|PIj(f̃)(z)| ≤ g(z)|QiN+1(f̃)(z)|.

Therefore, we have

q∏

i=1

‖f̃(z)‖d
|Qi(f̃)(z)|

≤ gq−N (z)

N∏

j=1

‖f̃(z)‖d
|Qij (f̃)(z)|

= gq−N (z)

κ∏

j=1

‖f̃(z)‖d
|Qij (f̃)(z)|

·
N−n+κ∏

j=κ+1

‖f̃(z)‖d
|Qij (f̃)(z)|

·
N∏

j=N−n+κ+1

‖f̃(z)‖d
|Qij (f̃)(z)|

≤ h1

κ∏

j=1

‖f̃(z)‖d
|PIj(f̃)(z)|

·
N−n+κ∏

j=κ+1

‖f̃(z)‖d
|Qij (f̃)(z)|

·
n∏

j=κ+1

‖f̃(z)‖d
|PIj(f̃)(z)|

, (4.1)

where h1 = gq−N (z)hn−κ(z), I = (i1, · · · , iN+1). Choose a function ζ in Cf which is common

for all I ∈ I, such that

|PIj(ω)| ≤ ζ(z)‖ω‖d, ∀ω = (ω0, · · · , ωn).
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We first consider if N − n ≤ κ, and have by the inequality above that,

q∏

i=1

‖f̃(z)‖d
|Qi(f̃)(z)|

≤ h1

κ∏

j=1

‖f̃(z)‖d
|PIj(f̃)(z)|

·
(N−n∏

j=1

‖f̃(z)‖d
|PIj(f̃)(z)|

)
·

n∏

j=κ+1

‖f̃(z)‖d
|PIj(f̃)(z)|

≤ ζ(z)κ+n−Nh1

κ∏

j=1

‖f̃(z)‖d
|PIj(f̃)(z)|

·
(N−n∏

j=1

‖f̃(z)‖d
|PIj(f̃)(z)|

)( κ∏

j=N−n+1

‖f̃(z)‖d
|PIj(f̃)(z)|

)

·
n∏

j=κ+1

‖f̃(z)‖d
|PIj(f̃)(z)|

≤ h2 ·
( κ∏

j=1

‖f̃(z)‖d
|PIj(f̃)(z)|

)2( n∏

j=κ+1

‖f̃(z)‖d
|PIj(f̃)(z)|

)2

= h2 ·
( n∏

j=1

‖f̃(z)‖d
|PIj(f̃)(z)|

)2

, (4.2)

where h2 = ζ(z)2n−Nh1 ∈ Cf , however if N − n ≥ κ, we get

q∏

i=1

‖f̃(z)‖d
|Qi(f̃)(z)|

≤ h1

κ∏

j=1

‖f̃(z)‖d
|PIj(f̃)(z)|

( κ∏

j=1

‖f̃(z)‖d
|PIj(f̃)(z)|

)N−n
κ

n∏

j=κ+1

‖f̃(z)‖d
|PIj(f̃)(z)|

= h1 ·
( κ∏

j=1

‖f̃(z)‖d
|PIj(f̃)(z)|

)1+N−n
κ ·

n∏

j=κ+1

‖f̃(z)‖d
|PIj(f̃)(z)|

≤ h3 ·
( κ∏

j=1

‖f̃(z)‖d
|PIj(f̃)(z)|

)1+N−n
κ

( n∏

j=κ+1

‖f̃(z)‖d
|PIj(f̃)(z)|

)1+N−n
κ

= h3

( n∏

j=1

‖f̃(z)‖d
|PIj(f̃)(z)|

)1+N−n
κ

, (4.3)

where h3 = h1ζ
(n−κ)(N−n)

κ (z) ∈ Cf .
Thus by (4.2)–(4.3), we get

q∏

i=1

‖f̃(z)‖d
|Qi(f̃)(z)|

≤ h∗
( n∏

j=1

‖f̃(z)‖d
|PIj(f̃)(z)|

)1+ N−n
max{1,min{N−n,κ}}

, (4.4)

where h∗ = max{h2, h3} ∈ Cf .
Hence, by taking logarithms in the both sides of (4.4), we can obtain

log

q∏

i=1

( ‖f̃(z)‖d
|Qi(f̃)(z)|

)

≤ log h∗ +
(
1 +

N − n

max{1,min{N − n, κ}}
)
log

( n∏

j=1

‖f̃(z)‖d
|PIj(f̃)(z)|

)
. (4.5)

