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On the Asymptotic Stability of Wave Equations Coupled
by Velocities of Anti-symmetric Type*

Yan CUI'  Zhigiang WANG?

Abstract In this paper, the authors study the asymptotic stability of two wave equations
coupled by velocities of anti-symmetric type via only one damping. They adopt the fre-
quency domain method to prove that the system with smooth initial data is logarithmically
stable, provided that the coupling domain and the damping domain intersect each other.
Moreover, they show, by an example, that this geometric assumption of the intersection is
necessary for 1-D case.
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1 Introduction and Main Results

Let Q@ C R™ be a bounded domain with smooth boundary 0€2. We are interested in the
asymptotic stability of the following system of two wave equations with Dirichlet boundary

condition:
yie = O (07" (@)ye, ), + @)z + Bla)ys =0 in (0,400) x Q,
k=1
24t — Z (97%(2) 24, )a, — a(z)ye =0 in (0,400) x £, (1.1)
k=1
y=2z=0 on (0,400) x 09,
(y7ytazazt)|t:0 = (yoaylazo7zl) in Q

Here the coefficients of elliptic operator g/%(-) € C1(Q; R) satisfy
¢F(x) = gM(x), Ve, jk=1,2,---,n (1.2)

and

3 GREIE 2 aleP, V(a,€ oo €M) el xC (13)

k=1
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for some constant a > 0.
We assume that the coupling coefficient @ € L>°(Q;R) and the damping coefficient 8 €
L>(Q;R) are both nonnegative, and furthermore

wo2{reQ|al@) £0}#0  and  wsg={xeQ|B(x)#£0}#0. (1.4)

It is classical to consider system (1.1) as the following Cauchy problem in space H £
HY(Q) x L2(Q) x H3 () x L2():
dU

< —av
dt (1.5)

U|t:O — UO é (yoaylazoﬂzl) S H
with U = (y,u, z,v) and the linear operator A : D(A) C H — H is defined as

AU = (u, 3 (6™ @)y, o, — ala)o - Z )2, )an + (@),
st = (1.6)
D(A) = (HX(Q) N HY(Q)) x HY () x (H(Q) 0 H(R)) x H(9Q),

It is easy to know from the theory of linear operator semigroup (see [21]) that system (1.5) has
a unique solution U(t) = e*AU, in C°(]0,+00),H). Then, we can define the total energy of
system (1.1) by

B0 = 3 [ (3 v +lul)ae s § [ (3 PaZo 1), (0
G k=1

7,k=1

which implies immediately the equivalence

E(y, 2)(t) ~ [y, ye, 2, 26)(t, ) |3

Obviously, the total energy is non-increasing:

SRl 2)0) = - / B@)lyPdz <0, Vi >0, (18)

We are interested in the following questions:

e Under what conditions on « and 8, system (1.1) is asymptotically stable?

e If system (1.1) is stable, what is the decay rate of the total energy E(y, z)(t) as t — 400 ?

More precisely, the main result that we obtain is the following theorem.

Throughout this paper, we use C' = C(£, (¢7%),xn, @, B) to denote generic positive constants
which may vary from line to line unless otherwise stated.

Theorem 1.1 Assume that (1.2)—(1.4) hold. Assume furthermore that there exist a con-
stant § > 0 and a nonempty open subset ws C wo Nwg C ) such that

infa >4 and inf 5 > 4. (1.9)
ws

ws

Then, there exists a constant C > 0, such that for any initial data (y°,y*, 2°,2') € D(A), the
energy of solution to (1.1) satisfies

¢ 2
E(y, 2)(t) < m”(yovylaz()vzl)HD(A)v vt > 0. (1.10)
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Moreover, system (1.1) is strongly stable in H, i.e., for any initial data (y°,yt, 2%, 2') € H,
tlg_noo E(y,z)(t) = 0. (1.11)
Remark 1.1 In Theorem 1.1, if we assume instead that the damping and coupling coeffi-
cients a, B are both continuous on €2, then the assumption (1.9) can be simply replaced by the
following geometric condition

wa Nwg # 0. (1.12)

Independently, based on frequency domain method and multiplier method, Kassem-Mortada-
Toufayli-Wehbe [15] proved strong stability (1.11) when two waves propagate at different speed
under the assumption (1.12). One can also refer to [10, Theorem 2.1] for indirect stability
results of other coupled wave system by displacements under the same geometric conditions.

Remark 1.2 We provide an example in Section 4 to show that the geometric assumption
wa Nwg # 0 is necessary in general, which is different from the situation with coupling by
displacements. One can refer to the open problem raised in [10, Remark 2.2]. As a supplement,
we also refer readers to [13, section 5.2.1.3], some numerical examples have been provided to
show that for some initial data, system (1.1) seems also strongly stable when w, Nwg = 0.

Remark 1.3 The result on logarithmical stability in Theorem 1.1 is sharp. Indeed, if &« = 0,
system (1.1) is decoupled into a dissipative system for (y, y;) which is only logarithmically stable
(see [18]) and a conservative one for (z, z;). Hence one can not expect a faster decay rate than
the logarithmical one for the coupled system (1.1) no matter what the coupling « is.

