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Abstract In this paper, the author focuses on the joint effects of diffusion and advection

on the dynamics of a classical two species Lotka-Volterra competition-diffusion-advection

system, where the ratio of diffusion and advection rates are supposed to be a positive con-

stant. For comparison purposes, the two species are assumed to have identical competition

abilities throughout this paper. The results explore the condition on the diffusion and

advection rates for the stability of former species. Meanwhile, an asymptotic behavior of

the stable coexistence steady states is obtained.
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1 Introduction and Statement of Main Results

The Lotka-Volterra competition-diffusion system





ut = d1∆u + u(m(x)− u− bv) in Ω× (0,+∞),
vt = d2∆v + v(m(x) − cu− v) in Ω× (0,+∞),

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω× (0,+∞),

u(x, 0) = u0(x) 	 0 in Ω,
v(x, 0) = v0(x) 	 0 in Ω

(1.1)

models two competing species. Here u(x, t) and v(x, t) denote respectively the population

densities of two competing species at location x ∈ Ω and time t > 0, and d1, d2 > 0 are random

diffusion rates of species u and v respectively. The habitat Ω is a bounded region in RN , with

smooth boundary ∂Ω, n denotes the unit outer normal vector on ∂Ω, and the no flux boundary

condition means that no individuals cross the boundary. The function m(x) represents their

common intrinsic growth rate or local carrying capacity, which is non-constant. 1 ≥ b > 0 and

1 ≥ c > 0 are interspecific competition coefficients. Then the maximum principle yields that

u(x, t) > 0, v(x, t) > 0 for every x ∈ Ω and every t > 0 (see [27]). By both mathematicians and

ecologists, particular interests in two-species Lotka-Volterra competition models with spatially

homogeneous or heterogeneous interactions are the dynamics of (1.1) (see [2–3, 8–10, 12, 14–16,

18–22, 26] and the references therein). We say that a steady state (U, V ) of (1.1) is a coexistence

state if both components are positive, and it is a semi-trivial state if one component is positive

and the other is identically zero.
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If m(x) ∈ Cα(Ω) (α ∈ (0, 1)) with
∫
Ωm(x)dx ≥ 0 and m 6≡ 0, then we denote by Θd the

unique positive solution of




d∆Θ+Θ(m(x)−Θ) = 0 in Ω,

∂Θ

∂n
= 0 on ∂Ω.

(1.2)

One can refer to [2, 25] for the proof of existence and uniqueness results of (1.2). (1.2) indicates

that (1.1) has two semi-trivial steady states, denoted by (Θd1 , 0) and (0,Θd2), for every d1 > 0

and d2 > 0.

Under above conditions, He and Ni [14] provided a complete classification on the global

dynamics of system (1.1), which says that either one of the two semi-trivial steady states is

globally asymptotically stable, or there is a unique coexistence steady state which is globally

asymptotically stable, or the system is degenerate in the sense that there is a compact global

attractor consisting of a continuum of steady states which connect the two semi-trivial steady

states (see [14, Theorems 1.3 and 3.4]). We refer the interested readers to [14–16] for more

investigations on system (1.1).

Besides random dispersal, it seems reasonable to argue that it is also plausible that species

could move upward along the resource gradient (see e.g. [2, 7] and the references therein). A

more general problem as follows was considered in [31],




ut = d1∆u− α1∇ · (u∇P (x)) + u(m1(x) − u− bv) in Ω× (0,+∞),

vt = d2∆v − α2∇ · (v∇P (x)) + v(m2(x) − cu− v) in Ω× (0,+∞),

d1
∂u

∂n
− α1u

∂P

∂n
= d2

∂v

∂n
− α2v

∂P

∂n
= 0 on ∂Ω× (0,+∞),

u(x, 0) = u0(x) 	 0 in Ω,

v(x, 0) = v0(x) 	 0 in Ω,

(1.3)

where the non-constant function P (x) ∈ C2(Ω) is used to specify the advective direction, and

the advection rates of two species are denoted by α1, α2 > 0, respectively. Here the movement

strategies, growth rates and competition abilities of two species are taken into account and

allowed to be different. Throughout this paper, we make the following basic hypotheses.

Assumption 1.1

α1

d1
=
α2

d2
=: η > 0. (1.4)

Assumption 1.2

m(x) is Hölder continuous, m(x)e−ηP (x) is non-constant, and m ≥ 0,m 6≡ 0. (1.5)

This paper is devoted to some dynamics of the following problem for all (d1, d2, η) in the special

case b = c = 1,




ut = d1∆u− α1∇ · (u∇P (x)) + u(m(x)− u− v) in Ω× (0,+∞),

vt = d2∆v − α2∇ · (v∇P (x)) + v(m̂(x)− u− v) in Ω× (0,+∞),

d1
∂u

∂n
− α1u

∂P

∂n
= d2

∂v

∂n
− α2v

∂P

∂n
= 0 on ∂Ω× (0,+∞),

u(x, 0) = u0(x) 	 0 in Ω,

v(x, 0) = v0(x) 	 0 in Ω,

(1.6)
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where

m̂(x) = eηP
∫
ΩmeηPdx∫
Ω e2ηPdx

. (1.7)

Here all intra- and inter-specific competition coefficients are normalized to 1, which means that

the two species have identical competition abilities.

1.1 Motivation and related work

System (1.3) has important applications in biological scenarios. For example, by letting

m1(x) = m2(x) = m(x) = P (x), b = c = 1, one obtains the following model





ut = d1∆u− α1∇ · (u∇m(x)) + u(m(x)− u− v) in Ω× (0,+∞),

vt = d2∆v − α2∇ · (v∇m(x)) + v(m(x) − u− v) in Ω× (0,+∞),

d1
∂u

∂n
− α1u

∂m

∂n
= d2

∂v

∂n
− α2v

∂m

∂n
= 0 on ∂Ω× (0,+∞),

u(x, 0) = u0(x) 	 0 in Ω,

v(x, 0) = v0(x) 	 0 in Ω.

(1.8)

Recently (1.8) has been frequently used as a standard model to study the evolution of conditional

dispersal (see, e.g., [1, 6, 13] for α1, α2 > 0, [4–5, 23–24] for α1 > 0 = α2, and the textbook

[11]). Basically speaking, system (1.8) models the competition between two species with the

same population dynamics but different movement strategies as reflected by their diffusion

and/or advection rates.

