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1 Introduction

In one complex variable of geometric function theory, MacGregor [1] originally established

the refined coefficient estimates of biholomorphic starlike functions. Boyd [2] subsequently de-

rived the refined coefficient estimates of starlike functions of order α. They showed that the

above refined estimates of [1] and [2] are sharp if these functions are further k-fold symmetric

functions. However, the refined coefficient estimates of other subclasses of biholomorphic star-

like functions are scarcely discussed. In several complex variables of geometric function theory,

Gong [3] posed the profound Bieberbach conjecture in several complex variables, which is that

the sharp estimates of all homogeneous expansions for biholomorphic starlike mappings on the

unit polydisk in Cn hold. The sharp estimate of the second homogeneous expansion for biholo-

morphic starlike mappings was proved completely (see [3]). After that Hamada and Honda [4]

and Liu and Liu [5] investigated the sharp estimate of the third homogeneous expansion for

biholomorphic starlike mappings and starlike mappings of order α on the unit polydisk in Cn by

different methods. In addition, Liu [6] obtained the sharp estimates of all homogeneous expan-

sions for quasi-convex mappings (include quasi-convex mappings of type A and quasi-convex

mappings of type B) on the unit polydisk in Cn with some additional assumptions. Subse-

quently, Liu and Liu [7] extended the corresponding results of [6] to a general case. Liu, Liu

and Xu [8] derived the sharp estimates of all homogeneous expansions for a subclass of biholo-

morphic starlike mappings in several complex variables as well. With respect to the estimates
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of homogeneous expansions for a subclass of biholomorphic mappings f which have parametric

representation (z = 0 is a zero of order k + 1 of f(z)− z) on the unit polydisk in C
n, Hamada

and Honda [4] and Xu and Liu [9] established the estimates of the m(m = k+1, k+2, · · · , 2k)-th
homogeneous expansions independently. They both stated that the estimate is only sharp for

m = k+1. Furthermore, Hamada and Honda [4] investigated the third homogeneous expansion

for the above mappings. Recently, Liu and Liu [10] obtained the estimates of all homogeneous

expansions for a subclass of biholomorphic mappings which have parametric representation.

Many interesting results concerning the estimates of homogeneous expansions may be found in

references [11–16].

A natural question arouse great interest of many people: Whether the refined estimates of

all homogeneous expansions for a subclasses of biholomorphic starlike mappings which have a

concrete parameter representation in several complex variables hold or not? We now provide

an affirmative answer partly in this article. That is, we shall establish the refined estimates

of all homogeneous expansions for a subclass of biholomorphic starlike mappings which have

concrete parametric representation on the unit ball of complex Banach spaces, and also obtain

the estimates of all homogeneous expansions for the above generalized mappings on the unit

polydisk in Cn.

Throughout this article, we denote by X a complex Banach space with the norm ‖ · ‖, X∗

the dual space of X , B the open unit ball in X , and U the Euclidean open unit disk in C. Also

let Un denote the open unit polydisk in Cn, let N+ be the set of all positive integers, and let R

denote the set of all real numbers. Let the symbol′ represent transpose. For each x ∈ X\{0},

T (x) = {Tx ∈ X∗ : ‖Tx‖= 1, Tx(x) =‖x‖}
is well defined. We denote by H(B) the set of all holomorphic mappings from B into X . It is
known that

f(y) =
∞∑

n=0

1

n!
Dnf(x)((y − x)n)

for all y in some neighborhood of x ∈ B if f ∈ H(B), whereDnf(x) is the nth-Fréchet derivative
of f at x, and for n ≥ 1,

Dnf(x)((y − x)n) = Dnf(x)(y − x, · · · , y − x
︸ ︷︷ ︸

n

) .

We say that a holomorphic mapping f : B → X is biholomorphic if the inverse f−1 exists and
is holomorphic on the open set f(B). A mapping f ∈ H(B) is said to be locally biholomorphic
if the Fréchet derivative Df(x) has a bounded inverse for each x ∈ B. If f : B → X is a
holomorphic mapping, then f is said to be normalized if f(0) = 0 and Df(0) = I, where I

means the identity operator from X into X .
A normalized biholomorphic mapping f : B → X is said to be a starlike mapping if f(B) is

a starlike domain with respect to the origin.
Let S∗(B) be the set of all starlike mappings on B.
We now state the following definitions.

