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Abstract The authors give several new criteria to judge whether a simple convex polytope

in a Euclidean space is combinatorially equivalent to a product of simplices. These criteria

are mixtures of combinatorial, geometrical and topological conditions that are inspired

by the ideas from toric topology. In addition, they give a shorter proof of a well known

criterion on this subject.
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1 Background

A convex polytope P is the convex hull of a finite set of points in a Euclidean space R
d.

The dimension of P is the dimension of the affine hull of these points. Any codimension-one

face of P is called a facet of P . We call an n-dimensional convex polytope P simple if each

vertex of P is the intersection of exactly n different facets of P . Two convex polytopes are

combinatorially equivalent if their face lattices are isomorphic. Topologically, combinatorial

equivalence corresponds to the existence of a (piecewise linear) homeomorphism between the

two polytopes that restricts to homeomorphisms between their facets, and hence all their faces

(see [20, Chapter 2.2]).

If P1 ⊂ R
n1 and P2 ⊂ R

n2 are two convex polytopes, then their product P1 ×P2 is a convex

polytope in R
n1+n2 = R

n1 × R
n2 . Products of simplices are special type of simple polytopes

with very delicate combinatorial structures. They play an important role in Coxeter’s famous

work [10] on the discrete reflection groups in Euclidean spaces and also appear in many different

researches in combinatorics (see [1, 12–13]). In this paper, we give several new criteria to judge

whether a convex polytope is combinatorially equivalent to a product of simplices (Theorems

2.2–2.3) and at the same time, list some known ones (Proposition 2.1). Some of these criteria

are purely combinatorial, while others are phrased in geometrical or topological terms. Since

some of our new criteria are inspired from the ideas in toric topology, we first explain some

basic constructions and facts in toric topology that are relevant to our discussion.

An abstract simplicial complex on a set [m] = {v1, · · · , vm} is a collection K of subsets
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σ ⊆ [m] such that if σ ∈ K, then any subset of σ also belongs to K. We always assume that

the empty set belongs to K and refer to σ ∈ K as a simplex of K. In particular, one-element

simplices are called vertices of K. If K contains all one-element subsets of [m], then we say

that K is a simplicial complex on the vertex set [m]. To avoid ambiguity in our argument, we

also use V (K) and V (σ) to refer to the vertex sets of K and any simplex σ in K, respectively.

For any subset ω ⊆ [m], we call K|ω = {σ ∈ K |σ ⊆ ω} the full subcomplex of K by restricting

to ω.

Any abstract simplicial complex K admits a geometric realization in some Euclidean space.

Also sometimes we use K to denote its geometric realization when the meaning is clear in the

context.

Given a finite abstract simplicial complex K on a set [m] and a pair of spaces (X,A) with

A ⊂ X , we can construct a topological space (X,A)K by:

(X,A)K =
⋃

σ∈K

(X,A)σ , where (X,A)σ =
∏

vj∈σ

X ×
∏

vj /∈σ

A. (1.1)

Here
∏

means Cartesian product. So (X,A)K is a subspace of the Cartesian product of m

copies of X . It is called the polyhedral product or the generalized moment-angle complex of

K and (X,A). In particular, ZK = (D2, S1)K and RZK = (D1, S0)K are called the moment-

angle complex and the real moment-angle complex of K, respectively (see [4, Section 4.1]). The

natural actions of (Z2)
m on (D1)m and (S1)m on (D2)m induce canonical actions of (Z2)

m on

RZK and (S1)m on ZK , respectively.

When K is the boundary of the dual of a simple convex polytope P , the ZK and RZK are

closed manifolds, also denoted by ZP and RZP respectively. In this case, ZP and RZP are

called the moment-angle manifold and the real moment-angle manifold of P , respectively (see

[3, Section 6.1]). These manifolds can be constructed in another way as described below (see

[11, Construction 4.1]).

Let Pn be an n-dimensional simple convex polytope. Let F(Pn) = {F1, · · · , Fm} be the set

of facets of Pn. Let {e1, · · · , em} be a basis of (Z2)
m and define a map λ : F(Pn) → (Z2)

m by

λ(Fi) = ei. Then we can construct a space

M(Pn, λ) := Pn × (Z2)
m/ ∼, (1.2)

where (p, g) ∼ (p′, g′) if and only if p = p′ and g−1g′ ∈ Gλ
p , where Gλ

p is the subgroup of (Z2)
m

generated by the set {λ(Fi) | p ∈ Fi}. Let πλ : M(Pn, λ) → Pn be the quotient map. One can

show that RZPn is homeomorphic to M(Pn, λ) and the canonical action of (Z2)
m on RZPn

can be written on M(Pn, λ) as:

g′ · [(p, g)] = [(p, g′ + g)], p ∈ Pn, g, g′ ∈ (Z2)
m. (1.3)

The moment-angle manifold ZPn can be similarly constructed from Pn and a map Λ :

F(Pn) → Z
m, where {Λ(F1), · · · ,Λ(Fm)} is a unimodular basis of Zm. Indeed, if we identify

the torus (S1)m = R
m/Zm, then we have

ZPn ∼= Pn × (S1)m/ ∼, (1.4)
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where (p, g) ∼ (p′, g′) if and only if p = p′ and g−1g′ ∈ T λ
p , where T λ

p is the subtorus of (S1)m

determined by the linear subspace of Rm spanned by the set {Λ(Fi) | p ∈ Fi}.

