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A Kunneth Formula for Finite Sets*
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Abstract In this paper, the authors define the homology of sets, which comes from
and contains the ideas of path homology and embedded homology. Moreover, A Kiinneth
formula for sets associated to the homology of sets is given.

Keywords Kiinneth formula, Finite set, Principal ideal domain, Cartesian product,

Free R-module
2020 MR Subject Classification Primary 55U15, 55N35; Secondary 55U25.

1 Introduction

Let R be a commutative ring with unit, and let (C,9) be a complex of finitely generated

free R-modules of rank n. Let X = {x1,--+ ,x,} be a finite set. Then there is a natural map
X — C, Ti — €4,

where ey, -+, e, is a basis of C. For the sake of simplicity, we denote C' = (R[X],d). Let S be
a graded sub R-module of C. Let Inf,(S,C) = (SNJ~1S,9). Then Inf,(S,C) is a subcomplex
of C.

Definition 1.1 Let Y be a subset of X, and let R[Y] be a free R-module generated by Y.
The homology of the set Y associated to C = (R[X],d) is

He(Y; R) = H(Inf, (R[Y], C)).

If there is no ambiguity, we denote H(Y) = Ho(Y; R).

The idea of the homology of sets is essentially from the path homology of digraphs (see [4])
and multi-graphs (see [5]) and the embedded homology of hypergraphs (see [2]). In this paper,

we will always consider free R-modules instead of abelian groups.
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Kiinneth formulas describe the homology of a product space in terms of the homology of the
factors. In [7], Hatcher gave the classical algebraic Kiinneth formula. In [4, 6], Grigor’yan, Lin,
Muranov and Yau studied the Kiinneth formula for the path homology (with field coefficients)
of digraphs. In this paper, we study the Kiinneth formula for sets which can be applied to
digraphs and hypergraphs.

From now on, R is assumed to be a principal ideal domain. For convenience, the tensor

product is always over R.

Theorem 1.1 Let R be a principal ideal domain. Let C = R[X],C" = R[X'] be complezes
of free R-modules generated by finite sets X, X', respectively, and let Y, Y’ be subsets of X, X',

respectively. Then there is a natural exact sequence

0= @ H,(Y)@Hy(Y') = Ho(Y xY') = @ Torr(Hy(Y), Hy1(Y')) =0,

pt+q=n pt+q=n

where Y x Y is the Cartesian product of sets.

Recently, people are interested in digraphs in topology (see [4, 6]). Let G = (V, E) be
a digraph. Let X be the set of regular paths on V. Then we can obtain a chain complex
(C,0) = (R[X],0) (see [6]). Let A(G) be the set of allowed paths on G. We find that the path
homology of digraph G coincides with the homology of set A(G), i.e

H(G) = Ho(A(G)).

Grigor’yan et al. studied the Kiinneth formula for digraphs over a field (see [6]). Let G’ be
another digraph. In view of Theorem 1.1, in order to get the Kiinneth formula for digraphs

with ring coefficients, we need to show
H(A(G) x A(G") =2 H(A(GOG")),

where [J denotes the Cartesian product of digraphs.

A hypergraph is a potential topic connecting simplicial complex in topology and a graph in
combinatorics, which is worth studying both in theory and application (see [1-3, 9]). Let H be
a hypergraph. Let Ky be the smallest simplicial complex containing H. Note that H is a set
of hyperedges, we observe that

H(H) = Ho(H),

where (C,0) = (C.(Ky; R),0) is the chain complex of simplicial complex Ky. Let H' be
another hypergraph. By Theorem 1.1, we have
0— P Hy(H)® Hy(H') = Hy(H xH') - @ Torr(H,(H), Hy—1(H')) =0,
pt+g=n p+qg=n

where H x H' is the Cartesian product of sets. Unfortunately, H x H’ is not a hypergraph.
In another paper, we give a product of hypergraphs and show the Kiinneth formula for hyper-
graphs.

In the next section, we build a basic algebraic language. In Section 3, we prove Theorem
1.1.
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2 Preliminaries

In this section, let (C,0) = (R[X],0) be a complex of free R-modules generated by a finite
set X. Let D = R[Y] be a free R-module generated by ¥ C X.

Proposition 2.1 (see [8]) Let M be an m X n matriz over R. Then we have
M =UAV, Ue€R™™V eR"™",

where det(U) = det(V) =1 and A is a matriz of form (Am O) or (’})"), Here, A, and A,, are

diagonal matrices.

Lemma 2.1 Suppose that z € D and Az € Inf.(D,C) for some nonzero element \ € R.
Then we have z € Inf,. (D, C).