Definition 1.1 (see [4]) Suppose that g ∈ H(U) is a biholomorphic function such that

g(0) = 1, g(ξ) = g(ξ), Re g(ξ) > 0, ξ ∈ U (so, g has real coefficients in its power series

expansion), and assume that g satisfies the conditions







min
|ξ|=r

|g(ξ)| = min
|ξ|=r

Re g(ξ) = g(r) ,

max
|ξ|=r

|g(ξ)| = max
|ξ|=r

Re g(ξ) = g(−r) .
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It is not difficult to check that g(ξ) = 1+A1ξ
1+A2ξ

satisfies the condition of Definition 1.1 for

−1 ≤ A1 < A2 ≤ 1, and g(ξ) = 1+A1ξ
1+A2ξ

is a biholomorphic function on U if A1, A2 ∈ R, |A1| ≤
1, |A2| ≤ 1, A1 6= A2. However, g is not a biholomorphic function on U obviously if A1 = A2.

To consider more general cases, we now assume that g(ξ) = 1+A1ξ
1+A2ξ

, ξ∈U (A1, A2 ∈ R, |A1| ≤
1, |A2| ≤ 1).

We denote by Mg the set

Mg =
{

p ∈ H(B) : p(0) = 0, Dp(0) = I,
Tx(p(x))

‖x‖ ∈ g(U), x ∈ B \ {0}, Tx ∈ T (x)
}

.

Definition 1.2 (see [15]) Suppose that f : B → X is a normalized locally biholomorphic

mapping. If α ∈ (0, 1) and

∣
∣
∣
1

‖x‖Tx[(Df(x))−1f(x)]− 1

2α

∣
∣
∣ <

1

2α
, x ∈ B \ {0} ,

then we say that f is a starlike mapping of order α.

Let S∗
α(B) be the set of all starlike mappings of order α on B.

Definition 1.3 (see [9]) Suppose that f : B → X is a normalized locally biholomorphic

mapping. If α ∈ [0, 1) and

Re e{Tx[(Df(x))−1f(x)]} ≥ α‖x‖, x ∈ B \ {0} ,

then we say that f is an almost starlike mapping of order α on B.

We denote by AS∗
α(B) the set of all almost starlike mappings of order α on B.

Definition 1.4 (see [9]) Suppose that f : B → X is a normalized locally biholomorphic

mapping. If c ∈ (0, 1) and

∣
∣
∣
1

‖x‖Tx[(Df(x))−1f(x)]− 1 + c2

1− c2

∣
∣
∣ <

2c

1− c2
, x ∈ B \ {0} ,

then we say that f is a strongly starlike mapping on B.

Let SS∗(B) denote the set of all strongly starlike mappings on B.

Definition 1.5 (see [17]) Let f ∈ H(B). It is said that f is k-fold symmetric if

e−
2πi

k f(e
2πi

k x) = f(x)

for all x ∈ B, where k ∈ N+ and i =
√
−1.

Definition 1.6 (see [18]) Suppose that Ω is a domain (connected open set) in X which

contains 0. It is said that x = 0 is a zero of order k of f(x) if f(0) = 0, · · · , Dk−1f(0) = 0, but

Dkf(0) 6= 0, where k ∈ N+.

We denote by S∗
g (B) the subset of S∗(B) consisting of normalized locally biholomorphic

mappings f which satisfy (Df(x))−1f(x) ∈ Mg, and S∗
g,k+1(B) the subset of S∗

g (B) such that

x = 0 is a zero of order k+1 of f(x)−x. Let S∗
k+1(B) (resp. S∗

α,k+1(B), AS∗
α,k+1(B), SS∗

k+1(B))

denote the subset of S∗(B) (resp. S∗
α(B), AS∗

α(B), SS∗(B)) which satisfies that x = 0 is a

zero of order k + 1 of f(x)− x.
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2 Some Lemmas

In order to establish our main theorems, in this section, it is necessary to provide some

lemmas as follows.