For system (1.3), it is known that Xiao and Zhou gave a complete classification on the

global dynamics (see [31, Theorems 1.1–1.3]). We also know that when α1 = α2 = 0, system

(1.3) with m2 =
1

|Ω|

∫

Ω

m1(x)dx was considered in [15], where the effect of homogeneous

versus heterogeneous distribution of resource was compared. Motivated by the above works,

we hope to extend some arguments above to system (1.3). That is, we also look forward to

comparing the effect of homogeneous versus heterogeneous distribution of resource. Moreover,

compared with [15] and [31], we will show the influence of advection and do some further

studies. For technical reasons, in this paper, we assume that m2 = eηP
∫
Ω
meηP dx∫

Ω
e2ηP dx

. Since

lim
η→0

eηP
∫
Ω
meηP dx∫

Ω
e2ηP dx

=
1

|Ω|

∫

Ω

m1(x)dx, for sufficiently small η, it would be interesting to extend

some of the results in this paper to the case where m2 =
1

|Ω|

∫

Ω

m1(x)dx further in another

paper.

The purpose of this paper is to consider some more dynamics of (1.6) by regarding the

movement rates d1, d2, α1, α2 as variable parameters with others fixed.

The rest of this paper is organized as follows. In Subsection 1.2, we present some preliminary

results, which may be helpful to verify our results. In Subsection 1.3, we establish our main

results (Theorems 1.1–1.4). The proofs will be given in Section 2.
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1.2 Preliminaries

Before describing our results, we first introduce some notations and do some preparations.

Under (1.5), (1.6) has two semi-trivial steady states for all d1, d2 > 0 and α1, α2 ≥ 0 (see [2]),

denoted by (θd1 , 0), (0, θd2) respectively, where θd1 ∈ C2(Ω) is the unique positive solution of





d1∇ · (∇θd1 − ηθd1∇P ) + θd1(m(x)− θd1) = 0 in Ω,

∂θd1
∂n

− ηθd1
∂P

∂n
= 0 on ∂Ω,

(1.9)

and θd2 ∈ C2(Ω) is the unique positive solution of





d2∇ · (∇θd2 − ηθd2∇P ) + θd2(m̂(x)− θd2) = 0 in Ω,

∂θd2
∂n

− ηθd2
∂P

∂n
= 0 on ∂Ω.

(1.10)

Defining θ̃d1 = θd1e
−ηP and θ̃d2 = θd2e

−ηP , we then have the equivalent equations





d1∆θ̃d1 + α1∇P · ∇θ̃d1 + θ̃d1(m(x) − θd1) = 0 in Ω,

∂θ̃d1
∂n

= 0 on ∂Ω,
(1.11)





d2∆θ̃d2 + α2∇P · ∇θ̃d2 + θ̃d2(m̂(x) − θd2) = 0 in Ω,

∂θ̃d2
∂n

= 0 on ∂Ω,
(1.12)

which immediately implies that θ̃d2 ≡
∫
Ω
meηPdx∫

Ω
e2ηP dx

.

Following the approach in [14], we now define





Σu := {(d1, d2, η) ∈ Γ : (θd1 , 0) is linearly stable};

Σv := {(d1, d2, η) ∈ Γ : (0, θd2) is linearly stable};

Σ− := {(d1, d2, η) ∈ Γ : both (θd1 , 0) and (0, θd2) are linearly unstable},

(1.13)

where

Γ := R+ × R+ × R+. (1.14)

Thus to study the dynamics of system (1.6), we should study the stability of semi-trivial steady

states (θd1 , 0), (0, θd2). Mathematically, the stability of (θd1 , 0) is determined by the following

linear eigenvalue problem





d2∇ · (∇ψ − ηψ∇P (x)) + (m̂(x) − θd1)ψ = σψ in Ω,

∂ψ

∂n
− ηψ

∂P

∂n
= 0 on ∂Ω.

(1.15)

Similarly, the stability of (0, θd2) is determined by the linear eigenvalue problem as follows:





d1∇ · (∇ϕ − ηϕ∇P (x)) + (m(x) − θd2)ϕ = σϕ in Ω,

∂ϕ

∂n
− ηϕ

∂P

∂n
= 0 on ∂Ω.

(1.16)
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The Krein-Rutman theorem (see [17, p20, Theorems 7.1–7.2]) reads that problem (1.15) and

(1.16) admit a principal eigenvalue, denoted by σ1(d2, η, m̂− θd1), σ1(d1, η,m− θd2), and their

corresponding eigenfunction can be chosen to be strictly positive in Ω. The following lemma

characterizes the linear stability of the two semitrivial steady states of (1.6).

Lemma 1.1 (see [2]) (θd1 , 0) is linearly stable if σ1(d2, η, m̂ − θd1) < 0 and is linearly

unstable if σ1(d2, η, m̂− θd1) > 0. Similarly, (0, θd2) is linearly stable if σ1(d1, η,m− θd2) < 0

and is linearly unstable if σ1(d1, η,m− θd2) > 0.

Hence, we obtain the following equivalent descriptions:




Σu := {(d1, d2, η) ∈ Γ : σ1(d2, η, m̂− θd1) < 0};

Σv := {(d1, d2, η) ∈ Γ : σ1(d1, η,m− θd2) < 0};

Σ− := {(d1, d2, η) ∈ Γ : σ1(d2, η, m̂− θd1) > 0 and σ1(d1, η,m− θd2) > 0}.

(1.17)

To understand the dynamics of system (1.6), we also need to consider the neutrally stable case,

which leads us to further define




Σ0,0 := {(d1, d2, η) ∈ Γ : σ1(d2, η, m̂− θd1) = σ1(d1, η,m− θd2) = 0};

Σu,0 := {(d1, d2, η) ∈ Γ : σ1(d2, η, m̂− θd1) = 0};

Σv,0 := {(d1, d2, η) ∈ Γ : σ1(d1, η,m− θd2) = 0}.

(1.18)

By definition, it is easy to see Σ0,0 = Σu,0
⋂
Σv,0.

Let λ1(η, h) denote the unique nonzero principal eigenvalue of




∇ · (∇φ − ηφ∇P (x)) + λh(x)φ = 0 in Ω,

∂φ

∂n
− ηφ

∂P (x)

∂n
= 0 on ∂Ω.

(1.19)

In fact, λ1(η, h) is also the nonzero principal eigenvalue of




∆ζ + η∇P (x) · ∇ζ + λh(x)ζ = 0 in Ω,

∂ζ

∂n
= 0 on ∂Ω.