Remark 1.4 In the setting of Theorem 1.1, similar stability results still hold for system
(1.1) with other types of boundary conditions, for instance, Robin conditions or mixed Dirichlet-
Neumann conditions (see [10]). However, there are no such stability results for the system with
Neumann conditions, since all the constant states are equilibrium of the system and will stay
at the equilibrium all the time.

In order to prove the logarithmic stability of system (1.1) with regular initial data in The-
orem 1.1, we adopt the frequency domain approach to prove certain spectral estimates of the
infinitesimal generator A of the solution semigroup. One can refer to [6, 18] for the case of
single wave equation and [10] for the case of wave systems.

Let us denote the real part and the imaginary part of v € C by oy and Sy, respectively. We
denote also the resolvent set and spectrum of the operator A by p(A) and Sp(A), respectively.

Theorem 1.2 Suppose that the assumptions of Theorem 1.1 hold. Then there exists a
constant C' > 0 such that

—CIS| 2
~ e
= - < < > - .
Oc {veﬁcl e 7%770}0{7€C||7|7C}CP(A% (1.13)
and the following estimate holds
[(A =AD" gy < CeI vy € Oc. (1.14)

Obviously, the energy decay given by (1.11) implies directly the fact p(A) C {y € C | Ry <
0} and in particular, the origin O € p(A). Since p(A) is an open set, then the corollary follows
from (1.13), upon choosing C large enough, as a byproduct of Theorem 1.2.
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Corollary 1.1 Suppose that the assumptions of Theorem 1.1 hold. Then there exists a
constant C' > 0 such that

e~ } (1.15)

C
Remark 1.5 The proof of Theorem 1.2 is based on global Carleman estimates (see [11]),

Sp(A)C{’yGC|9?’y<—

which is quite elementary and applied to address many stabilization problems for the system
with lower order terms. Moreover, it can be used to obtain explicit bounds on some estimates of
decay rate or constant costs in terms of the coefficients. Roughly speaking, (1.14) is equivalent
to an observable estimate with constant cost like e©17! for coupled elliptic system, which seems
quite natural to adopt global Carleman estimates to obtain these types of estimates (see Lemma
3.1 in section 3.1 for more details).

Remark 1.6 We should point out that we can not directly adopt the approach in this paper
to obtain the logarithmic stability of system (1.1) when two waves have different propagating
speed. Roughly speaking, one key step in the proof of important Lemma 3.1 is using an easy
fact that Osp - [0ssq + 0;(97%0kq)] + 05q - [Ossp + 0;(g7%Okp)] = 05[0sp0sq + pI; (97 O0sq)] +
0j (7% 05q0kp) — 0;(g7*pOkOsq), which can be used to give an estimate that L2 norm of the
coupling term with force terms can control the H' energy. However, this fact is invalid for the
case of two waves with different propagating speed.

1.1 Previous results

There are a lot of results about asymptotic stability or stabilization of wave equations.
Among them, Rauch-Taylor [24] and Bardos-Lebeau-Rauch [5] pointed out that, the single
damped wave equation is exponentially stable if and (almost) only if the geometric control
condition (GCC for short) is satisfied: There exists T' > 0 such that every geodesic flow touches
the support set of damping term before T. If the damping acts on a small open set but the
GCC is not satisfied, Lebeau [18] and Burq [6] proved that the wave equation is logarithmically
stable for regular initial data. There are also many results about polynomial stability of a single
wave equation with special condition on the damping domain (see [4, 7, 17, 23]). Recently, Jin
proved in [14] that the damped wave equation on hyperbolic surface with constant curvature is
exponentially stable even if the damping domain is arbitrarily small.

As for the case of coupled wave equations or other reversible equations, indirect stability
is an important issue both in mathematical theory and in engineering application. Indeed, it
arises whenever it is impossible or too expensive to damp all the components of the state, and it
is hence important to study stabilization properties of coupled systems with a reduced number
of feedbacks. For finite dimensional systems, it is fully understood thanks to the Kalman rank
condition. While in the case of coupled partial differential equations, the situation is much more
complicated. It depends not only on the algebraic structure of coupling but also the geometric
properties of the damping and coupling domain.

Alabau-Boussouira first studied indirect stability of a weekly coupled wave system where
the coupling is through the displacements. In [1], the author adopted multiplier method to
obtain polynomial stability for wave system with anti-symmetric type coupling under stronger
geometric conditions for both the coupling and damping terms. Moreover, she proved that this
result was sharp for coupling with displacement. In [2], the polynomial stability results for
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coupled systems under an abstract framework (including wave-wave system, wave-plate system
etc.) were obtained under the conditions that both coupling and damping are localized and
satisfy the piecewise multipliers geometric conditions (PMGC for short, see [19]). For 1-D case,
a sharp decay rate of polynomial stability was obtained by Riesz basis method in [20]. In [10],
Fu adopted global Carleman estimates and frequency domain method to prove that the system
with coupling by displacement of symmetric type is logarithmically stable with the assumption
that coupling domain intersects the damping domain.