Lemma 2.1 Suppose that k ∈ N
+, A ≥ 0. Then

A2 +A

q−1
∑

m=1

(2mk +A)
( 1

m!

m−1∏

µ=0

(

µ+
A

k

))2

=
( k

(q − 1)!

q−1
∏

µ=0

(

µ+
A

k

))2

for q = 2, 3, · · · . (2.1)

Proof It is readily shown that (2.1) first holds if q = 2. We next assume that

A2 +A

q−1
∑

m=1

(2mk +A)
( 1

m!

m−1∏

µ=0

(

µ+
A

k

))2

=
( k

(q − 1)!

q−1
∏

µ=0

(

µ+
A

k

))2

, q = 2, 3, · · · , l . (2.2)

It suffice to prove that (2.1) holds for q = l + 1. A direct computation shows that

A2 +A

l∑

m=1

(2mk +A)
( 1

m!

m−1∏

µ=0

(

µ+
A

k

))2

=
( k

(l − 1)!

l−1∏

µ=0

(

µ+
A

k

))2

+A(2lk +A)
( 1

l!

l−1∏

µ=0

(

µ+
A

k

))2

=
(k

l!

l∏

µ=0

(

µ+
A

k

))2

holds from (2.2). It follows the desired result. This completes the proof.

A direct calculation shows that the following lemma holds (the details are omitted here).

Lemma 2.2 Suppose that k ∈ N+, s = 1, 2, · · · , and A ≥ 0. Then

(m− 1)2 ≥ (sk)2(m− 1 +A)

sk +A

for m ≥ sk + 1.

Lemma 2.3 Suppose that k ∈ N+, f(z) = z +
∞∑

m=k+1

amzm ∈ S∗
g,k+1(U), where g(z) =

1+A1z
1+A2z

, z ∈ U, A1, A2 ∈ R, |A1| ≤ 1, |A2| ≤ 1. Then

2k∑

m=k+1

(m− 1)2|am|2 ≤ |A2 −A1|2 . (2.3)

Proof Since f(z)
f ′(z)z ≺ g(z), there exists ϕ ∈ H(U,U) which statisfies

g(ϕ(z)) =
1 +A1ϕ(z)

1 +A2ϕ(z)
=

f(z)

zf ′(z)
, z ∈ U .
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A straightforward computation shows that

ϕ(z) =
f ′(z)z − f(z)

A2f(z)−A1f ′(z)z
= bkz

k + bk+1z
k+1 + · · · , z ∈ U .

Hence the above relation yields that

(m− 1)am = (A2 −A1)bm−1, m = k + 1, k + 2, · · · , 2k . (2.4)

Note that

f ′(z)z − f(z) = ϕ(z)(A2f(z)−A1f
′(z)z), z ∈ U (2.5)

and (2.4). We obtain that

2k∑

m=k+1

(m− 1)2|am|2 = |A2 −A1|2
2k−1∑

m=k

|bm|2 ≤ |A2 −A1|2
∞∑

m=k

|bm|2 ≤ |A2 − A1|2 .

This completes the proof.

Lemma 2.4 Suppose that k ∈ N+, f(z) = z +
∞∑

m=k+1

amzm ∈ S∗
g,k+1(U), where g(z) =

1+A1z
1+A2z

, z ∈ U, A1, A2 ∈ R, |A1| ≤ 1, |A2| ≤ 1. Then

|am| ≤ k

(m− 1)(s− 1)!

s−1∏

r=0

(

r +
|A2 −A1|

k

)

, sk + 1 ≤ m ≤ (s+ 1)k, s = 1, 2, · · · .

Especially, if k = 1, then

|am| ≤ 1

(m− 1)!

m−2∏

r=0

(r + |A2 −A1|) .