Proof Let X = {x1,---,z,}. Then z1,---,x, is a basis of R[X]. For convenience,
we denote ex = (1, - ,xn)T. Let Z be the set of complement of Y in X. Then we have
X =Y U Z. Assume that

9z = (a b)<€Y>,

€z

where a = (a1, ,ajy|) € RV b = (b, -+ ,bz) € R**IZl and ey, ez are given by sets
Y, Z, respectively. Since A\Jz € D, it follows that

/\bEZ =0.
Since R is an integral domain, we have bez = 0. Thus we obtain
0z =aey € D.

The lemma is proved.

Lemma 2.2 There is a basis e1,- - ,e,(py of D such that ey,--- ,eq is a basis of Inf.(D,C)

for some a, where r(D) is the rank of D.

Proof Let ey, ,e, be a basis of D, and let f1,---, f, be a basis of Inf, (D, C). Then we

have
f = Ae,

where f = (f1,--+, fa)T,e = (e1, -+ ,e,)T and A is an a x n matrix over R. By Proposition

2.1, we obtain
A=UAV, Ue€RY*VeR"™",

where det(U) = det(V) = 1 and

dy 0 0 -~ 0
A= € R
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Let (21, -+ ,24) = U and (y1, -+ ,yn) = Ve, then we have
:El:dlyza izlv"'aa'
By Lemma 2.1, we have y; € Inf,(D,C),i = 1,--- ,«. It follows that y1, - ,ys is a basis of
Inf,(D,C). Thus y1,- - ,yn is the desired basis.
Example 2.1 Let (C,0) = (Z[x,y],0),0y = x,0x = 0,degxz = 1, and let D = Z[2z,y] be
a free Z-module generated by 2x,y. Note that

Inf,(D,C) = (Z|2x,2y],0), 0(2y) = 2z.

Thus the condition that D is a free R-module generated by a subset of X is necessary for

Lemma 2.2.

Lemma 2.3 Let K =kerd C C. Then there is a basis e1,- - ,e.(cy of C such that eq,- -+,

€a 18 a basis of K for some «, where r(C) is the rank of C.
Proof By a similar argument with the proof of Lemma 2.2, we have this lemma.

Definition 2.1 Let M be a finitely generated free R-module, and let N C M be a free sub
R-module of M. We say a family of elements x1,--- ,x, € M is linearly independent modulo
N if the condition

ar1+--+epxyn €N, ¢, ,c0 €ER

mmplies ¢ = -+ = ¢, = 0.

By Lemma 2.3, we have C = V & K, where K = ker 0 and V is the space of the complement
of K in C'. Note that a family of elements x1,--- ,x, € C is linearly independent modulo K if

and only if dx1,--- , 0z, is linearly independent.

3 The Proof of Main Theorem

In this section, let C' = R[X],C" = R[X'] be complexes of finitely generated free R-modules
generated by sets X, X', respectively. Let D = R[Y], D’ = R[Y'] be finitely generated free
R-modules generated by Y C X, Y’ C X', respectively. For convenience, all the differentials
will be denoted by 0 if there is no ambiguity.

The keypoint of proving Theorem 1.1 is to show

Inf,(D® D', C®C') = Inf,(D,C) ® Inf, (D', C").

We will give some lemmas first.

Lemma 3.1 Let M, N be finitely generated free R-modules. For each z € M ® N, there
exists a nonzero element A € R such that

k
)\z:inQ@yi, ri € Myy; € Nyi=1,--- |k,
i=1



A Kiinneth Formula for Finite Sets 805

where {x; }1<i<k, {Vif1<i<k are two families of linearly independent elements in M, N, respec-

tively.

n
Proof Let 2z =Y z;®y;, where z; € M,y; € N,i=1,--- ,n. if 1,--- ,x, are not linearly
i=1
independent, we have

cx1+ -+ ceprn, =0, c1,---,cn € R.

We may assume c¢,, # 0. It follows that

n—1
CpZ = Z T ® (Cnyi - Ciyn)'
i=1

n—1

Let z; = ¢py; — ¢iyn. Then we have ¢,z = > x; ® z;. By finite steps, the above equation can
i=1

be reduced to

k
Ae= @@y,
i=1

where A # 0 and {x;}1<i<k, {y}1<i<k are two families of linearly independent elements in M

and N, respectively.