The above results concern only the weakly coupled system. In [3], Alabau-Wang-Yu studied
the indirect stability for wave equations coupled by velocities with a general nonlinear damping.
By multiplier method, they obtained various types of stability results, including exponential
stability, under strong geometric condition on the coupling and damping domains. They also
pointed out, for the first time, that it is more efficient to transfer the energy in case the of
coupling by velocities compared to the case with coupling by displacements. For 1-D case
with constant coefficients, the sharp decay rate was explicitly given in [8]. In [16], Klein
computed the best exponent for the stabilization of wave equations on compact manifolds.
The coefficient he obtained is therefore the solution of some ODE system of matrices. Kassem-
Mortada-Toufayli-Wehbe [15] studied a system of two wave equations coupled by velocities
with only one localized damping, the waves propagate at different speed and the positivity and
smallness assumptions of the continuous coupling coefficient can be removed. They obtained
a strong stability result with the assumption that coupling domain intersects the damping
domain. Moreover, assuming that coupling and damping coefficient belong to W1:°°(Q) and
the intersection of coupling domain and damping domain holds PMGC, based on frequency
domain method and a multiplier method, they established an exponential energy decay when
the waves propagate at the same speed and a polynomial energy decay when the waves propagate
at the different speed. Recently, the exponential energy decay result has been generalized by
Gerbi-Kassem-Mortada-Wehbe in [13] to the case that the intersection of the coupling and the
damping domain satisfies GCC.

To the authors’ knowledge, most known indirect stability results are obtained under the
geometric conditions that the damping domain intersects the coupling domain. Indeed, this
guarantees effectively the energy transmission in higher space dimension. It is remarkable that
Alabau-Boussouira and Léauteau [2] proved an indirect stability result in 1-D case where the
damping domain and the coupling domain are two intervals which do not intersect.

1.2 Main contribution and ideas

As already pointed out in [3], the energy transition is more efficient through the first order
coupling (by velocities) compared to zero order coupling (by displacements). This is natural
since the first order coupling effect can be seen as a bounded perturbation to the system while
the zero order coupling is a compact one. Nevertheless, one can not expect a faster decay (than
logarithmical one) of the whole system (1.1) even if a first order coupling appears, because
the energy of the single wave equation with damping localized in small domain only decays
logarithmically. In this sense, the stability results are sharp.

Not surprisingly, the indirect stability result is obtained by assuming essentially the damping
and coupling domain intersect. However, we give an example to show that this geometric
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condition is necessary in general for the wave system coupled by velocities. This is quite
different from the system coupled by displacements (see [2]).

As for the proof of the main theorems, we adopt the frequency domain approach to reduce
the stability problem to an estimate on resolvent which can be obtained by global Carleman
estimates of an elliptic equation as in [10]. Different from the system in [10], there are no zero
order terms explicitly in system (1.1). In order to derive the L? energy of the solution, we
then need to make fully use of the coupling structure together with Poincaré inequality under
homogeneous Dirichlet boundary condition.

1.3 Organization of the paper

This paper is organized as follows. In Section 2, we recall some basic facts about frequency
domain method and global Carlemann estimates for an elliptic equation. In Section 3, we give
the proofs of Theorem 1.1 and Theorem 1.2 as well as the technical Lemma 3.1, which is crucial
to the proof of Theorem 1.2. Finally in Section 4, we give an example of system (1.1) with
wa Nws = (), which is indeed unstable.

2 Preliminaries

In this section, we briefly recall the frequency domain method and global Carleman estimates
for an elliptic equation.

2.1 Frequency domain method

Thanks to classical semigroup theory, A generates a Cp-semigroup operator {etA}tZQ on H.
It is well-known that the logarithmic stability of system (1.1) can be obtained by a resolvent
estimate (see [6, 18]). More precisely, we have the following lemma.

Lemma 2.1 (see [6, Theorem 3]) Let A be defined by (1.6). If
[(A—ioD) ™Y ca) < CeCl0l, Vo € R, |o| > 1, (2.1)

then, there exists C > 0 such that for any Uy € D(A%) 2 {U € H | AU € D(A)},

C

tA
Ul < (—2
le™ Unlla < (ln(t—|—2)

2
) ol vt >o0. (2.2)

Obviously, (1.14) in Theorem 1.2 implies the assumption (2.1) in Lemma 2.1. Once Theorem
1.2 is proved, the logarithmical decay estimate (1.10) in Theorem 1.1 can be easily obtained by
Calderon-Lions interpolation theorem and (2.2).

2.2 Global Carleman estimates

To obtain resolvent estimate (1.14), we need to introduce the global Carlemann estimates
for elliptic equations (see [9, 10, 12]).
Let wp be an open set such that wy CC ws C wa Nws. There exists 1 € C2(Q;R) such that

~

$>0inQ  $=0ond2 and |V >0 in Qwo. (2.3)
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Next, we introduce some weight functions

h=c, I=Xp, p=ec" (2.4)
with
w:w(s,x)éﬂ—i—lﬁ—s{ s €[=bb],r€Q, (2.5)
4]l

where b > 0 and A\, i, s € R are all constants.
Let us consider a single elliptic equation

Wes + Z 9wy Ve, = f in (=b,b) x Q

Jik=1 (2.6)
w=0 on (=b,b) x 99,

w(+xdb,-) =0 in Q,

where g/%(-) € C1(;R) satisfy (1.2)—(1.3). Therefore for every f € L2((—b,b) x Q), the elliptic
system (2.6) has a unique solution w € Hg ((—b,b) x ). Therefore we have the following global
Carleman estimates of solution.