In addition, RZPn and ZPn are smooth manifolds. In fact, there exists an equivariant

smooth structure on RZPn (or ZPn) with respect to the canonical (Z2)
m-action (or (S1)m-

action). The reader is referred to [3, Chapter 6] or [4, Chapter 6] for the discussion of smooth

structures on (real) moment-angle manifolds. Moreover, for any proper face f of Pn, π−1
λ (f) is

an embedded closed smooth submanifold of RZPn which is the fixed point set of the subgroup

of (Z2)
m generated by {λ(Fi) | f ∈ Fi} under the canonical (Z2)

m-action.

2 Descriptions of Products of Simplices

For any k ∈ N, let ∆k denote the standard k-dimensional simplex, which is

∆k = {(x1, · · · , xk, xk+1) ∈ R
k+1 |x1 + · · ·+ xk+1 = 1, x1, · · · , xk+1 ≥ 0}.

For any n1, · · · , nq ∈ N, consider ∆n1 ×· · ·×∆nq as a product of ∆n1 , · · · ,∆nq in the Cartesian

product Rn1+1 × · · · × R
nq+1.

We first list some descriptions of products of simplices appearing in Wiemeler’s paper [19].

Theorem 2.1 (see [19]) Let Pn be an n-dimensional simple convex polytope with m facets,

n ≥ 3. Then the following statements are equivalent:

(a) Pn is combinatorially equivalent to a product of simplices.

(b) Any 2-dimensional face of Pn is either a 3-gon or a 4-gon.

(c) There exists a quasitoric manifold M2n over Pn which admits a nonnegatively curved

Riemannian metric that is invariant under the canonical (S1)n-action on M2n.

A quasitoric manifold M2n over Pn is the quotient space of ZPn under a free action of

a rank m − n toral subgroup of (S1)m (see [11]). There is a canonical (S1)n-action on M2n

induced from the canonical action of (S1)m on ZPn , which makes Mn a torus manifold (see

[14]).

The equivalence of Theorem 2.1 (a) and (b) is a corollary of [19, Proposition 4.5]. The

equivalence of Theorem 2.1 (a) and (c) is a corollary of [19, Lemma 4.2]. Note that Theorem

2.1(b) is a particularly useful description of products of simplices. Indeed, the proofs of many

other descriptions of products of simplices in this paper boil down to this one first. But the

proof of [19, Proposition 4.5] is a little long and not particularly easy to follow. We will give a

shorter proof of the equivalence of Theorem 2.1 (a) and (b) in the appendix to make our paper

more self-contained.

Remark 2.1 The equivalence of Theorem 2.1 (a) and (b) also implies that a simple convex

polytope is combinatorially equivalent to a product of simplices if and only if every facet of

the polytope is combinatorially equivalent to a product of simplices. In fact this statement

appeared in [10, Lemma 2.7] where a product of simplices is called a “simplicial prism”. But

the proof of [10, Lemma 2.7] in [10] is a bit vague in the final step.
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Next, we give more descriptions of products of simplices from combinatorial and topological

viewpoints. For convenience, let us introduce some notations first.

• For any topological space X and any field k, let

hrk(X ;k) =

∞∑

i=0

dimkH
i(X ;k),

where Hi(X ;k) is the singular cohomology of X with coefficient in k.

• For any vertex v in a simplicial complex K, we denote by linkKv the link of v in K. We

denote a simplex spanned by vertices v0, v1, · · · , vp in K by [v0, v1, · · · , vp] and its boundary

complex by ∂[v0, v1, · · · , vp].

In addition, for a simplicial complex K on the vertex set [m] = {v1, · · · , vm}, we can define

a new simplicial complex L(K) from K, called the double of K, where L(K) is a simplicial

complex on the vertex set [2m] = {v1, v
′
1, · · · , vm, v′m} determined by the following condition:

ω ⊂ [2m] is a minimal (by inclusion) missing simplex of L(K) if and only if ω is of the

form {vi1 , v
′
i1 , · · · , vik , v

′
ik
}, where {vi1 , · · · , vik} is a minimal missing simplex of K. Note that

any minimal missing simplex in L(K) must have even number of vertices. The double of

K is a special case of iterated simplicial wedge construction (also called simplicial wedge J-

construction). Indeed, by the notation introduced in [2], L(K) = K(2, · · · , 2).

The following are some basic facts about L(K) (see [18–19]).

• dim(L(K)) = m+ dim(K) (see [18, Lemma 1.2]).

• L(K1 ∗K2) = L(K1) ∗ L(K2) (here ∗ is the join of two simplicial complexes).