Remark 3.1 In the above lemma, we can choose A = 1. Let {e;}1<i<m, {fi}1<i<n be the

bases of M, N, respectively. Then we have

m n
z:ZZaijei@)fj, aijGR.
i=1 j=1
Let A = (a;j)1<i<m,1<j<n be a matrix over R. By Proposition 2.1, we have

A=UAV, UeR™™VeR"™",

where det(U) = det(V) =1 and A = (Omﬁi)xk O(g’ixk()*;;flk) ) Here,

A = diag( A, M\), A #0,i=1,--- k.
Denote e = (e1,- -+ ,em)T and £ = (f1, -+, fn)T. Then we have
z=el @ Af = (eTU) @ A(VF),

which is the desired result.
The following lemma is a very useful tool in proving our main theorem.

Lemma 3.2 Let {x;}i1<i<k, {¥iti<i<k be two families of linearly independent elements in

k
C and C', respectively. If > x; @ y; € D ® D', then we have
i=1

r; €D, inD/, i=1,--- k.
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Proof Let ey, - - ,€q,€a+1, - ,€m be a basis of C' such that e, - e, is a basis of D.
Similarly, let f1, -+, fas fat1, -+, fn be a basis of C’ such that fi,---, fg is a basis of D".
Assume that

m n
d?izzaises, yizzbitft, 1< <k,
—1 =1

where a;s,b;s € R for 1 < s <m,1 <t <n. Note that

m n

k k
in@yizz (Zaisbit)es@)ftED@D/.
=1

s=1t=1 =1

k
We have 3 a;sbiy =0 for s > a or t > 5. Let
i=1

and

USR0S

It follows that

Since rank(AZ) > rank(Al By) = k, we have
rank(B;) < k — rank(AJ) + rank(A% B;) = 0.
Thus we obtain By = O. Similarly, we have A; = O. These imply the lemma.
The following two lemmas are important parts of the proof of Theorem 3.1.

Lemma 3.3 Let 2= > z; ® a; +
i=1

K2

B @y; € Inf,(D®D',C®C") such that
=1

J

A1, 0, Qi 6807 ﬁla"' 7577, 680/
and each of the following sets

{aZEl,"' 78$m}7{8y13"' ,8yn},{011,"' aam}v{ﬁla"' 75’”«}

is linearly independent. Then there exists a nonzero element A € R such that Az € Inf.(D,C)®
Inf, (D', C").

Proof By Lemma 3.2, we have
ZEi,ﬁjGD, yj,OéiGD/, ISZSm,ISJSTl

Note that

3z228xi®ai+Zﬁj®3yJ~€D®D/-

i=1 j=1
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If Oz, B1, - , Bn are not linearly independent, we have
ck0xy = ap1fB1 + -+ Ao, cx # 0,081, ,apn € R.

Then ¢, 0z € D. Moreover, we obtain

n
0z = Z cL0T; @ oy + Z B @ (ck0y; + agjor).
ik j=1
We may assume that Oz, (1, , 3, are not linearly independent for m’ +1 < k < m. By
finite steps, the above equation can be reduced to

Nz =AY 01, @0+ > B @y

i=1 j=1
for some nonzero element A € R, where y; —Xy; (j = 1,---,n) is linearly generated by
Qi 41, 5 Q. I addition, Oxq, - -+, 0%y, B1, -+ - , By are linearly independent. If y;-, e,

Qe are not linearly independent, we can change y; similarly as above. Then the above equation

can be reduced to

’

ANz = Zx;®Qi+/\1 Zﬁj @ y;

i=1 j=1

for some nonzero elements A, \; € R, where z; — \Adz; (i = 1,---,m’) is linearly gen-
erated by Bp41, -+, Bn. In addition, ¢i,--- .y, a1, -, are linearly independent. If
xy, - ,xh., b1, -+, Bp are not linearly independent, then dz1,--- ,0%n, b1, -+, Bn are not
linearly independent, which contradicts to our construction. Thus z4,--- 2. ,, (1, -+, Bn are

linearly independent. By Lemma 3.2, we have
2, €D, yg-eD', 1<i<m/,1<j<n.
It follows that
MANdz; €D, Ny; €D, 1<i<m/,1<j<n.

Recall that we have cx 0z € D,cp # 0 for m’ +1 < k < m. It follows that A\dz, € D for
m’ + 1 < k < m. Similarly, we have A\y; € D’ for n’ + 1 <t < n. Hence, we obtain that

AMAOx; € D, /\1/\8yj EDI, 1<i<m,1<5<n.
Thus there exists a nonzero element Ay € R such that A2z € Inf, (D, C) @ Inf,. (D', C").