(1.20)

We now collect some properties about λ1(η, h), which can be derived in [2].

Lemma 1.2 The problem (1.19) has a nonzero principal eigenvalue λ1 = λ1(η, h) if and

only if h changes sign and
∫
Ω h(x)e

ηPdx 6= 0. More precisely, if h changes sign, then

(i)
∫
Ω he

ηPdx = 0 ⇔ 0 is the only principal eigenvalue.

(ii)
∫
Ω he

ηPdx < 0 ⇔ λ1(η, h) > 0.

(iii)
∫
Ω
heηPdx > 0 ⇔ λ1(η, h) < 0.

(iv) λ1(η, h1) > λ1(η, h2) if h1 ≤ h2, h1 6≡ h2, and both h1, h2 change sign.

(v) λ1(η, h) is continuous in h.

In order to analyze the principal eigenvalue of problems (1.15) and (1.16), it is more conve-

nient to consider the following more general form of eigenvalue problem:




d1∇ · (∇φ− ηφ∇P ) + h(x)φ = σφ in Ω,

∂φ

∂n
− ηφ

∂P

∂n
= 0 on ∂Ω,

(1.21)
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which is equivalent to





d1∇ · (eηP∇ψ) + eηPh(x)ψ = σeηPψ in Ω,

∂ψ

∂n
= 0 on ∂Ω.

(1.22)

The principal eigenvalue of problem (1.21), denoted by σ1(d1, η, h), is expressed by the following

variational formula (see, e.g. [2])

σ1(d1, η, h) = max
ψ∈W 1,2(Ω),ψ 6≡0

−d1
∫
Ω
eηP |∇ψ|2dx+

∫
Ω
e2ηPh(x)ψ2dx∫

Ω eηPψ2dx
. (1.23)

The following lemma collects a useful property of σ1(d1, η, h) (see e.g. [2]).

Lemma 1.3 The first eigenvalue σ1(d1, η, h) of (1.21) has the following property: If λ1(η, h)

> 0, then σ1(d1, η, h) < 0 ⇔ d1 >
1

λ1(η, h)
.

1.3 Main results

Based on the above preparations, we are now ready to state our main results concerning

the steady states of (1.6). Before giving the first theorem, motivated by [14], we simply need

to define

Lu := inf
d1>0

∫
Ω
m̂eηPdx∫

Ω θd1e
ηPdx

≥ 0, Su := sup
d1>0

sup
Ω

m̂

θd1
≤ +∞, (1.24)

Lv := inf
d2>0

∫
Ω
meηPdx∫

Ω θd2e
ηPdx

≥ 0, Sv := sup
d2>0

sup
Ω

m

θd2
≤ +∞, (1.25)





I :=
{
(d1, η) ∈ R+ × R+ :

∫

Ω

(m̂− θd1)e
ηPdx < 0

}
= I0 ∪ I1,

I0 := {(d1, η) ∈ R+ × R+ : m̂− θd1 ≤6≡ 0},

I1 :=
{
(d1, η) ∈ I : sup

Ω

(m̂− θd1) > 0
}
.

(1.26)

Since by (1.11)–(1.12), it is easy to verify that

∫

Ω

meηPdx <

∫

Ω

θd1e
ηPdx,

∫

Ω

m̂eηPdx <

∫

Ω

θd2e
ηPdx, (1.27)

and

lim
d1→0

θ̃d1 = me−ηP , lim
d1→+∞

θ̃d1 =

∫
Ω
meηPdx∫

Ω
e2ηPdx

. (1.28)

Indeed, (1.11) is equivalent to





d1∇ · (eηP∇θ̃d1) + e2ηP θ̃d1(m(x)− θ̃d1) = 0 in Ω,

∂θ̃d1
∂n

= 0 on ∂Ω.
(1.29)
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After dividing by eηP θ̃d1 on both side in the first equation above and integrating over Ω, we

obtain the first inequality in (1.27). The second inequality holds similarly. Meanwhile (1.28)

can be deduced in [30]. Then we get that





0 < Lu < 1, Lv = 1,

LuSv > 1, if Lu > 0 and Sv < +∞,

LvSu > 1, if Lv > 0 and Su < +∞.

(1.30)

Theorem 1.1 Assume that (1.4)–(1.5) hold. Let Lu, Su, Lv and Sv be defined as in (1.24)

and (1.25). Then the following statements hold for (1.6):

(i) For Σu, we have that Σu = {(d1, d2, η) : d1 ∈ I, d2 > d∗2(d1, η)}, where I is defined as in

(1.26) and d∗2(d1, η) is defined as in (2.4).

(ii) For Σv, we have that Σv = ∅.

Combined with [31, Theorems 1.1–1.3]) and Theorem 1.1, we can characterize the sets Σ−

and Σ0,0 directly, i.e., Theorem 1.2. Thus the proof is omitted here.

Theorem 1.2 Assume that (1.4)–(1.5) hold. Let Lu, Su, Lv and Sv be defined as in (1.24)

and (1.25). Then the following statements hold for (1.6):

(i) For Σ−, we have that Σ− = Γ\(Σu,0
⋃
Σv,0

⋃
Σu).

(ii) For Σ0,0, we have the following characterization:

Σ0,0 = {(d1, d2, η) ∈ Γ : θd1 = θd2 in Ω}. (1.31)

Hence, Σ0,0 6= ∅ if and only if there exists (d1, d2, η) ∈ Γ such that θd1 = θd2 .

Based on Theorem 1.2, we will consider whether the set Σ− is empty for large d1. Further-

more, if Σ− is nonempty, we study what the asymptotic behavior of the unique coexistence

steady state of (1.6) is as d1 → +∞ when (d1, d2) ∈ Σ−. To deal with these problems, we shall

analyze the asymptotic behavior of d∗2(d1, η) as d1 → +∞ more carefully.

For each D > 0, we set ΓD := {(d1, d2, η) ∈ Γ : d1 > D}. Denote by ρm,η,P the unique

solution satisfying:





∆ρm,η,P + η∇P · ∇ρm,η,P + m̂e−ηP (m− m̂) = 0 in Ω,

∂ρm,η,P

∂n
= 0 on ∂Ω,

∫

Ω

ρm,η,P e
2ηPdx = 0,

(1.32)

and

C(m, η, P ) =

∫
Ω
e2ηPdx

∫
Ω
eηP |∇ρm,η,P |2dx( ∫

ΩmeηPdx
)2 . (1.33)

Theorem 1.3 Assume that (1.4)–(1.5) hold. Then there exists a Dm,η,P > 0 depending

only on m, η, P such that the followings hold for (1.6):

(i) If inf
Ω
ρm,η,P + C(m, η, P ) > 0, then for all d1 > Dm,η,P , (θd1 , 0) is linearly stable, i.e.,

Σu
⋂
ΓDm,η,P

= ΓDm,η,P
.
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(ii) If inf
Ω
ρm,η,P + C(m, η, P ) = 0, then d∗2(d1, η) = O

(
1
d2
1

)
for all d1 > Dm,η,P .