• If K = ∂P ∗, where P ∗ is the simplicial polytope dual to a simple convex polytope P , then

L(K) = ∂L(P )∗, where L(P ) is a simple convex polytope called the double of P (see [17] for

the construction of L(P )).

• L(∂∆k) = ∂∆2k+1.

The following are some easy or well known facts on products of simplices. We list them here

and give a simple proof for reference.

Proposition 2.1 Let P be an n-dimensional simple polytope with m facets and let K be the

boundary of the simplicial polytope dual to P . Then the following statements are all equivalent:

(a) P is combinatorially equivalent to a product of simplices.

(b) K is simplicially isomorphic to ∂∆n1 ∗ · · · ∗ ∂∆nq for some n1 · · · , nq ∈ N.

(c) The vertex sets of all the minimal missing faces of K form a partition of V (K).

(d) L(K) is simplicially isomorphic to ∂∆l1 ∗ · · · ∗ ∂∆lq for some l1 · · · , lq ∈ N.

(e) There exists some field k so that hrk(RZK ;k) = 2m−dim(K)−1, or equivalently hrk(RZP ;

k) = 2m−n.

(f) There exists some field k so that hrk(ZK ;k) = 2m−dim(K)−1, or equivalently hrk(ZP ;k) =

2m−n.

Proof The equivalences of (a) ⇔ (b) and (b) ⇔ (c) are easy to see.
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(b) ⇒ (d) If K = ∂∆n1 ∗ · · · ∗ ∂∆nq , then

L(K) = L(∂∆n1 ∗ · · · ∗ ∂∆nq ) = L(∂∆n1) ∗ · · · ∗ L(∂∆nq ) = ∂∆2n1+1 ∗ · · · ∗ ∂∆2nq+1.

(d) ⇒ (c) Suppose L(K) = ∂∆l1 ∗ · · · ∗ ∂∆lq . Notice that for each 1 ≤ j ≤ q, ∆lj is a

minimal missing simplex of L(K). So ∆lj must have even number of vertices, which implies

that lj is an odd integer. Then by (b) ⇔ (c), the vertex sets of all the minimal missing faces of

L(K) form a partition of V (L(K)). This forces the vertex sets of all the minimal missing faces

of K to form a partition of V (K) as well, which is (c).

(a) ⇒ (e) and (f) If P = ∆n1 × · · · ×∆nq , n1 + · · ·+ nq = n, then

ZP = S2n1+1 × · · · × S2nq+1, RZP = Sn1 × · · · × Snq .

The number of facets of P is m = n+ q. It is clear that for any field k,

hrk(ZP ;k) = hrk(RZP ;k) = 2q = 2m−n.

(e) ⇒ (a) For any vertex v of K, let mv be the number of vertices in linkKv. According to

the proof of [18, Theorem 3.2] (note that the argument there works for any coefficient), there

is a subspace X of RZK so that

hrk(RZP ;k) = hrk(RZK ;k) ≥ hrk(X ;k),

where X is the disjoint union of 2m−mv−1 copies of RZlinkKv. So we have

2m−n = hrk(RZK ;k) ≥ 2m−mv−1hrk(RZlinkKv;k).

Then hrk(RZlinkKv;k) ≤ 2mv−n+1. On the other hand, [18, Theorem 3.2] tells us that

hrk(RZlinkKv;k) ≥ 2mv−n+1 (since dim(linkKv) = n− 2). So we obtain

hrk(RZlinkKv;k) = 2mv−n+1.

Note that if v is the vertex corresponding to a facet F of P , then RZlinkKv = RZF . There-

fore, we have shown that if the condition (e) holds for P , it should hold for any facet of P as

well.

By iterating the above argument, we deduce that the condition (e) holds for all the two

dimensional faces of P . It is easy to show that the real moment-angle manifold of a k-gon is a

closed connected orientable surface with genus 1 + (k − 4)2k−3 (see [4, Proposition 4.1.8]). So

any 2-dimensional face of P is either a 3-gon or a 4-gon. Then by Theorem 2.1(b), the polytope

P is combinatorially equivalent to a product of simplices.

(f) ⇒ (a) First of all, [18, Lemma 2.2] says that there is a homeomorphism ZK
∼= RZL(K).

Since K has m vertices, dim(L(K)) = m + dim(K) = m+ n− 1. If hrk(ZK ;k) = 2m−n, then

we have

hrk(RZL(K);k) = 2m−n = 22m−(m+n−1)−1 = 22m−dim(L(K))−1.
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So (e) holds for L(K). Since we have already shown (e) ⇒ (a) ⇔ (b), L(K) is simplicially

isomorphic to ∂∆n1 ∗ · · · ∗ ∂∆nq for some n1 · · · , nq ∈ N. Then we finish the proof by the

equivalence of (d) and (a).

Remark 2.2 The equivalences of (b), (e) and (f) in Proposition 2.1 are stated in [4, Section

4.8] as an exercise.

Moreover, we can judge whether a simple polytope P is combinatorially equivalent to a

specific product of simplices via some combinatorial invariants called bigraded Betti numbers,

which are derived from the Stanley-Reisner ring of P (see [4, Section 3.2] for the definition).

