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Abstract The authors consider the short time existence for Ricci-Bourguignon flow on
manifolds with boundary. If the initial metric has constant mean curvature and satisfies
some compatibility conditions, they show the short time existence of the Ricci-Bourguignon
flow with constant mean curvature on the boundary.
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1 Introduction

The Ricci-Bourguignon flow is

∂

∂t
g(x, t) = −2Ric(x, t) + 2ρR(x, t)g(x, t), (x, t) ∈ M × [0, T ), (1.1)

where Ric is the Ricci tensor of the manifold, R is the Scalar curvature and ρ is a constant.

This flow, which is a generalization of the Ricci flow, was introduced by Bourguignon [2]. For

the study of the Ricci-Bourguignon flow, see [4–6, 11]. Catino et. al. [3] proved the short-time

existence of solutions to the Ricci Bourguinon flow on closed manifolds.

There are plenty of works on the geometric flows on compact manifolds with boundary.

Hamilton [7] showed the short time existence to the harmonic map heat flow from manifolds

with Dirichlet, Neumann and mixed boundary by inverse theorem. Shen [13] proved the short

time existence of the Ricci flow on compact manifolds with umbilic boundary. Later, Pulemotov

[12] obtained a short time existence for Ricci flow on compact manifolds with boundary of

constant mean curvature. Gianniostis [9] derived the short-time existence and uniqueness of

the Ricci flow prescribing the mean curvature and conformal class of the boundary.

Inspired by the previous works, we attempt to study the corresponding existence problems

for the Ricci-Bourguignon flow. We obtain the following short time existence for the Ricci-

Bourguignon flow on compact manifolds with boundary.
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Theorem 1.1 Let (M, g0) be a Riemannian manifold with constant mean curvature H0 on

the boundary. Suppose that µ(t) is a smooth real value function on [0,∞) with µ(0) = 1 and

g0 ∈ C4+α̃(M). In addition on ∂M × {0}, the metric g0 satisfies the compatibility conditions

Ric(g0)βn = 0, (1.2)

where β denotes the tangent direction and n denotes the normal direction with respect to metric

g0. Then for ρ < 1
2(n−1) , there exists a Ricci-Bourguignon flow g(t) ∈ C2+α̃, 2+α̃

2 (M × [0, T ))

such that the mean curvature H(x, t) satisfies the boundary condition

H(x, t) = µ(t)H0 (1.3)

for all (x, t) ∈ ∂M × [0, T ] and g(t) converges to g0 in the geometric C2+α̃(M) sense as t → 0.

Remark 1.1 When ρ ≡ 0, the Ricci-Bourguignon flow becomes the usual Ricci flow. Hence

the above Theorem 1.1 generalizes a result in [12].

In [12], the WI
q -estimate (see [12, Lemma 2.6]) plays a very important role in the proof

of the short time existence of the Ricci flow. Therefore it is natural to ask whether a WI
q -

estimate holds for the Ricci Bourguignon flow. However, the case of the Ricci-Bourguignon

flow is harder to deal with than the Ricci flow since we now have an additional term Rg. And

unfortunately we could not apply the theorem in [12] to the Ricci-Bourguignon flow on manifolds

with boundary. Instead, we show the short time existence of the DeTurck Ricci-Bourguignon

flow by inverse function theorem and obtain the short time existence of the Ricci-Bourguignon

flow by DeTurck’s trick (see Section 3 for details). The precise statement of the short time

existence for the DeTurck Ricci Bourguignon flow on compact manifolds with boundary is as

follows.

Theorem 1.2 Let (Mn, g(0)) be a Riemannian manifold with boundary. Consider an ar-

bitrary family of background metrics g̃ ∈ C∞(M × [0,∞)) that satisfies the zeroth-order com-

patibility condition g̃(0) = g(x, 0). Then for ρ < 1
2(n−1) there exists a solution g(t), t ∈ [0, T ]

for the DeTurck Ricci-Bourguignon equation

∂tg = −2Ric + 2ρRg + LW (g,g̃)g, (1.4)

with the boundary conditions

on ∂M





W (g, g̃)n = 0,

gαn = 0,

Aαβ =
1

2
µ(t)(gαγ(x, t)g

γσ
0 A(g0)σβ(x) + gβγ(x, t)g

γσ
0 (x)A(g0)σα(x)),

(1.5)

where W (g, g̃)l = glrg
pq(Γ(g)rpq−Γ(g̃)rpq). Aαβ is the second fundamental form on the boundary