Now, for each non-negative integer L, we denote by VL the vector space (over KQ) consisting

of all homogeneous polynomials of degree L in KQ[x0, · · · , xn] and the zero polynomial. Denote

by (PI1, · · · , PIn) the ideal in KQ[x0, · · · , xn] generated by PI1, · · · , PIn.
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Lemma 4.1 (see [2, Proposition 3.3]) Let {Pi}qi=1 (q ≥ n + 1) be a set of homogeneous

polynomials of common degree d ≥ 1 in Kf [x0, · · · , xn] in weakly general position. Then for

any nonnegative integer L and for any J := {j1, · · · , jn} ⊂ {1, · · · , q}, the dimension of the

vector space VL

(Pj1 ,··· ,Pjn )∩VL
is equal to the number of n-tuples (s1, · · · , sn) ∈ Nn

0 such that

s1 + · · ·+ sn ≤ L and 0 ≤ s1, · · · , sn ≤ d− 1. In particular, for all L ≥ n(d− 1), we have

dim
VL

(Pj1 , · · · , Pjn) ∩ VL
= dn.

Now, for each positive integer L big enough, divided by d, and i = (i1, · · · , in) ∈ Nn
0 with

σ(i) =
n∑
j=1

ij ≤ L
d , we set

WL,i =
∑

(j)=(j1,··· ,jn)≥(i)

P j1I1 · · ·P jnIn · VL−dσ(j).

It is clear that WL,(0,··· ,0) = VL and WL,i ⊃ WL,i′ if i < i′, so {WL,i} is a filtration of VL.

For the proof of the following lemma, we refer to [8].

Lemma 4.2 Let i = (i1, · · · , in), i′ = (i′1, · · · , i′n) ∈ Nn0 . Suppose that i′ follows i in the

lexicographic ordering and dσ(i) < L. Then

WL,i

WL,i′

∼=
VL−dσ(i)

(Pj1 , · · · , Pjn) ∩ VL−dσ(i)
.

This lemma yields that

dim
WL,i

WL,i′
= dim

VL−dσ(i)

(Pj1 , · · · , Pjn) ∩ VL−dσ(i)
. (4.6)

Fix a number L large enough (chosen later). Set u = uL := dimVL =
(
L+n
n

)
. We assume

that

VL =WL,i1 ⊃WL,i2 ⊃ · · · ⊃WL,iK ,

where WL,is+1 follows WL,is in the ordering and iK =
(
L
d , 0, · · · , 0

)
. It is easy to see that K is

the number of n -tuples (i1, · · · , in) with ij ≥ 0 and i1 + · · ·+ in ≤ L
d . Then we have

K =

(L
d + n

n

)
.

For each k ∈ {1, · · · ,K − 1}, we set mI
k = dim

WL,ik

WL,ik+1

and mI
K = 1. Then by Lemma 4.1, mI

k

does not depend on {PI1, · · · , PIn} and k, but only on σ(ik). Hence, we set mk := mI
k. We also

note that by Lemma 4.1,

mk = dn

for all k with L− dσ(ik) ≥ n(d− 1)
(
it is equivalent to σ(ik) ≤ L

d − n
)
.

From the above filtration, we may choose a basis {ψI1 , · · · , ψIu} of VL such that

{ψIu−(ms+···+mK)+1, · · · , ψIu}
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is a basis of WL,is . For each k ∈ {1, · · · ,K} and l ∈ {u − (mk + · · · + mK) + 1, · · · , u−
(mk+1 + · · ·+mK)}, we may write

ψIl = P i1kI1 . . . P ink

In hl, where (i1k, · · · , ink) = (i)k, hl ∈ W I
L−dσ(ik)

.

We may choose hl to be a monomial.

We have the following estimates: Firstly, we see that

K∑

k=1

mkisk =

L
d∑

l=0

∑

k|σ(ik)=l

m(l)isk =

L
d∑

l=0

m(l)
∑

k|σ(ik)=l

isk.

Note that, by the symmetry (i1, · · · , in) → (iσ(1), · · · , iσ(n)) with σ ∈ S(n),
∑

k|σ(ik)=l

isk does

not depend on s. We set

a :=

K∑

k=1

mkisk, which is independent of s and I.