Theorem 2.1 (see [10]) Let b € (1,2] and 0,6 € C?([—b,b] x Q;R) be defined by (2.4)-
(2.5). Then there exists uo > 0, such that for any pu > uo, there exist C = C(n) > 0 and
Ao = Ao(t) such that for any f € L?((—b,b) x Q), the solution w to system (2.6) satisfies

b
uQ/ / 02 (alVw|? + |ws|* + N p?¢? |w|*)dads
< c/ / 02| f|?dads + CAp? / 026(|IVw|? + |ws|* + N2 p?¢? |w|?)dwds (2.7)
b wo

for all X > Xo(u).

3 Proofs of Main Theorems

In this section, we give the proofs of the main theorems, i.e., Theorem 1.1 and Theorem 1.2.
First in Subsection 3.1, we prove Theorem 1.2, particularly the resolvent estimate (3.16), based
on some interpolation estimates on elliptic equations. Then by Theorem 1.2 and Calderon-Lions
interpolation inequality, we conclude Theorem 1.1 in Subsection 3.2. Finally in Subsection 3.3,
we prove Lemma 3.1 concerning an interpolation inequality of coupled elliptic equations, which
is crucial to the proof of Theorem 1.2.

3.1 Proof of Theorem 1.2
Let = (f9 f1,¢% ¢') € H and Uy = (y°, y', 2%, 21) € D(A) be such that

(A—~1)Uy = F, (3.1)
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where v € C and A is given by (1.6). Then (3.1) is equivalent to

=7y’ +yt = f° in Q,
Y (@ e —al@)2! = (Bl@) + )y =1 @

G k=1

Pyt =g in Q,
Z (9" 20 )z — 9" + al2)y' =g in
7,k=1

W0 =20=0 on 0f,

or furthermore

(9790 )ar =7y’ = ya(@)2’ —yB()y° = F* £ (B(x) + N+ 1 nQ,

.
”MWM:
-

(¢7%20)ar = 722" +ya(2)2’ = F' £4¢° + ¢ nQ (32
J,k=1
yo =20=0 on 0,
y' = f0+ 90, 2t = g% + 20 in Q.

In order to prove (1.14), it suffices to prove that there exists a constant C' > 0, such that
15", 2% 2Nl < CeM(S0, 11 6% 9 )l ¥y € Oc (3:3)
For this purpose, we set
p(s,z) =e70x),  q(s,x) =e%20%2), (s,2) € (~2,2) x Q. (3.4)

Then p and q satisfy the following coupled elliptic align

Dss + Z (07%pa, )y +ic(z)gs +1B(z)ps = G° 2 FO%7* in (—2,2) x Q,

J,k=
= . 1A 7l ivs . (3.5)
qss + Z (gj 0o, )z, — la(z)ps = G = F e in (—2,2) x 9,
jk=1
p=q=0 n (—2,2) x 9Q.

Note that there are no boundary conditions on s = £2 in the above system (3.5). We have
the following lemma on interpolation estimate, while its proof is left in Subsection 3.3.

Lemma 3.1 Under the assumption of Theorem 1.1, there exists a constant C > 0 such that
for any X\ > 0 big enough, the solution (p,q) to (3.5) with form (3.4) satisfies

Pl vy + lall vy < Ce“ NGO 20y + 1GH L2 0x) + 1PN (—2,2:02(5)))
+Ce A (Ipllax) + llallae x): (3.6)

where

X2(-2,2)xQ, Y2 (-1,1)xQ, Z=2(-2,2)x ws. (3.7)



On the Asymptotic Stability of Wave Equations Coupled by Velocities of Anti-symmetric Type 821

On the other hand, by (3.4), we have

191113 o) 112N < Ce Pl (1503 ) + Nl (1,103 2):
”p”Hl(—?,?;Hé(Q)) + ||q||H1(£_2,2;H%(Q)) < Cec\\wl(m + 1)(||y0”Hg(Q) + ||ZOHH5(Q)), (3.8)
Dl 211 (2,2 2205)) < Ce“S 190l £2)

for some constant C' > 0. Combining (3.6) and (3.8), we get
1901 2y + 12° ez ) < eSO, 1, 9% M)+ 11801 L2 (ws))- (3.9)
Next, we turn to estimate HyOHLz(w&). Let ¢ € C2(Q;R) be a cutoff function such that
0<(¢(x)<1 inQ and () =1in ws C we Nwg. (3.10)

Multiplying y-equation in (3.2) by 2¢7° and integrating by parts on € yield that

/Q ( = > (6 )an + 7+ (@) + 75(ff)y0> -2¢p°dz
7,k=1

22 /Q<|y°|2dx+2 /Qc > o0, e~ /Q > (076 aly"Pde
G k=1

j,k=1
—0_0 02
+27/Qa(x)é“y z dx+2w/ﬂﬁ(x)é“ly "z
:/Fo-zgyodx. (3.11)
Q

Similarly, multiplying z-equation in (3.2) by 2¢z° and integrating by parts on (2 yield that

/sz ( - Zn: (9725, )on +772" w(x)yo) -2¢z°da

j k=1
= 272/ <|ZO|2d$+2/< Z gjkzgjggkd$—/ Z (gjkcmj)mk|zo|2d$
2 @ k=1 2 k=1
—27/ a(z)¢y°z0dx
Q
= / F'.2¢z"dz. (312)
Q