∂M and LW (g,g̃)g is the Lie derivative along the vector field W . The solution is C∞ on MT −

∂M × {0}, and is C2+α̃, 2+α̃
2 (M × [0, T )) if the g(0) satisfies the compatibility conditions (1.2)

and µ(0) = 1.
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The organization of this paper is as follows. In Section 3, we introduce the DeTurck Ricci-

Bourguignon flow and show the relationship between the Ricci Bourguinon flow and the DeTurck

Ricci Bourguinon flow. In Section 4, the solvability of a linear parabolic initial boundary value

problem is obtained. In Section 5, by classic inverse function theorem, we prove the short time

existence of the DeTurck Ricci-Bourguignon flow on the compact manifold with boundary.

2 Notation

In the following, we use Greek indices for the directions tangent to the boundary and n for

the direction of the inner unit normal vector with respect to the metric g(0). We use T for the

symmetric (0, 2) tensors on M and T∂M for the restriction of the bundle T to ∂M . Let F denote

the subbundle of T∂M consisting of all η ∈ T∂M such that ηαβ = 0 for α, β = 1 · · ·n − 1 and

ηnn = 0. Let F⊥ denote the orthogonal complement of F with respect to the metric g(0). PrF

is the orthogonal projection on the subbundle F . We use a ∗ b to denote the linear combination

of the tensors a and b. MT denotes M × [0, T ).

3 The DeTurck Ricci-Bourguignon Flow

In this section, we consider the relationship between DeTurck Ricci Bourguignon flow and

the Ricci-Bourguignon flow. The DeTurck Ricci Bourguignon flow is

∂

∂t
g = −2Rc+ 2ρRg + LW (g,t)g, (3.1)

where W (g(t), t)l = g(t)lrg(t)
pq(Γ(g(t))rpq − Γ(g̃(t))rpq). In this paper, g̃ ∈ C∞(M × [0,∞)) is

a family of smooth background metrics that satisfies the zeroth-order compatibility condition

g̃(0) = g(x, 0). Suppose that g(t) is a solution to the DeTurck Ricci-Bourguignon flow with

boundary condition

on ∂M





PrFg(x, t) = 0,

Aαβ(g(t)) =
µ(t)

2
(g(t)αγg

γη
0 A0

ηβ + g(t)βγg
γη
0 A0

ηα),

W (g(t))n = 0.

(3.2)

Since PrFg(x, t) = 0, we have g(x, t)αn = 0. Hence on the boundary, the inverse matrix of gij

is

g−1 =

(
gαβ 0
0 gnn

)
.

So the mean curvature is

Hg(t)(x, t) = g(t)αβA(g(t))αβ = µ(t)Hg0 = µ(t)H0.

By the theory of ordinary differential equation, there is a one-parameter transformation φ(t) :

M → M satisfying

dφ(t, x)

dt
= −W (t, x)
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with initial condition φ(0, x) = x. On the boundary, since W (g(t))n = 0, we have φ(t) : ∂M →

∂M . Since g(t) is a solution of the DeTurck Ricci-Bourguignon flow, φ∗(t)(g(t)) satisfies the

Ricci-Bourguignon equation

∂φ(t)∗(g(t))

∂t
= φ(t)∗

(∂g(t)
∂t

)
+ φ(t)∗(L−W g(t))

= −2Ric(φ(t)∗(g(t))) + 2ρR(φ(t)∗(g(t))).

The mean curvature on the boundary of the metric φ∗(g(t)) is

Hφ∗(t)(g(t))(x) = Hg(t)(φ(t)(x)) = µ(t)H0.