Proof In view of (2.5), it follows that

∞∑

m=k+1

(m− 1)amzm = ϕ(z)
(

(A2 −A1)z +

∞∑

m=k+1

(A2 −mA1)amzm
)

= ϕ(z)
(

(A2 −A1)z +

p−k
∑

m=k+1

(A2 −mA1)amzm
)

+
∞∑

m=p+1

cmzm .

This implies that

p
∑

m=k+1

(m− 1)amzm +

∞∑

m=p+1

dmzm = ϕ(z)
(

(A2 −A1)z +

p−k
∑

m=k+1

(A2 −mA1)amzm
)

.

Similar to the proof of [1, Theorem 1], it yields that

p
∑

m=k+1

(m− 1)2|am|2 ≤ |A2 −A1|2 +
p−k
∑

m=k+1

|A2 −mA1|2|am|2 .
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Hence,

p
∑

m=p−k+1

(m− 1)2|am|2 ≤ 2|A2 −A1|
( |A2 −A1|

2
+

p−k
∑

m=k+1

(

m− 1 +
|A2 −A1|

2

)

|am|2
)

. (2.6)

Applying an inductive method, we will prove the two following inequalities

(s+1)k
∑

m=sk+1

(m− 1)2|am|2 ≤
( k

(s− 1)!

s−1∏

r=0

(

r +
|A2 −A1|

k

))2

(2.7)

and

(s+1)k
∑

m=sk+1

(

m− 1 +
|A2 −A1|

2

)

|am|2 ≤
(

sk +
|A2 −A1|

2

)( 1

s!

s−1∏

r=0

(

r +
|A2 −A1|

k

))2

(2.8)

hold for s = 1, 2, 3, · · · .
When s = 1, (2.7) holds from (2.3). Also in view of Lemma 2.2 and (2.3), we deduce that

2k∑

m=k+1

(

m− 1 +
|A2 −A1|

2

)

|am|2 =
k + |A2−A1|

2

k2

2k∑

m=k+1

k2

k + |A2−A1|
2

(

m− 1 +
|A2 −A1|

2

)

|am|2

≤ k + |A2−A1|
2

k2

2k∑

m=k+1

(m− 1)2|am|2

≤ k + |A2−A1|
2

k2
|A2 −A1|2

=
(

k +
|A2 −A1|

2

)( |A2 −A1|
k

)2

.

Consequently (2.8) is valid for s = 1 as well. Assume that (2.7) and (2.8) are valid for s =

1, 2, · · · , q − 1. Letting p = (q + 1)k in (2.6), it yields that

(q+1)k
∑

m=qk+1

(m− 1)2|am|2

≤ 2(|A2 −A1|)
( |A2 −A1|

2
+

qk
∑

m=k+1

(

m− 1 +
|A2 −A1|

2

)

|am|2
)

= 2(|A2 −A1|)
( |A2 −A1|

2
+

q−1
∑

s=1

(s+1)k
∑

m=sk+1

(

m− 1 +
|A2 −A1|

2

)

|am|2
)

≤ 2(|A2 −A1|)
( |A2 −A1|

2
+

q−1
∑

s=1

(

sk +
|A2 −A1|

2

)( 1

s!

s−1∏

r=0

(

r +
|A2 −A1|

k

))2)

=
( k

(q − 1)!

q−1
∏

r=0

(

r +
|A2 −A1|

k

))2

from (2.1). It is shown that (2.7) holds for s = q. On the other hand, when s = q, we prove

that

(q+1)k
∑

m=qk+1

(

m− 1 +
|A2 −A1|

2

)

|am|2
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=
qk + |A2−A1|

2

(qk)2

(q+1)k
∑

m=qk+1

(qk)2

qk + |A2−A1|
2

(

m− 1 +
|A2 −A1|

2

)

|am|2

≤ qk + |A2−A1|
2

(qk)2

(q+1)k
∑

m=qk+1

(m− 1)2|am|2

≤ qk + |A2−A1|
2

(qk)2

( k

(q − 1)!

q−1
∏

r=0

(

r +
|A2 −A1|

k

))2

≤
(

qk +
|A2 −A1|

2

)( 1

q!

q−1
∏

r=0

(

r +
|A2 −A1|

k

))2

.

