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Second Main Theorem for Meromorphic Maps into
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Abstract Since the great work on holomorphic curves into algebraic varieties intersect-
ing hypersurfaces in general position established by Ru in 2009, recently there has been
some developments on the second main theorem into algebraic varieties intersecting mov-
ing hypersurfaces targets. The main purpose of this paper is to give some interesting
improvements of Ru’s second main theorem for moving hypersurfaces targets located in
subgeneral position with index.
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1 Introduction and Main Results

It is well-known that in 1933, Cartan generalized Nevanlinna theory for meromorphic func-
tions to the case of linearly nondegenerate holomorphic curves into complex projective spaces
intersecting hyperplanes in general position, and conjectured that it is still true for moving hy-
perplanes targets. From then on, higher dimensional Nevanlinna theory has been studied widely
(see [7, 11, 16]). In 2009, Ru [13] proposed a great work on second main theorem of algebraically
nondegenerate holomorphic curves into smooth complex varieties intersecting hypersurfaces in
general position, which is a generalization of the Cartan’s second main theorem and his own
former result (see [12]) completely solving the Shiffman’s conjecture (see [14]) corresponding to
the Corvaja-Zannier’s theorem (see [1]) in Diophantine approximation (see [4]).

Thus, it is natural and interesting to investigate the Ru’s second main theorem into complex
projective spaces and even into complex algebraic varieties for the moving hypersurfaces targets.
Based on their affirmation of the Shiffman’s conjecture for moving hypersurfaces targets (see
[2]), recently, Dethloff and Tan [3] continue to prove successfully the following special case where
the coefficients of the polynomials ();’s are constant and the variety V' is smooth, namely, the
Ru’s second main theorem (see [13]).
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Theorem 1.1 (see [3]) Let V. C P*(C) be an irreducible (possibly singular) variety of
dimension £, and let f be a nonconstant holomorphic map of C into V. Let D = {Ds,--- ,D,}
be a family of slowly moving hypersurfaces (with respect to f) in general position, and let

= {Q1, - ,Qq} be the set of the defined homogeneous polynomials of D with degQ; =
di (j=1,---,q) and Q;(f) #0 forj=1,---,q. Assume that f is algebraically nondegenerate
over Kg. Then, for any e > 0,

> (dij)mf(r, D;) < (€+1+€)T5(r) (11)

=1
holds for all r outside a set with finite Lebesque measure.

For the special case V' = P"(C), Quang [8] recently gave a second main theorem with
truncated counting functions for meromorphic mappings into P*(C) intersecting a family of
moving hypersurfaces in subgeneral position, which any be possibly good at the uniqueness
problems of meromorphic mappings.

Theorem 1.2 (see [8]) Let f be a nonconstant meromorphic map of C™ into P*(C). Let
{Q:}L, be a collection of slowly moving hypersurfaces in N -subgeneral position with deg Q; =
d; (1 <j<gq). Assume that f is algebraically nondegenerate over Kg. Then, for any e > 0,

r, [7Qi) + o(Ty(r)) (1.2)

&|H

(g—(N=—n+1(n+1)—e)Tf(r Zq:

holds for all v outside a set with finite Lebesque measure, where

Lo:= (L ' n)pm(a:n)—l)(z)—z L

0
with
L:=(n+1)d+2(N—n+1)(n+1)>1(e1)d,
where d :=lem(dy, - -+ ,dg) is the least common multiple of all {d;}, and

Po =

) - D) - 1}

log(1 + smriv—mrs)

In this paper, we mainly combine the methods in [3, 8, 17] together and adopt the new
concept of the index of subgeneral position due to Ji-Yan-Yu [6] to obtain some interesting
developments of Ru’s second main theorem for moving hypersurfaces targets, which are im-
provements and extensions of Theorems 1.1-1.2.

According to [6], we can give a similar definition for moving hypersurfaces located in m-
subgeneral position with index k.

Definition 1.1 Let V' be an algebraic subvariety of P™(C). Let {D1,- -, Dy} be a family of
moving hypersurfaces of P™"(C). Let N and k be two positive integers such that N > dimV > k.
(a) The hypersurfaces {D1,---,Dq} are said to be in general position (or say in weakly
general position) in V if there exists z € C™ (if this condition is satisfied for one z € C™,
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it is also satisfied for all z except for an analytic set of codimension > 2) for any subset
Ic{l,--,q} with I <dimV + 1,

codim( ﬂ D;(z)n V) >l
iel
(b) The hypersurfaces {D1,---,D,} are said to be in N-subgeneral position in V if there

exists z € C™ (if this condition is satisfied for one z € C™, it is also satisfied for all z except
for an analytic set of codimension > 2) for any subset I C {1,---,q} with I < N + 1,

dim(ﬂDi(z)ﬂV) <N —tI.

il
(c) The hypersurfaces {D1,---,Dy} are said to be in N-general position with index K in
V if D1,---, Dy are in N-subgeneral position and if there exists z € C™ (if this condition is

satisfied for one z € C™, it is also satisfied for all z except for an analytic set of codimension
> 2) for any subset I C {1,---,q} with $I <k,

codim( N Di(z)n V) > 47

iel
(Here we set dim ) = —c0).

Now, we state our main result which is an improvement and extension of the above two
theorems concerning moving hypersurfaces targets located in subgeneral position with index.
Theorem 1.1 is just the following result for the special case whenever N = dim V' and xk = 1.

Theorem 1.3 Let f : C™ — V C P*(C) be a nonconstant meromorphic map, where V
is an irreducible algebraic subvariety of dimension (. Let Q = {Q1, - ,Qq} be a collection of
slowly moving hypersurfaces in N -subgeneral position with index k in 'V, and degQ; =d; (j =
1,--,q). Assume that f : C™ — V is algebraically nondegenerate over Kgo. Then, for any
>0,

N -/
(q - (1 + max{1, min{N — ¢, /@}})(Z +1) - E)Tf(r)
Zdi (1,1 Qu) + oL (1)) 13)

holds for all r outside a set with finite Lebesque measure.

When V' = P"(C), we can have the following second main theorem with truncation, and
thus Theorem 1.2 is just the special case whenever x = 1.

