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Abstract In this paper, the authors study the asymptotic stability of two wave equations
coupled by velocities of anti-symmetric type via only one damping. They adopt the fre-
quency domain method to prove that the system with smooth initial data is logarithmically
stable, provided that the coupling domain and the damping domain intersect each other.
Moreover, they show, by an example, that this geometric assumption of the intersection is
necessary for 1-D case.
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1 Introduction and Main Results

Let Ω ⊂ R
n be a bounded domain with smooth boundary ∂Ω. We are interested in the

asymptotic stability of the following system of two wave equations with Dirichlet boundary

condition:





ytt −
n∑

j,k=1

(gjk(x)yxj
)xk

+ α(x)zt + β(x)yt = 0 in (0,+∞)× Ω,

ztt −
n∑

j,k=1

(gjk(x)zxj
)xk

− α(x)yt = 0 in (0,+∞)× Ω,

y = z = 0 on (0,+∞)× ∂Ω,

(y, yt, z, zt)|t=0 = (y0, y1, z0, z1) in Ω.

(1.1)

Here the coefficients of elliptic operator gjk(·) ∈ C1(Ω;R) satisfy

gjk(x) = gkj(x), ∀x ∈ Ω, j, k = 1, 2, · · · , n (1.2)

and

n∑

j,k=1

gjkξjξ
k
≥ a|ξ|2, ∀(x, ξ1, · · · , ξn) ∈ Ω× C

n (1.3)
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for some constant a > 0.

We assume that the coupling coefficient α ∈ L∞(Ω;R) and the damping coefficient β ∈

L∞(Ω;R) are both nonnegative, and furthermore

ωα , {x ∈ Ω | α(x) 6= 0} 6= ∅ and ωβ , {x ∈ Ω | β(x) 6= 0} 6= ∅. (1.4)

It is classical to consider system (1.1) as the following Cauchy problem in space H ,

H1
0 (Ω)× L2(Ω)×H1

0 (Ω)× L2(Ω):





dU

dt
= AU,

U |t=0 = U0 , (y0, y1, z0, z1) ∈ H

(1.5)

with U = (y, u, z, v) and the linear operator A : D(A) ⊂ H → H is defined as





AU =
(
u,

n∑

j,k=1

(gjk(x)yxj
)xk

− α(x)v − β(x)u, v,
n∑

j,k=1

(gjk(x)zxj
)xk

+ α(x)u
)
,

D(A) = (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω)× (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω).

(1.6)

It is easy to know from the theory of linear operator semigroup (see [21]) that system (1.5) has

a unique solution U(t) = etAU0 in C0([0,+∞),H). Then, we can define the total energy of

system (1.1) by

E(y, z)(t) =
1

2

∫

Ω

( n∑

j,k=1

gjkyxj
yxk

+ |yt|
2
)
dx+

1

2

∫

Ω

( n∑

j,k=1

gjkzxj
zxk

+ |zt|
2
)
dx, (1.7)

which implies immediately the equivalence

E(y, z)(t) ∼ ‖(y, yt, z, zt)(t, ·)‖
2
H.

Obviously, the total energy is non-increasing:

d

dt
E(y, z)(t) = −

∫

Ω

β(x)|yt|
2dx ≤ 0, ∀t ≥ 0. (1.8)

We are interested in the following questions:

• Under what conditions on α and β, system (1.1) is asymptotically stable?

• If system (1.1) is stable, what is the decay rate of the total energy E(y, z)(t) as t→ +∞ ?

More precisely, the main result that we obtain is the following theorem.

Throughout this paper, we use C = C(Ω, (gjk)n×n, α, β) to denote generic positive constants

which may vary from line to line unless otherwise stated.

Theorem 1.1 Assume that (1.2)–(1.4) hold. Assume furthermore that there exist a con-

stant δ > 0 and a nonempty open subset ωδ ⊂ ωα ∩ ωβ ⊂ Ω such that

inf
ωδ

α ≥ δ and inf
ωδ

β ≥ δ. (1.9)

Then, there exists a constant C > 0, such that for any initial data (y0, y1, z0, z1) ∈ D(A), the

energy of solution to (1.1) satisfies

E(y, z)(t) ≤
C

ln(t+ 2)
‖(y0, y1, z0, z1)‖

2
D(A), ∀t ≥ 0. (1.10)
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Moreover, system (1.1) is strongly stable in H, i.e., for any initial data (y0, y1, z0, z1) ∈ H,

lim
t→+∞

E(y, z)(t) = 0. (1.11)

Remark 1.1 In Theorem 1.1, if we assume instead that the damping and coupling coeffi-

cients α, β are both continuous on Ω, then the assumption (1.9) can be simply replaced by the

following geometric condition

ωα ∩ ωβ 6= ∅. (1.12)

Independently, based on frequency domain method and multiplier method, Kassem-Mortada-

Toufayli-Wehbe [15] proved strong stability (1.11) when two waves propagate at different speed

under the assumption (1.12). One can also refer to [10, Theorem 2.1] for indirect stability

results of other coupled wave system by displacements under the same geometric conditions.

Remark 1.2 We provide an example in Section 4 to show that the geometric assumption

ωα ∩ ωβ 6= ∅ is necessary in general, which is different from the situation with coupling by

displacements. One can refer to the open problem raised in [10, Remark 2.2]. As a supplement,

we also refer readers to [13, section 5.2.1.3], some numerical examples have been provided to

show that for some initial data, system (1.1) seems also strongly stable when ωα ∩ ωβ = ∅.

Remark 1.3 The result on logarithmical stability in Theorem 1.1 is sharp. Indeed, if α ≡ 0,

system (1.1) is decoupled into a dissipative system for (y, yt) which is only logarithmically stable

(see [18]) and a conservative one for (z, zt). Hence one can not expect a faster decay rate than

the logarithmical one for the coupled system (1.1) no matter what the coupling α is.

Remark 1.4 In the setting of Theorem 1.1, similar stability results still hold for system

(1.1) with other types of boundary conditions, for instance, Robin conditions or mixed Dirichlet-

Neumann conditions (see [10]). However, there are no such stability results for the system with

Neumann conditions, since all the constant states are equilibrium of the system and will stay

at the equilibrium all the time.

In order to prove the logarithmic stability of system (1.1) with regular initial data in The-

orem 1.1, we adopt the frequency domain approach to prove certain spectral estimates of the

infinitesimal generator A of the solution semigroup. One can refer to [6, 18] for the case of

single wave equation and [10] for the case of wave systems.

Let us denote the real part and the imaginary part of γ ∈ C by ℜγ and ℑγ, respectively. We

denote also the resolvent set and spectrum of the operator A by ρ(A) and Sp(A), respectively.