Then we have

|ψIl (f̃)(z)| ≤ |PI1(f̃)(z)|i1k · · · |PIn(f̃)(z)|ink |hl(f̃)(z)|
≤ cl|PI1(f̃)(z)|i1k · · · |PIn(f̃)(z)|ink‖f̃(z)‖L−dσ(i)k

= cl

( |PI1(f̃)(z)|i1k
‖f̃(z)‖d

)i1k
· · ·

( |PIn(f̃)(z)|
‖f̃(z)‖d

)ink

‖f̃(z)‖L,

where cl ∈ Cf , which does not depend on f and z. Taking the product on both sides of the

above inequalities over all l and then taking logarithms, we obtain

log

u∏

l=1

|ψIl (f̃)(z)| ≤
K∑

k=1

mk

(
i1k log

|PI1(f̃)(z)|
‖f̃(z)‖d

+ · · ·+ ink log
|PIn(f̃)(z)|
‖f̃(z)‖d

)

+ uL log ‖f̃(z)‖+ log cI , (4.7)

where cI =
u∏
l=1

cl ∈ Cf . By (4.7), it gives

log

u∏

l=1

|ψIl (f̃)(z)| ≤ a
(
log

n∏

i=1

|PIi(f̃)(z)|
‖f̃(z)‖d

)
+ uL log ‖f̃(z)‖+ log cI ,

i.e.,

a
(
log

n∏

i=1

‖f̃(z)‖d
|PIi(f̃)(z)|

)
≤ log

u∏

l=1

‖f̃(z)‖L
|ψIl (f̃)(z)|

+ log cI . (4.8)

Set c0 = h∗
∏
I

(
1 + c

(1+ N−n
max{1,min{N−n,κ}}

)/a

I

)
∈ Cf .

Combining (4.8) with (4.5), we obtain that

log

q∏

i=1

‖f̃(z)‖d
|Qi(f̃)(z)|

≤
1 + N−n

max{1,min{N−n,κ}}

a
log

u∏

l=1

‖f̃(z)‖L
|ψIl (f̃)(z)|

+ log c0. (4.9)
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We now write

ψIl =
∑

J∈IL

cIlJxJ ∈ VL, cIlJ ∈ KQ,

where IL is the set of all (n + 1)-tuples J = (i0, · · · , in) with
n∑
s=0

js = L, xJ = xj00 · · ·xjnn and

l ∈ {1, · · · , u}. For each l, we fix an index JIl ∈ J such that cI
lJI

l

6≡ 0. Define

µIlJ =
cIlJ
cI
lJI

l

, J ∈ IL.

Set Φ = {µIlJ ; I ⊂ {1, · · · , q}, ♯I = n, 1 ≤ l ≤ u, J ∈ IL}. Note that 1 ∈ Φ. Let B = ♯Φ. We

see that B ≤ u
(
q
n

)((
L+n
n

)
− 1

)
=

(
q
n

)((
L+n
n

)
− 1

)(
L+n
n

)
. For each positive integer l, we denote

by L(Φ(l)) the linear span over C of the set

Φ(l) = {γ1 · · · γl ; γi ∈ Φ}.

It is easy to see that

dimL(Φ(l)) ≤ ♯Φ(l) ≤
(
B + l − 1

B − 1

)
.

We may choose a positive integer p such that

p ≤ p0 :=
[ B − 1

log(1 + ε
3(n+1)(1+ N−n

max{1,min{N−n,κ}}
)
)

]2

and
dimL(Φ(p+ 1))

dimL(Φ(p)) ≤ 1 +
ε

3(n+ 1)(1 + N−n
max{1,min{N−n,κ}})

.

Indeed, if dimL(Φ(p+1))
dimL(Φ(p)) > 1 + ε

3(n+1)(1+ N−n
max{1,min{N−n,κ}}

)
for all p ≤ p0, we have

dimL(Φ(p0 + 1)) ≥
(
1 +

ε

3(n+ 1)(1 + N−n
max{1,min{N−n,κ}})

)p0
.

Therefore, we have

log
(
1 +

ε

3(n+ 1)(1 + N−n
max{1,min{N−n,κ}} )

)

≤ log dimL(Φ(p0 + 1))

p0
≤

log
(
B+p0
B−1

)

p0

=
1

p0
log

B−1∏

i=1

p0 + i + 1

i
<

(B − 1) log(p0 + 2)

p0

≤ B − 1√
p0

≤
(B − 1) log(1 + ε

3(n+1)(1+ N−n
max{1,min{N−n,κ}}

)
)

B − 1

= log
(
1 +

ε

3(n+ 1)(1 + N−n
max{1,min{N−n,κ}} )

)
.

This is a contradiction.
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We fix a positive integer p satisfying the above condition. Put s = dimL(Φ(p)) and t =

dimL(Φ(p + 1)). Let {b1, · · · , bt} be an C-basis of L(Φ(p + 1)) such that {b1, · · · , bs} be a

C-basis of L(Φ(p)).
For each l ∈ 1, · · · , u, we set

ψ̃Il =
∑

J∈IL

µIlJxI .