So if g(t) is a solution to the DeTurck Ricci-Bourguignon flow with the boundary condition (3.2),

then φ(t)∗(g(t)) is a solution to the Ricci-Bourguignon flow with constant mean curvature. As

in [12], the boundary condition (3.2) is equivalent to

{
PrFg(t) = 0,

P rF⊥(gnn(x, t)(g(0)nn)
1
2∇

g(0)
n g(x, t))− ζ(g(x, t)) = 0,

(3.3)

where ζ is a symmetric (0, 2)-tensor

ζαβ(g(x, t), t) = −µ(t)(g(0)nng
nn(x, t))

1
2 (gαγ(x, t)g(0)

γσ(x)A0
σβ(x) + gβγ(x, t)g(0)

γσA0
σα)

+ g(0)nng
nn(x, t)(gαγ(x, t)g(0)

γσ(x)A0
σβ + gβγ(x, t)g(0)

γσA0
σα),

ζnn(g(x, t), t) = −2gnn(x, t)(µ(t)(g(0)nng
nn(x, t))

1
2H(x, 0)

+ g(0)
1
2
nng

nn(x, t)(Γn
nn(g0)− Γn

nn(g̃(t)))− gαβ(t)g(0)
1
2
nnΓ

n
αβ(g̃(t))),

and ζαn(g(x, t)) = 0, x ∈ ∂M, t ∈ [0, T ).

In the following, we only consider the DeTurck Ricci-Bourguignon flow (3.1) with the bound-

ary condition (3.2).

4 A Linear Parabolic PDE with Initial Boundary Value Problem

In this section, we consider the existence of the linearized DeTurck Ricci-Bourguignon flow

on manifold with boundary. The main theorem is in the following.

Theorem 4.1 Consider the following linear parabolic initial boundary value problem on

symmetric 2 tensors on M ,

L(g(t))uik =
∂uik

∂t
−∆uik + 2ρ(∆(tru)−∇s∇tust)gik +M1(g, ∂ig) ∗ ∇u(x, t)

+M2(g, ∂ig, ∂
2
ijg) ∗ u(x, t) = F (x, t), (x, t) ∈ M × [0, T ]

on ∂M

{
PrFu(x, t) = PrFb(x, t),

P rF⊥(gnn(x, t)(g(0)nn)
1
2∇

g(0)
n u(x, t)) +M3(g, ∂ig) ∗ u(x, t) = PrF⊥b(x, t).

u(x, 0) = 0, x ∈ M,
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where F (x, t) ∈ Cl+α̃, l+α̃
2 (M × [0, T ]), PrFb(x, t) ∈ Cl+2+α̃, l+2+α̃

2 (∂M × [0, T ]), PrF⊥b(x, t) ∈

Cl+1+α̃, l+1+α̃
2 (∂M × [0, T ]) and g(x, t) ∈ Cl+2+α̃, l+2+α̃

2 (M × [0, T ]). Suppose F (x, t) and b(x, t)

satisfying the compatibility conditions that are necessary for the existence of a solution from the

class Cl+2+α̃, l+2+α̃
2 (M × [0, T ]). Then the initial boundary value problem has a unique solution

u ∈ C2+l+α̃, 2+l+α̃
2 (M × [0, T ]) which satisfies the estimate

|u|
C

2+l+α̃,2+l+ α̃
2 (MT )

≤ C(|F |
C

l+α̃,l+ α̃
2 (MT )

+ |PrFb(x, t)|
C

l+2+α̃,
l+2+α̃

2 (∂MT )

+ |PrF⊥b(x, t)|
C

l+1+α̃,
l+1+α̃

2 (∂MT )
). (4.1)

Proof The proof is based on Theorem 10.1 in Chapter VII of [10] also see [14]. We only

need to show that the boundary conditions satisfy the complementing conditions (see in of the

book [10, Chapter VII, p. 611]). We fix a point (x0, t0) on the boundary ∂M × [0, T ], and

choose a coordinate {xi} such that gij(x0, t0) = δij , where ∂α ∈ Tp∂M, α ∈ {1, · · · , n−1}, and

∂n(x0, t0) is the inward normal vector. Let L0(g(t)) denote the principle part of the operator

L(g(t)),

L0(g(t))uik =
∂uik

∂t
−∆uik + 2ρ(∆(tru)−∇s∇tust)gik.