Theorem 1.2 Suppose that the assumptions of Theorem 1.1 hold. Then there exists a

constant C > 0 such that

OC ,

{
γ ∈ C | −

e−C|ℑγ|

C
≤ ℜγ ≤ 0

}
∩
{
γ ∈ C | |γ |≥

2

C

}
⊂ ρ(A), (1.13)

and the following estimate holds

‖(A− γI)−1‖L(H) ≤ CeC|ℑγ|, ∀γ ∈ OC . (1.14)

Obviously, the energy decay given by (1.11) implies directly the fact ρ(A) ⊂ {γ ∈ C | ℜγ <

0} and in particular, the origin O ∈ ρ(A). Since ρ(A) is an open set, then the corollary follows

from (1.13), upon choosing C large enough, as a byproduct of Theorem 1.2.
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Corollary 1.1 Suppose that the assumptions of Theorem 1.1 hold. Then there exists a

constant C > 0 such that

Sp(A) ⊂
{
γ ∈ C | ℜγ < −

e−C|ℑγ|

C

}
. (1.15)

Remark 1.5 The proof of Theorem 1.2 is based on global Carleman estimates (see [11]),

which is quite elementary and applied to address many stabilization problems for the system

with lower order terms. Moreover, it can be used to obtain explicit bounds on some estimates of

decay rate or constant costs in terms of the coefficients. Roughly speaking, (1.14) is equivalent

to an observable estimate with constant cost like eC|γ| for coupled elliptic system, which seems

quite natural to adopt global Carleman estimates to obtain these types of estimates (see Lemma

3.1 in section 3.1 for more details).

Remark 1.6 We should point out that we can not directly adopt the approach in this paper

to obtain the logarithmic stability of system (1.1) when two waves have different propagating

speed. Roughly speaking, one key step in the proof of important Lemma 3.1 is using an easy

fact that ∂sp · [∂ssq + ∂j(g
jk∂kq)] + ∂sq · [∂ssp + ∂j(g

jk∂kp)] = ∂s[∂sp∂sq + p∂j(g
jk∂k∂sq)] +

∂j(g
jk∂sq∂kp) − ∂j(g

jkp∂k∂sq), which can be used to give an estimate that L2 norm of the

coupling term with force terms can control the H1 energy. However, this fact is invalid for the

case of two waves with different propagating speed.

1.1 Previous results

There are a lot of results about asymptotic stability or stabilization of wave equations.

Among them, Rauch-Taylor [24] and Bardos-Lebeau-Rauch [5] pointed out that, the single

damped wave equation is exponentially stable if and (almost) only if the geometric control

condition (GCC for short) is satisfied: There exists T > 0 such that every geodesic flow touches

the support set of damping term before T . If the damping acts on a small open set but the

GCC is not satisfied, Lebeau [18] and Burq [6] proved that the wave equation is logarithmically

stable for regular initial data. There are also many results about polynomial stability of a single

wave equation with special condition on the damping domain (see [4, 7, 17, 23]). Recently, Jin

proved in [14] that the damped wave equation on hyperbolic surface with constant curvature is

exponentially stable even if the damping domain is arbitrarily small.

As for the case of coupled wave equations or other reversible equations, indirect stability

is an important issue both in mathematical theory and in engineering application. Indeed, it

arises whenever it is impossible or too expensive to damp all the components of the state, and it

is hence important to study stabilization properties of coupled systems with a reduced number

of feedbacks. For finite dimensional systems, it is fully understood thanks to the Kalman rank

condition. While in the case of coupled partial differential equations, the situation is much more

complicated. It depends not only on the algebraic structure of coupling but also the geometric

properties of the damping and coupling domain.

Alabau-Boussouira first studied indirect stability of a weekly coupled wave system where

the coupling is through the displacements. In [1], the author adopted multiplier method to

obtain polynomial stability for wave system with anti-symmetric type coupling under stronger

geometric conditions for both the coupling and damping terms. Moreover, she proved that this

result was sharp for coupling with displacement. In [2], the polynomial stability results for
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coupled systems under an abstract framework (including wave-wave system, wave-plate system

etc.) were obtained under the conditions that both coupling and damping are localized and

satisfy the piecewise multipliers geometric conditions (PMGC for short, see [19]). For 1-D case,

a sharp decay rate of polynomial stability was obtained by Riesz basis method in [20]. In [10],

Fu adopted global Carleman estimates and frequency domain method to prove that the system

with coupling by displacement of symmetric type is logarithmically stable with the assumption

that coupling domain intersects the damping domain.

The above results concern only the weakly coupled system. In [3], Alabau-Wang-Yu studied

the indirect stability for wave equations coupled by velocities with a general nonlinear damping.

By multiplier method, they obtained various types of stability results, including exponential

stability, under strong geometric condition on the coupling and damping domains. They also

pointed out, for the first time, that it is more efficient to transfer the energy in case the of

coupling by velocities compared to the case with coupling by displacements. For 1-D case

with constant coefficients, the sharp decay rate was explicitly given in [8]. In [16], Klein

computed the best exponent for the stabilization of wave equations on compact manifolds.

The coefficient he obtained is therefore the solution of some ODE system of matrices. Kassem-

Mortada-Toufayli-Wehbe [15] studied a system of two wave equations coupled by velocities

with only one localized damping, the waves propagate at different speed and the positivity and

smallness assumptions of the continuous coupling coefficient can be removed. They obtained

a strong stability result with the assumption that coupling domain intersects the damping

domain. Moreover, assuming that coupling and damping coefficient belong to W 1,∞(Ω) and

the intersection of coupling domain and damping domain holds PMGC, based on frequency

domain method and a multiplier method, they established an exponential energy decay when

the waves propagate at the same speed and a polynomial energy decay when the waves propagate

at the different speed. Recently, the exponential energy decay result has been generalized by

Gerbi-Kassem-Mortada-Wehbe in [13] to the case that the intersection of the coupling and the

damping domain satisfies GCC.

To the authors’ knowledge, most known indirect stability results are obtained under the

geometric conditions that the damping domain intersects the coupling domain. Indeed, this

guarantees effectively the energy transmission in higher space dimension. It is remarkable that

Alabau-Boussouira and Léauteau [2] proved an indirect stability result in 1-D case where the

damping domain and the coupling domain are two intervals which do not intersect.

1.2 Main contribution and ideas

As already pointed out in [3], the energy transition is more efficient through the first order

coupling (by velocities) compared to zero order coupling (by displacements). This is natural

since the first order coupling effect can be seen as a bounded perturbation to the system while

the zero order coupling is a compact one. Nevertheless, one can not expect a faster decay (than

logarithmical one) of the whole system (1.1) even if a first order coupling appears, because

the energy of the single wave equation with damping localized in small domain only decays

logarithmically. In this sense, the stability results are sharp.

Not surprisingly, the indirect stability result is obtained by assuming essentially the damping

and coupling domain intersect. However, we give an example to show that this geometric
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condition is necessary in general for the wave system coupled by velocities. This is quite

different from the system coupled by displacements (see [2]).

As for the proof of the main theorems, we adopt the frequency domain approach to reduce

the stability problem to an estimate on resolvent which can be obtained by global Carleman

estimates of an elliptic equation as in [10]. Different from the system in [10], there are no zero

order terms explicitly in system (1.1). In order to derive the L2 energy of the solution, we

then need to make fully use of the coupling structure together with Poincaré inequality under

homogeneous Dirichlet boundary condition.