Lemma 3.4 Let C =V & K and C' = V' & K', where K and K’ are the spaces of cycles
in C and C', respectively. For each element z € C @ C’, there exists a nonzero element A € R
such that

Ny N2 N3 Ny
Az = in®x§+2uj ® y; +Zyk®u§g+zvl ® vy,
i=1 j=1 k=1 =1
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where
roo ’ ro /
xiaykeca Uj,’UlEK, xivyjeca ukuvleK

for 1 <i < Np,1<j< Ny, 1<Ek<N3 1<1I<Nyand

(1) T1y S TNy YLs YNy ULy 5 UNy, U1, -, UN, are linearly independent;
(il) @1, , &Ny, Y1, YN, are linearly independent modulo K;

(i) 23, @ Yl s Yy UWhs oo U, VY, oo, Uy, are linearly independent;
(iv) @1, TN, Y1, Y, are linearly independent modulo K'.

Proof Note that
CoC =VaoV)e(KaV)e(VeK)a (K eK).

In view of Lemma 3.1, for each element z € C' ® C’, we have

N1 Ny Ns Ny
Mz=Y @@+ > wRyi+ > p@up+ > v
i=1 j=1 k=1 1=1
for some A1 € R, where
T, Yk €V, $g,y;-€v/, uj,v € K, up,v € K'
for 1 <i< N;,1<j< Ny 1<k<N31<I1< N, and each of the following sets

{zih<icn {2t hi<icn {us hi<i<m,, {ug b i<rans,

{urhi<eens: {¥jhi<i<ne, tuhi<icn {vihi<icn,

is a family of linearly independent elements. If 1, -, 2N, Yk, are not linearly independent,

we obtain
ChoYko = Akg1T1 + **+ + Qg Ny TNy s Qkols " 5 Qo Ny € 1

for some nonzero element c;, € R. Thus we have

N1 No Ny

/ / / / /

ckox\lz = E T, (akoixi + ckouk) + Cr, E u; & Y; + Ck, E Y ® Uy, + Ck, E v @ .
i=1 j=1 k+#£ko =1

By finite steps, the above equation can be reduced to

N1 No Né Ny
A1z = sz ®f; + A ZUJ' ®y§ +/\szk ®U;€ +)\QZ'UZ ®U{,
i=1 j=1 k=1 1=1
where T}, - -+, Ty, € C" are linearly independent modulo K’ and z1, -+, Zn,, Y1, , YNy are
linearly independent. If y’ , 77, -+ , Ty, are not linearly independent, by a similar substitution,

we can obtain
N1 Ny Nj Ny
A3 A1z = Zfl ®Té + Az\2 ZUJ' ® y; + A3 2 Zyk ® ’UJ;C + A3A2 Zvl & ’Ul/,

i=1 j=1 k=1 =1
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such that

(i) T, TNy, Y1, L YNS, U1, uny are linearly independent;

(i) 1, -+, TNy, Y1, -+, Yy are linearly independent modulo K;

(ii) T, -+ T, Yo, - ,ygvé, uh, e ,u’Né are linearly independent;

(iv) Ty, Ty Yl ’yfv; are linearly independent modulo K.
To complete our proof, it suffices to consider the elements vy,--- vy, and vf,--- ,UM. If
Uiy, U1, ,uny are linearly independent, by a similar method as above, we can obtain the

desired result.
Now, we return to the theorem mentioned before.
Theorem 3.1 Inf,(D® D',C ® C') = Inf,(D,C) ® Inf,(D',C").
Proof It can be directly verified that
(DeDYNO Y (Do D)2 (DNI™*D)® (D'Nnd~*D").

Our main work is to show the inverse.
For each element z € Inf, (D ® D',C ® C"), we have

Ny N N3 Ny
Az = in@)xﬁ—Zuj ® yj +Zyk®u§€+zvl ® vy,
i=1 j=1 k=1 =1

where A € R, z;,yr, € C,uj,v € K,z},y, € C',uj,v] € K' are given in Lemma 3.4. Since
z€ D ® D', by Lemma 3.2, we have

/ / / / /
Ly Yk, Uj, V] EDa Ljs Yp» U, U €D

fOI‘1SZSN1,1S]SNQ,lSkSNg,lSZSN;; Note that

N1 N1 N2 N3
N0z =3 Oy 0l Y1) 000+ Y~y 0y, + > O 0 1
i=1 i=1 k=1

j=1
Since x1,--- , TN, Y1, - , YN, are linearly independent modulo K, we obtain that
T1,- - 7xN1aaxla' o 7aleaay17" : 782/N3
are linearly independent. If u;,,0x1, -+ ,0xN,,0y1, - ,0yn, are not linearly independent, we
have