(iii) If inf
Ω
ρm,η,P + C(m, η, P ) < 0, then for all d1 > Dm,η,P , there exist two numbers

Λm,η,P :=
1

λ1(η, (−ρm,η,P − C(m, η, P ))eηP )
(1.34)

and Πm,η,P ∈ R depending only on m, η, P (x) such that

d∗2(d1, η) =
Λm,η,P
d1

+
Πm,η,P
d21

+O
( 1

d31

)
, (1.35)

which implies that ΓDm,η,P

⋃
Σ− = ΓDm,η,P

\Σu is nonempty.

Finally, we state a result which characterizes the asymptotical behavior of the coexistence

steady state in details for the case inf
Ω
ρm,η,P + C(m, η, P ) ≤ 0 as d1 → +∞ and d2 → 0.

Theorem 1.4 Assume that (1.4)–(1.5) hold and inf
Ω
ρm,η,P+C(m, η, P ) ≤ 0. Let (d1, d2, η) ∈

Σ− and (U, V ) be the corresponding unique coexistence steady state of (1.6). Then there exists

a constant Dm,η,P > 0 depending only on m, η, P such that the following holds:





Ũ =

∫
ΩmeηPdx∫
Ω
e2ηPdx

+O
( 1

d1

)
,

‖V ‖∞ = O
( 1

d1

)
,

uniformly in d2, for all d1 > Dm,η,P . (1.36)

If we assume further that inf
Ω
ρm,η,P + C(m, η, P ) < 0, then

0 < C1 = lim inf
d1→+∞
d1d2→p

d1‖V ‖∞ ≤ lim sup
d1→+∞
d1d2→p

d1‖V ‖∞ = C2, (1.37)

where p ∈ [0,Λm,η,P ), and C1 and C2 are two positive constants depending only on η, P and m.

In fact, in [31], the existence and the globally asymptotic stability of co-existence steady

state of (1.3) has been considered. Hence, combined with the results in this paper, some

properties of steady states of (1.6) are clear.

2 Proofs of the Main Results

Proof of Theorem 1.1 The proof is divided into three steps.

Step 1 (d1, d2, η) ∈ Σu indicates that (d1, η) ∈ I.

Suppose that (d1, η) 6∈ I, where I is defined as in (1.26). Then
∫

Ω

(m̂− θd1)e
ηPdx ≥ 0, (2.1)

which implies that σ1(d2, η, m̂ − θd1) ≥ 0, i.e., (d1, d2, η) 6∈ Σu. Hence (d1, d2, η) ∈ Σu implies

that (d1, η) ∈ I.

We next characterize the set I in detail.

Step 2 I1 6= ∅ if and only if Lu < 1 < Su.
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Indeed, it suffices to show that Lu < 1 < Su can lead to I1 6= ∅. Since by (1.30), Lu < 1 < Su

always holds, and by which, there exists some d′1 > 0, y0 ∈ Ω, such that
∫

Ω

(m̂− θd′
1
)eηPdx < 0 and (m̂− θd′

1
)(y0) > 0. (2.2)

That is, (d′1, η) ∈ I1 6= ∅, which finishes the proof of Step 2.

Step 3 Since Lu < 1 < Su, it immediately follows that I = I0
⋃
I1 ⊂ R+ × R+. If

(d1, η) ∈ I0, then σ1(d2, η, m̂− θd1) < 0 by (1.23). If (d1, η) ∈ I1, then

σ1(d2, η, m̂− θd1) < 0 ⇔ d2 >
1

λ1(η, m̂− θd1)
> 0 (2.3)

by Lemmas 1.2–1.3. Hence after defining

d∗2(d1, η) =




0 (d1, η) ∈ I0,

1

λ1(η, m̂− θd1)
(d1, η) ∈ I1,

(2.4)

we obtain that (d1, d2, η) ∈ Σu if and only if (d1, η) ∈ I and d2 > d∗2. This finishes the proof of

Theorem 1.1(i). The proof of Theorem 1.1(ii) is in fact the same as (i) and is thus omitted.

Next in order to establish Theorem 1.3, motivated by [15], we need to verify the following

asymptotic expansion of θd as d→ +∞, which will be used later.

Proposition 2.1 Assume that (1.4)–(1.5) hold. Let θd be the unique solution of





d∇ · (∇θd − ηθd∇P ) + θd(m(x) − θd) = 0 in Ω,

∂θd

∂n
− η

∂P

∂n
= 0 on ∂Ω.

(2.5)

Then there exists a constant Dm,η,P > 0 depending only on m, η, P such that

θd = m̂+ eηP
(ρm,η,P + C(m, η, P )

d
+
γm,η,P +K(m, η, P )

d2

)
+O

( 1

d3

)
(2.6)

for all d > Dm,η,P , where ρm,η,P , C(m, η, P ) are defined as in (1.32)–(1.33), and γm,η,P ,

K(m, η, P ) are defined below:




∆γm,η,P + η∇P · ∇γm,η,P + (m− 2eηP m̂)(ρm,η,P + C(m, η, P )) = 0 in Ω,

∂γm,η,P

∂n
= 0 on ∂Ω,

∫

Ω

γm,η,P e
2ηPdx = 0,

(2.7)

K(m, η, P ) =

∫

Ω

e2ηPdx

∫

Ω

ρ2m,η,P e
2ηP (m− 3m̂e−ηP )dx

( ∫

Ω

meηPdx
)2 . (2.8)

Proof Multiplying the equation of ρm,η,P by γm,η,P e
ηP and the equation of γm,η,P by

ρm,η,P e
ηP , and then we see by (1.33), from integrating by parts that

m̂e−ηP
∫

Ω

γm,η,P (meηP − 2eηP m̂)dx
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=

∫

Ω

eηP∇ρm,η,P · ∇γm,η,Pdx

=

∫

Ω

ρm,η,P (meηP − 2eηP m̂)(ρm,η,P + C(m, η, P ))dx

=

∫

Ω

ρ2m,η,P (meηP − 2eηP m̂)dx + 2C2(m, η, P )

∫

Ω

meηPdx. (2.9)

This, together with (2.8), implies that

∫

Ω

(meηP − 2eηP m̂)(γm,η,P +K(m, η, P ))dx =

∫

Ω

e2ηP (ρm,η,P + C(m, η, P ))2dx. (2.10)

Hence there exists a unique θ3 satisfying





∆θ3 + η∇P · ∇θ3 + (m− 2eηP m̂)(γm,η,P +K(m, η, P ))

−eηP (ρm,η,P + C(m, η, P ))2 = 0 in Ω,

∂θ3

∂n
= 0 on ∂Ω,

∫

Ω

θ3e
2ηPdx = 0.