Indeed, it is shown in [9] that a simple polytope P is combinatorially equivalent to ∆n1×· · ·×∆nq

if and only if P has the same bigraded Betti numbers as ∆n1 × · · · × ∆nq . Simple polytopes

with this kind of property are called combinatorially rigid (see [6, 8]).

Next, we give a new combinatorial criterion to judge whether a simple polytope is combi-

natorialy equivalent to a product of simplices.

Theorem 2.2 Let K be the boundary of the simplicial polytope dual to a simple polytope

P . Then P is combinatorially equivalent to a product of simplices if and only if the following

conditions hold for K : For any maximal simplex σ in K and any vertex v of σ, the full sub-

complex of K by restricting to V (K) − V (σ) is a simplex of K, denoted by ξσ, and moreover

the intersection of ξσ and linkKv is a simplex (could be empty) as well.

Proof Suppose that P is a product of simplices. Then K = ∂∆n1 ∗ · · · ∗ ∂∆nq for some

n1, · · · , nq ∈ N. Denote the vertices of ∂∆nk by vk0 , v
k
1 , · · · , v

k
nk

for each k = 1, · · · , q. Then for

a maximal simplex σ in K, there exists 0 ≤ lk ≤ nk, k = 1, · · · , q, so that

σ = [v10 , · · · , v̂
1
l1 , · · · , v

1
n1
] ∗ [v20 , · · · , v̂

2
l2 , · · · , v

2
n2
] ∗ · · · ∗ [vq0 , · · · , v̂

q
lq
, · · · , vqnq

],

where [vk0 , · · · , v̂
k
lk
, · · · , vknk

] is the simplex spanned by all the vertices of ∂∆nk except vklk for

each 1 ≤ k ≤ q. It is easy to see that the full subcomplex of K by restricting to V (K)− V (σ)

is just the simplex [v1l1 , v
2
l2
, · · · , vqlq ] = v1l1 ∗ v

2
l2
∗ · · · ∗ vqlq . All the vertices of σ are {vkik ; 0 ≤ ik 6=

lk ≤ nk, 1 ≤ k ≤ q}. And we have

linkK vkik = ∂∆n1 ∗ · · · ∗ ∂[vk0 , · · · , v̂
k
ik
, · · · , vknk

] ∗ · · · ∗ ∂∆nq .

Note that when nk = 1, ∂[vk0 , · · · , v̂
k
ik
, · · · , vknk

] is empty. Then the intersection of [v1l1 , v
2
l2
, · · · ,

vqlq ] and linkK vki is exactly the simplex [v1l1 , v
2
l2
, · · · , vqlq ] if nk > 1, and is [v1l1 , · · · , v̂

k
lk
, · · · , vqlq ]

if nk = 1. The necessity of these conditions is proved.

For the sufficiency, we first show that if these conditions hold for K, then they also hold

for the link of any vertex of K. When dim(K) ≤ 1, the theorem is obviously true. So we

assume dim(K) ≥ 2 below. Let u be an arbitrary vertex of K. Let σ be a maximal simplex

of K containing u and let v be an arbitrary vertex of σ different from u. By our assumption,

the intersection ξσ ∩ linkK u and ξσ ∩ linkK v are both simplices. Let τ be the simplex with

V (τ) = V (σ)− {u}. Then τ is a maximal simplex in linkK u. Since V (ξσ) = V (K)− V (σ), we
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have

V (linkK u)− V (τ) = V (ξσ) ∩ V (linkK u).

Since ξσ∩linkK u is a simplex, the full subcomplex of linkK u by restricting to V (linkK u)−V (τ)

must agree with ξσ ∩ linkK u. Moreover, since v could be any vertex of τ , we need to show that

the intersection of the simplex ξσ ∩ linkK u with linklinkK u v is also a simplex. Observe that

linklinkK u v = linkK u ∩ linkK v. So we have

(ξσ ∩ linkK u) ∩ linklinkK u v = (ξσ ∩ linkK u) ∩ (linkK u ∩ linkK v)

= (ξσ ∩ linkK u) ∩ (ξσ ∩ linkK v).

The intersection of the two simplices ξσ∩ linkK u and ξσ∩ linkK v has to be a simplex (could be

empty) by the definition of simplicial complex. Moreover, when σ ranges over all the maximal

simplices of K containing u, the vertex v will range over all the vertices in linkK u. So our

argument shows that these conditions hold for linkK u.

By iterating the above argument, we can prove that for any codimension-two simplex η of

K, the link of η in K is a simplicial circle which satisfies the conditions. This forces the link of

η to be either ∂∆2 or ∂∆1 ∗ ∂∆1. Dually it means that any 2-dimensional face of P is either a

3-gon or a 4-gon. Then by Theorem 2.1(b), the polytope P is combinatorially equivalent to a

product of simplices.

Next, we give some new descriptions of products of simplices in terms of geometric conditions

on real moment-angle manifolds of simple convex polytopes. We first recall a concept in metric

geometry (see [5, Definition 3.1.12]).