The principal symbol of the operator L0(g(t)) with coefficients freezing at the point (x0, t0)

is

(L0(x0, t0, iξ, p)u)ik = puik + ξtξtuik − 2ρξtξt

n∑

j=1

ujjδik + 2ρξtξsutsδik. (4.2)

Now we compute the determinant of the principal symbol matrix detL0(x0, t0, iξ, p). Fix a

coordinate system

{u11, u22, · · · , unn, u1n, u2n, · · · , un−1,n, u12, · · · , un−2,n−1}. (4.3)

Then the matrix is

L0(x0, t0; iξ, p) = (p+ |ξ|2)E +A+B, (4.4)

A = −2ρ|ξ|2




1 · · · 1 0 · · · 0
...

...
...

...
...

...
1 · · · 1 0 · · · 0
0 · · · 0 0 · · · 0
...

...
...

...
...

...
0 · · · 0 0 · · · 0




, (4.5)

B = 2ρ




ξ21 ξ22 · · · ξ2n ξ1ξn · · · ξn−1ξn ξ1ξ2 · · · ξn−2ξn−1

...
...

...
...

...
...

...
...

...
...

ξ21 ξ22 · · · ξ2n ξ1ξn · · · ξn−1ξn ξ1ξ2 · · · ξn−2ξn−1

0 · · · · · · · · · · · · · · · · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

...
0 · · · · · · · · · · · · · · · · · · · · · · · · 0




. (4.6)
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Hence we have

L0(x0, t0; iξ, p) = pE +

(
F G
0 H

)
, (4.7)

where F is an n× n matrix

F =




(1− 2ρ)|ξ|2 + 2ρξ21 −2ρ|ξ|2 + 2ρξ22 · · · −2ρ|ξ|2 + 2ρξ2n
−2ρ|ξ|2 + 2ρξ21 (1− 2ρ)|ξ|2 + 2ρξ22 · · · −2ρ|ξ|2 + 2ρξ2n

...
...

...
...

−2ρ|ξ|2 + 2ρξ21 −2ρ|ξ|2 + 2ρξ22 · · · (1− 2ρ)|ξ|2 + 2ρξ2n




(4.8)

and H is a (n−1)n
2 × (n−1)n

2 matrix with H = |ξ|2E. Now we compute the determinant det
(
pE+(

F G

0 H

))
= det(pE + F ) det(pE +H). Obviously,

det(pE +H) = (p+ |ξ|2)
(n−1)n

2 . (4.9)

We can write pE + F as

pE + F = (p+ |ξ|2)E + 2ραβT, (4.10)

where α =
(
1 · · · 1

)T
, and β =

(
ξ21 − |ξ|2 · · · ξ2n − |ξ|2

)T
.

Note that the vector α is an eigenvector of pE + F ,

(pE + F )
(
1 · · · 1

)T
= (p+ (1− 2(n− 1)ρ)|ξ|2)

(
1 · · · 1

)T
. (4.11)

Let V = {γ ∈ R
n, γT · β = 0}. For any γ ∈ V , we have

(pE + F )γ = (p+ |ξ|2)γ. (4.12)

Note that the dimension of V is n− 1, and α /∈ V . Hence the eigenvalues of matrix pE+F are

p+ |ξ|2 with multiplicity n− 1 and p+(1− 2(n− 1)ρ)|ξ|2 with multiplicity 1. The determinant

of pE + F is

det(pE + F ) = (p+ (1 − 2(n− 1)ρ)|ξ|2)(p+ |ξ|2)n−1. (4.13)

Combining (4.9) and (4.13), we have

L0(x0, t0; iξ, p) = detL0(x0, t0; iξ, p) = (p+ (1− 2(n− 1)ρ)|ξ|2)(p+ |ξ|2)
n(n+1)

2 −1. (4.14)

The roots of L0(x0, t0; iξ, p) = 0 are p = −|ξ|2 and p = −(1 − 2(n − 1)ρ)|ξ|2. The matrix

differential operator L
(
x, t, ∂

∂x
, ∂
∂t

)
is parabolic if ρ < 1

2(n−1) in the sense of Definition 4 in

Chapter VII of [10] with sk = 0, tk = 2, b = 1, r = (n+1)n
2 . This result was obtained in [3].

Since we need to verify the boundary condition satisfying the complementary condition, we

present the above formulas here.