Note that
3(9°2" = 7y°2°) = S[v(F°2° — y°2%)] = Ry - 23(7"2°).
Adding (3.11) to (3.12) and taking the imaginary part result in
a9 [ (7 + 10 )de +237 [ By Pdo+ 2Ry | ot )
= /924 -S(FY%° + F'2°%)da.
Then it follows by Cauchy inequality and the definition of 3, F°, F'' that

891 [ 8@y Pde < |37 /Q By Pde



822 Y. Cut and Z. Q. Wang

< ORI+ 1)([° N 720y + 12717 2(0)
+ C(HFOH%%Q) + HFIH%%Q))

< ORI+ 1)([°l1 720y + 12717 2(0)
+ O+ DI 9% gD

Thus by (3.9), we get

I%WI/ By’ Pde < CIRY|(139] + 1) 1y0) 72,
ws

+ CRYIIS + [yl + Ve (£, £ 9% g3 (3.13)
By the definition of O¢, we take C' > 0 large enough such that

& R 1
(9] + 0 < B3N g g5 L (3.14)

for all v € O¢. Note also the fact that 8(x) > 6 a.e. in ws. Then it follows from (3.13)—(3.14)
that

||yOHL2(w5) < CeCIS’Y‘ ||(f07 f17goagl)HH (315)
for some C' > 0 large enough. Combining (3.9) and (3.15) gives
153 + 1% sy < CeSISMCA, £, 60 gl

Since y' = fO + 414, 2! = g% + vz, we have also

Iy 2y + 112 L2e) < ||f0||Hg(Q) + ||90HH5(Q) + U9 N 22y + 12° E2)
< Ce“N(£2, £, 9%, gY) .

Hence the desired estimate (3.3) indeed holds for all v € Oc¢.
Consequently, A — I is a bijection from D(A) to H, which satisfies the resolvent estimate
(1.14). We conclude the proof of Theorem 1.2.

3.2 Proof of Theorem 1.1
As a corollary of Theorem 1.2, there exists C' > 0 such that
[(A=iocD)™ L2y < CeClol, Vo e R, |o| > 1. (3.16)

Then by Lemma 2.1, we have for Uy € D(A?) that

C

tA
U < ——
e Uolln < (1n(t—|—2)

2
) Uollpeazy, ¥t > 0. (3.17)

On the other hand, the contraction of the semigroup e** implies that

e Uolls < |Uoll3, VYt > 0. (3.18)
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Note that D(A) is an interpolate space between D(A?) and H. Combining (3.17)—(3.18) and
using Calderon-Lions interpolation theorem (see [25, p. 38, Example 1 and p. 44, Proposition
8]), we conclude for all Uy € D(A) that

C
tA
U < ——||U Vit >0 3.19
e 400l < g IVollon. > 0 (319)
which is equivalent to the logarithmical decay estimate (1.10).

Finally we conclude by (3.19) and density argument that system (1.1) is strongly stable,
i.e., for all Uy € H,

hm HetAUOHH
t—+

The proof of Theorem 1.2 is complete.

3.3 Proof of Lemma 3.1

In this subsection, we give the proof of Lemma 3.1 which plays a key role in proving Theorem
1.2. The proof is divided into 6 steps. In this subsection, we denote C' > 0 various constants
independent of A which can be different from one line to another.

Step 1 We derive a weighted estimate (3.28) for (p, q), the solution of (3.5).
Note that there are no boundary conditions on p(£2,-), ¢(%2,-) in (3.5). Let us introduce
a cutoff function ¢ = ¢(s) € C3((—b,b); R) (see for instance [22]) such that

0<p(s) <1 in[-b,0] and ©(s) =1 in [—byg, bo], (3.20)

where the constants bg, b are given by

1+e*‘)

= (3.21)

= l—l—lln(Z—l—e“), bgé\/bQ—lln(
1 )

respectively, for p large enough which enables to apply Theorem 2.1. Obviously, if g > In2,
then

l<bgp<b<2 (3.22)
Let
]/Q\(S,CL') = cp(s)p(s, :,C), Z]\(Sa :E) = @(S)Q(Sﬂ :E), (va) € (—b, b) x . (3'23)

Then, we consider the elliptic equations that p, ¢ satisfy in (—b,b) x Q

pss+ Z g pwJ Tr _éO in (_bab)XQa
j,k=1

Gos+ Y (0% G,)a, =G in (—D,b) x Q, (3.24)
jk=1

p=qg=0 on (—b,b) x 09,
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where
60
@1

PssD 4 205ps + ©G° + ia(z)(sq — Gs) + 1B(x) (psp — Ds),
Pssq + 20545 + G — ia(z)(psp — Ds)-

(3.25)