Definition 2.1 (Quotient Metric Space) Let (X, d) be a metric space and let R be an

equivalence relation on X. The quotient semi-metric dR is defined as

dR(x, y) = inf
{ k∑

i=1

d(pi, qi) : p1 = x, qk = y, k ∈ N

}
,

where the infimum is taken over all choices of {pi} and {qi} such that the point qi is R-equivalent

to pi+1 for all i = 1, · · · , k−1. Moreover, by identifying points with zero dR-distance, we obtain

a metric space (X/R, d) called the quotient metric space of (X, d).

Suppose that P is a simple convex polytope in a Euclidean space R
d. Consider P to be

equipped with the intrinsic metric. More precisely, the intrinsic metric on P defines the distance

between any two points x and y in P to be the infimum of lengths of piecewise smooth paths

in P that connect x and y. Note that the intrinsic metric on P coincides with the subspace

metric on P, since P is convex.

By the construction in (1.2), RZP = M(P, λ) is a closed manifold obtained by gluing 2m

copies of P along their facets. We can assume that the 2m copies of P are congruent convex

polytopes inside the same Euclidean space and the gluings of their facets are all isometries.

Then by Definition 2.1, we obtain a quotient metric on RZP , denoted by dP . It is clear that

the metric dP is invariant with respect to the canonical action of (Z2)
m on RZP (see (1.3)).
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Remark 2.3 We can also call (RZP , dP ) a Euclidean polyhedral space, which just means

that it is built from Euclidean polyhedra (see [5, Definition 3.2.4]).

Note that if P ′ is another simple convex polytope combinatorially equivalent to P but not

congruent to P , the two metric spaces (RZP ′ , dP ′) and (RZP , dP ) are not isometric in general

(though RZP ′ is homeomorphic to RZP ).

Theorem 2.3 Let P be an n-dimensional simple convex polytope with m facets, n ≥ 2.

Then the following statements are all equivalent:

(a) P is combinatorially equivalent to a product of simplices.

(b) There exists a non-negatively curved Riemannian metric on RZP that is invariant under

the canonical (Z2)
m-action on RZP .

(c) There exists a simple convex polytope P ′ combinatorially equivalent to P so that the

metric space (RZP ′ , dP ′) is non-negatively curved.

(d) There exists a simple convex polytope P ′ combinatorially equivalent to P so that all the

dihedral angles of P ′ are non-obtuse.

Note that a Riemannian metric on a manifold is non-negatively curved means that its sec-

tional curvature is everywhere non-negative, while a metric space being non-negatively curved

is defined via comparison of triangles (see [5, Section 4]).

Proof (a) ⇒ (b) The real moment-angle manifold of a product of simplices ∆n1 ×· · ·×∆nq

is diffeomorphic to a product of standard spheres Sn1 ×· · ·×Snq , where Sk = {(x1, · · · , xk+1) ∈

R
k+1 |x2

1 + · · · + x2
k+1 = 1} for any k ∈ N. Let Sk be equipped with the induced Riemannian

metric from R
k+1. Then it is easy to check that Sn1 × · · · × Snq is a nonnegatively curved

Riemannian manifold with respect to the product of the Riemannian metrics on Sn1 , · · · , Snq .

(b) ⇒ (a) Recall the definition of πλ : M(P, λ) = RZP → P in (1.2). For any proper face f

of P , let Mf = π−1
λ (f). It is easy to see the following.

• Mf is an embedded closed submanifold of RZP which has 2m+dim(f)−n−mf connected

components, where mf is the number of facets of f.

• Each connected component of Mf is diffeomorphic to RZf .

Note that Mf is the fixed point set of a rank n − dim(f) subgroup of (Z2)
m under the

canonical action of (Z2)
m on RZP . Morever, since the Riemannian metric is (Z2)

m-invariant,

each component of Mf is a totally geodesic submanifold of RZP (see [15, Theorem 5.1]), and

so is non-negatively curved with respect to the induced Riemannian metric from RZP . This

implies that the condition (b) holds for RZf as well.

In particular when dim(f) = 2, the RZf is a closed connected surface with non-negatively

curved Riemannian metric. Then by Gauss-Bonnet theorem, the Euler characteristic χ(RZf ) ≥

0, which implies that f has to be a 3-gon or a 4-gon. Then by Theorem 2.1(b), the polytope P

is combinatorially equivalent to a product of simplices.

(a) ⇒ (c) Suppose that P is combinatorially equivalent to ∆n1 × · · · × ∆nq , where n1 +

· · ·+nq = n. Consider the standard simplex ∆k as a metric subspace of Rk+1 with the intrinsic
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metric. Let P ′ = ∆n1 × · · · × ∆nq be the product of the q metric spaces ∆n1 , · · · ,∆nq . For

each 1 ≤ i ≤ q, let {vi0, · · · , v
i
ni
} be the set of vertices of ∆ni . Then all the facets of P ′ are (see

[7])

{F i
ki

= ∆n1 × · · · ×∆ni−1 × f i
ki

×∆ni+1 × · · · ×∆nq | 0 ≤ ki ≤ ni, i = 1, · · · , q},

where f i
ki

is the codimension-one face of the simplex ∆ni , which is opposite to the vertex viki
.