(2.11)

Let now θ4 be the unique solution to





∆θ4 + η∇P · ∇θ4 + (m− 2eηP m̂)(θ3 + C̃)

−2eηP (ρm,η,P + C(m, η, P ))(γm,η,P +K(m, η, P )) = 0 in Ω,

∂θ4

∂n
= 0 on ∂Ω,

∫

Ω

θ4e
2ηPdx = 0,

(2.12)

where C̃ is the unique number such that (2.12) has a solution. Define

θ± := m̂+
(ρm,η,P + C(m, η, P ))eηP

d
+

(γm,η,P +K(m, η, P ))eηP

d2

+
(θ3 + C̃ ± 1)eηP

d3
+
θ4e

ηP

d4
±
ρm,η,P e

ηP
∫
Ω
e2ηPdx

d4
∫
Ω
meηPdx

. (2.13)

By some straightforward computations, we have

d∇ · (eηP∇θ̃±) + θ±(m− θ±)

= ∇ · (eηP∇ρm,η,P ) + d−1∇ · (eηP∇γm,η,P )

+ d−2∇ · (eηP∇θ3) + d−3∇ · (eηP∇θ4)± d−3

∫
Ω e2ηPdx∫
Ω
meηPdx

∇ · (eηP∇ρm,η,P )

+ m̂(m− m̂) +
eηP

d
(m− 2m̂)(ρm,η,P + C(m, η, P )) +

eηP

d2
((γm,η,P +K(m, η, P ))(m− 2m̂)

− eηP (ρm,η,P + C(m, η, P ))2) +
eηP

d3
((m− 2m̂)(θ3 + C̃ ± 1)

− 2eηP (ρm,η,P + C(m, η, P ))(γm,η,P +K(m, η, P ))) +O
( 1

d4

)
= ∓

1

d3
m̂+O

( 1

d4

)
. (2.14)
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Thus θ± is a pair of upper and lower solutions to (2.5) for all d sufficiently large. Note that

for all d sufficiently large, 0 < θ− < θ+, by the upper/lower solution method (see [29]) and the

uniqueness of θd, we have that θ− ≤ θd ≤ θ+. This thus finishes the proof of (2.6).

Now we are going to prove Theorem 1.3.

Proof of Theorem 1.3 We divide this proof into several cases.

Case 1 inf
Ω
ρm,η,P + C(m, η, P ) > 0.

It follows from (2.6) that there exists a constant Dm,η,P > 0 such that m̂ < θd1 on Ω for all

d1 > Dm,η,P . Hence, σ1(d2, m̂ − θd1) < σ1(d2, 0) = 0 by (1.23), which implies that (θd1 , 0) is

linearly stable.

Case 2 inf
Ω
ρm,η,P + C(m, η, P ) = 0. Thus ρm,η,P + C(m, η, P ) ≥ 0.

It is obvious that m̂ − θd1 ≤6≡ 0 leads to σ1(d2, m̂ − θd1) < σ1(d2, 0) = 0, which implies

(θd1 , 0) is linearly stable.

Now without loss of generality, we may assume that m̂ − θd1 changes sign in Ω for all d1

large enough. By (1.27) and Lemma 1.2, λ1(η, m̂ − θd1) > 0. Hence in order to prove (ii), it

suffices to show that there exist two constants Cm,η,P > 0 and Dm,η,P > 0 depending only on

m, η, P such that

λ1(η, m̂− θd1) = d21λ1(η, d
2
1m̂− d21θd1) > Cm,η,P d

2
1 for all d1 > Dm,η,P , (2.15)

i.e., λ1(η, d
2
1m̂ − d21θd1) > Cm,η,P for all d1 > Dm,η,P . By (2.6), there exists a constant

Dm,η,P > 0 such that

d21m̂− d21θd1 = −d1(ρm,η,P + C(m, η, P ))eηP − (γm,η,P +K(m, η, P ))eηP

+O
( 1

d1

)
for all d1 > Dm,η,P . (2.16)

For each L > 0,

ΘLd1 :=

{
d21m̂− d21θd1 if d21m̂− d21θd1 > −L,

−L if d21m̂− d21θd1 ≤ −L.
(2.17)

Hence d21m̂− d21θd1 ≤ ΘLd1, Θ
L
d1

changes sign and furthermore λ1(η,Θ
L
d1
) is defined and positive

for all d1 and L sufficiently large. Moreover, by Lemma 1.2, λ1(η, d
2
1m̂ − d21θd1) ≥ λ1(η,Θ

L
d1
).

Since inf
Ω
ρm,η,P +C(m, η, P ) = 0, (2.16) and (2.17) imply that there exist two constants C2

L <

C1
L < 0 such that

C2
L <

∫

Ω

ΘLd1e
ηPdx < C1

L < 0 for all d1 > Dm,η,P . (2.18)

Moreover, choosing L and Dm,η,P even larger if necessary, one can see that ‖ΘLd1e
ηP ‖∞ = L for

all d1 > Dm,η,P . Applying a similar approach in [28], one can see that there exists a constant

Cm,η,P > 0 depending only on m, η, P such that λ1(η,Θ
L
d1
) > Cm,η,P for all d1 > Dm,η,P .