For each J ∈ IL, we consider homogeneous polynomials φJ (x0, · · · , xn) = xJ . Let F be a mero-

morphic mapping of Cm into Ptu−1(C) with a reduced representation F̃ = (hbiφJ (f̃))1≤i≤t,J∈IL
,

where h is a nonzero meromorphic function on Cm. We see that

‖ Nh(r) +N1/h(r) = o(Tf (r)).

Since f is assumed to be algebraically nondegenerate over KQ, F is linearly nondegenerate over

C. We see that there exist nonzero functions c1, c2 ∈ Cf such that

c1|h| · ‖f̃‖L ≤ ‖F̃‖ ≤ c2|h| · ‖f̃‖L.

For each l ∈ 1, · · · , u, 1 ≤ i ≤ s, we consider the linear form LIil in x
J such that

hbiψ̃
I
l (f̃) = LIil(F̃ ).

Since f is algebraically nondegenerate over KQ, it is easy to see that {biψ̃Il (f̃); 1 ≤ i ≤ s, 1 ≤
l ≤ M} is linearly independent over C, and so is {LIil(F̃ ); 1 ≤ i ≤ s, 1 ≤ l ≤ u}. This yields

that {LIil; 1 ≤ i ≤ s, 1 ≤ l ≤ u} is linearly independent over C.

For every point z which is neither zero nor pole of any hbiψ
I
l (f̃), we also see that

s log
u∏

i=1

‖f̃(z)‖L
|ψIl (f̃)(z)|

≤ log
∏

1≤l≤u

1≤i≤s

‖F̃ (z)‖
|hbiψIl (f̃)(z)|

+ log c3

= log
∏

1≤l≤u

1≤i≤s

‖F̃ (z)‖ · ‖LIil‖
|LIil(F̃ )(z)|

+ log c4,

where c3, c4 are nonzero functions in Cf , not depending on f and I, but on {Qi}qi=1. Combining

this inequality and (4.9), we obtain that

log

q∏

i=1

‖f̃(z)‖d
|Qi(f̃)(z)|

≤
1 + N−n

max{1,min{N−n,κ}}

sa

·
(
max
I

log
∏

1≤l≤u

1≤i≤s

‖F̃ (z)‖ · ‖LIil‖
|LIil(F̃ )(z)|

+ log c4

)
+ log c0 (4.10)

for all z outside an analytic subset of Cm.

Since F̃ is linearly nondegenerate over C, according to Proposition 2.1, there exists an

admissible set α = (αiJ )1≤i≤t,J∈IL
with αiJ ∈ Zm+ , αiJ ≤ tu− 1, such that

Wα(hbiφ̃J (f̃)) = det(Dαi′j′ (hbiφ̃J (f̃))) 6≡ 0.
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By Theorem 2.2, we have

∥∥∥
∫

S(r)

max
I

(
log

∏

1≤l≤u

1≤i≤s

‖F̃ (z)‖ · ‖LIil‖
|LIil(F̃ )(z)|

)
σm

≤ tuTF (r) −NWα(hbiφ̃J (f̃))
(r) + o(TF (r)). (4.11)

Integrating both sides of (4.10) and using (4.11), we obtain that

qdTf (r)−
q∑

i=1

N(r, f∗Qi) ≤
tu(1 + N−n

max{1,min{N−n,κ}} )

sa
TF (r)

−
1 + N−n

max{1,min{N−n,κ}}

sa
NWα(hbiφ̃J (f̃))

(r)

+ o(TF (r) + Tf (r)). (4.12)

We can estimate the following quantity using the method of Quang [8],

q∑

i=1

N(r, f∗Qi)−
1 + N−n

max{1,min{N−n,κ}}

sa
NWα(hbiφ̃J (f̃))

(r),

thus we can get

q∑

i=1

N(r, f∗Qi)−
1 + N−n

max{1,min{N−n,κ}}

sa
NWα(hbiφ̃J (f̃))

(r) ≤
q∑

i=1

N [tu−1](r, f∗Qi).

From this inequality and (4.12) with a note that TF (r) = LTf(r) + o(Tf (r)), we have

(
q −

tuL(1 + N−n
max{1,min{N−n,κ}} )

dsa

)
Tf(r)

≤
q∑

i=1

1

d
N [tu−1](r, f∗Qi) + o(Tf (r)). (4.13)

Now we give some estimates for A, t and s. For each Ik = (i1k, · · · , ink) with σ(ik) ≤ L
d −n,

we set

i(n+1)k =
L

d
− n−

n∑

s=1

is.