[I>

By applying Theorem 2.1 to both p and ¢, there exists o > In2 such that for any p > o,
there exist C'= C'(u) > 0 and A\g = Ag(u) such that for any A > Ao(p), we have

b
M2 / b /Q 626(a| VB + [P]? + N21i20|pl2)dads

b b (3.26)
< 0/ /02|G0|2dxds+0)\u2/ 02d(IVD1? + [Ps|* + N2 12 0%(p]?)dds,
—bJQ —b Jwo
b
M [ [ 0o(aIVaR + G + R g dads
—be (3.27)

b b
< c/ / 0%|G* [2dzds + cx;ﬂ/ 0*6(IVal® + |3s|* + N p?¢?|q]*)dxds,
—bJQ

—-b wo
where G, G! are given by (3.25) and wy CC ws C wa Nws. Adding (3.26) to (3.27) gives
Ip <I; +1s, (3.28)
where
b
lo2 2 [ [ oV + 5+ NGB + alVal + |7 + AP¢?qldads,
—bJQ
b
IL 2 c/ /92(|GO|2 + |G ?)dads, (3.2)
—-bJQ
b
L2 On? [ [ 06(TRR 415 + AU + VA + 3 + N7 dads
—b Jwo
Step 2 We estimate Ip in (3.29) from below.
By the choices of 0,1, ¢ in (2.4) and b, by in (3.21), we have
0>y <1,z e (3.30)
Then
bo
To > Ap? /b /Qt92<25(a|Vp|2 +1ps|? + N 2@?[pl* + al Vgl + |as]? + N ¢?|q]*)dads
—00

1
9 3.31
> NP2+ ’C(u)/ /Q(|Vp|2 + psl® + |pI? + [Val* + |gs|* + [|*)dads (8:31)
-1

= 2D (Il vy + lall T 3r))-

Step 3 We estimate Iy in (3.29) from above.
Using Cauchy inequality, we get easily

I; <Iix + T2 + Ins, (3.32)
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where
b
Wa2c [ [ 606 +IGI)dads,
—-bJQ
b
I, 2 c/ / 0% (lia(2)3s + iB(2)Ps|? + [ia(x)ps|*)dads, (3.33)
—bJQ
b
Lis £ C/ / 0**(|1G°) + |G'[*)dzds,
—bJQ

where G9 = @ op+ 20sps +i0(x)psq+18(2)psp, GF = pssq+ 20545 —ia(z)psp, and we denote
GY, G} some terms concerning the derivatives of ¢ in G°, G1, which are useful for the estimation

below.
By the choices of 6,1, ¢ in (2.4) and b, by in (3.21), we have

0 < e+ by < |s| < bz € Q. (3.34)
Then
Li=C / 0 (lpssp + 2psps + ia(@)psq + iB(2)psp|”
(=b,=bg) U(bg,b) Q2
+ |@ssq + 2psqs — ia(x)psp Hdzds
| ) ()pspl”) (3.35)
Sy [0l + 1017 +1al* + lacF)dods
(=b,=bg) U(bo,b) /2
< PO ([Ipl 7 ) + lallFe ox))-
Obviously,
b
. I C —1
Iz < c/ / 0%(1ps|? + |3u|?)dads < %10 < A 71, (3.36)
-vJo
which can be absorbed by I if A is large enough.
Therefore,
L < P (] () + lall i ) + Ao
b (3.37)
+ c/ / 622G + |G ) dads.
-vJa
Step 4 We estimate the localized term Io in (3.29) from above.
We write it as
Ip = I21 + In2 + I23 + Io4, (3.38)
where
b
I, £ C’/\MQ/ / 026 (|VD|* + [ps|*)dads,
—b Jwo
b
Iz £ OXpt / 6°¢°|p|*dxds,
—b Jwo
b (3.39)
Is £ C/\uQ/ 0*¢(IVal* + |gs|*)dads,
—b Jwo

b
Iy £ C/\3u4/ / 623 |q>dxds.
—b wo
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Recall the definitions p, 7 in (3.23), ¢ in (3.20) and 0,1, ¢ in (2.3)—(2.5). It is easy to check
that
Lo = —2Xusd, lo, = Audtha,, loys = =205,
lss = 4)\[L2S2¢—2/\,u¢), lrjrk = /\:U*2¢1/)ij$k + Alu“dn/)rjwc

Denote wy, (k =1,2,3) some open subsets in € such that wy CC w1 CC we CC w3 CC ws. Let
n; € C3(wj;R) ( =1,2,3) be suitable cut-off functions such that

(3.40)

ni(z) =1 inwj;_q, 0<n(r) <1 inw;, n;(z) =0 in Q\w;. (3.41)
Moreover, we choose further 7y such that
[(12)a; (2)ai | < Cm2, Vo € wy (3.42)

for some constant C' > 0. The existence of 75 is shown at the end of the proof.

Step 4.1 We estimate a weighted energy for (Vq, ), i.e., ffb Lo (VA + [g5]?)dds.
By the definition of 7, it suffices to estimate ffb Jo 0%¢n3 (a|V* + |gs|*)dads. To do this,
we multiply g-equation in (3.24) by 0%¢niq,

92@7%5@1 = 92(1577%5\' [qus + Z (gjkqAﬂﬂj)wk}

k=1
G N G R s S T S
k=1 j=1 T
— P60 > G G0 — D GO0, T, -
J,k=1 j,k=1

It reduces equivalently to

n
0% - [Iqul2 + > gjkququwk]
jok=1

= 0%¢niqG" + (07 on}ads)s — (0%6n?)edds + [92@7? > gjk?&zj]

k=1 j=1 Tk

= > GO, 00, -
jik=1
Integrating (3.3) over (—b,b) x Q, upon using (3.24), (1.2)—(1.3) and Cauchy inequality, we
obtain
b b
[ #oavar +afiasas < [ @ oriaval +1a.)deds
—bJwy —-bJQ

(3.43)

b

b
< %/ /92|Gl|2dxds+0)\2u2/ / 626° (g2 dwds.
A2 Sy o —bJwy

The factor A_i? is important for the estimate of Iy (see (3.58)).