This implies that (2.8) holds for s = q. Hence we derive the desired result from (2.7) readily.

This completes the proof.

Remark 2.1 Let g1(z) = 1−z
1+z

, g2(z) = 1−z
1+(1−2α)z (α ∈ (0, 1)), g3(z) = 1−(1−2α)z

1+z
(α ∈

[0, 1)), g4(z) = 1−cz
1+cz

(c ∈ (0, 1)) in Lemma 2.4. Then f ∈ S∗
k+1(U) (S∗

α,k+1(U), AS∗
α,k+1(U),

SS∗
k+1(U)), and we get the corresponding results of Lemma 2.4. It is readily shown that

the estimates of Lemma 2.4 are sharp if f is a k-fold symmetric starlike function or a k-fold

symmetric starlike function of order α.

Remark 2.2 From the proofs of Lemmas 2.3–2.4, it is shown that Lemmas 2.3–2.4 are still

valid if the assumptions of A1, A2 ∈ R are replaced with A1, A2 ∈ C. However, the function f

must not be a biholomorphic starlike function (even a biholomorphic function).

3 Refined Estimates of All Homogeneous Expansions for a Subclass of

Biholomorphic Starlike Mappings in Several Complex Variables

We now present the desired theorems in this section.

Theorem 3.1 Let f : B → C ∈ H(B), F (x) = xf(x) ∈ S∗
g,k+1(B), g(ξ) = 1+A1ξ

1+A2ξ
, ξ ∈

U, A1, A2 ∈ R, |A1| ≤ 1, |A2| ≤ 1. Then

‖DmF (0)(xm)‖
m!

≤ k

(m− 1)(s− 1)!

s−1∏

r=0

(

r +
|A2 −A1|

k

)

‖x‖m, x ∈ B,

sk + 1 ≤ m ≤ (s+ 1)k, s = 1, 2, · · · .

In particular, if k = 1, then

‖DmF (0)(xm)‖
m!

≤ 1

(m− 1)!

m−2∏

r=0

(r + |A2 −A1|)‖x‖m, x ∈ B, m = 2, 3, · · · .

Proof Let x ∈ B \ {0} be fixed, and we denote by x0 = x
‖x‖ . Define

h(ξ) = ξf(ξx0), ξ ∈ U . (3.1)

It yields that

h(ξ)

ξh′(ξ)
=

f(ξx0)

Df(ξx0)ξx0 + f(ξx0)
=

Tξx0
((DF (ξx0))

−1F (ξx0))

‖ξx0‖
∈ g(U)
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by a direct calculation, and ξ = 0 is at least a zero of order k + 1 of h(ξ)− ξ if x = 0 is a zero

of order k + 1 of F (x) − x.

On the other hand, we conclude that

ξ +
∞∑

m=k+1

amξm = ξ +
∞∑

m=k+1

Dm−1f(0)(xm−1
0 )

(m− 1)!
ξm

from (3.1). Compare the coefficients of the two sides in the above equality. It is shown that

Dm−1f(0)(xm−1
0 )

(m− 1)!
= am, m = k + 1, k + 2, · · · . (3.2)

For k ∈ N+, we mention that

DmF (0)(xm)

m!
= x

Dm−1f(0)(xm−1)

(m− 1)!
, x ∈ B, m = k + 1, k + 2, · · ·

if F (x) = xf(x). From Lemma 2.4 and (3.2), it follows the result, as desired. This completes

the proof.

Putting g(ξ) = 1−ξ
1+ξ

in Theorem 3.1, then we get the following corollary readily.

Corollary 3.1 Let f : B → C ∈ H(B), F (x) = xf(x) ∈ S∗
k+1(B). Then

‖DmF (0)(xm)‖
m!

≤ k

(m− 1)(s− 1)!

s−1∏

r=0

(

r +
2

k

)

‖x‖m, x ∈ B,

sk + 1 ≤ m ≤ (s+ 1)k, s = 1, 2, · · · .