Theorem 1.4 Let f be a nonconstant meromorphic map of C™ into P"(C). Let {Q;}{_, be
a collection of slowly moving hypersurfaces in N -subgeneral position with index k, and deg Q) =
d; (1 <j<gq). Assume that f is algebraically nondegenerate over Ko. Then, for any e > 0,

(q - (1 + max{1, m]\i[ngj\?— n, n}})(n +1) - 6)Tf(T)

Fol(r, Qi) + o(Ty(r)) (1.4)

INA
'M"
&|H
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holds for all r outside a set with finite Lebesque measure, where

with
Li=(n+1)d+ 2(1 + max{1, m]\i]ngj\rfl— n, /{}})(n +1IEd,
where d :=lem(dy, - -+ ,dg) is the least common multiple of all {d;}, and
e [ D D 1y
" Lllog(1+ 3(”+1)(1+m)) '

Remark that very recently, Yan and Yu [17] considered the nonconstant holomorphic curve
from C into P™(C) instead of algebraically nondegenerate and improved Theorem 1.2 without
truncation. Thus it is interesting to ask the following question.

Question 1.1 In Theorem 1.3 or Theorem 1.4, is it possible to obtain a second main
theorem if the condition “f is algebraically nondegenerate over Kg” is omitted?

The remainder is the organization as follows. In the next section, we introduce some basic
notions and auxiliary results from Nevanlinna theory. Sections 3—4 are the proofs of Theorems
1.3-1.4, respecitively, in which the methods to deal with moving targets by Dethloff-Tan [3],
Yan-Yu [17], and the techniques to deal with hypersurfaces in subgeneral position instead of
Nochka’s weights owing to Quang [8-9] are used in this paper.

2 Basic Notions and Auxiliary Results from Nevanlinna Theory

2.1 The characteristic function in Nevanlinna theory

We set ||z]| = (||z1]|2 + - + ||zm]|2)2 for 2 = (21, , 2m) € C™ and define

B(r):={z€C™: |zl <r}, S@r)={ze€C™:|z]=r}, 0<r<o.

Define
vm—1(2) := (dd°|[z]*)" 7,
om(2) = d°log ||z||* A (dd®log ||z]|*)™" on C™\{0}.
Let F' be a nonzero meromorphic function on a domain €2 in C™. For a set a = (a1, -+ , ayy)

of nonnegative integers, we set |a| = a3 + -+ + a,, and

ol

80‘12’1"'80""2171.

DF =

We denote by VIO;, v and vp the zero divisor, the pole divisor, and the divisor of the meromor-
phic function F, respectively.
For a divisor v on C™ and for a positive integer M or M = oo, we set

V[M](Z) = min{M, V(Z)}’
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/ v(z)vm—1, ifm>2
[V|NB(t)

n(t) =
Z v(z), itm=1.

|z[<t

The counting function of v is defined by

N(T‘,I/)Z/ Mdt 1<r<oo.
1

2m—1""

Similarly, we define N(r, ™)) and denote it by NM(r v).
Let ¢ be a nonzero meromorphic function on C™. Define

Ny(r) = N(r,v0), NM(r)=NM(@0).

For brevity we will omit the character [M] if M = oc.

Let f : C™ — P"(C) be a meromorphic mapping. For arbitrarily fixed homogeneous

coordinates (wg : - - : wy) on P"(C), we take a reduced representation f = (fo,- - , fn), Which
means that each f; is a holomorphic function on C™ and f(2) = (fo(2), -, fn(2)) outside the
analytic set I(f) = {fo = --- = fu = 0} of codimension > 2. Set || f]| = (| foll2 + - + || fnl|?) 2.

The characteristic function of f is defined by
7y0) = [ toglflon— [ 1og|Flowm.
S(r) S(1)

Let ¢ be a nonzero meromorphic function on C™, which is occasionally regarded as a
meromorphic map into P!(C). The proximity function of ¢ is defined by

m(r, @) = /S( )10gmax(|gp|,1)am.

The Nevanlinna’s characteristic function of ¢ is defined as follows

T(r,p) = N% (r) +m(r, ).
Then
Ty(r) =T(r, ) +O(1).

The function ¢ is said to be small (with respect to f) if ||T,(r) = o(T¢(r)), here the notion ||
means that the property holds possibly outside a set with finite Lebesgue measure.

We denote by M (resp. Ky) the field of all meromorphic functions (resp. small meromorphic
functions with respect to f) on C™.

2.2 Family of moving hypersurfaces and the first main theorem

Denote by Hem the ring of all holomorphic functions on C™. Let @) be a homogeneous
polynomial in Hem [zg, - -, 2] of degree d > 1. Denote by Q(z) the homogeneous polynomial
over C obtained by substituting a specific point z € C™ into the coefficients of Q). We also call
a moving hypersurface in P"(C) a homogeneous polynomial QQ € Hem [z, -+ , x,] such that the
common zero set of all coefficients of () has codimension at least two.
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A moving hypersurface @ in P"(C) of degree d (> 1) is defined by
Q(z) = ar(z)w’,

IeZ,y

where Zy = {(ig, - ,in) € NSH; io + - +in = d}, ai € Hem and w! = wé“---wi". We

n

consider the meromorphic mapping Q' : C™ — PV (C), where N = ("+d) given by
Q'(2) = (ar,(2) s -+ rary(2))  (Za={lo, -, In}).

Here Iy < --- < Iy in the lexicographic ordering. By changing the homogeneous coordinates of

P"(C) if necessary, we may assume that for each given moving hypersurface as above, az, # 0
(note that I = (0,---,0,d) and ay, is the coefficient of w?). We set

N
~ ag; )
Q= Z ol
j=0 @10
The moving hypersurfaces @ = {Q1, -+ ,Qq} is said to be “slow” (with respect to f) if
[T/ (r) = o(T¢(r)). This is equivalent to ||Ts, (r) = o(T¢(r)) (V1 < j < N), ie, L€ K.

a
aI o

Let {Q;}_; be a family of moving hypersurfaces in P"(C), deg Q; = d;. Assume that

We denote by g the smallest subfield of meromorphic function field M which contains C
and all ‘;j , where a;;, Z0,i € {1, -+ ,q}, It, Is € Z,,. We say that f is linearly nondegenerate
over Ko if there is no nonzero linear form L € Kg[xg,- - , x| such that L(fo, -, fn) = 0,

and f is algebraically nondegenerate over Kg if there is no nonzero homogeneous polynomial

Q € ICQ[‘T07 T ,il'n] such that Q(foa T 7f’l’L) =0.
Let f and @ be as above. The proximity function of f with respect to @, denoted by

my(r, @), is defined by
my(r, Q) = /S UGS /S R

where Q(f) = Q(fo, -, fn), and )\Q(f) = log% is the Weil function and [|Q] =
?é%x{|a1|}, where Zy := {I = (ip," - ,in) € Zg'gl, io + -+ + i, = d}. This definition is in-
d
dependent of the choice of the reduced representation of f.
We denote by f*@Q the pullback of the divisor @ by f. We may see that f*(Q identifies with
the zero divisor 1/2) 7 of the function Q(f). By Jensen’s fomular, we have

Nogh(r) = [ 1og1@(Plm — [ 1og|@(Plowm.
S(r) S(1)
For convenience, we will denote N (r, f*Q) = No(s)(r).