1.3 Organization of the paper

This paper is organized as follows. In Section 2, we recall some basic facts about frequency

domain method and global Carlemann estimates for an elliptic equation. In Section 3, we give

the proofs of Theorem 1.1 and Theorem 1.2 as well as the technical Lemma 3.1, which is crucial

to the proof of Theorem 1.2. Finally in Section 4, we give an example of system (1.1) with

ωα ∩ ωβ = ∅, which is indeed unstable.

2 Preliminaries

In this section, we briefly recall the frequency domain method and global Carleman estimates

for an elliptic equation.

2.1 Frequency domain method

Thanks to classical semigroup theory, A generates a C0-semigroup operator {etA}t≥0 on H.

It is well-known that the logarithmic stability of system (1.1) can be obtained by a resolvent

estimate (see [6, 18]). More precisely, we have the following lemma.

Lemma 2.1 (see [6, Theorem 3]) Let A be defined by (1.6). If

‖(A− iσI)−1‖L(H) ≤ CeC|σ|, ∀σ ∈ R, |σ| > 1, (2.1)

then, there exists C > 0 such that for any U0 ∈ D(A2) , {U ∈ H | AU ∈ D(A)},

‖etAU0‖H ≤
( C

ln(t+ 2)

)2

‖U0‖D(A2), ∀t ≥ 0. (2.2)

Obviously, (1.14) in Theorem 1.2 implies the assumption (2.1) in Lemma 2.1. Once Theorem

1.2 is proved, the logarithmical decay estimate (1.10) in Theorem 1.1 can be easily obtained by

Calderon-Lions interpolation theorem and (2.2).

2.2 Global Carleman estimates

To obtain resolvent estimate (1.14), we need to introduce the global Carlemann estimates

for elliptic equations (see [9, 10, 12]).

Let ω0 be an open set such that ω0 ⊂⊂ ωδ ⊂ ωα ∩ ωβ. There exists ψ̂ ∈ C2(Ω;R) such that

ψ̂ > 0 in Ω, ψ̂ = 0 on ∂Ω and |∇ψ̂| > 0 in Ω\ω0. (2.3)



On the Asymptotic Stability of Wave Equations Coupled by Velocities of Anti-symmetric Type 819

Next, we introduce some weight functions

θ = el, l = λφ, φ = eµψ (2.4)

with

ψ = ψ(s, x) ,
ψ̂(x)

‖ψ̂‖L∞

+ b2 − s2, s ∈ [−b, b], x ∈ Ω, (2.5)

where b > 0 and λ, µ, s ∈ R are all constants.

Let us consider a single elliptic equation





wss +

n∑

j,k=1

(gjkwxj
)xk

= f in (−b, b)× Ω,

w = 0 on (−b, b)× ∂Ω,

w(±b, ·) = 0 in Ω,

(2.6)

where gjk(·) ∈ C1(Ω;R) satisfy (1.2)–(1.3). Therefore for every f ∈ L2((−b, b)×Ω), the elliptic

system (2.6) has a unique solution w ∈ H1
0 ((−b, b)×Ω). Therefore we have the following global

Carleman estimates of solution.

Theorem 2.1 (see [10]) Let b ∈ (1, 2] and θ, φ ∈ C2([−b, b]× Ω;R) be defined by (2.4)–

(2.5). Then there exists µ0 > 0, such that for any µ ≥ µ0, there exist C = C(µ) > 0 and

λ0 = λ0(µ) such that for any f ∈ L2((−b, b)× Ω), the solution w to system (2.6) satisfies

λµ2

∫ b

−b

∫

Ω

θ2φ(a|∇w|2 + |ws|
2 + λ2µ2φ2|w|2)dxds

≤ C

∫ b

−b

∫

Ω

θ2|f |2dxds+ Cλµ2

∫ b

−b

∫

ω0

θ2φ(|∇w|2 + |ws|
2 + λ2µ2φ2|w|2)dxds (2.7)

for all λ ≥ λ0(µ).

3 Proofs of Main Theorems

In this section, we give the proofs of the main theorems, i.e., Theorem 1.1 and Theorem 1.2.

First in Subsection 3.1, we prove Theorem 1.2, particularly the resolvent estimate (3.16), based

on some interpolation estimates on elliptic equations. Then by Theorem 1.2 and Calderon-Lions

interpolation inequality, we conclude Theorem 1.1 in Subsection 3.2. Finally in Subsection 3.3,

we prove Lemma 3.1 concerning an interpolation inequality of coupled elliptic equations, which

is crucial to the proof of Theorem 1.2.

3.1 Proof of Theorem 1.2

Let F = (f0, f1, g0, g1) ∈ H and U0 = (y0, y1, z0, z1) ∈ D(A) be such that

(A− γI)U0 = F, (3.1)
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where γ ∈ C and A is given by (1.6). Then (3.1) is equivalent to





−γy0 + y1 = f0 in Ω,
n∑

j,k=1

(gjky0xj
)xk

− α(x)z1 − (β(x) + γ)y1 = f1 in Ω,

−γy0 + y1 = g0 in Ω,
n∑

j,k=1

(gjkz0xj
)xk

− γy1 + α(x)y1 = g1 in Ω,

y0 = z0 = 0 on ∂Ω,

or furthermore




n∑

j,k=1

(gjky0xj
)xk

− γ2y0 − γα(x)z0 − γβ(x)y0 = F 0 , (β(x) + γ)f0 + f1 in Ω,

n∑

j,k=1

(gjkz0xj
)xk

− γ2z0 + γα(x)z0 = F 1 , γg0 + g1 in Ω,

y0 = z0 = 0 on ∂Ω,

y1 = f0 + γy0, z1 = g0 + γz0 in Ω.

(3.2)

In order to prove (1.14), it suffices to prove that there exists a constant C > 0, such that

‖(y0, y1, z0, z1)‖H ≤ CeC|ℑγ|‖(f0, f1, g0, g1)‖H, ∀γ ∈ OC . (3.3)

For this purpose, we set

p(s, x) = eiγsy0(x), q(s, x) = eiγsz0(x), (s, x) ∈ (−2, 2)× Ω. (3.4)

Then p and q satisfy the following coupled elliptic align





pss +

n∑

j,k=1

(gjkpxj
)xk

+ iα(x)qs + iβ(x)ps = G0 , F 0eiγs in (−2, 2)× Ω,

qss +

n∑

j,k=1

(gjkqxj
)xk

− iα(x)ps = G1 , F 1eiγs in (−2, 2)× Ω,

p = q = 0 on (−2, 2)× ∂Ω.

(3.5)

Note that there are no boundary conditions on s = ±2 in the above system (3.5). We have

the following lemma on interpolation estimate, while its proof is left in Subsection 3.3.