The above estimates are sharp for m = sk + 1, s = 1, 2, · · · . In particular, if k = 1, then

‖DmF (0)(xm)‖
m!

≤ m‖x‖m, x ∈ B, m = 2, 3, · · · .

The example which shows that the sharpness of estimates of Corollary 3.1 form = sk+1 (s =

1, 2, · · · ) is the same as that of [8, Theorem 2.1].

Set g(ξ) = 1−ξ
1+(1−2α)ξ , α ∈ (0, 1) in Theorem 3.1. Then we obtain the following corollary

immediately.

Corollary 3.2 Let f : B → C ∈ H(B), α ∈ (0, 1), F (x) = xf(x) ∈ S∗
α,k+1(B). Then

‖DmF (0)(xm)‖
m!

≤ k

(m− 1)(s− 1)!

s−1∏

r=0

(

r +
2(1− α)

k

)

‖x‖m, x ∈ B,

sk + 1 ≤ m ≤ (s+ 1)k, s = 1, 2, · · · .

The above estimates are sharp for m = sk + 1, s = 1, 2, · · · . In particular, when k = 1, then

‖DmF (0)(xm)‖
m!

≤

m∏

r=2
(r − 2α)

(m− 1)!
‖x‖m, x ∈ B, m = 2, 3, · · · .

The example which states that the sharpness of estimates of Corollary 3.2 form = sk+1 (s =

1, 2, · · · ) is similar to that of [14, Theorem 2.1].

Setting g(ξ) = 1−(1−2α)ξ
1+ξ

, α ∈ [0, 1) in Theorem 3.1, then the following corollary is derived

easily.
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Corollary 3.3 Let f : B → C ∈ H(B), α ∈ (0, 1), F (x) = xf(x) ∈ AS∗
α,k+1(B). Then

‖DmF (0)(xm)‖
m!

≤ k

(m− 1)(s− 1)!

s−1∏

r=0

(

r +
2(1− α)

k

)

‖x‖m, x ∈ B,

sk + 1 ≤ m ≤ (s+ 1)k, s = 1, 2, · · · .

In particular, if k = 1, then

‖DmF (0)(xm)‖
m!

≤

m∏

r=2
(r − 2α)

(m− 1)!
‖x‖m, x ∈ B, m = 2, 3, · · · .

Putting g(ξ) = 1−cξ
1+cξ

, c ∈ (0, 1) in Theorem 3.1, then the following corollary is given directly.

Corollary 3.4 Let f : B → C ∈ H(B), c ∈ (0, 1), F (x) = xf(x) ∈ SS∗
k+1(B). Then

‖DmF (0)(xm)‖
m!

≤ k

(m− 1)(s− 1)!

s−1∏

r=0

(

r +
2c

k

)

‖x‖m, x ∈ B,

sk + 1 ≤ m ≤ (s+ 1)k, s = 1, 2, · · · .

In particular, when k = 1, then

‖DmF (0)(xm)‖
m!

≤

m−2∏

r=0
(r + 2c)

(m− 1)!
‖x‖m, x ∈ B, m = 2, 3, · · · .

Theorem 3.2 Let F (z) = (F1(z), F2(z), · · · , Fn(z))
′ ∈ H(Un), and z = 0 is a zero of

order k + 1 of F (z) − z. If
DFj(z)z
Fj(z)

∈ 1
g
(U), z ∈ Un \ {0}, where j satisfies the condition

|zj| = ‖z‖ = max
1≤l≤n

|zl|, and g(ξ) = 1+A1ξ
1+A2ξ

, ξ ∈ U, A1, A2 ∈ R, |A1| ≤ 1, |A2| ≤ 1, then

‖DmF (0)(zm)‖
m!

≤ k

(m− 1)(s− 1)!

s−1∏

r=0

(

r +
|A2 −A1|

k

)

‖z‖m, z ∈ Un,

sk + 1 ≤ m ≤ (s+ 1)k, s = 1, 2, · · · .