Theorem 2.1 (First Main Theorem) (see [9]) Let f : C™ — P"(C) be a holomorphic map,
and let Q be a hypersurface in P™(C) of degree d. If f(C™) ¢ @Q, then for every real number r
with 0 < r < 400,

dTy(r) = my(r, Q) + Nop) (r) + O(1),

where O(1) is a constant independent of r.
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2.3 Some theorems and lemmas
Let f be a nonconstant meromorphic map of C™ into P™(C). Denote by C; the set of all
non-negative functions h : C™\ A — [0, +00] C R, which are of the form

lg1] + - + |9l
lgie1l + -+ lgisl’

where k,l € N, g1, -, gi+x € Kr\{0} and A C C™, which may depend on g1, - , gi+k, iS an
analytic subset of codimension at least two. Then, for h € C; we have

/ log how, = o(T¢(r)).
S(r)

Since Q@ = {Q1,--- ,Qq} are in N-subgeneral position, we have the following lemma.

Lemma 2.1 (see [2, 8, 17]) For any Qj,, -+ ,Qjy., € Q, there exist functions hy, hy € Cy
such that

hQHfHd |ij(f07 7fn)|§h1||f”d

ke{l N+1}

Lemma 2.2 (Lemma on Logarithmic Derivative) (see [6]) Let f be a nonzero meromorphic
Sfunction on C™.

DOt
Hm(r, f(f)) =O0(log" T(r, f)) (a€ZT).
Proposition 2.1 (see [5]) Let ®1,---, Py be meromorphic functions on C™ such that
{®y, -+, Py} is linearly independent over C. Then there exists an admissible set
{o; = (i1, im) My C 2T

with (o] = > |auj| <i—1 (1 <i<k) such that the following are satisfied:
j=1
(1) {DY®q,- -+, D¥®y}r | is linearly independent over M, i.e., det(D* ®;) £ 0,
(ii) det(D% (h®;)) = h* - det(D¥®;) for any nonzero meromorphic function h on C™.

Theorem 2.2 (see [10, Theorem 2.31]) Let f be a linearly nondegenerate meromorphic
mapping of C™ into P™(C) with a reduced representation f = (fo, -+, fn) and let Hy,--- ,H,
be q arbitrary hyperplanes in P™(C). Then we have

H/ maxl og H Hf” HH H) < (n 4 1)Ty(r) — Nwa (s, (r) +o(Ty(r)),

where o is an admissible set with respect to f (as in Proposition 2.1) and the mazimum is taken
over all subsets K C {1,---,q} such that {H;; j € K} is linearly independent.

3 Proof of Theorem 1.3

Firstly, we may assume that @1, -- , Q4 have the same degree degQ); = d; = d. Set

Qj(z) = Z ajf(z)xl, j=1,---,q.

IeZy
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For each j, there exists a;r;(2), one of the coefficients in Q;(z), such that a;z,(z) # 0. We fix
_ ai(2)

= G, () and

this a;z,, then set a;7(2)
Qi(z) =Y a(z)x,
IeZy

which is a homogeneous polynomial in Kg[xo, -+ ,z,]. By definition of the proximity function
and Weil function, we have

IIfll”‘Ilellz1 IL£191Q; ]l
Q&AL 1100

Ag,(f) = log

forj=1,---,q.
a .
For a fixed point 2 € C™\ |J Q:(f)~1({0,00}). We may assume that there exists a renum-
i=1
bering {1,--- , ¢} such that

Q1) (N(E)] < Qo) (N < -+ < Qg2 (N)(2)]-

By Lemma 2.1, we have _ max Qi) (D) = [@ns1(2)(F)(2)] = h|f]|¢ for some h € Cy,
jG RN

ie.,

O
QD) k)

Hence

TR 1 e .l
1} QD) ~ TN G) E QNG .

Let Ko be an arbitrary field over C™ generated by a set of meromorphic function on C™.
Let V be a sub-variety in P"(C) of dimension ¢ defined by the homogenous ideal I(V) C
Clzo,- -+ ,xyn]. Denote by Ix, (V) the ideal in Kglzo,--- ,xy,] generated by I(V'). Since f :
C™ — V c P*(C) is algebraically nondegenerate over Ko, there is no homogeneous polynomial
P e Kolxo, - ,xn]/Ixo (V) such that P(fy,---, fn) =0.

For a positive integer L, let o[z, - - - , x»] 1 be the vector space of homogeneous polynomials
of degree L, and let Ix, (V) := Ixo (V) N Kglzo, - ,xn]r. Set

Vi = Kglzo,  ,zn]r/Ixe (V)L

Denote by [g] the projection of g in V. We have the following basic fact from the theory of
Hilbert polynomials (see [15]).

Lemma 3.1 M :=dimg,V; = Aé—€2 + p(L), where p(L) is an O(L*~Y) function depending
on the variety V.. Moreover, there exists an integer Lo such that p(L) is a polynomial function
of L for L > Ly.

Next, we prove the following lemma concerning on the hypersurfaces located in IV-subgeneral
position with index x, which plays the role in this paper. The method of it is originally from
Quang [9-10].