Lemma 3.1 Under the assumption of Theorem 1.1, there exists a constant C > 0 such that

for any λ > 0 big enough, the solution (p, q) to (3.5) with form (3.4) satisfies

‖p‖H1(Y ) + ‖q‖H1(Y ) ≤ CeCλ(‖G0‖L2(X) + ‖G1‖L2(X) + ‖p‖H1(−2,2;L2(ωδ)))

+ Ce−2λ(‖p‖H1(X) + ‖q‖H1(X)), (3.6)

where

X , (−2, 2)× Ω, Y , (−1, 1)× Ω, Z , (−2, 2)× ωδ. (3.7)
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On the other hand, by (3.4), we have




‖y0‖H1

0
(Ω) + ‖z0‖H1

0
(Ω) ≤ CeC|ℑγ|(‖p‖H1(−1,1;H1

0
(Ω)) + ‖q‖H1(−1,1;H1

0
(Ω))),

‖p‖H1(−2,2;H1

0
(Ω)) + ‖q‖H1(−2,2;H1

0
(Ω)) ≤ CeC|ℑγ|(|γ|+ 1)(‖y0‖H1

0
(Ω) + ‖z0‖H1

0
(Ω)),

‖p‖H1(−2,2;L2(ωδ)) ≤ CeC|ℑγ||γ|‖y0‖L2(ωδ)

(3.8)

for some constant C > 0. Combining (3.6) and (3.8), we get

‖y0‖H1

0
(Ω) + ‖z0‖H1

0
(Ω) ≤ CeC|ℑγ|((f0, f1, g0, g1)‖H + ‖y0‖L2(ωδ)). (3.9)

Next, we turn to estimate ‖y0‖L2(ωδ). Let ζ ∈ C2
0 (Ω;R) be a cutoff function such that

0 ≤ ζ(x) ≤ 1 in Ω and ζ(x) ≡ 1 in ωδ ⊂ ωα ∩ ωβ . (3.10)

Multiplying y-equation in (3.2) by 2ζy0 and integrating by parts on Ω yield that

∫

Ω

(
−

n∑

j,k=1

(gjky0xj
)xk

+ γ2y0 + γα(x)z0 + γβ(x)y0
)
· 2ζy0dx

= 2γ2
∫

Ω

ζ|y0|2dx+ 2

∫

Ω

ζ

n∑

j,k=1

gjky0xj
y0xk

dx−

∫

Ω

n∑

j,k=1

(gjkζxj
)xk

|y0|2dx

+ 2γ

∫

Ω

α(x)ζy0z0dx+ 2γ

∫

Ω

β(x)ζ|y0|2dx

=

∫

Ω

F 0 · 2ζy0dx. (3.11)

Similarly, multiplying z-equation in (3.2) by 2ζz0 and integrating by parts on Ω yield that

∫

Ω

(
−

n∑

j,k=1

(gjkz0xj
)xk

+ γ2z0 − γα(x)y0
)
· 2ζz0dx

= 2γ2
∫

Ω

ζ|z0|2dx+ 2

∫

Ω

ζ

n∑

j,k=1

gjkz0xj
z0xk

dx−

∫

Ω

n∑

j,k=1

(gjkζxj
)xk

|z0|2dx

− 2γ

∫

Ω

α(x)ζy0z0dx

=

∫

Ω

F 1 · 2ζz0dx. (3.12)

Note that

ℑ(γy0z0 − γy0z0) = ℑ[γ(y0z0 − y0z0)] = ℜγ · 2ℑ(y0z0).

Adding (3.11) to (3.12) and taking the imaginary part result in

4ℜγℑγ

∫

Ω

ζ(|z0|2 + |y0|2)dx+ 2ℑγ

∫

Ω

ζβ(x)|y0|2dx+ 2ℜγ

∫

Ω

αζℑ(y0z0)dx

=

∫

Ω

2ζ · ℑ(F 0y0 + F 1z0)dx.

Then it follows by Cauchy inequality and the definition of β, F 0, F 1 that

|ℑγ|

∫

ωδ

β(x)|y0|2dx ≤ |ℑγ|

∫

Ω

ζβ(x)|y0|2dx
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≤ C|ℜγ|(|ℑγ|+ 1)(‖y0‖2L2(Ω) + ‖z0‖2L2(Ω))

+ C(‖F 0‖2L2(Ω) + ‖F 1‖2L2(Ω))

≤ C|ℜγ|(|ℑγ|+ 1)(‖y0‖2L2(Ω) + ‖z0‖2L2(Ω))

+ C(|γ|+ 1)‖(f0, f1, g0, g1)‖2H.

Thus by (3.9), we get

|ℑγ|

∫

ωδ

β(x)|y0|2dx ≤ C|ℜγ|(|ℑγ|+ 1)eC|ℑγ|‖y0‖2L2(ωδ)

+ C(|ℜγ||ℑγ|+ |γ|+ 1)eC|ℑγ|‖(f0, f1, g0, g1)‖2H. (3.13)

By the definition of OC , we take C > 0 large enough such that

C|ℜγ|(|ℑγ|+ 1)eC|ℑγ| ≤
δ|ℑγ|

2
and ℑγ >

1

C
(3.14)

for all γ ∈ OC . Note also the fact that β(x) ≥ δ a.e. in ωδ. Then it follows from (3.13)–(3.14)

that

‖y0‖L2(ωδ) ≤ CeC|ℑγ|‖(f0, f1, g0, g1)‖H (3.15)

for some C > 0 large enough. Combining (3.9) and (3.15) gives

‖y0‖H1

0
(Ω) + ‖z0‖H1

0
(Ω) ≤ CeC|ℑγ|‖(f0, f1, g0, g1)‖H.

Since y1 = f0 + γy0, z1 = g0 + γz0, we have also

‖y1‖L2(Ω) + ‖z1‖L2(Ω) ≤ ‖f0‖H1

0
(Ω) + ‖g0‖H1

0
(Ω) + |γ|(‖y0‖L2(Ω) + ‖z0‖L2(Ω))

≤ CeC|ℑγ|‖(f0, f1, g0, g1)‖H.

Hence the desired estimate (3.3) indeed holds for all γ ∈ OC .

Consequently, A− γI is a bijection from D(A) to H, which satisfies the resolvent estimate

(1.14). We conclude the proof of Theorem 1.2.

3.2 Proof of Theorem 1.1

As a corollary of Theorem 1.2, there exists C > 0 such that

‖(A− iσI)−1‖L2(H) ≤ CeC|σ|, ∀σ ∈ R, |σ| > 1. (3.16)

Then by Lemma 2.1, we have for U0 ∈ D(A2) that

‖etAU0‖H ≤
( C

ln(t+ 2)

)2

‖U0‖D(A2), ∀t ≥ 0. (3.17)

On the other hand, the contraction of the semigroup etA implies that

‖etAU0‖H ≤ ‖U0‖H, ∀t ≥ 0. (3.18)
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Note that D(A) is an interpolate space between D(A2) and H. Combining (3.17)–(3.18) and

using Calderon-Lions interpolation theorem (see [25, p. 38, Example 1 and p. 44, Proposition

8]), we conclude for all U0 ∈ D(A) that

‖etAU0‖H ≤
C

ln(t+ 2)
‖U0‖D(A), ∀t ≥ 0, (3.19)

which is equivalent to the logarithmical decay estimate (1.10).

Finally we conclude by (3.19) and density argument that system (1.1) is strongly stable,

i.e., for all U0 ∈ H,

lim
t→+∞

‖etAU0‖H = 0.