Case 3 inf
Ω
ρm,η,P + C(m, η, P ) < 0.
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This case yields that m̂ > θd1 for sufficiently large d1 by (2.6). Combined with (1.27), we

see that there exists a Dm,η,P > 0 such that m̂− θd1 changes sign in Ω for all d1 > Dm,η,P . In

view of
∫

Ω

(−ρm,η,P − C(m, η, P ))e2ηPdx = −C(m, η, P )

∫

Ω

e2ηPdx < 0, (2.19)

by (1.27) and Lemma 1.2, we then observe that both λ1(η, m̂ − θd1) and λ1(η, (−ρm,η,P −

C(m, η, P ))eηP ) are defined and positive for all d1 > Dm,η,P . Now let φ∗ > 0 be the prin-

cipal eigenfunction corresponding to λ1(η, (−ρm,η,P − C(m, η, P ))eηP ) normalized such that

max
Ω

φ∗e
ηP = 1 and define

Πm,η,P = −

∫
Ω(γm,η,P +K(m, η, P ))φ2∗e

2ηPdx∫
Ω |∇φ∗|2e2ηPdx

. (2.20)

Clearly, λ1(η, m̂− θd1) = d1λ1(η, d1m̂− d1θd1).

We next verify that in fact

λ1(η, d1m̂− d1θd1) =
1

Λm,η,P
−

Πm,η,P
Λ2
m,η,Pd1

+O
( 1

d21

)
(2.21)

for all d1 > Dm,η,P , where Λm,η,P :=
1

λ1(η, (−ρm,η,P − C(m, η, P ))eηP )
. Since by (2.6), we

have

d1m̂− d1θd1 = −(ρm,η,P + C(m, η, P ))eηP +O
( 1

d1

)
for all d1 > Dm,η,P , (2.22)

the continuity of λ1(·) in Lemma 1.2 then leads to

λ1(η, d1m̂− d1θd1) =
1

Λm,η,P
+O(1) as d1 → +∞. (2.23)

Denote ϕ > 0 the principal eigenfunction corresponding to λ1(η, d1m̂ − d1θd1). Then one can

easily check that

ϕ = φ∗ + o(1) (2.24)

as d1 → +∞. Rewrite that ϕ = φ∗ +
ψ

d1
+
ω

d21
, where ψ is the unique solution of





∆ψ + η∇P · ∇ψ +
1

Λm,η,P
(−ρm,η,P − C(m, η, P ))eηPψ

−eηPφ∗

[
−

Πm,η,P
Λ2
m,η,P

(ρm,η,P + C(m, η, P ))

+
1

Λm,η,P
(γm,η,P +K(m, η, P ))

]
= 0, x ∈ Ω,

∂ψ

∂n
= 0, x ∈ ∂Ω,

∫

Ω

ψφ∗e
2ηPdx = 0.

(2.25)
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Denote

d1(m̂− θd1) + eηP (ρm,η,P + C(m, η, P )) by F. (2.26)

We then obtain that

F = O
( 1

d1

)
for all d1 > Dm,η,P , (2.27)

and it follows from some calculations that ω satisfies the following equations:




∆ω + η∇P · ∇ω + λ1(η, d1m̂− d1θd1) · (d1m̂− d1θd1)ω

+d21e
ηPφ∗(−ρm,η,P − C(m, η, P ))

(
λ1(η, d1m̂− d1θd1)−

1

Λm,η,P
+

Πm,η,P
d1Λ2

m,η,P

)

+d21

(
λ1(η, d1m̂− d1θd1) · F +

eηP

d1Λm,η,P
(γm,η,P +K(m, η, P ))

)
φ∗

+d1

(
λ1(η, d1m̂− d1θd1)−

1

Λm,η,P

)
(−ρm,η,P − C(m, η, P ))eηPψ

+d1λ1(η, d1m̂− d1θd1) · Fψ = 0, x ∈ Ω,

∂ω

∂n
= 0, x ∈ ∂Ω,

∫

Ω

ωφ∗e
2ηPdx = 0.

(2.28)

Using (2.6), one sees

F +
eηP (γm,η,P +K(m, η, P ))

d1
= O

( 1

d21

)
for all d1 > Dm,η,P . (2.29)

Multiplying the equation for ω by ϕeηP and the equation for ϕ by ωeηP , integrating over Ω

and subtracting, we deduce that

− d1

(
λ1(η, d1m̂− d1θd1)−

1

Λm,η,P

)∫

Ω

e2ηPφ∗ϕ(−ρm,η,P − C(m, η, P ))ϕφ∗dx

=
Πm,η,P
Λ2
m

∫

Ω

e2ηP (−ρm,η,P − C(m, η, P ))ϕφ∗dx

+ d1

∫

Ω

eηPφ∗ϕ
(
λ1(η, d1m̂− d1θd1) · F +

eηP (γm,η,P +K(m, η, P ))

d1Λm,η,P

)
dx

+
(
λ1(η, d1m̂− d1θd1)−

1

Λm,η,P

) ∫

Ω

e2ηP (−ρm,η,P − C(m, η, P ))ψϕdx

+ λ1(η, d1m̂− d1θd1)

∫

Ω

FϕψeηPdx. (2.30)

Combining (2.23), (2.27) and (2.29) together, we see

λ1(η, d1m̂− d1θd1) · F +
eηP (γm,η,P +K(m, η, P ))

d1Λm,η,P

=
(
λ1(η, d1m̂− d1θd1)−

1

Λm,η,P

)
F +

1

Λm,η,P

(
F +

eηP (γm,η,P +K(m, η, P ))

d1

)
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= o
( 1

d1

)
(2.31)

as d1 → +∞. By (2.24), we have

∫

Ω

e2ηPϕφ∗(−ρm,η,P − C(m, η, P ))dx =

∫

Ω

e2ηPφ2∗(−ρm,η,P − C(m, η, P ))dx + o(1) (2.32)

as d1 → +∞. Hence dividing both sides of (2.30) by
∫
Ω(−ρm,η,P − C(m, η, P ))ϕφ∗e

ηPdx and

letting d1 → +∞, using (2.23)–(2.24), (2.27), (2.29) and the above estimate again, we derive

that

−d1
(
λ1(η, d1m̂− d1θd1)−

1

Λm,η,P

)
=

Πm,η,P
Λ2
m,η,P

+ o(1) for all d1 > Dm,η,P , (2.33)

which implies that λ1(η, d1m̂− d1θd1)−
1

Λm,η,P
= O

(
1
d1

)
. This together with (2.27), (2.29) and

(2.31) implies that

λ1(η, d1m̂− d1θd1)F +
eηP (γm,η,P +K(m, η, P ))

d1Λm,η,P
= O

( 1

d21

)
for all d1 > Dm,η,P . (2.34)

Therefore dividing both sides of (2.30) by d1
∫
Ω(−ρm,η,P − C(m, η, P ))ϕφ∗e

2ηPdx and letting

d1 → +∞, we obtain (2.21). This in turn indicates that λ1(η, m̂−θd1) =
d1

Λm,η,P
−Πm,η,P

Λ2

m,η,P

+O
(

1
d1

)

and

d∗2(d2, η) =
1

λ1(η, m̂− θd1)
=

Λm,η,P
d1

+
Πm,η,P
d21

+O
( 1

d31

)
. (2.35)

The proof of Theorem 1.3 is thus finished.