Second Main Theorem with Moving Hypersurfaces 761

Lemma 3.2 Let @1, e a@N+1 be homogeneous polynomials in Kglzo, -+ ,2y] of the same
degree d > 1, in (weakly) N-subgeneral position with index k in V. For each point a € C™
satisfying the following conditions:

(i) The coefficients of @1, e 7@N+1 are holomorphic at a;

(ii) él(a), e ,@NH(Q) have no non-trivial common zeros in V;

then there exist homogeneous polynomials Py(a) = Q1(a), ---, Pe(a) = Qx(a), Pet1(a), -+,
Priq(a) € Clxg, -+ ,xy] with

N N—t+t

P (a) = Z c;Qj(a), ¢; €C, t>rk+1

Jj=r+1
such that
0+1

(ﬂﬁda)) ﬂV:Q)
t=1
Proof We assume that @i (1 <i< N +1) has the following form
@i = Z auwl-
Iety

By the definition of the N-subgeneral position, there exists a point a € C such that the following
system of equations
Qi(a)(wo, -+ ,wp) =0, 1<i<N+1

has only trivial solution (0,--- ,0). We may assume that Q;(a) Z 0 for all 1 <i < N + 1.
For each homogeneous polynomial @ € Clzg, - - , 2,], we denote by D the fixed hypersurface
in P"(C) defined by Q, i.e.,

D = {(wo, - ,wn) € PC) | Q(wp, -+ ,wn) = 0}

Setting Pi(a) = Q1(a),- - - , Pu(a) = Q. (a), we see that
t
dim(mDi(a)ﬂV) <SN—t, t=N—f+4r+1,--- ,N+1,
i=1

where dim () = —co. According to the definition of N-subgeneral position with index x, we have
dim ( () Dj(a)NV) <Ll — k.
j=1

Step 1 We will construct ﬁ,ﬁl as follows. For each irreducible componet I' of dimension

0 —kof ( (K] ﬁi(a)ﬂV), we put
i=1

Vir = {C = (Cht1s »CN—t4rt1) € CVTLT C D (a),
 N—f4mtl
where Q. = Z chj}.
j=Kk+1

By definition, Vir is a subspace of CV~#*1. Since

N —l+r+1
dim( N DAa)ﬁV)Sé—n:—l,

i=1
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there exists ¢ € {k +1,--- ,N — £ + x + 1} such that I' ¢ D;(a). This implies that Vip is
a proper subspace of CN~¢*+1  Since the set of irreducible components of dimension ¢ — & of

(N Pi(a) N V) is at most countable, we have
i=1
CN=the\ U Vir # 0.
r

Hence, there exists (¢1(ut1), - » C1(N—e4nt1)) € CV 7! such that T ¢ Pri1(a), where Ppyy =
N—{l+k+1 - K
c1;Q;, for all irreducible components of dimension £— x of ( () P;(a)NV'). This clearly
j=r+1 i=1
implies that
k+1

dim(_ﬂé—(a)mv) <l (k+1)

Step 2 We will construct ﬁK/J’_Q as follows. For each irreducible componet I of dimension

k+1
{—r—1of () Pi(a)NV), we put
i=1

Vorr = {¢ = (Cag1, s CN—t4rs2) € CVTH2 T C De(a),
_ N —l+r+2 _
where QC = Z Cij}.
Jj=r+1

N—l+r+2
Then Vors is a subspace of CN =72, Since dim( ()  Di(a) NV) < € — k — 2, there exists
i=1
ie{k+1,--- ,N—L+k+2} such that I ¢ D;(a). This implies that Vors is a proper subspace
k+1 _
of CN=#2_ Since the set of irreducible components of dimension ¢ — x — 1 of ( () Pi(a)NV)
i=1

is at most countable, we also have

(CN—Z-i-n-i-l \ U Var 7& 0.

I

Hence, there exists (ca(x41), " » Co(N—r4r+2)) € CN=4+2 guch that T ¢ ﬁK/J’_Q (a), where ﬁn+2 =
N—ltr+2 KAl
> c2;Q;, for all irreducible components of dimension ¢ — x — 1 of ( (] Pi(a) N V). This
Jj=r+1 i=1
clearly implies that
K+2

dim(iOlPi(a)ﬂV) <l—(k+2).

Repeat again the above steps, after (¢ + 1 — k)-th step we get the hypersurfaces ﬁHl(a),
-+, Ppyq(a) satistying that
t
dim( Jgj(a)ﬂV) <l—t,
j=1

where t =k +1,--- £+ 1.
041 _ ~ _
In particular, ( () P;(a)NV) = 0. This yields that Pi(a),- - - , Pr41(a) are in general position.
j=1

We complete the proof of the lemma.
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Since there are only finitely many choices of N + 1 polynomials from @1, e ,@q, the total
number of such Pj{s is finite, so there exists a constant C' > 0, fort = k+1,--- ;£ and all z € C™
(excluding all zeros and poles of all Q;(f)), by Lemma 3.2 we can construct P,y = Q1(z), -~
Pl-c(z) = Qn(z)a P(l-c+l)(z)7 ) P(E—i—l)(z) from Ql (z)s " 7Q(N+l) (2) such that

1Pioy(HE)I<C  ma Qi) (H(2)] = ClR-41)2) (F)(2)]

+1<]<N O+t

)

for k +1 <t </, and thus,

1" 1"
Aé(N—l#»t)(z)(.f)(z) = Aﬁt(z)(f)(z) +logh”, h"€ Cf for k +1<t<t

Combining the above inequality with (3.1), we have

q
Z/\@j(z)(f)(z)
j=1
K N—{l+k
_ /
<D 0Pt 2 Agwde T Z AGy e () T1ogh
=1 J=Kr+1 N—l+k+1
K N—l+k
i
<D A0 dme T 2 Awde T Z APy (F(z) T 1081,
Jj=1 Jj=r+1 j=r+1
N—{l+k

I
MN

"
](z)(f + Z Q()f)(z)+logh ’

<.
Il
—

This gives that if N — ¢ < k, we have

a 4 N—¢
"
ZAQ]()(f SZ)\ ](z)(f +Z/\QJ()(f)( )+10gh
Jj=1 j=1 =1
4 N—¢
= = ~ . _ "
N Z )\Pj(z)(f)(z) T /\Pj<z)(f)(z) + logh”, (3.2)
Jj=1 j=1
and 1fN—£2 K, We get
d ¢ N—¢
"
Z)\ Qj(z) f)(z) Z P](z) f)(z) + Z Q](Z) f)(z) +10gh

Jj=1

N — g "
: 2; A T i 2; AG, o () T logh
Jj= j=

e K
== —N — [ "
=D A5 (et 2B (e T logh”, (3.3)
j=1 =1
where h"" € Cy. Hence, by (3.2)—(3.3), we get

)\éj(z) (N(=)