Since the number of nonnegative integer p-tuples with summation≤ I is the same as the number

of nonnegative integer (p + 1)-tuples with summation exactly equal to I ∈ Z, which is
(
I+n
n

)
,

and since the sum below is independent of s, we have

a =
∑

σ(ik)≤
L
d

mI
kisk

≤
∑

σ(ik)≤
L
d
−n

mI
kisk

=
dn

n+ 1

∑

σ(ik)≤
L
d
−n

n+1∑

s=1

isk
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=
dn

n+ 1

(L
d

n

)(L
d
− n

)

= dn
( L

d

n+ 1

)
.

Now, for every positive number x ∈
[
0, 1

(n+1)2

]
, we have

(1 + x)n = 1 + nx+

n∑

i=2

(
n

i

)
xi

≤ 1 + nx+

n∑

i=2

ni

i!(n+ 1)2i−2
x

≤ 1 + nx+
n∑

i=2

1

i!
x

≤ 1 + (n+ 1)x. (4.14)

We chose L = (n+1)d+2
(
1+ N−n

max{1,min{N−n,κ}}

)
(n+1)3I(ε−1)d. Then L is divisible by d and

we have

(n+ 1)d

L− (n+ 1)d
=

(n+ 1)d

2(1 + N−n
max{1,min{N−n,κ}})(n+ 1)3I(ε−1)d

≤ 1

2(n+ 1)2
. (4.15)

Therefore, using (4.14)–(4.15), we have

uL

da
≤

(
L+n
n

)
L

dn+1
( L

d

n+1

) =
L · (L+ 1) · · · (L+ n)

1 · 2 · · ·n
/ (L− nd) · (L − (n− 1)) · · ·L

1 · 2 · · · (n+ 1)

= (n+ 1)

n∏

i=1

L+ i

(L − (n− i+ 1)d)
< (n+ 1)

( L

(L− (n+ 1)d)

)n

= (n+ 1)
(
1 +

(n+ 1)d

(L− (n+ 1)d)

)n

< (n+ 1)
(
1 +

(n+ 1)2d

2(1 + N−n
max{1,min{N−n,κ}})(n+ 1)3I(ε−1)d

)

≤ (n+ 1) +
(n+ 1)3d

2(1 + N−n
max{1,min{N−n,κ}})(n+ 1)3ε−1

≤ n+ 1 +
ε

2(1 + N−n
max{1,min{N−n,κ}})

.

Then we have

tuL

das
≤

(
1 +

ε

3(n+ 1)(1 + N−n
max{1,min{N−n,κ}} )

)

·
(
n+ 1 +

ε

2(1 + N−n
max{1,min{N−n,κ}} )

)

≤ n+ 1+
ε

2(1 + N−n
max{1,min{N−n,κ}})

+
ε

3(1 + N−n
max{1,min{N−n,κ}})

+
ε

6(1 + N−n
max{1,min{N−n,κ}} )
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= n+ 1+
ε

1 + N−n
max{1,min{N−n,κ}}

. (4.16)

Combining (4.13) and (4.16), we get

(
q −

(
1 +

N − n

max{1,min{N − n, κ}}
)
(n+ 1)− ε

)
Tf (r)

≤
q∑

i=1

1

d
N [tu−1](r, f∗Qi) + o(Tf (r)). (4.17)

Here we note that

L := (n+ 1)d+ 2
(
1 +

N − n

max{1,min{N − n, κ}}
)
(n+ 1)3I(ε−1)d,

p0 :=
[ B − 1

log(1 + ε
3(n+1)(1+ N−n

max{1,min{N−n,κ}}
)
)

]2

≤
[ (

L+n
n

)
(
(
L+n
n

)
− 1)

(
q
n

)
− 1

log(1 + ε
3(n+1)(1+ N−n

max{1,min{N−n,κ}}
)
)

]2
,

tu− 1 ≤
(
L+ n

n

)(
B + p

B − 1

)
− 1 ≤

(
L+ n

n

)
pB−1 − 1

≤
(
L+ n

n

)
p
(L+n

n )
(
(L+n

n )−1
)
(qn)−2

0 − 1 = L0.

By these estimates and by (4.17), we obtain

(
q −

(
1 +

N − n

max{1,min{N − n, κ}}
)
(n+ 1)− ε

)
Tf (r)

≤
q∑

i=1

1

d
N [L0](r, f∗Qi) + o(Tf (r)). (4.18)

The theorem is proved.
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