Proof of Theorem 1.4 Let (U, V ) be the coexistence steady state of (1.6). Then

(Ũ , Ṽ ) = (Ue−ηP , V e−ηP ) satisfies





d1∆Ũ + α1∇P · ∇Ũ + Ũ(m(x) − U − V ) in Ω,

d2∆Ṽ + α2∇P · ∇Ṽ + Ṽ (m̂(x)− U − V ) in Ω,

∂Ũ

∂n
=
∂Ṽ

∂n
= 0 on ∂Ω.

(2.36)

By the maximum principle, we have that

‖Ũ‖∞ ≤ ‖θ̃d1‖∞ < max
Ω

(me−ηP ), ‖Ṽ ‖∞ ≤ ‖θ̃d2‖∞ <

∫
Ωme−ηPdx∫
Ω
e2ηPdx

. (2.37)

Integrating the equation for Ṽ over Ω, we obtain from Hölder inequality that

0 =

∫

Ω

V (U + V + m̂)dx

=

∫

Ω

V (eηP
∫
Ω
UeηPdx∫

Ω
e2ηPdx

+ eηP
∫
Ω
V eηPdx∫

Ω
e2ηPdx

− m̂)dx

+

∫

Ω

(
V − eηP

∫
Ω V eηPdx∫
Ω
e2ηPdx

)(
U − eηP

∫
Ω UeηPdx∫
Ω
e2ηPdx

+ V − eηP
∫
Ω V eηPdx∫
Ω
e2ηPdx

)
dx
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> d1

∫
Ω V eηPdx∫
Ω
e2ηPdx

∫
Ω eηP |∇Ũ |2dx

‖me−ηP‖∞
−

1

2

∫

Ω

(
U − eηP

∫
Ω UeηPdx∫
Ω
e2ηPdx

)2

dx

+
1

2

∫

Ω

(
V − eηP

∫
Ω V eηPdx∫
Ω
e2ηPdx

)2

dx, (2.38)

where we have used the identity
∫
Ω
eηP (m− U − V )dx = −d1

∫
Ω

eηP |∇Ũ|2

Ũ2
dx obtained by mul-

tiplying the equation of Ũ by eηP , and dividing by Ũ , integrating over Ω. Since there exists a

constant C > 0 such that

C

∫

Ω

eηP |∇Ũ |2dx ≥
∥∥∥U − eηP

∫
Ω
UeηPdx∫

Ω e2ηPdx

∥∥∥
2

2
, (2.39)

which can be derived by a similar method of the proof of Poincaré’s inequality in [11], then

(2.38) gives rise to

0 >
(
d1

∫
Ω
V eηPdx∫

Ω e2ηPdx

∫
Ω
eηP |∇Ũ |2dx

‖me−ηP ‖∞
−
C

2

)∫

Ω

eηP |∇Ũ |2dx. (2.40)

The inequality above implies
∫
Ω
V eηPdx∫

Ω e2ηPdx
= O

( 1

d1

)
. (2.41)

Since ‖V ‖∞ <
∫
Ω
me−ηPdx∫
Ω
e2ηPdx

‖eηP ‖∞, by (1.32)–(1.33) and (2.41), there exists a Dm,η,P > 0

depending only on m, η, P such that both ‖ρm−V,η,P‖∞ and C(m − V, η, P ) are uniformly

bounded in d2 for all d1 > Dm,η,P . Therefore, similar to (2.6), together with (2.41), we obtain

that

Ũ =

∫
Ω(m− V )eηPdx∫

Ω e2ηPdx
+
ρm−V,η,P + C(m− V, η, P )

d1
+O

( 1

d21

)

uniformly in d2, for all d1 > Dm,η,P , (2.42)
∫
Ω(m− V )eηPdx∫

Ω e2ηPdx
− Ũ = O

( 1

d1

)
uniformly in d2, for all d1 > Dm,η,P (2.43)

and

Ũ =

∫
ΩmeηPdx∫
Ω
e2ηPdx

+O
( 1

d1

)
uniformly in d2, for all d1 > Dm,η,P . (2.44)

On the other hand, from the equation for Ṽ and the maximum principle, we have

‖V ‖∞ ≤ ‖m̂− U‖∞ ≤
∥∥∥
(∫

Ω
(m− V )eηPdx∫

Ω e2ηPdx
− Ũ

)
eηP

∥∥∥
∞

+
∥∥∥
∫
Ω
V eηPdx∫

Ω e2ηPdx
eηP

∥∥∥
∞

= O
( 1

d1

)
. (2.45)

Thus we have verified (1.36). It only remains to prove (1.37). We claim that




C(m− V, η, P ) = C(m, η, P ) +O
( 1

d1

)
,

ρm−V,η,P = ρm,η,P +O
( 1

d1

)
,

uniformly in d2, for all d1 > Dm,η,P . (2.46)
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Let r be the unique solution to




∆r + η∇P · ∇r +
(
eηP

∫
Ω V eηPdx∫
Ω
e2ηPdx

− V
)
= 0 in Ω,

∂r

∂n
= 0 on ∂Ω,

∫
Ω
re2ηPdx∫

Ω
e2ηPdx

= 0.

(2.47)

Multiplying the equation for r by reηP and integrating over Ω, we obtain that

∫

Ω

eηP |∇r|2dx =

∫

Ω

reηP
(
eηP

∫
Ω V eηPdx∫
Ω
e2ηPdx

− V
)
dx

≤ ε

∫

Ω

r2e2ηPdx+ Cε

∫

Ω

(
eηP

∫
Ω V eηPdx∫
Ω e2ηPdx

− V
)2

dx, (2.48)

where we have used Young’s inequality. By means of a similar inequality to (2.39), we have

that
∫

Ω

eηP |∇r|2dx ≤ εC

∫

Ω

eηP |∇r|2dx+ Cε

∫

Ω

(
eηP

∫
Ω
V eηPdx∫

Ω e2ηPdx
− V

)2

dx. (2.49)

Choosing ε > 0 small enough, we then derive from (1.36) and the above estimate that
∫

Ω

eηP |∇r|2dx = O
( 1

d21

)
uniformly in d2, for all d1 > Dm,η,P . (2.50)

Since

‖r‖∞ = O
(∥∥∥eηP

∫
Ω V eηPdx∫
Ω e2ηPdx

− V
∥∥∥
∞

)
= O

( 1

d1

)
(2.51)

by (2.47) and (1.36), it is easy to see from (1.32) and (2.47) that

ρm−V,η,P∫
Ω(m− V )eηPdx

=
ρm∫

ΩmeηPdx
+

r∫
Ω e2ηPdx

. (2.52)

This together with (2.51) and the estimate of V in (1.36) implies the second equality of (2.46).