The total number of facets of P ′ is m = n+ q.

Claim As a metric space, (RZP ′ , dP ′) is isometric to the product of the q metric spaces

(RZ∆n1 , d∆n1 ), · · · , (RZ∆nq , d∆nq ).

Indeed if we glue two copies of P ′ along the facet F i
ki
, we obtain

∆n1 × · · · ×∆ni−1 ×
(
∆ni

⋃

fi
ki

∆ni

)
×∆ni+1 × · · · ×∆nq .

We can decompose the gluing procedure in the construction (1.2) for RZP ′ into q steps. The

i-th step only glues those facets of the form {F i
ki
, 0 ≤ ki ≤ ni} in the 2m copies of P ′, which

gives us the factor (RZ∆ni , d∆ni ), while fixing all other factors in the product. After the first

step, we obtain 2m−n1−1 copies of RZ∆n1 ×∆n2 × · · · ×∆nq . After the second step, we obtain

2m−n1−n2−2 copies of RZ∆n1 × RZ∆n2 ×∆n3 × · · · ×∆nq and so on. Then our claim follows.

Moreover, observe that for any k ∈ N, (RZ∆k , d∆k) is isometric to the boundary of the

(k + 1)-dimensional cross-polytope Qk+1 whose vertices are

{(0, · · · , 0,
i
1, 0, · · · , 0), (0, · · · , 0,

i
−1, 0, · · · , 0) ; i = 1, · · · , k + 1}.

Recall that the n-dimensional cross-polytope is the simplicial polytope dual to the n-dimensional

cube (see Figure 1 for the cases n = 2, 3).

�
� ��

Figure 1 Cross-polytopes of dimension 2 and 3.

It is well known that the intrinsic metric on any convex hypersurface (i.e., the boundary of a

compact convex set with nonempty interior) in a Euclidean space Rn (n ≥ 3) is non-negatively

curved (see [5, p.359]). Since Qk+1 is a convex polytope in R
k+1, (RZ∆k , d∆k) is non-negatively

curved for any k ≥ 2. When k = 1, the boundary of Q2 is a piecewise smooth simple curve

in R
2. By definition (see [5, Definition 4.1.9]), the intrinsic metric on any piecewise smooth

simple curve is non-negatively curved because any geodesic triangle on the curve is degenerate.

Therefore, we can conclude that (RZP ′ , dP ′) is non-negatively curved because the product of

non-negatively curved Alexandrov spaces is still non-negatively curved (see [5, Chapter 10]).
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(c) ⇒ (d) If the metric dP ′ on RZP ′ is non-negatively curved, we want to show that the

dihedral angle between any two adjacent facets F1 and F2 of P ′ is non-obtuse. Otherwise, we

assume that the dihedral angle θ between F1 and F2 is obtuse. Choose a point O in the relative

interior of F1 ∩ F2, a point A ∈ F1 and B ∈ F2 so that the line segments OA and OB are

perpendicular to F1 ∩F2. Then ∠AOB = θ. Suppose that the lengths of the line segments OA,

OB and AB are

|OA| = |OB| = a, |AB| = b.

In the gluing construction (1.2) for RZP ′ , consider two copies of P ′ glued along the facet F1. We

then have an isosceles triangle △AB1B2 in RZP ′ (see Figure 2). When a is small enough, the

distance between B1 and B2 in (RZP ′ , dP ′) is 2a by the definition of the quotient metric because

B1O ∪ OB2 is the shortest path between B1 and B2 in (RZP ′ , dP ′). Moreover, let △AB1B2

be a triangle in the Euclidean plane R2 which has the same lengths of sides as △AB1B2. Since

θ is obtuse, it is clear that △AB1B2 is strictly thinner than △AB1B2, i.e.,

∠AB1B2 < ∠AB1B2, ∠AB2B1 < ∠AB2B1, ∠B1AB2 < ∠B1AB2.

But this contradicts our assumption that the metric dP ′ on RZP ′ is non-negatively curved (see

[5, Section 4.1.5]). Therefore, θ has to be non-obtuse.

θ θ θ

Figure 2 Comparison of triangles.

(d) ⇒ (a) Suppose that F1, F2 and F3 are three facets of P ′ with F1 ∩ F2 ∩ F3 6= ∅. Then

F1 ∩ F2 and F1 ∩ F3 are codimension-one faces of F1. By our assumption, the dihedral angles

of (F1, F2), (F1, F3) and (F2, F3) are all non-obtuse. We claim that the dihedral angle between

F1 ∩ F2 and F1 ∩ F3 in F1 is non-obtuse as well.