The proof of Theorem 1.2 is complete.

3.3 Proof of Lemma 3.1

In this subsection, we give the proof of Lemma 3.1 which plays a key role in proving Theorem

1.2. The proof is divided into 6 steps. In this subsection, we denote C > 0 various constants

independent of λ which can be different from one line to another.

Step 1 We derive a weighted estimate (3.28) for (p, q), the solution of (3.5).

Note that there are no boundary conditions on p(±2, ·), q(±2, ·) in (3.5). Let us introduce

a cutoff function ϕ = ϕ(s) ∈ C3
0 ((−b, b);R) (see for instance [22]) such that

0 ≤ ϕ(s) ≤ 1 in [−b, b] and ϕ(s) ≡ 1 in [−b0, b0], (3.20)

where the constants b0, b are given by

b ,

√
1 +

1

µ
ln(2 + eµ), b0 ,

√
b2 −

1

µ
ln
(1 + eµ

eµ

)
, (3.21)

respectively, for µ large enough which enables to apply Theorem 2.1. Obviously, if µ > ln 2,

then

1 < b0 < b < 2. (3.22)

Let

p̂(s, x) = ϕ(s)p(s, x), q̂(s, x) = ϕ(s)q(s, x), (s, x) ∈ (−b, b)× Ω. (3.23)

Then, we consider the elliptic equations that p̂, q̂ satisfy in (−b, b)× Ω





p̂ss +

n∑

j,k=1

(gjkp̂xj
)xk

= Ĝ0 in (−b, b)× Ω,

q̂ss +

n∑

j,k=1

(gjk q̂xj
)xk

= Ĝ1 in (−b, b)× Ω,

p̂ = q̂ = 0 on (−b, b)× ∂Ω,

p̂(±b, ·) = q̂(±b, ·) = 0 in Ω,

(3.24)
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where

Ĝ0 , ϕssp+ 2ϕsps + ϕG0 + iα(x)(ϕsq − q̂s) + iβ(x)(ϕsp− p̂s),

Ĝ1 , ϕssq + 2ϕsqs + ϕG1 − iα(x)(ϕsp− p̂s).
(3.25)

By applying Theorem 2.1 to both p̂ and q̂, there exists µ0 > ln 2 such that for any µ ≥ µ0,

there exist C = C(µ) > 0 and λ0 = λ0(µ) such that for any λ ≥ λ0(µ), we have

λµ2

∫ b

−b

∫

Ω

θ2φ(a|∇p̂|2 + |p̂s|
2 + λ2µ2φ2|p̂|2)dxds

≤ C

∫ b

−b

∫

Ω

θ2|Ĝ0|2dxds+ Cλµ2

∫ b

−b

∫

ω0

θ2φ(|∇p̂|2 + |p̂s|
2 + λ2µ2φ2|p̂|2)dxds,

(3.26)

λµ2

∫ b

−b

∫

Ω

θ2φ(a|∇q̂|2 + |q̂s|
2 + λ2µ2φ2|q̂|2)dxds

≤ C

∫ b

−b

∫

Ω

θ2|Ĝ1|2dxds+ Cλµ2

∫ b

−b

∫

ω0

θ2φ(|∇q̂|2 + |q̂s|
2 + λ2µ2φ2|q̂|2)dxds,

(3.27)

where Ĝ0, Ĝ1 are given by (3.25) and ω0 ⊂⊂ ωδ ⊂ ωα ∩ ωβ. Adding (3.26) to (3.27) gives

I0 ≤ I1 + I2, (3.28)

where

I0 , λµ
2

∫ b

−b

∫

Ω

θ
2
φ(a|∇p̂|2 + |p̂s|

2 + λ
2
µ
2
φ
2|p̂|2 + a|∇q̂|2 + |q̂s|

2 + λ
2
µ
2
φ
2|q̂|2)dxds,

I1 , C

∫ b

−b

∫

Ω

θ
2(|Ĝ0|2 + |Ĝ1|2)dxds,

I2 , Cλµ
2

∫ b

−b

∫

ω0

θ
2
φ(|∇p̂|2 + |p̂s|

2 + λ
2
µ
2
φ
2|p̂|2 + |∇q̂|2 + |q̂s|

2 + λ
2
µ
2
φ
2|q̂|2)dxds.

(3.29)

Step 2 We estimate I0 in (3.29) from below.

By the choices of θ, l, φ in (2.4) and b, b0 in (3.21), we have

θ ≥ eλ(2+eµ), ∀|s| ≤ 1, x ∈ Ω. (3.30)

Then

I0 ≥ λµ2

∫ b0

−b0

∫

Ω

θ2φ(a|∇p|2 + |ps|
2 + λ2µ2φ2|p|2 + a|∇q|2 + |qs|

2 + λ2µ2φ2|q|2)dxds

≥ λe2λ(2+eµ)C(µ)

∫ 1

−1

∫

Ω

(|∇p|2 + |ps|
2 + |p|2 + |∇q|2 + |qs|

2 + |q|2)dxds

= λe2λ(2+eµ)C(µ)(‖p‖2H1(Y ) + ‖q‖2H1(Y )).

(3.31)

Step 3 We estimate I1 in (3.29) from above.

Using Cauchy inequality, we get easily

I1 ≤ I11 + I12 + I13, (3.32)
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where

I11 , C

∫ b

−b

∫

Ω

θ
2(|Ĝ0

1|
2 + |Ĝ1

1|
2)dxds,

I12 , C

∫ b

−b

∫

Ω

θ
2(|iα(x)q̂s + iβ(x)p̂s|

2 + |iα(x)p̂s|
2)dxds,

I13 , C

∫ b

−b

∫

Ω

θ
2
ϕ

2(|G0|2 + |G1|2)dxds,

(3.33)

where Ĝ0
1 = ϕssp+2ϕsps+iα(x)ϕsq+iβ(x)ϕsp, Ĝ

1
1 = ϕssq+2ϕsqs− iα(x)ϕsp, and we denote

Ĝ0
1, Ĝ

1
1 some terms concerning the derivatives of ϕ in Ĝ0, Ĝ1, which are useful for the estimation

below.

By the choices of θ, l, φ in (2.4) and b, b0 in (3.21), we have

θ ≤ eλ(1+eµ), ∀b0 ≤ |s| ≤ b, x ∈ Ω. (3.34)

Then

I11 = C

∫

(−b,−b0)
⋃
(b0,b)

∫

Ω

θ
2(|ϕssp+ 2ϕsps + iα(x)ϕsq + iβ(x)ϕsp|

2

+ |ϕssq + 2ϕsqs − iα(x)ϕsp|
2)dxds

≤ e2λ(1+eµ)
C(µ)

∫

(−b,−b0)
⋃
(b0,b)

∫

Ω

(|p|2 + |ps|
2 + |q|2 + |qs|

2)dxds

≤ e2λ(1+eµ)
C(µ)(‖p‖2H1(X) + ‖q‖2H1(X)).