Step 4.2 We estimate a weighted energy for g, i.e., ffb J,, 0°¢°(q)*dads.
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By definition of 1, it suffices to find an up bound for ffb Jo 00 n31q1*dads. We claim that
there exists a constant C' > 0, such that

b b
/ / 62¢>n3|q)2deds < C / / 62 p3n2|qs|>dads. (3.44)
—bJQ —bJQ

Indeed, in view of (3.4), we have

|Z]\] = |(p20|’ |aS| = |<p5 +17<p||z0|7 \V/(S,J?) € [_bab] X Q

Notice that

s + 19l = Iyllel = Clel, Vs € (=bo,bo),y € Oc,

then

bo bO
/ / 02¢>n3|q12dads < C/ / 02 32| g, > dads < C/ / 02 n3|qs|*deds.  (3.45)
—bo JQ —bo JQ
Recalling (3.30) and (3.34), we can obtain from the choices of ¢, b, by in (3.20) and (3.22), that
/ / 62 ¢>n2|q*dzds
(=b,—bo) U(bo,b)
= / / 0°9*p° 3| 2° P dads
(=b,—bo) U(bo,b) /2

— [ wr 0262 dsda
Q (=b,—bo) U(bo,b)

§/77§|ZO|2 e2A(l+c“)e3,u1p(:l:l,z)dex
Q (=b,—bo) U(bo,b)
1
S/U§|ZO|2/ A2 He!) B (F1,2) 4 5 g
Q 1
1
S/n§|z0|2/ 0243 p2dsdx
/ /92(;53 |q|*dads.
bo

Combining (3.45) and (3.46) yields (3.44) immediately.

(3.46)

Step 4.3 We estimate ffb Jo 02¢°n314s|*daxds by using the coupling relation in (3.24).
Multiplying p-equation in (3.24) by i#2¢*13q,, and arranging the terms, we get

AP BIEL = 65 [Fua+ Y (675
7,k=1 (347)

—10?6°3G, (G2 + 0G° — iB(2)ps],

where @? is given in (3.33) and it only concerns the terms with derivates of .
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Direct computations yield that

BT+ Y (7))o

Gk=1

= ((°¢° 1305 — (0°6°13). 3.5 — 0° "3 2., #3200 il

(3.48)
+Z 0°$*150,9"" Da, ) Z( 20°03) 00 0u9" Ba; — Y (08’130, 9" Pu; )
ik
+ Z 026°13)5Qs, 9" Pu; + Z 039" Qe P )ay — _(0°6°03)0, 97", Ps
7,k
and
> (02 03)0, 07 T P = D _((0°8°03)2; 0 TPs)er — D _[(0°8°03) 2, 9 TP, )
ik ik ik
—Z [(0°0°13)2, 97" 12 @Ps + > _[(0°6°03)2,9""]5Ps (3.49)
7,k

+ Z ¢3n2 j ;Si)\wk«

We integrate (3.47) on (—b,b) x Q. Then from (3.48)—(3.49) and particularly the facts that
Ds = s = 0 on the boundary of (—=b,b) x Q and Vp(+b,-) = Vgs(+d,-) = 0, we derive

// x)0% 03 |3, dads
’ / | o Fasds

+c/ / 02> n2 (|G + |G°)2 + |GL)? + |G ?)dads

(3.50)
+CON? 2/ 92¢5(|m2+|ﬁ5|2+|vm2)dxds

+‘/ /Z 92¢3772 )o, 9], dads|
+‘/ /Z [(6°6°03)z, 9 4]mk§ﬁsd$d5‘.

Since a(x) > § > 0 on wg, the first term on the right hand side of (3.50) can be absorbed by
the left hand side. Moreover, by direct computations, we have the following two facts

[(020°03) 2,97 )2 = (0°0°15)a; 207" + (0°¢°05)a, 2%
= ¢7"(204, 2,00°13 + 20,0, 803 + 60,,00% b, 15
+ 404, 2, 00° (12) 2,12 + 605, 005, 6° 13 + 30% s, 2, O° 03
+ 60% 0, 0,5 + 6000, 6°02(02)ay, + 2(02) ;2,207 0"
+2(n2)a; (02)2,0%0° + 4(12) 2, 1202,00° + 6(n2)0, 120 3> da, ]
+ [204,00°03 + 30% 60, ™03 + 2(n2)a, m20%0%]g2"

(3.51)
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and
[(0%6°13)0,97%]s = g7%[204, 0003 + 20,,0,6°15 + 60,,06:¢°13
+ 60500, 6°15 + 30°ha; 5715 + 60° b, b5 175 (3.52)
+2(n2)a, 120500° + 6(n2)a, 126”6 ).