Indeed, we can assume that P ′ sits inside Rn and let ηi ∈ R
n (i = 1, 2, 3) be a normal vector

of Fi pointing to the interior of P (see Figure 3). By choosing a proper coordinate system

of Rn, we can assume that η1 = (0, · · · , 0, 1) ∈ R
n and F1 lies in the coordinate hyperplane

{xn = 0} ⊂ R
n. Let η2 = (a1, · · · , an−1, an), η3 = (b1, · · · , bn−1, bn). Since the dihedral angles

of (F1, F2), (F1, F3) and (F2, F3) are all non-obtuse, the inner products of η1, η2, η3 satisfy

η1 · η2 = an ≤ 0, η1 · η3 = bn ≤ 0, (η2, η3) = a1b1 + · · ·+ an−1bn−1 + anbn ≤ 0

⇒ a1b1 + · · ·+ an−1bn−1 ≤ 0. (2.1)
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Note that (a1, · · · , an−1, 0) and (b1, · · · , bn−1, 0) are normal vectors of F1∩F2 and F1∩F3 inside

F1 respectively. So (2.1) implies that the dihedral angle between F1 ∩ F2 and F1 ∩ F3 in F1 is

non-obtuse. Our claim is proved.

η

η
η

Figure 3 Dihedral angles of a simple convex polytope.

By iterating the above arguments, we can show that for any 2-dimensional face f of P ′, any

interior angle of f is non-obtuse. Since f is a Euclidean polygon, it must be either a 3-gon or a

4-gon. Since P is combinatorially equivalent to P ′, any 2-face of P is either a 3-gon or a 4-gon,

too. Then by Theorem 2.1(b), the polytope P is combinatorially equivalent to a product of

simplices.

Remark 2.4 The equivalence of Theorem 2.3 (a) and (d) is also stated in [10, Lemma 2.8].

Remark 2.5 In the statement of Theorem 2.3(b), if we do not require the Riemannian

metric on RZP to be (Z2)
m-invariant, it is still likely that P has to be combinatorially equivalent

to a product of simplices (see [16, Section 5.2]). But we do not know how to prove this so far.

3 Appendix

Here we give another proof of Theorem 2.1 (a)⇔(b). For brevity, we say that a simplicial

complex is a sphere join if it is isomorphic to ∂∆n1 ∗ · · · ∗ ∂∆nq for some n1, · · · , nq ∈ N. One

dimensional sphere join is either ∂∆2 (boundary of a triangle) or ∂∆1 ∗ ∂∆1 (boundary of a

square). Let us first prove the following theorem.

Theorem 3.1 Let K be a simplicial complex of dimension n. Suppose that K satisfies the

following two conditions:

(a) K is a pseudomanifold,

(b) the link of any vertex of K is a sphere join of dimension n− 1,

Then K is a sphere join.

Recall that K is an n-dimensional pseudomanifold if the following conditions hold:

(i) Every (n− 1)-simplex of K is a face of exactly two n-simplices for n > 1.

(ii) For every pair of n-simplices σ and σ′ in K, there exists a sequence of n-simplices

σ = σ0, σ1, · · · , σk = σ′ such that the intersection σi ∩ σi+1 is an (n− 1)-simplex for all i.

The condition (ii) means that K is a strongly connected simplicial complex.
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Proof First of all, assumption (b) implies that the link of any k-simplex in K is a sphere

join of dimension n − k − 1. This is because for any k-simplex σ with a vertex w, the link of

σ in K is the link of the (k − 1)-simplex σ ∩ linkK w in linkK w. Then by the assumption that

linkK w is a sphere join of dimension n− 1, the link of any (k − 1)-simplex in linkK w must be

a sphere join of dimension n − k − 1 (corresponding to the fact that any face of a product of

simplices is also a product of simplices).

Let w be an arbitrary vertex of K. By assumption (b), the link linkK w is of the form

linkK w = ∂∆n1 ∗ · · · ∗ ∂∆nq , where n1 + · · · + nq = n. Denote the vertices of ∂∆nk by

vk0 , v
k
1 , · · · , v

k
nk

for k = 1, 2, · · · , q, so that

linkK w = ∂[v10 , v
1
1 , · · · , v

1
n1
] ∗ · · · ∗ ∂[vq0 , v

q
1, · · · , v

q
nq
]. (3.1)

Let I be the set of vertices v11 , · · · , v
1
n1
, · · · , vq1 , · · · , v

q
nq
. Then [I] is a maximal simplex in linkK w

and the simplex [I, w] spanned by I and w is of dimension n. Since K is a pseudomanifold by

assumption (a), there is a unique vertex v in K such that [I, v]∩ [I, w] = [I]. We have two cases

below.

Case 1 The case where v /∈ linkK w. In this case, we claim K = ∂[v, w] ∗ linkK w. The

proof is as follows. Choose an element from I arbitrarily, say vij (1 ≤ i ≤ q, 1 ≤ j ≤ ni). Set

I = (I\{vij}) ∪ {vi0}. Then [I] is an (n − 1)-simplex of linkK w by (3.1), so there is a unique

vertex v of K such that [I, v] ∩ [I, w] = [I] as before since K is a pseudomanifold. Now we

shall observe the link of an (n− 2)-simplex [I ∩ I] = [I\{vij}] in K. By our construction, four

n-simplices in K containing [I ∩ I] are as follows:

[I ∩ I, vij , w], [I ∩ I, vi0, w], [I ∩ I, vij , v], [I ∩ I, vi0, v].