1=

BN

L
N -/ %
< Z)\ Pjz) (f)(z) max{ljmin{N — fj [4;}} ;Aﬁj(z)(f)(z) T 1Ogh

=1

<.
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N—¢
= ~ ~ 1 *
( + max{1, min{N — ¢, n}}) Z)\Pj(z)(f)(z) +logh’,

Jj=1

(3.4)

where h* = max{h”, h""} € Cy.
Fix a basis {[¢1], -, [¢m]} of Vi, with [¢1],- -, [om] € Kglxo, -+, xy], and let
F= [¢1(JT)7 T 7¢M(.]7)] :C— PM_l((C)

Since f satisfies P(f) # 0 for all homogeneous polynomials P € Ko[zo, - - - /I (V), Fis
linearly nondegenerate over Kgo. We have

Tr(r) = LTf(r) + o(T5(r)). (3.5)

For every positive integer L divided by d, we use the following filtration of the vector space V7,
with respect to Py(;),- -+, Pyz). This is a generalization of Corvaja-Zannier’s filtration [1], see
in the three references [3, 12, 17].

We arrange, by the lexicographic order, the ¢-tuples i = (i1, - ,i¢) of non-negative integers
and set [|i]| = > 1;.
J

Definition 3.1 (see [3, 12, 17]) (i) For each i € Zéo and non-negative integer L with

L > d|[i]|, denote by I} the subspace of Kglxo, -+ ,&n]r_ays consisting of all
v € Kolwo, -+, Tn]L—ay
such that
PilyPioy= X Py Piyre € Iea (Ve

e=(e1,,e0)>1

(or [ﬁlléz) o ﬁg(fz)fy] = [ Z ﬁf(lz) e ﬁée(ez)%} on V)

e=(e1, - ,e0)>i

for some v. € Kg[zo, -+, Tn]L—d|e|-
(ii) Denote by I' the homogeneous ideal in Kglxo, - -+ ,x,] generated by |J 1.
Lzd|lil

Remark 3.1 (see [3, 12, 17]) From this definition, we have the following properties.
(i) Uko(V),Przy - Poy)p—ayy € 1L C Kolzo, -, @n]p—ayi, where (Ixo(V), Pig)

. -]34(2)) is denoted to be the ideal in Kg[zo, -, 2] generated by Iico (V) U{Pi(z) - Pz}
(ii) Iin /Cg[xo, cee 7xn]L—d||iH = Ii.

(iii) w is a graded module over Ko[zg, - , 2]
(iV) Ifi; —ip := (2'1)1 —2'2)1, “e ,i17g —i27g) S ZéZO’ then IE - IlLl+d|\i1||—dHi2||' Hence I'2 C I'.

Lemma 3.3 (see [3, 12, 17]) {I'|ie Z%,} is a finite set.

Denote by

Kolzo, -+ Tn]L—ayi

AiL = dimg, T
L
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Lemma 3.4 (see [3, 12, 17]) (i) There exists a positive integer Lo such that, for each
ie Zéo, Al s mdependent_ofL for all L satis_fying L —d||i|| > Lo.
(ii) There is an integer A such that AL < A for alli € ZéZO and L satisfies L — dJ|i|| > 0.

Set Ap := min Al = Al for some iy € Z€>0~
iczt =

Remark 3.2 (see [3, 12, 17]) By (iv) of Remark 3.1, if i — i € Zé>07 then Al < Alo,

Now, for an integer L blg enough, divisible by d, we construct the following filtration of V7,
with respect to {Pl (2) " P, (z)}- Denote by 71, the set of i € Z_ with L — dJ|i|]| > 0, arranged
by the lexicographic order. Define the spaces W; = Wp ; by

Wi = pr(l) " ~;Z Kolzo, -, znlr—djje|-
e>i
Clearly, Wio,... 0y = Kg[zo, -+ ,2n]r and Wj D Wy if i’ > i, so {Wj} is a filtration of Koz, - - -,
xp]r. Set Wi ={[g] € Vi | g € W;}. Hence, {W;"} is a filtration of V7.

Lemma 3.5 (see [3, 12, 17]) Suppose that i’ follows i in the lexicographic order, then
Wi Kelwo, -, @alr—api I

Wi p

Combining with the notation (3.6), we have

wWE
L AL
wy o ok

dim
Set
i ={ier |L—dli]| >Lo and i—ip€ Z,}.
We have the following properties.
Lemma 3. 6 (see 3,12, 17)) (i) Ag = Al for alli € 7).

(11) ﬁTg = de g| + O(Le - 1)
(iii) AL = Ad? for allie 70.

We can choose a basis B = {[1],- -, [¥a]} of Vi, with respect to the above filtration. Let
[1s] be an element of the basis, which lies in W;* /W}}, we may write ¢, = Pe( ) P 4(z)7s Where
v € Kglzo, -+, xn]p—ay- For every 1 < j < {, we have

AL
Abij = Lt :
IEZ L' = g 4 1)'d + O( ) (3 7)
TL

(The proof of (3.7) can be found in [12, (3.6)]). Hence, by (3.7) and the definition of the Weil
function, we obtain

ALH—
Z)\M ((€+ 1)'d ) ZAP( ) )) +log b, (3.8)

where h** € Cy. The basis {[¢1],- [d)M]} can be written as linear forms Ly, -+, Ly (over
Ko) in the basis {[¢1], - - , [éar]} and ¢4 (f) = Ly(f). Since there are only finitely many choices
of @1(2), e ,@(N+1)(z), the collection of all possible linear forms L, (1 < s < M) is a finite set,
and denote it by £ := {L,u}ﬁzl (A < +00). It is easy to see that Ky C Ko.



766 L. B. Xie and T. B. Cao

Lemma 3.7 (Product to the Sum Estimate, see [10]) Let Hq,---,H, be hyperplanes in
P™(C) located in general position. Denote by T the set of all injective maps p : {0,1,--- ,n} —
{1,--,q}. Then

me(T’Ha‘)S/OﬂmaX Al (f(re”))g—oJrO(n

pneT i—o Hyay T

holds for all r outside a set with finite Lebesque measure.