Now, we compute the adjoint matrix of L0(x0, t0; iξ, p) which is denoted by L̂0(x0, t0; iξ, p).
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Since

L0(x0, t0; iξ, p) =

(
pE + F G

0 pE +H

)
, (4.15)

the inverse is

L−1
0 (x0, t0; iξ, p) =

(
(pE + F )−1 −(pE + F )−1G(pE +H)−1

0 (pE +H)−1

)
. (4.16)

Obviously (pE +H)−1 = 1
p+|ξ|2E. We compute the inverse of the matrix pE + F . Since

pE + F = (p+ |ξ|2)E + 2ραβT, (4.17)

we suppose

(pE + F )−1 =
1

p+ |ξ|2
E + kαβT, (4.18)

where k is a constant to be determined.

Since

E = (pE + F )(pE + F )−1 = ((p+ |ξ|2)E + 2ραβT)
( 1

(p+ |ξ|2)
E + kαβT

)

= E +
[
k(p+ |ξ|2) +

2ρ

p+ |ξ|2
+ 2ρk(βTα)

]
αβT,

we have k = − 2ρ
(p+|ξ|2)(p+(1−2(n−1)ρ)|ξ|2) .

Note that G can be written as

G = αηT, (4.19)

where η =
(
ξ1ξn · · · ξn−1ξn ξ1ξ2 · · · ξn−2ξn−1

)T
.

Since the vector α =
(
1 · · · 1

)T
is a eigenvector of the matrix pE + F , we have

(pE + F )−1G(pE +H)−1 = (pE + F )−1αηT
1

p+ |ξ|2
E

=
1

(p+ |ξ|2)(p+ (1 − 2(n− 1)ρ)|ξ|2)
αηT.

Combining the above, we have

L−1
0 (x0, t0; iξ, p)

=









1

p+ |ξ|2
E −

2ρ

(p+ |ξ|2)(p+ (1− 2(n− 1)ρ)|ξ|2)
αβT −

1

(p+ |ξ|2)(p+ (1− 2(n− 1)ρ)|ξ|2)
G

0
1

p+ |ξ|2
E









.

The adjoint matrix is

L̂0(x0,t0; iξ, p) = L0(x0,t0; iξ, p) · L
−1
0 (x0,t0; iξ, p).
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Next we compute the boundary differential operator matrix B
(
x0, t0;

∂
∂x

, ∂
∂t

)
. By the defini-

tion of the subbundle F , the boundary condition PrF (u)(x0, t0) = 0 is equivalent to

uαn(x0, t0) = 0.

In local coordinate, the condition PrF⊥(gnn(x, t)(g(0)nn)
1
2∇

g(0)
n u) = ζ can be expressed as

gnn(x, t)(g(0)nn)
1
2
∂uαβ

∂xn

+ lower order term = ζαβ

and

gnn(x, t)(g(0)nn)
1
2
∂unn

∂xn

+ lower order term = ζnn.

So the indices of the boundary equations in [10, Theorem 10.1] are σαn = −2, σnn = −1, σαβ =

−1. Hence the principal symbols of the boundary differential operator at (x0, t0) are

(B0(x0, t0; iξ, p)u)αβ = gnn(x0, t0)(g(x0, 0)nn)
1
2 iξnuαβ,

(B0(x0, t0; iξ, p)u)nn = gnn(x0, t0)(g(x0, 0)nn)
1
2 iξnunn,

(B0(x0, t0; iξ, p)u)αn = 1 · uαn,

and the matrix of the principal symbol of the boundary operator is

B0(x0, t0; iξ, p) =



X 0 0
0 Y 0
0 0 Z


 ,

where X = C1iξnE is an n × n matrix, Z = C1iξnE is (n−2)(n−1)
2 matrix , Y = E is a

(n− 1)× (n− 1) type matrix and C1 = gnn(x0, t0)(g(x0, 0)nn)
1
2 . Denote ζ = (ξ1, · · · , ξn−1, 0) ∈

Tx0∂M , τ = ξn and (0, · · · , 0, 1) = νx0 . Consider the polynomial L0(x0, t0; i(ζ + τν), p) as a

function of τ on the whole complex plane. It has positive imaginary roots τ = i
√
p+ |ζ|2 with

multiplicity (n+1)n
2 − 1 and τ = i

√
p

1−2(n−1)ρ + |ζ|2 with multiplicity 1. Denote

L+(x0, t0; ζ, p, τ) = (τ − i
√

p+ |ζ|2)
(n+1)n

2 −1
(
τ − i

√
p

1− 2(n− 1)ρ
+ |ζ|2

)
. (4.20)