(3.35)

Obviously,

I12 ≤ C

∫ b

−b

∫

Ω

θ2(|p̂s|
2 + |q̂s|

2)dxds ≤
C(µ)

λ
I0 ≤ λ−

1

2 I0, (3.36)

which can be absorbed by I0 if λ is large enough.

Therefore,

I1 ≤ e2λ(1+eµ)C(µ)(‖p‖2H1(X) + ‖q‖2H1(X)) + λ−
1

2 I0

+ C

∫ b

−b

∫

Ω

θ2ϕ2(|G0|2 + |G1|2)dxds.
(3.37)

Step 4 We estimate the localized term I2 in (3.29) from above.

We write it as

I2 = I21 + I22 + I23 + I24, (3.38)

where

I21 , Cλµ2

∫ b

−b

∫

ω0

θ2φ(|∇p̂|2 + |p̂s|
2)dxds,

I22 , Cλ3µ4

∫ b

−b

∫

ω0

θ2φ3|p̂|2dxds,

I23 , Cλµ2

∫ b

−b

∫

ω0

θ2φ(|∇q̂|2 + |q̂s|
2)dxds,

I24 , Cλ3µ4

∫ b

−b

∫

ω0

θ2φ3|q̂|2dxds.

(3.39)
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Recall the definitions p̂, q̂ in (3.23), ϕ in (3.20) and θ, l, φ in (2.3)–(2.5). It is easy to check

that

ls = −2λµsφ, lxj
= λµφψxj

, lxjs = −2λµ2sφψxj
,

lss = 4λµ2s2φ−2λµφ, lxjxk
= λµ2φψxj

ψxk
+ λµφψxjxk

.
(3.40)

Denote ωk (k = 1, 2, 3) some open subsets in Ω such that ω0 ⊂⊂ ω1 ⊂⊂ ω2 ⊂⊂ ω3 ⊂⊂ ωδ. Let

ηj ∈ C3
0 (ωj ;R) (j = 1, 2, 3) be suitable cut-off functions such that

ηj(x) ≡ 1 in ωj−1, 0 ≤ ηj(x) ≤ 1 in ωj , ηj(x) ≡ 0 in Ω\ωj. (3.41)

Moreover, we choose further η2 such that

|(η2)xj
(η2)xk

| ≤ Cη2, ∀x ∈ ω2 (3.42)

for some constant C > 0. The existence of η2 is shown at the end of the proof.

Step 4.1 We estimate a weighted energy for (∇q̂, q̂s), i.e.,
∫ b
−b

∫
ω0

θ2φ(|∇q̂|2 + |q̂s|2)dxds.

By the definition of η1, it suffices to estimate
∫ b
−b

∫
Ω θ

2φη21(a|∇q̂|
2 + |q̂s|

2)dxds. To do this,

we multiply q̂-equation in (3.24) by θ2φη21 q̂,

θ2φη21 q̂Ĝ
1 = θ2φη21 q̂ ·

[
q̂ss +

n∑

j,k=1

(gjk q̂xj
)xk

]

= (θ2φη21 q̂q̂s)s − θ2φη21 |q̂s|
2 − (θ2φη21)sq̂q̂s +

n∑

k=1

[
θ2φη21

n∑

j=1

gjk q̂q̂xj

]
xk

− θ2φη21

n∑

j,k=1

gjk q̂xj
q̂xk

−
n∑

j,k=1

gjk(θ2φη21)xj
q̂q̂xj

.

It reduces equivalently to

θ2φη21 ·
[
|q̂s|

2 +

n∑

j,k=1

gjk q̂xj
q̂xk

]

= θ2φη21 q̂Ĝ
1 + (θ2φη21 q̂q̂s)s − (θ2φη21)sq̂q̂s +

n∑

k=1

[
θ2φη21

n∑

j=1

gjk q̂q̂xj

]
xk

−
n∑

j,k=1

gjk(θ2φη21)xj
q̂q̂xj

.

Integrating (3.3) over (−b, b) × Ω, upon using (3.24), (1.2)–(1.3) and Cauchy inequality, we

obtain
∫ b

−b

∫

ω0

θ
2
φ(a|∇q̂|2 + |q̂s|

2)dxds ≤

∫ b

−b

∫

Ω

θ
2
φη

2
1(a|∇q̂|2 + |q̂s|

2)dxds

≤
C

λµ2

∫ b

−b

∫

Ω

θ
2|Ĝ1|2dxds+ Cλ

2
µ
2

∫ b

−b

∫

ω1

θ
2
φ
3|q̂|2dxds.

(3.43)

The factor C
λµ2 is important for the estimate of I2 (see (3.58)).

Step 4.2 We estimate a weighted energy for q̂, i.e.,
∫ b
−b

∫
ω1

θ2φ3|q̂|2dxds.
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By definition of η2, it suffices to find an up bound for
∫ b
−b

∫
Ω
θ2φ3η22 |q̂|

2dxds. We claim that

there exists a constant C > 0, such that

∫ b

−b

∫

Ω

θ2φ3η22 |q̂|
2dxds ≤ C

∫ b

−b

∫

Ω

θ2φ3η22 |q̂s|
2dxds. (3.44)

Indeed, in view of (3.4), we have

|q̂| = |ϕz0|, |q̂s| = |ϕs + iγϕ||z0|, ∀(s, x) ∈ [−b, b]× Ω.

Notice that

|ϕs + iγϕ| = |γ||ϕ| ≥ C|ϕ|, ∀s ∈ (−b0, b0), γ ∈ OC ,

then

∫ b0

−b0

∫

Ω

θ2φ3η22 |q̂|
2dxds ≤ C

∫ b0

−b0

∫

Ω

θ2φ3η22 |q̂s|
2dxds ≤ C

∫ b

−b

∫

Ω

θ2φ3η22 |q̂s|
2dxds. (3.45)

Recalling (3.30) and (3.34), we can obtain from the choices of ϕ, b, b0 in (3.20) and (3.22), that

∫

(−b,−b0)
⋃
(b0,b)

∫

Ω

θ2φ3η22 |q̂|
2dxds

=

∫

(−b,−b0)
⋃
(b0,b)

∫

Ω

θ2φ3ϕ2η22 |z
0|2dxds

=

∫

Ω

η22 |z
0|2

∫

(−b,−b0)
⋃
(b0,b)

θ2φ3ϕ2dsdx

≤

∫

Ω

η22 |z
0|2

∫

(−b,−b0)
⋃
(b0,b)

e2λ(1+eµ)e3µψ(±1,x)dsdx

≤

∫

Ω

η22 |z
0|2

∫ 1

−1

e2λ(2+eµ)e3µψ(±1,x)dsdx

≤

∫

Ω

η22 |z
0|2

∫ 1

−1

θ2φ3ϕ2dsdx

≤

∫ b0

−b0

∫

Ω

θ2φ3η22 |q̂|
2dxds.

(3.46)

Combining (3.45) and (3.46) yields (3.44) immediately.

Step 4.3 We estimate
∫ b
−b

∫
Ω
θ2φ3η22 |q̂s|

2dxds by using the coupling relation in (3.24).