By (3.4), (3.8) and Lemma 3.7, taking integration on the sphere of radius r, we have

41 ~ -
A1+ 0(1)- Y msr.@) < (e 1)

(L+1)d = max{1l,min{N — ¢, xk}}
. / max > Ar, (f dﬁ olTs(r))  (3.9)
JEK

for all r outside a set with finite Lebesgue measure, where the set K ranges over all subsets of
{1,--+,A} such that the linear forms {L,}cx are linearly independent.
By Theorem 2.2, we have, for any € > 0,

/ max Y7 Ar, (] ;1_9 < (M +&)Tp(r) — Ny (r,0) + o(T5 (1) (3.10)
JERK

holds for all r outside a set E with finite Lebesgue measure. Taking ¢ = % in (3.10), and using
(3.5) and (3.9), we obtain

AL q
et tou Z::
(max{l, mj\ifngj\é gt 1) (M +)Tr(r) = N (r,0) + o(T;(r)))
—_ 4
s (max{l,m]\ifn{]\l; — 4, k}} + 1) (Aél!/ +p(L) + E)LTf(r) + o(Ty(r))

holds for all r ¢ E, where W is the Wronskian of Fy,--- | F)y.
Take L large enough such that ¢ < (max{l,m];]n_{g\/—é,n}} + 1)o(1), where £ > 0 is any given

constant in the theorem. Then we have

ié (r Qj ((max{l,m]\i]ngl\l;—é,m}} +1)(£+1)+6)Tf(7a) (3:11)

holds for all » &€ E.

And by the first main theorem, (3.11) can be written

(q— (max{l,m]jngj\éf — 0, k}} + 1)(€+ - ) ;é 2

Secondly, for the general case whenever all Q; may not have the same degree, considering

Q; % instead of Qj, we have N¢(r,Q;) = 4N T Q 7). Then the theorem is proved immediately.
J AT & d*'f J



Second Main Theorem with Moving Hypersurfaces 767

4 Proof of Theorem 1.4

d

Replacing @; by Q;TL if necessary with the note that

Lt (r, 5 QF) < LN, £ 4@y,

1

d;

we may assume that all hypersurfaces @; (1 < i <
N—n

assume that g > (max{l)min{N_n_’K}} + 1)(n +1).

q) are of the same degree d. We may also

Consider a reduced representation ]7: (fo, -+ fn) : C— C"*1 of f. We also note that
[Lo] _ nylLol
NQ (f)( r) = Néi(f)(r) +o(Ty(r))-
Then without loss of generality we may assume that Q; € Kylzo, -+, ]
We set

I:{(ll, z1\7-‘1-1) 1<13<Qa137’é1t7 V];ét}

For each I = (i1,---,iny1) € Z, we denote by Pry,---, Prpq1) the moving hypersurfaces
obtained in Lemma 3.2 with respect to the family of moving hypersurfaces {Q,, -+, Qiy., }-
It is easy to see that there exists a positive function h € Cy such that

P, < » 1<t<
Pr@l<h | max 1Qu@ k+1<t<n

forall I € T and w = (wp, -+ ,wy,) € C*HL,

For a fixed point z € C™ \ U Qi(f)~1({0,00}), we may assume that

Qi (N2 < 1Qia(N(2)] < -+ < 1Q4, (H(2)].

Let I = (i1,--- ,in41). Since Pri,- -+, Pr(p41) are in weakly general position, there exist func-
tions go, g € Cy, which may be chosen independent of I and z, such that

17N < go(e) | max [Pr()(e)] < 9(2)| Qs (N ()]
Therefore, we have
TN w17 @I
o ma = )g 2 (D)
P S VIO S VIO . ()¢
! ()gl_IlleJ(f)(z)l 3:111 |Q1J(JT)(Z)| j:Nljz[+n+1 |QZJ(JT)(Z)|

I 1 O Y e [ P
< : . : 4.1
Lhﬂﬂ)(ﬂJJLHQM)@ijHH%(X)I e

where hy = g9~V (2)h""%(2), I = (i1, ,in+1). Choose a function ¢ in C; which is common
for all I € Z, such that

|Prj ()] < ¢()wll?,  Yw = (wo,+ ,wn).
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We first consider if N —n < k, and have by the inequality above that,

T @I, 7 @ b G GRS = S Gl
11 DI~ PL(DE) (]Hl IPfg(f)(Z)l jiin 1P (F)(2)]

B O e iy PN @)
< ((z)stn=Np .
=) ZHIW NE) ( 1P (f)(= >|)(J Nr[n+1 Py (f)(= >|)

, ﬁ IIf(Z)IId (ﬁ T 1( )| ) ( ﬁ IFEI )
( | Prj(

H
O
=
=

<.

J=rK+1 |PIJ f)( f J=Kr+1 |PIJ( )(Z)|
- ||f(2)|\d
= hsy - 4.2
(5 >|) 2

where hy = ((2)*"~Nh; € Cy, however if N —n > k, we get

Rl yi2 fp I
AV mm Pa(DE)

. n Zd
= e

jeni1 [P (1)(2)]
1+N7n

(
(f)
T @) g o If@)
< hs- R
- (Jl:[l 1P (f)(2)] (g 11—1 |Plj(f)( )|)

Nn

<
I
—
.
<
—
\2
— = Y= —
—~
I\
-
~ ~
[
+

= hs f[ Gyt (4.3)
=1 1P (F)(2)]
(n=w)(N=n)
where hs = h1C ( ) S Cf.
Thus by (4.2)-(4.3), we get
g N (2)
, (4.4)
g7
where h* = max{hs, h3} € Cs.
Hence, by taking logarithms in the both sides of (4.4), we can obtain
Ogﬁ ( 17(2)) )
i1 Qi () (2)]
. N-n S WHOIE
<logh™ + (1+ - log e 4.5
( max{l,nnn{N—n,/q}}) (j_l |P13(f)(z)|) (4.5)

Now, for each non-negative integer L, we denote by V7, the vector space (over Kg) consisting
of all homogeneous polynomials of degree L in Kg[xo, - - - , z,] and the zero polynomial. Denote
by (Pr1,- -+, Pryn) the ideal in Koz, -, 2,] generated by Pry,--- , Pry.
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Lemma 4.1 (see [2, Proposition 3.3]) Let {P;}{_; (¢ > n+1) be a set of homogeneous
polynomials of common degree d > 1 in Kslxo,- -+ ,xy,] in weakly general position. Then for
any nonnegative integer L and for any J := {j1, - ,jn} C {1, -, q}, the dimension of the
vector space (levﬁ is equal to the number of n-tuples (s1,---,s,) € N such that

s1+ 48, <Land0< sy, ,8, <d— 1. In particular, for all L > n(d — 1), we have

VL w
(Pjyy 5 Py )N VL

dim "

Now, for each positive integer L big enough, divided by d, and i = (i1, - ,i,) € N with
n

oi) =Y i; <L, weset
j=1

Wri= > Pl Pl - Vi_ao(s)-
()=, i) ()

It is clear that Wy, (o,... 0y = Vo and W3 D Wiy if i <1, so {Wp;} is a filtration of V7.
For the proof of the following lemma, we refer to [8].