Now we prove that the row of the matrix B0(x0, t0; iξ, p) · L̂0(x0, t0; iξ, p) is independent modulo

L+(x0, t0; ζ, p, τ) with respect to τ . We observe that the independence of the row of the ma-

trix B0(x0, t0; iξ, p) · L̂0(x0, t0; iξ, p) modulo (τ − i
√
p+ |ζ|2)

(n+1)n
2 −1

(
τ − i

√
p

1−2(n−1)ρ + |ζ|2
)
is

equivalent to the independence of the row of the matrix

B0(x0, t0; iξ, p)

(
(p+ (1− 2(n− 1)ρ)|ξ|2)E − 2ραβT −G

0 (p+ (1− 2(n− 1)ρ)|ξ|2)E

)

modulo (τ − i
√
p+ |ζ|2)

(
τ − i

√
p

1−2(n−1)ρ + |ζ|2
)
.
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If τ = i
√
p+ |ζ|2, we have

(
Y 0
0 Z

)
(p+ (1− 2(n− 1)ρ)|ξ|2)E = 2(n− 1)ρp

(
E 0

0 −C1

√
p+ |ζ|2E

)
.

Since Re(p) ≥ −δ|ζ|2 for some 0 < δ < min{1, 1− 2(n− 1)ρ} and |p|+ |ζ| > 0, we have the row

of the matrix (
Y 0
0 Z

)
(p+ (1− 2(n− 1)ρ)|ξ|2)E

is independent module (τ − i
√
p+ |ζ|2)

(
τ − i

√
p

1−2(n−1)ρ + |ζ|2
)
.

Now we prove the rows of the matrix

X · ((p+ (1− 2(n− 1)ρ)|ξ|2)E − 2ραβT)

are independent module (τ−i
√
p+ |ζ|2)

(
τ−i

√
p

1−2(n−1)ρ + |ζ|2
)
. If τ = i

√
p+ |ζ|2, the nonzero

solution of the linear equation

((p+ (1 − 2(n− 1)ρ)|ξ|2)E − 2ραβT)(k1, · · · , kn)
T = 0 (4.21)

belongs to the set V1 = span{α}.

If τ = i
√

p
1−2(n−1)ρ + |ζ|2, the nonzero solution of the linear equation (4.21) belongs to the

set V2 = {γ ∈ Rn, βT · γ = 0}. Obviously V1 ∩ V2 = 0. So the row of the matrix

(p+ (1− 2(n− 1)ρ)|ξ|2)E − 2ραβT

is independent module (τ − i
√
p+ |ζ|2)

(
τ − i

√
p

1−2(n−1)ρ + |ζ|2
)
.

Since X = iC1τE, the row of the matrix

X · ((p+ (1− 2(n− 1)ρ)|ξ|2)E − 2ραβT)

is independent module (τ − i
√
p+ |ζ|2)

(
τ− i

√
p

1−2(n−1)ρ + |ζ|2
)
, when Re(p) ≥ −δ|ζ|2 for some

0 < δ < min{1, 1− 2(n− 1)ρ} and |p|+ |ζ| > 0.

Based on the above analysis, we conclude that

B0(x0, t0; i(ζ + τν), p)L̂0(x0, t0; i(ζ + τν), p)

are linearly independent modulo the polynomial L+ as a polynomial in τ if the vector ζ and

the number p satisfy

Re(p) ≥ −δ|ζ|2, |p|+ |ζ| > 0, (4.22)

where 0 < δ < min{1, 1− 2(n− 1)ρ}. Since g(x, t) ∈ Cl+2+α̃, l+2+α̃
2 (M × [0, T ]), the coefficients

of the operator L(g(t)) belongs to the class Cl+α̃, l+α̃
2 (M × [0, T ]), the coefficients of the bound-

ary operator B(g(t))(u)αn are in class Cl+2+α̃, l+2+α̃
2 (∂M × [0, T ]), and the coefficients of the

boundary operator B(g(t))(u)αβ and B(g(t))(u)nn are in the class Cl+1+α̃, l+1+α̃
2 (∂M × [0, T ]).
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By [12, Chapter VII, Theorem 10.1], the linear parabolic initial boundary value problem has a

unique solution uij ∈ Cl+2+α̃, l+2+α̃
2 (M × [0, T ]) and satisfies the following estimate

|u|
C

2+l+α̃,2+l+ α̃
2 (MT )