Multiplying p̂-equation in (3.24) by iθ2φ3η22 q̂s, and arranging the terms, we get

α(x)θ2φ3η22 |q̂s|
2 = iθ2φ3η22 q̂s

[
p̂ss +

n∑

j,k=1

(gjkp̂xj
)xk

]

− iθ2φ3η22 q̂s [Ĝ
0
1 + ϕG0 − iβ(x)p̂s],

(3.47)

where Ĝ0
1 is given in (3.33) and it only concerns the terms with derivates of ϕ.
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Direct computations yield that

θ
2
φ
3
η
2
2 q̂s

[
p̂ss +

n∑

j,k=1

(gjkp̂xj )xk

]

= (θ2φ3
η
2
2 q̂sp̂s)s − (θ2φ3

η
2
2)sq̂sp̂s − θ

2
φ
3
η
2
2 p̂s

[
q̂ss +

∑

j,k

(gjkq̂xk
)xj

]

+
∑

j,k

(θ2φ3
η
2
2 q̂sg

jk
p̂xj )xk

−
∑

j,k

(θ2φ3
η
2
2)xk

q̂sg
jk
p̂xj −

∑

j,k

(θ2φ3
η
2
2 q̂xk

g
jk
p̂xj )s

+
∑

j,k

(θ2φ3
η
2
2)sq̂xk

g
jk
p̂xj +

∑

j,k

(θ2φ3
η
2
2g

jk
q̂xk

p̂s)xj −
∑

j,k

(θ2φ3
η
2
2)xjg

jk
q̂xk

p̂s

(3.48)

and
∑

j,k

(θ2φ3
η
2
2)xjg

jk
q̂xk

p̂s =
∑

j,k

[(θ2φ3
η
2
2)xjg

jk
q̂p̂s]xk

−
∑

j,k

[(θ2φ3
η
2
2)xjg

jk
q̂p̂xk

]s

−
∑

j,k

[(θ2φ3
η
2
2)xjg

jk]xk
q̂p̂s +

∑

j,k

[(θ2φ3
η
2
2)xjg

jk]sq̂p̂xk

+
∑

j,k

(θ2φ3
η
2
2)xjg

jk
q̂sp̂xk

.

(3.49)

We integrate (3.47) on (−b, b) × Ω. Then from (3.48)–(3.49) and particularly the facts that

p̂s = q̂s = 0 on the boundary of (−b, b)× Ω and ∇p̂(±b, ·) = ∇q̂s(±b, ·) = 0, we derive

∫ b

−b

∫

Ω

α(x)θ2φ3η22 |q̂s|
2dxds

≤
δ

2

∫ b

−b

∫

Ω

θ2φ3η22 |q̂s|
2dxds

+ C

∫ b

−b

∫

ω2

θ2φ3η22(|Ĝ
0
1|

2 + |G0|2 + |Ĝ1
1|

2 + |G1|2)dxds

+ Cλ2µ2

∫ b

−b

∫

ω3

θ2φ5(|p̂|2 + |p̂s|
2 + |∇p̂|2)dxds

+
∣∣∣
∫ b

−b

∫

Ω

∑

j,k

[(θ2φ3η22)xj
gjk]sq̂p̂xk

dxds
∣∣∣

+
∣∣∣
∫ b

−b

∫

Ω

∑

j,k

[(θ2φ3η22)xj
gjk]xk

q̂p̂sdxds
∣∣∣.

(3.50)

Since α(x) ≥ δ > 0 on ωδ, the first term on the right hand side of (3.50) can be absorbed by

the left hand side. Moreover, by direct computations, we have the following two facts

[(θ2φ3η22)xj
gjk]xk

= (θ2φ3η22)xj ,xk
gjk + (θ2φ3η22)xj

gjkxk

= gjk[2θxj ,xk
θφ3η22 + 2θxj

θxk
φ3η22 + 6θxj

θφ2φxk
η22

+ 4θxj,xk
θφ3(η2)xk

η2 + 6θxk
θφxj

φ2η22 + 3θ2φxj ,xk
φ2η22

+ 6θ2φxj
φφxk

η22 + 6θ2φxj
φ2η2(η2)xk

+ 2(η2)xj ,xk
η2θ

2φ3

+ 2(η2)xj
(η2)xk

θ2φ3 + 4(η2)xj
η2θxk

θφ3 + 6(η2)xj
η2θ

2φ2φxk
]

+ [2θxj
θφ3η22 + 3θ2φxj

φ2η22 + 2(η2)xj
η2θ

2φ3]gjkxk

(3.51)
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and

[(θ2φ3η22)xj
gjk]s = gjk[2θxj,sθφ

3η22 + 2θxj
θsφ

3η22 + 6θxj
θφsφ

2η22

+ 6θsθφxj
φ2η22 + 3θ2φxj ,sφ

2η22 + 6θ2φxj
φsφη

2
2

+ 2(η2)xj
η2θsθφ

3 + 6(η2)xj
η2θ

2φ2φs].

(3.52)

By definitions of η2, θ, φ, in particular (3.40), (3.42) and gjk(·) ∈ C1(Ω;R), one can obtain the

following estimate

|[(θ2φ3η22)xj
gjk]s|+ |[(θ2φ3η22)xj

gjk]xk
| ≤ Cλ2µ2η2θ

2φ5. (3.53)

Thus by above estimate (3.53) and Cauchy inequality, we get for all ε > 0 that

∣∣∣
∫ b

−b

∫

Ω

∑

j,k

[(θ2φ3η22)xj
gjk]sq̂p̂xk

dxds
∣∣∣+

∣∣∣
∫ b

−b

∫

Ω

∑

j,k

[(θ2φ3η22)xj
gjk]xk

q̂p̂sdxds
∣∣∣

≤ ε

∫ b

−b

∫

Ω

θ2φ3η22 |q̂|
2dxds+

Cλ4µ4

ε

∫ b

−b

∫

ω3

θ2φ7(|p̂s|
2 + |∇p̂|2)dxds,

Therefore we obtain from (3.44) and by choosing ε > 0 small that

∫ b

−b

∫

Ω

θ2φ3η22 |q̂s|
2dxds ≤ C

∫ b

−b

∫

Ω

θ2φ3η22(|Ĝ
0
1|

2 + |G0|2 + |Ĝ1
1|

2 + |G1|2)dxds

+ Cλ4µ4

∫ b

−b

∫

ω3

θ2φ7(|p̂|2 + |p̂s|
2 + |∇p̂|2)dxds,

(3.54)

∫ b

−b

∫

Ω

θ2φ3η22 |q̂|
2dxds ≤ C

∫ b

−b

∫

Ω

θ2φ3η22(|Ĝ
0
1|

2 + |G0|2 + |Ĝ1
1|

2 + |G1|2)dxds

+ Cλ4µ4

∫ b

−b

∫

ω3

θ2φ7(|p̂|2 + |p̂s|
2 + |∇p̂|2)dxds.

(3.55)

Step 4.4 We estimate
∫ b
−b

∫
ω3

θ2φ7(|∇p̂|2 + |p̂s|2)dxds.