By definitions of 72, 6, ¢, in particular (3.40), (3.42) and ¢7*(-) € C'*(;R), one can obtain the

following estimate
[(6°6°13)0, 97F1s| + 1[(6%8°03)a; 97" i | < ONPpPi26%0°. (3.53)

Thus by above estimate (3.53) and Cauchy inequality, we get for all € > 0 that

b
‘/ /Z 92¢3772 )a, 0 Jk]sg\l’,\mdxds‘—|—‘/b/QZ[(92¢3n§)zjgjk]m§f)sdzds
_ T

O\t
< 5/ / 02¢>n3|q12dads + s
—bJQ

Therefore we obtain from (3.44) and by choosing ¢ > 0 small that

b
/ / 0267 (5|2 + |VBI?)dads,
—-b w3

/ /92¢3 2(3. Pdards < c/ /92¢3 (GO + GO + G2 + |G ?)dads
(3.54)

Loty / b / 0267 (5 + [Bul? + [VPI2)dds,

/ /92¢3n2|2ﬂ dads < c/ /92¢3 (IGY)? 4 |G°)2 + |GL? + |G |*)dads
(3.55)

voxt [ eaTa s e+ 9

Step 4.4 We estimate [*, [ 02¢7(|VpI? + [p[?)dads.
Similarly to (3.43), we can derive

b
/ 027 (VL2 + [P, |?)dads
b (3.56)

b
< N / / 6%|G°2dads + CA” 8/ / 02" |pl?dads.
—bJws
The factor A7Lu8 is important for the estimate of Iy (see (3.58)).

Step 4.5 We summarize the estimate of Is from above.
Applying (3.43), (3.54)—(3.56) for I21,I23,I24 in (3.38), we end up with

I =131 + 122 + 123 + 124

b b
gc/\%‘*/ /92¢3n§(|G9|2+|G}|2)dxds+c/ /92(|G0|2+|G1|2)dxds
—bJQ —bJQ (357)

b b
+ON / / BEn2(1CO2 + |GY2)dids + CAM 1 / 626" [p2dads.
—bJQ

—bJws
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Similarly to the estimate of I11 in (3.35), we have
b
CX3 ! / / P23 (GO + |G 2)dads < A2 ) ([Ip3 () + 93 )
—bJQ

Note that C’ffb Jo 62(|G°|2 + |G'|*)dads is the same as I and the estimate has been given by
(3.37). Therefore, we have
Iy < CL + A% C(u) (|Ipll 7 ) + lallz x))

b b
+C/\3u4/ /92¢3n§(|G0|2+|G1|2)da:ds+0)\14u16/
—bJQ

—b

(3.58)
/ 624 |p|2dads.
ws

Step 5 We derive the estimate (3.6) based on Steps 1-4.
Letting A be large enough, from (3.28), (3.31), (3.37) and (3.58), we finally obtain the desired
interpolation estimate (3.6).

Step 6 We provide an example of the cut-off function 7o € C§(w2) such that (3.41)—(3.42)
indeed hold.
Without loss of generality, we may assume w; C B(0,5) C B(0,7) C wa. Set

.
1, if |z < =,
if |z < 5
128
m(z) £ WW — 2P [16]z]* — 202 |22 + 4], i L <z <
0, if x| > 7.

It is easy to check that 1y € C3(w2) and

lim |(772)1k(772)$j| -0, lim |(772)1k(772)$j|
|z|—r 2 |z|— 5 2

< o0

Then it follows the property (3.42).
This finally concludes the proof of Lemma 3.1.

4 An Example with w, Nwg = 0

In this section, we show, by an example, that the geometric assumption w, Nwg # 0 is
necessary in general for asymptotic stability of the coupled system (1.1).
More precisely, we consider the following 1-D coupled wave equations

0, +00) x (0, 27),
0, +00) x (0,27),
0, +00),

0,27),

Yt — Yoz + ()2 + B(x)ys =0 in (
Ztt — Zgx — (2)Yyr =0 in (
y(0) = y(2m) = 2(0) = 22m) =0 in (
syt 2, 2)e=0 = (%, 9", 20, 2Y)  in (

where the coefficients o and 3 are given by

24

2 itzeo,n 0, ifzel0,m),
o) = {5 MDD g0

{0’ if o € (m,2m), 1, ifx e (m2m)
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such that w, Nwg = 0.
Let the initial data be the following

5(7sinz — sin(7x)), if z € (0,m),

=0 1in (0,27), y'(z)= 4.2
Y in (0.27), v @) =1, if z € [r,27) (4.2)
and
—T7sinx —sin(7z), if x € (0,7),
Lr)y=< 14 21 =0 in (0,27m). (4.3)

5 sin(5z), if x € [, 2m),

Clearly, (y°,y!, 2%, 2!) belongs to (H?(0,27)NHL(0,27)) x HE(0,27) x H?(0,27)N(H(0, 27) x
H}(0,27)). Tt is not hard to check that the unique solution of system (4.1)—(4.3) can be explicitly
given by

sin(5t)(7sinx — sin(7x)), ift € (0,400),x € (0,7),
ity — {00 (7)), 1€ (0. 4o0).x € (0.7) )
0, if t € (0,4+00),x € [, 2m)

and

—cos(5t)(7sinx + sin(7z)), if t € (0,+00),z € (0,7),
z(t,z) = 14 (4.5)
~5 cos(5t) sin(bz), if t € (0, +00),x € [m,27).

In contrast to (1.11) in Theorem 1.1, the energy of system (4.1) is conserved

2m

d
T EW:2)0) = - B(x)|y|*dz =0, Vt >0,
0

therefore the system is not asymptotically stable. According to the above example, we conclude
that the decay estimate (1.10) may not hold if w, Nwg = 0.
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