Therefore the vertices vij , w, v
i
0, v, v are in the link of the (n − 2)-simplex [I ∩ I]. But by

assumption (b), this link is a sphere join of dimension one which can have at most four vertices.

Note that vij , w, v
i
0 are mutually distinct and v, v are different from vij , w, v

i
0. So we must

have v = v. Now let vij run over all elements of I, then I runs over all (n − 1)-simplices in

linkK w that share a (n−2)-simplex with I. Moreover by (3.1), linkK w is a strongly connected

simplicial complex. By applying our argument to [I] and all other (n − 1)-simplices in K, we

can show that ∂[v, w] ∗ linkK w is a subcomplex of K. However, ∂[v, w] ∗ linkK w and K are

both pseudomanifolds and have the same dimension, so they must agree. This proves the claim.

Case 2 The case where v ∈ linkK w, so v is one of v10 , v
2
0 , · · · , v

q
0 . We may assume v = v10

without loss of generality. Then

[v, I] = [v10 , v
1
1 , · · · , v

1
n1
, v21 , · · · , v

2
n2
, · · · , vq1 , · · · , v

q
nq
] is an n-simplex in K. (3.2)

We look at linkK v. Since v = v10 , it follows from (3.1) that linkK v contains

∂[v11 , · · · , v
1
n1
] ∗ ∂[v20 , v

2
1 , · · · , v

2
n2
] ∗ · · · ∗ ∂[vq0 , v

q
1 , · · · , v

q
nq
] (3.3)
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as a subcomplex. This together with assumption (b) implies that there is a vertex w′ different

from vertices in (3.3) such that linkK v is one of the following:

∂[w′, v11 , · · · , v
1
n1
] ∗ ∂[v20 , v

2
1 , · · · , v

2
n2
] ∗ · · · ∗ ∂[vq0, v

q
1 , · · · , v

q
nq
],

∂[v11 , · · · , v
1
n1
] ∗ ∂[w′, v20 , v

2
1 , · · · , v

2
n2
] ∗ · · · ∗ ∂[vq0, v

q
1 , · · · , v

q
nq
],

...
...

∂[v11 , · · · , v
1
n1
] ∗ ∂[v20 , v

2
1 , · · · , v

2
n2
] ∗ · · · ∗ ∂[w′, vq0 , v

q
1 , · · · , v

q
nq
].

However, the fact (3.2) implies that none of the above occurs except the first one. So we have

linkK v = ∂[w′, v11 , · · · , v
1
n1
] ∗ ∂[v20 , v

2
1 , · · · , v

2
n2
] ∗ · · · ∗ ∂[vq0, v

q
1 , · · · , v

q
nq
]. (3.4)

The simplex [I] is in linkK v by (3.2) and the n-simplices [I, v] and [I, w] share [I]. Note

that w ∈ linkK v in this case but w 6= vij for all i and j. From (3.4), we can conclude w = w′.

Then

linkK v = ∂[w, v11 , · · · , v
1
n1
] ∗ ∂[v20 , v

2
1 , · · · , v

2
n2
] ∗ · · · ∗ ∂[vq0 , v

q
1, · · · , v

q
nq
]. (3.5)

Remember that v = v10 . We claim that K contains

∂[w, v10 , v
1
1 , · · · , v

1
n1
] ∗ ∂[v20 , v

2
1 , · · · , v

2
n2
] ∗ · · · ∗ ∂[vq0 , v

q
1 , · · · , v

q
nq
] (3.6)

as a subcomplex. Indeed, any n-simplex in (3.6) is spanned by n+ 1 vertices which consist of

n1+1 vertices from ∂[w, v10 , v
1
1 , · · · , v

1
n1
] and ni vertices from ∂[vi0, v

i
1, · · · , v

i
ni
] for i = 2, 3, · · · , q.

Since v10 = v, either w or v is in the n1 + 1 vertices from ∂[w, v10 , v
1
1 , · · · , v

1
n1
]. If w (resp. v) is

in the n1 +1 vertices from ∂[w, v10 , v
1
1 , · · · , v

1
n1
], then any n-simplex formed this way is in K by

(3.5) (resp. (3.1)). This proves the claim.

Finally, since K and the subcomplex (3.6) are both pseudomanifolds and have the same

dimension, they must agree. So we finish the proof of the theorem.

Proof of Theorem 2.1 (a) ⇔ (b) Suppose that any 2-dimensional face of P is either

a 3-gon or a 4-gon. We want to show that P is combinatorially equivalent to a product of

simplices, or equivalently ∂P ∗ is a sphere join. Let us do induction on the dimension of P .

When dimP = 2, the proof is trivial. If dimP ≥ 3, we can show that ∂P ∗ satisfies the two

conditions in Theorem 3.1. Indeed, condition (a) is obvious. By induction assumption, all

facets of P are product of simplices which means that ∂P ∗ satisfies condition (b). So we finish

the induction by Theorem 3.1.
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