Similarly to (3.43), we can derive

∫ b

−b

∫

ω3

θ2φ7(|∇p̂|2 + |p̂s|
2)dxds

≤
C

λ7µ8

∫ b

−b

∫

Ω

θ2|Ĝ0|2dxds+ Cλ7µ8

∫ b

−b

∫

ωδ

θ2φ14|p̂|2dxds.

(3.56)

The factor C
λ7µ8 is important for the estimate of I2 (see (3.58)).

Step 4.5 We summarize the estimate of I2 from above.

Applying (3.43), (3.54)–(3.56) for I21, I23, I24 in (3.38), we end up with

I2 = I21 + I22 + I23 + I24

≤ Cλ3µ4

∫ b

−b

∫

Ω

θ2φ3η22(|Ĝ
0
1|

2 + |Ĝ1
1|

2)dxds + C

∫ b

−b

∫

Ω

θ2(|Ĝ0|2 + |Ĝ1|2)dxds

+ Cλ3µ4

∫ b

−b

∫

Ω

θ2φ3η22(|G
0|2 + |G1|2)dxds+ Cλ14µ16

∫ b

−b

∫

ωδ

θ2φ14|p̂|2dxds.

(3.57)
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Similarly to the estimate of I11 in (3.35), we have

Cλ3µ4

∫ b

−b

∫

Ω

θ2φ3η22(|Ĝ
0
1|

2 + |Ĝ1
1|

2)dxds ≤ λ3e2λ(1+eµ)C(µ)(‖p‖2H1(X) + ‖q‖2H1(X)).

Note that C
∫ b
−b

∫
Ω
θ2(|Ĝ0|2 + |Ĝ1|2)dxds is the same as I1 and the estimate has been given by

(3.37). Therefore, we have

I2 ≤ CI1 + λ3e2λ(1+eµ)C(µ)(‖p‖2H1(X) + ‖q‖2H1(X))

+ Cλ3µ4

∫ b

−b

∫

Ω

θ2φ3η22(|G
0|2 + |G1|2)dxds+ Cλ14µ16

∫ b

−b

∫

ωδ

θ2φ14|p̂|2dxds.
(3.58)

Step 5 We derive the estimate (3.6) based on Steps 1–4.

Letting λ be large enough, from (3.28), (3.31), (3.37) and (3.58), we finally obtain the desired

interpolation estimate (3.6).

Step 6 We provide an example of the cut-off function η2 ∈ C3
0 (ω2) such that (3.41)–(3.42)

indeed hold.

Without loss of generality, we may assume ω1 ⊂ B(0, r2 ) ⊂ B(0, r) ⊂ ω2. Set

η2(x) ,





1, if |x| <
r

2
,

128

81r10
[r2 − |x|2]3[16|x|4 − 2r2|x|2 + r4], if r2 ≤ |x| ≤ r,

0, if |x| > r.

It is easy to check that η2 ∈ C3
0 (ω2) and

lim
|x|→r

|(η2)xk
(η2)xj

|

η2
= 0, lim

|x|→ r
2

|(η2)xk
(η2)xj

|

η2
<∞.

Then it follows the property (3.42).

This finally concludes the proof of Lemma 3.1.

4 An Example with ωα ∩ ωβ = ∅

In this section, we show, by an example, that the geometric assumption ωα ∩ ωβ 6= ∅ is

necessary in general for asymptotic stability of the coupled system (1.1).

More precisely, we consider the following 1-D coupled wave equations





ytt − yxx + α(x)zt + β(x)yt = 0 in (0,+∞)× (0, 2π),

ztt − zxx − α(x)yt = 0 in (0,+∞)× (0, 2π),

y(0) = y(2π) = z(0) = z(2π) = 0 in (0,+∞),

(y, yt, z, zt)|t=0 = (y0, y1, z0, z1) in (0, 2π),

(4.1)

where the coefficients α and β are given by

α(x) =

{
24

5
, if x ∈ [0, π),

0, if x ∈ (π, 2π),
β(x) =

{
0, if x ∈ [0, π),
1, if x ∈ (π, 2π)
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such that ωα ∩ ωβ = ∅.

Let the initial data be the following

y0 = 0 in (0, 2π), y1(x) =

{
5(7 sinx− sin(7x)), if x ∈ (0, π),

0, if x ∈ [π, 2π)
(4.2)

and

z0(x) =




−7 sinx− sin(7x), if x ∈ (0, π),

−
14

5
sin(5x), if x ∈ [π, 2π),

z1 = 0 in (0, 2π). (4.3)

Clearly, (y0, y1, z0, z1) belongs to (H2(0, 2π)∩H1
0 (0, 2π))×H

1
0 (0, 2π)×H

2(0, 2π)∩(H1
0 (0, 2π)×

H1
0 (0, 2π)). It is not hard to check that the unique solution of system (4.1)–(4.3) can be explicitly

given by

y(t, x) =

{
sin(5t)(7 sinx− sin(7x)), if t ∈ (0,+∞), x ∈ (0, π),

0, if t ∈ (0,+∞), x ∈ [π, 2π)
(4.4)

and

z(t, x) =





− cos(5t)(7 sinx+ sin(7x)), if t ∈ (0,+∞), x ∈ (0, π),

−
14

5
cos(5t) sin(5x), if t ∈ (0,+∞), x ∈ [π, 2π).

(4.5)

In contrast to (1.11) in Theorem 1.1, the energy of system (4.1) is conserved

d

dt
E(y, z)(t) = −

∫ 2π

0

β(x)|yt|
2dx = 0, ∀t ≥ 0,

therefore the system is not asymptotically stable. According to the above example, we conclude

that the decay estimate (1.10) may not hold if ωα ∩ ωβ = ∅.
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XXI, 13. Ed. Éc. Polytech., Palaiseau, 2016.

[18] Lebeau, G., Équation des ondes amorties, in Algebraic and geometric methods in mathematical physics
(Kaciveli, 1993), volume 19 of Math. Phys. Stud., pages 73–109. Kluwer Acad. Publ., Dordrecht, 1996.

[19] Liu, K. S., Locally distributed control and damping for the conservative systems, SIAM J. Control Optim.,
35(5), 1997, 1574–1590.

[20] Liu, Z. Y. and Rao, B. P., Frequency domain approach for the polynomial stability of a system of partially
damped wave equations, J. Math. Anal. Appl., 335(2), 2007, 860–881.

[21] Pazy, A., Semigroups of linear operators and applications to partial differential equations, Applied Math-

ematical Sciences, Vol. 44, Springer-Verlag, New York, 1983.

[22] Phung, K.-D. and Zhang, X., Time reversal focusing of the initial state for kirchoff plate, SIAM J. Appl.

Math., 68(6), 2008, 1535–1556.

[23] Phung, K.-D., Polynomial decay rate for the dissipative wave equation, J. Differential Equations, 240(1),
2007, 92–124.

[24] Rauch, J. and Taylor, M., Exponential decay of solutions to hyperbolic equations in bounded domains,
Indiana Univ. Math. J., 24, 1974, 79–86.

[25] Reed, M. and Simon, B., Methods of Modern Mathematical Physics. I, Functional Analysis, Academic
Press, New York-London, 1972.