By (1.33) and the above identity, we have

C(m− V, η, P ) = C(m, η, P ) +

∫
Ω
eηPdx

∫
Ω
eηP |∇r|2dx∫

Ω e2ηPdx

−
2∫

Ω
meηPdx

∫

Ω

ρm,η,P e
ηP

(
V − eηP

∫
Ω
V eηPdx∫

Ω
e2ηPdx

)
dx. (2.53)

By (1.36), 2∫
Ω
meηP dx

∫
Ω ρmeηP

(
V − eηP

∫
Ω
V eηP dx∫

Ω
e2ηP dx

)
dx = O

(
1
d1

)
uniformly in d2, for all d1 >

Dm,η,P . Hence we obtain the first equality of (2.46).

We now assume that inf
Ω
ρm,η,P + C(m, η, P ) < 0 and prove (1.37). By (1.36), it suffices to

show that

lim inf
d1→+∞
d1d2→p

d1‖V ‖∞ > 0. (2.54)
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The equation for V reads that
1

d2
= λ1(η, m̂− U − V ), i.e.,

1

d1d2
= λ1(η, d1(m̂− U − V )). (2.55)

By (2.42) and (2.46),

d1(m̂− U − V ) = −eηP (ρm,η,P + C(m, η, P )) + d1

(
eηP

∫
Ω V eηPdx∫
Ω
e2ηPdx

− V
)
+O

( 1

d1

)
(2.56)

uniformly in d2, for all d1 > Dm,η,P . Assuming for contradiction that (2.54) does not hold.

By (1.36), passing to a subsequence of d1 and d2 if necessary, we get that d1‖V ‖∞ → 0 as

d1 → +∞ and d1d2 → p ∈ [0,Λm,η,P ), which further implies that

∥∥∥d1
(
eηP

∫
Ω
V eηPdx∫

Ω
e2ηPdx

− V
)∥∥∥

∞
→ 0. (2.57)

However, taking limits on both sides of (2.55) as d1 → +∞ and d1d2 → p ∈ [0,Λm,η,P ),

we obtain from the above estimate, (2.56) and Lemma 1.2 that
1

p
= λ1(η,−eηP (ρm,η,P +

C(m, η, P ))) = Λm,η,P , which is a contradiction. This finishes the proof of (1.37).
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[12] López-Gómez, J., Coexistence and meta-coexistence for competing species, Houston J. Math., 29(2), 2003,
483–536.

[13] Hambrock, R. and Lou, Y., The evolution of conditional dispersal strategies in spatially heterogeneous
habitats, Bull. Math. Biol., 71, 2009, 1793–1817.



908 Q. Wang

[14] He, X. and Ni, W.-M., Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and
spatial heterogeneity I, Comm. Pure Appl. Math., 69, 2016, 981–1014.

[15] He, X. and Ni, W.-M., Global dynamics of the Lotka-Volterra competition-diffusion system with equal
amount of total resources, II, Calc. Var. Partial Differential Equations, 55, 2016, 25, 20 pp.

[16] He, X., Ni and W.-M., Global dynamics of the Lotka-Volterra competition-diffusion system with equal
amount of total resources, III, Calc. Var. Partial Differential Equations, 56, 2017, 132, 26 pp.

[17] Hess, P., Periodic-parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathe-
matics, 247. Longman Sci. Tech., Harlow, 1991.

[18] Hutson, V., Lou, Y. and Mischaikow, K., Spatial heterogeneity of resources versus Lotka-Volterra dynamics,
J. Differential Equations, 185, 2002, 97–136.

[19] Hutson, V., Lou, Y. and Mischaikow, K., Convergence in competition models with small diffusion coeff-
cients, J. Differential Equations, 211, 2005, 135–161.

[20] Hutson, V., Lou, Y. and Mischaikow, K., Polác̆ik, P., Competing species near the degenerate limit, SIAM

J. Math. Anal., 35, 2003, 453–491.

[21] Hutson, V., Martinez, S., Mischaikow, K. and Vicker, G. T., The evolution of dispersal, J. Math. Biol.,

47, 2003, 483–517.

[22] Hutson, V., Mischaikow, K. and Polác̆ik, P., The evolution of dispersal rates in a heterogeneous time-
periodic environment, J. Math. Biol., 43, 2001, 501–533.

[23] Lam, K.-Y., Concentration phenomena of a semilinear elliptic equation with large advection in an ecological
model, J. Differential Equations, 250, 2011, 161–181.

[24] Lam, K.-Y., Limiting profiles of semilinear elliptic equations with large advection in population dynamics
II, SIAM J. Math. Anal., 44, 2012, 1808–1830.

[25] Lou, Y., On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential

Equations, 223, 2006, 400–426.

[26] Lou, Y., Martinez, S. and Polác̆ik, P., Loops and branches of coexistence states in a Lotka-Volterra
competition model, J. Differential Equations, 230, 2006, 720–742.

[27] Protter, M. H. and Weinberger, H. F., Maximum Principles in Differential Equations, 2nd ed., Springer-
Verlag, New York, 1984.

[28] Saut, J. C. and Scheurer, B., Remarks on a nonlinear equation arising in population genetics, Commun.

Part. Differ. Eq., 23, 1978, 907–931.

[29] Sattinger, D. H., Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana
Univ. Math. J., 21, 1972, 979–1000.

[30] Wang, Q., On steady state of some Lotka-Volterra competition-diffusion-advection model, Discrete Contin.

Dyn. Syst. Ser. B, 25, 2020, 859–875.

[31] Zhou, P. and Xiao, D., Global dynamics of a classical Lotka-Volterra competition-diffusion-advection
system, J. Funct. Anal., 275, 2018, 356–380.