Lemma 4.2 Let i = (iy, - ,in), i = (¢}, ,i,) € Nj. Suppose that ' follows i in the
lexicographic ordering and do(i) < L. Then
Wri Vi —do(i)

Wy (Piy Pi) N Vieaot)

This lemma yields that

. Wrj . Vi—do(i)
dim ~ = dim . 4.6
WL,i/ (Pju T 7Pjn) N VL—dU(i) ( )

Fix a number L large enough (chosen later). Set v = uy := dimVy, = (
that

LI”) We assume

Vi =Wri, DWri, DD Wiy,

where Wp ., follows Wy ;. in the ordering and ix = (£,0,---,0). It is easy to see that K is
the number of n -tuples (i1, -+ ,4,) with 4; > 0 and i1 + -+ - 4+ iy, < %. Then we have
L
K=(d7").
n
For each k € {1,---, K — 1}, we set m. = dim WML/L;CL and m. = 1. Then by Lemma 4.1, m{
does not depend on { Py, -, Pr,} and k, but only on o(i;). Hence, we set my, := mé. We also

note that by Lemma 4.1,

mpr = dn
for all k with L — do (i) > n(d — 1) (it is equivalent to o(iy) < & —n).

From the above filtration, we may choose a basis {¢{,--- %L} of V;, such that

1 1
{wu—(ms+---+m1{)+l’ U ﬂl’u}
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is a basis of Wg;,. For each k € {1,--- , K} and | € {u— (mp +---+mg) +1,--- ,u—
(Mp41 + -+ mg)}, we may write

Wl = PRr . Py, where (ing, - ink) = (ki € W g06,)-
We may choose h; to be a monomial.

We have the following estimates: Firstly, we see that

kalsk—z Z Dig =Y m(l) Z Tk

1=0 k|o(ir)= =0 klo(iy)=l

a~

Note that, by the symmetry (i1, - ,in) = (ig(1), " ,lo(n)) With o € S(n), > g does
klo(in)=1
not depend on s. We set

myisk, which is independent of s and I.

i
Wk

k=1
Then we have
[ (S IP(DE - Pa(AE)] () ()
< alPn(f )(Z)|i1k . |P1n(f)(z)|ink”f(Z)HL—do(i)k

= a(FREE) " () I

where ¢; € Cy, which does not depend on f and z. Taking the product on both sides of the
above inequalities over all [ and then taking logarithms, we obtain

o TT Pl < S (i 100 PRDEL L (PP
e[ (D) Z c(iwlog S i los S )
+ uLlong(z)H + log ey, (4.7)

where ¢; = [[ ¢; € Cy. By (4.7), it gives
=1

1ogH|wl )21 < o tog [ ] LD )+ uLog |72+ loger,

=1 ||f Z
ie.,
n Iy d L
a(logH M) < 1og ||f(z)|| +logey. (4.8)
=1 | Pri(f)(2)] =1 [ )]
—N-m /g
Set g = h* T (1 + ¢ TPt/ ¢ o
T
Combining (4.8) with (4.5), we obtain that
1 + — N-n — u Iy L
logH IIf z) me TN =] 1o, T II{(»Z)II +log o, (4.9)
Qi( ( ) a =1 [ ()(2)]
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‘We now write

I I I
U)l = Z ClJI'JEVL, ClJEICQ,
JEIL

where Zj, is the set of all (n + 1)-tuples J = (ig,- - ,i,) with Z:Ojs =Lz’ =)’ xir and
l€{l,---,u}. For each [, we fix an index J/ € J such that clIJI # 0. Define
l

I ey
Hig = T JEIL~

€Lt

Set ® = {ul ;I c{1,---,q¢},#I =n,1 <1 <wu,J €Z.}. Note that 1 € . Let B = §&. We
see that B < u(4)(("*™") — 1) = (9)((*F™") —1)(*/™). For each positive integer I, we denote

n n

by L(®(l)) the linear span over C of the set
(1) = {71 m; v € 2}

It is easy to see that

B+1-1
dim £(®(1) < to) < (°F .
B-1
We may choose a positive integer p such that
p<p { B-1 }2
<po:= -
log(1 + T e )
and
dim L(®(p + 1)) <14 €
dlmﬁ(q)(p)) B 3(TL+ 1)(1 + max{l,m]\i]n_{gl\f—n,n}}).
ce dim L£(P(p+1))
Indeed, if TG 1+ 3(”+1)(1+x,,ax{€1,xxfivnfﬁz7n,~}}) for all p < pg, we have

B Po
3(” + 1)(1 + max{l,mj\ifn_{?i/—n,li}})

dim £(®(po +1)) > (1 +

Therefore, we have

€
log (1 + “n
3(” + 1)(1 + max{l,mj}fn{N—n,n}})

_ logdim £(®(po +1)) _ log (5
- Po o Po
_ ilogBl__IlpO_'—i_'—l _ (B—1)log(p +2)

Po i Po

_ 13
B—-1 - (B —1)log(1 + 3(n+1)(1+m)
N/ B-1

=log (1 + =

3(” + 1)(1 + max{l,mj\ifn_{rlif—n,n}})

This is a contradiction.



e L. B. Xie and T. B. Cao

We fix a positive integer p satisfying the above condition. Put s = dim £L(®(p)) and t =
dim L(®(p + 1)). Let {b1,---,b:} be an C-basis of L(®(p 4+ 1)) such that {by,--- ,bs} be a
C-basis of L(®(p)).