Especially, if k = 1, then

‖DmF (0)(zm)‖
m!

≤ 1

(m− 1)!

m−2∏

r=0

(r + |A2 −A1|)‖z‖m, z ∈ Un, m = 2, 3, · · · .

Proof Fix z ∈ Un \ {0}, and denote z0 = z
‖z‖ . Let

hj(ξ) =
‖z‖
zj

Fj(ξz0), ξ ∈ U, (3.3)

where j satisfies the condition |zj | = ‖z‖ = max
1≤l≤n

{|zl|}. In view of
DFj(z)z
Fj(z)

∈ 1
g
(U), z ∈ Un\{0},

we see that

h′
j(ξ)ξ

hj(ξ)
=

DFj(ξz0)ξz0
Fj(ξz0)

∈ 1

g
(U), ξ ∈ U \ {0}
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by a direct calculation. Hence it is shown that hj ∈ S∗
g (U), and ξ = 0 is at least a zero of order

k + 1 for hj(ξ)− ξ.

We also show that

ξ +

∞∑

m=k+1

cmξm = ξ +
‖z‖
zj

∞∑

m=k+1

DmFj(0)(z
m
0 )

m!
ξm

from (3.3). It yields that

‖z‖
zj

DmFj(0)(z
m
0 )

m!
= cm, m = k + 1, k + 2, · · ·

by comparing the coefficients of the two sides in the above equality. Therefore, it is shown that

|DmFj(0)(z
m
0 )|

m!
≤ k

(m− 1)(s− 1)!

s−1∏

r=0

(

r +
|A2 −A1|

k

)

, z0 ∈ ∂Un, m = k + 1, k + 2, · · ·

from Lemma 2.4. In a way similar to that in the proof of [8, Theorem 3.3], we derive the desired

result. This completes the proof.

Let g(ξ) = 1−ξ
1+ξ

in Theorem 3.2. Then the following corollary is given readily.

Corollary 3.5 Let F (z) = (F1(z), F2(z), · · · , Fn(z))
′ ∈ H(Un), and z = 0 is a zero of

order k + 1 of F (z) − z. If Re
DFj(z)z
Fj(z)

> 0, z ∈ Un \ {0}, where j satisfies the condition

|zj| = ‖z‖ = max
1≤l≤n

|zl|, then

‖DmF (0)(zm)‖
m!

≤ k

(m− 1)(s− 1)!

s−1∏

r=0

(

r +
2

k

)

‖z‖m, z ∈ Un,

sk + 1 ≤ m ≤ (s+ 1)k, s = 1, 2, · · · .

The above estimates are sharp for m = sk + 1, s = 1, 2, · · · . Especially, when k = 1, then

‖DmF (0)(zm)‖
m!

≤ m‖z‖m, z ∈ Un, m = 2, 3, · · · .

The example which states that the sharpness of estimates of Corollary 3.5 form = sk+1 (s =

1, 2, · · · ) is the same as that of [8, Theorem 3.3].

Putting g(ξ) = 1−ξ
1+(1−2α)ξ , α ∈ (0, 1) in Theorem 3.1, then the following corollary follows

immediately.

Corollary 3.6 Let α ∈ (0, 1), F (z) = (F1(z), F2(z), · · · , Fn(z))
′ ∈ H(Un), and z = 0 is a

zero of order k + 1 of F (z) − z. If | Fj(z)
DFj(z)z

− 1
2α | < 1

2α , z ∈ Un \ {0}, where j satisfies the

condition |zj | = ‖z‖ = max
1≤l≤n

|zl|, then

‖DmF (0)(zm)‖
m!

≤ k

(m− 1)(s− 1)!

s−1∏

r=0

(

r +
2(1− α)

k

)

‖z‖m, z ∈ Un,

sk + 1 ≤ m ≤ (s+ 1)k, s = 1, 2, · · · .

The above estimates are sharp for m = sk + 1, s = 1, 2, · · · . In particular, when k = 1, then

‖DmF (0)(zm)‖
m!