Ny N3
CjolUjo = E ajoi 0T + E bjokOYk,  Cj, # 0.
1=1 k=1

It follows that

N1 Nl
CjoADz =Y Om; ® (cjoa + (—1)B 0 a0y ) + ¢jo »_(—1)"8 " a; @ O]
=1 =1
N3

+ ¢j, Z (—1)%e%u; @ Oy + Z i @ (cjouy, + (—1)18 0 b LDy ).
J#do k=1
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We may assume that wu;,,dz1,- - ,0xn,,0y1, - - ,0yn, are not linearly independent for Nj+1 <
jo < N>. By finite steps, we can reduce the above equation to
N1 N1 Né N3
A0z = Z@xi R 7 +le$z‘ ® Oz +u22uj ® Ay +Z@yk ® ),
i=1 i=1 j=1 k=1
for some nonzero elements Ay, u1, o € R, where
T1,- - 7:EN1aaxla e 7815N178y17 e 7ayN37u17 * L, UN!
are linearly independent. By the above construction, we have that
Lyy 7E/ZV138'1:/17 o 78'1:/]V178y117 e 78y3\/é
are linearly independent. If @, , 0}, -, 0z’ , 0y}, - - ,ayﬁvé are not linearly independent, by
a similar progress, we can obtain
N1 N N N
X0z = 1/128131- ® T, —I—VQZTZ- ® Oz +ngﬂj ®3y§- —|—V428yk ® u,
i=1 i=1 j=1 k=1
for some nonzero elements Ao, vq, 19, V3,4 € R, where
T1,- - 751\71781.17 e 7815N178y17 e 7ayNé7ﬂ17 . 7uNé
are linearly independent and
Ly, 759\/138'1:/17 e 78$9V178y/17 T 7ay§\féaﬂ/lv . 7H/]Vé

are linearly independent. Recall that 0z € D ® D’. By Lemma 3.2, we have

Ly aTNuaxla"' 78$N138y17"' 78yN§aﬂla ' 7ENé cD.
It follows that
L1y, " 3TNy, Y1, 7yNé S Dﬂﬁ_lD:Inf*(D,C)

Similarly, we have x, -+ , @y , 41, ,ygvé € Inf,. (D', C"). Tt implies that
Ny Ny Ny Ny
in ® T} + Zuj ®y; + Zyk ® uy, + Zvl ®@ v, € Inf(D,C) ® Inf, (D", C").
i=1 =1 k=1 =1

Let

N2 NS

/ li
z1 = E Uj @ Y; + E Yk @ Uy,
J=Nj+1 k=N}+1
The previous construction implies that w1, -

-, un, and uQ\,éH, -+, uly, are boundaries. By
Lemma 3.3, there exists a nonzero element A’ € R such that X'z, € Inf,(D,C) ® Inf.(D’,C").
Therefore we have

ANz € Inf. (D, C) @ Inf(D',C").
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By Lemma 2.2, there exists a basis S1 U7y of D such that Sy is a basis of Inf.(D,C).
Similarly, there is a basis So LTy of D’ such that Sy is a basis of Inf.(D’,C”). Let S = S1 ® So.
Thus we can choose a basis SUT of D ® D’ such that S is a basis of Inf, (D, C) @ Inf.(D’, C").
Assume that

z=(a b)( ¥ )eDaD,
er

where a = (a1, ,a5) € RIS b = (by, - ,byp) € R™ITI. Since ANz € Inf(D,C) @
Inf, (D', C"), it follows that

AN'ber = 0.
Recall that R is a principal ideal domain, we have ber = 0. This implies that
z € Inf,(D,C) @ Inf,. (D', C"),

which gives the desired result.

Example 3.1 Continuing with Example 2.1, let (C',0) = (Z[2',y'],0),0y’ = 2/,02" =
0,dega’ =1, and let D' = Z[22/,4y'] be a free Z-module generated by 22’,y’. Then we have

Inf,(D,C) @ Inf (D', C") = Z[2z, 2y] @ Z[22', 2y].
A straightforward calculation shows that
Inf, (D@ D' ,C®(C') =7Z2z® 2, 2r 22y, 2y @ 22", 2y @ y'].

Thus the result in Theorem 3.1 also depends on the condition that D, D’ are free R-modules
generated by subsets of X, X', respectively.

Theorem 3.2 (see [7, Theorem 3B.5]) Let R be a principal ideal domain, and let C,C" be

chain complezes of free R-modules. Then there is a natural exact sequence

0= P Hy(C)® Hy(C') » Ho(C®C') = @) Torr(H,(C), Hy—1(C")) = 0.
p+q=n prq=n
Proof of Theorem 1.1 Note that R[Y] ® R[Y’] = R[Y x Y’]. The theorem follows from
Theorems 3.1-3.2.
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