Foreachl € 1,---, u, we set
o1 I
Y = Z Hygxr-
JeTy,
For each J € Zr,, we consider homogeneous polynomials ¢ (zg, - ,2,) = 7. Let F' be a mero-

morphic mapping of C™ into P*“~1(C) with a reduced representation F= (hbi¢J(f))1§i§t7JeIL,
where h is a nonzero meromorphic function on C”. We see that

| Nu(r) + Nuyn(r) = o(T5(r))-

Since f is assumed to be algebraically nondegenerate over Kg, F' is linearly nondegenerate over
C. We see that there exist nonzero functions c;, ca € Cy such that

erlhl - IFI* < IF < ealhl - 111"
For each l € 1, ,u,1 < i < s, we consider the linear form L}, in z7 such that
hbitf (f) = Liy(F).
Since f is algebraically nondegenerate over Kg, it is easy to sce that {bz{/;f (fi1<i<s 1<
| < M} is linearly independent over C, and so is {LL(F);1 < i < s,1 <1 < u}. This yields

that {L;1 <i < s,1 <1 <u} is linearly independent over C.
For every point z which is neither zero nor pole of any hbiwlI (f), we also see that

slogH ”f 2) ”L log H + logcs
1Zi<u Ihbzwl )( )|
1<1<s

IEG)) - L4
=lo AL AL ——
gH LL(F)(2)

1<i<s

+ log ¢4,

where c3, ¢4 are nonzero functions in Cy, not depending on f and I, but on {Q;}{_;. Combining
this inequality and (4.9), we obtain that

1+ Non

Hf Z max{l,min{N—n,x}}
1 ) )
OgH LlQi(7 ( e sa
F(2)| - ||L?
: (maxlog H M +1og04) + log cg (4.10)
I 1<i<u |Lzl(F)(z)|
1<i<s

for all z outside an analytic subset of C™.
Since F' is linearly nondegenerate over C, according to Proposition 2.1, there exists an
admissible set a = (aig)1<i<t,sez, With az; € Z7, oy < tu — 1, such that

W (hbids(f)) = det (D5 (hbids (F))) Z 0.
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By Theorem 2.2, we have

H/ max (1oz ][ HF IIL H) o
S(r) (2)]

1<i<u
1<i<s

< tuTp(r) = Nypo 3, (]7))(7") + o(Tr(r)). (4.11)

Integrating both sides of (4.10) and using (4.11), we obtain that

N-—n
tu(l + max{l,min{N—n,x}} )
sa

qdTy(r) = > N(r, Qi) < Tr(r)
=1

N—n
- L+ max{1l,min{N—n,x}} N

sa We (hb; . (f)) (r)
+o(Tp(r) 4+ Ty(r)). (4.12)

We can estimate the following quantity using the method of Quang [8],

q N 1+ max{1 m]Yn_{K/—n K1}
S N Qi) - sa Niwa o7 ()
=1

thus we can get

’ L+ SeeTmin N =) -
* max{1l,min —N,K tu 1
D ON( Qi) - p” Nywe (hoids (7)) Z (r Q).
i=1

From this inequality and (4.12) with a note that Tr(r) = LTy (r) + o(T¢(r)), we have

N—n
. tU’L(l + max{l,min{N—n,fc}}))Tf(r)

dsa

NP £2Q0) + o(Ty (). (4.13)

Yo
_

<

=
QU

1=1

Now we give some estimates for A,t and s. For each I, = (i1j, -+, ink) with o(iy) < % —-n,
we set N
. L .
Ynt+1)k = E —n - le-
s=1

Since the number of nonnegative integer p-tuples with summation < I is the same as the number

of nonnegative integer (p + 1)-tuples with summation exactly equal to I € Z, which is (‘7"

)

and since the sum below is independent of s, we have

I -
E mklsk;

o(in) <%
o(ix)<L—n
dn n+1
=T 2 X

o(ix)< L —n s=1
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+

(

Now, for every positive number = € [

(1+x)”=1+na:+z<7z>xl
i=2

ni
<1+nx+27' CESIE ST

n

<1+ nz+ Z

<1k

N—n

We chose L = max{1,min{N—n,r}}

we have

(n+1)d+2(1+

(n+1)d (n+1)d

L. B. Xie and T. B. Cao

(4.14)

)(n+1)3I(e~*)d. Then L is divisible by d and

1

L

- (Tl + 1)d a 2(1 + max{l,m];]n_{?\f—n,n}})(n + 1)31(5_1)d

Therefore, using (4.14)—(4.15), we have

ull < (L:n)L —nd) - (L —

< .
=o(n+1)2

(n—1)- -

(4.15)

L

_L4L+n~4L+m/@

da_dn-%l(é)_ 1-2--n 1-2---

L+ L
L—(n—it+Dd)
(n+1)d )n

(L - (n+1)d)

< (n+1)(

s

=(n+1)

.
Il

=Mn+1)(1+

(n+1)%d
2(1 + max{l,mJYn_{”Ji/—n,n}})(n + 1)31(5
(n+1)3d

2(1 + max{l,m]\i]n_{yll\f—n,n}})(n + 1)35 !
e
N—n )
max{1l,min{N—n,x}}

1+

/N TN

<(n+1)

=

<(n+1)+

<n+4+1+
2(1+

Then we have
tul - ( n €
B 3(7’L + 1)(1 + max{l,mj\ifni[r]if—n,ﬁ}})

g

N-—n )
max{l,min{N—n,x}}
9
N—n )
max{l,min{N—n,x}}
9 9

das

-(n—l—l—!—
2(1+

<n4+1+

2(1+

(n+1)

T

N—n

N—n ) 6(1+

3(1 + max{1l,min{N—n,x}}

max{1,min{ N —

n,/ﬁ}})
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14+ N—n

=n+1+ .
max{1l,min{N—n,x}}

(4.16)

Combining (4.13) and (4.16), we get

(q B (1 + max{1, mj\ifngl\?— n, H}})(n +1) - 6)Tf(T)

< ; %N[t“‘” (r, F*Qs) + o(Ty (). (4.17)

Here we note that
N —n
max{1l, min{N —n, k}}
B-1 2
)

[ 5
1Og(1 + 3(n+1)(1+mx{“]ﬁfnﬁ)

IR TR

<| .
log(l + 3(n+1)(1+m)

L+n\/B+p 1< L+n PP
n B-1 n

(D0,

L:=(n+ 1)d+2(1+ )(n+1)3l(g—1)d,

Po =

tu—1

IN

IN

n

By these estimates and by (4.17), we obtain

(q B (1 + max{1, mj\ifngl\?— n, H}})(n +1) - E)Tf(r)

< Z} %N[LO] (r, F*Qs) + o(Ty (). (4.18)

The theorem is proved.
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