≤

m∏

r=2
(r − 2α)

(m− 1)!
‖z‖m, z ∈ Un, m = 2, 3, · · · .
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The example which shows that the sharpness of estimates of Corollary 3.6 form = sk+1 (s =

1, 2, · · · ) is similar to that of [14, Theorem 3.5].

Setting g(ξ) = 1−(1−2α)ξ
1+ξ

, α ∈ [0, 1) in Theorem 3.2, then the following corollary is derived

directly.

Corollary 3.7 Let α ∈ [0, 1), F (z) = (F1(z), F2(z), · · · , Fn(z))
′ ∈ H(Un), and z = 0 is a

zero of order k+1 of F (z)− z. If Re
Fj(z)

DFj(z)z
> α, z ∈ Un \ {0}, where j satisfies the condition

|zj| = ‖z‖ = max
1≤l≤n

|zl|, then

‖DmF (0)(zm)‖
m!

≤ k

(m− 1)(s− 1)!

s−1∏

r=0

(

r +
2(1− α)

k

)

‖z‖m, z ∈ Un,

sk + 1 ≤ m ≤ (s+ 1)k, s = 1, 2, · · · .

Especially, when k = 1, then

‖DmF (0)(zm)‖
m!

≤

m∏

r=2
(r − 2α)

(m− 1)!
‖z‖m, z ∈ Un, m = 2, 3, · · · .

Putting g(ξ) = 1−cξ
1+cξ

, c ∈ (0, 1) in Theorem 3.2, then the following corollary is given readily.

Corollary 3.8 Let c ∈ (0, 1), F (z) = (F1(z), F2(z), · · · , Fn(z))
′ ∈ H(Un), and z = 0 is a

zero of order k + 1 of F (z)− z. If | Fj(z)
DFj(z)z

− 1+c2

1−c2
| < 2c

1−c2
, z ∈ Un \ {0}, where j satisfies the

condition |zj | = ‖z‖ = max
1≤l≤n

|zl|, then

‖DmF (0)(zm)‖
m!

≤ k

(m− 1)(s− 1)!

s−1∏

r=0

(

r +
2c

k

)

‖z‖m, z ∈ Un,

sk + 1 ≤ m ≤ (s+ 1)k, s = 1, 2, · · · .

In particular, when k = 1, then

‖DmF (0)(zm)‖
m!

≤

m−2∏

r=0
(r + 2c)

(m− 1)!
‖z‖m, z ∈ Un, m = 2, 3, · · · .

Remark 3.1 Theorem 3.1 is the corollary of Theorem 3.2 if B = Un.

Remark 3.2 Corollaries 3.1 and 3.5 are the same as [8, Theorem 2.1] and [8, Theorem 3.3]

respectively if m = sk + 1, s = 1, 2, · · · .

Remark 3.3 Corollaries 3.2 and 3.6 reduce to [14, Theorem 2.1] and [14, Theorem 3.5]

respectively if m = sk + 1, s = 1, 2, · · · .

According to Theorems 3.1–3.2, we naturally propose the open problem as follows.

Open Problem 3.1 Let F (z) ∈ S∗
g,k+1(U

n), g(ξ) = 1+A1ξ
1+A2ξ

, ξ ∈ U, A1, A2 ∈ R, |A1| ≤
1, |A2| ≤ 1. Then

‖DmF (0)(zm)‖
m!

≤ k

(m− 1)(s− 1)!

s−1∏

r=0

(

r +
|A2 −A1|

k

)

‖z‖m, z ∈ Un,

sk + 1 ≤ m ≤ (s+ 1)k, s = 1, 2, · · · .
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The above estimates are sharp for A1 = −1, A2 = 1, m = sk + 1, s = 1, 2, · · · and A1 =

−1, A2 = 1− 2α (α ∈ (0, 1)), m = sk + 1, s = 1, 2, · · · . In particular, if k = 1, then

‖DmF (0)(zm)‖
m!

≤ 1

(m− 1)!

m−2∏

r=0

(r + |A2 −A1|)‖z‖m, z ∈ Un, m = 2, 3, · · · .
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