≤ C(|F |
C

l+α̃,l+ α̃
2 (MT )

+ |bα̃n|
C

l+2+α̃,
l+2+α̃

2 (∂MT )

+ |bα̃β |
C

l+1+α̃,
l+1+α̃

2 (∂MT )
+ |bnn|

C
l+1+α̃,

l+1+α̃
2 (∂MT )

)

if F (x, t) and b(x, t) satisfy the necessary compatible conditions.

5 A Boundary Value Problem for the DeTurck Ricci-Bourguignon Flow

In this section, we use inverse function theorem to prove the short time existence of the

initial boundary value problem of the DeTurck Ricci-Bourguignon flow. Firstly recall the inverse

function theorem (see [1, Chapter 3])

Theorem 5.1 (see [1, 8]) Assume that E : U ⊂ B1 → B2 is a continuous differential map,

where Bi, i = 1, 2 are Banach spaces and U is an open set in B1. If there is a continuous

linear operator A : B2 → B1 such that E ′(x0)A = idB2 , then there is a C1 map g from the

neighborhood of y0 = E(x0) to the neighborhood of x0 such that E(g(y)) = y.

In this section, we denote

E(g(t), t) = 2Ric(g(t))− 2ρR(g(t))g(t)− LW (g(t),t)g(t)

and

B1 := {h(x, t) ∈ C2+α̃, 2+α̃
2 (MT , T ) | h(x, 0) = 0, ∂th(x, 0) = 0},

B3 := {f(x, t) ∈ Cα̃, α̃2 (MT , T ) | f(x, 0) = 0, x ∈ M},

B4 := {b(x, t) ∈ Γ(T∂M ) | bαβ, bnn ∈ C1+α̃, 1+α̃
2 (∂M × [0, T ]),

bαn ∈ C2+α̃, 2+α̃
2 (∂M × [0, T ]), b(x, 0) = 0, ∂tb(x, 0)αn = 0, x ∈ ∂M}.

Let B2 = B3 ×B4. As closed linear subsets of Banach spaces, B1 and B2 are Banach spaces.

Now we apply the inverse function theorem to the operator

E : U ⊂ B1 → B2,

where E(h(x, t)) =
(
∂(g0−tE(g(0),0)+h(x,t))

∂t
+ E(g0 − tE(g(0), 0) + h(x, t)

)
, B(g0 − tE(g(0), 0) +

h(x, t)) and U is a neighbourhood of 0 in B1.

On the boundary ∂M , we have

∂(g0 − tE(g(0), 0) + h(x, t))αn
∂t

∣∣∣
t=0

= −2Rcαn + 2ρRgαn + LW gαn|t=0 = −2Rcαn

since gαn(x, 0) = 0 and W |t=0 = 0. So under the condition (1.2), we have

∂(g0 − tE(g(0), 0) + h(x, t))αn
∂t

(x, 0) = 0
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for x ∈ ∂M . Hence under the conditions of Theorem 1.2, the range of the map E is actually in

B2 and E is well defined.

Assume that T is so small that g0−tE(g0, 0) is a metric on M for t ∈ [0, T ). We also assume

that for all h(x, t) ∈ U , g(t) = g0 − tE(g(0), 0) + h(x, t) is a metric on M . Now we prove that

there is a bounded linear operator

A : B2 → B1 (5.1)

such that DE(0) ◦ A = id, that is for any (f(x, t), b(x, t)) ∈ B2, there is only one u ∈ B1, such

that

DE(0)(u) = (f(x, t), b(x, t)),

and

‖u‖
C

2+α̃,2+ α̃
2 (M×[0,T ])

≤ C(‖f(x, t)‖
C

α̃, α̃
2 (M×[0,T ])

+ ‖bαn(x, t)‖
C

2+α̃,
2+α̃
2 (∂M×[0,T ])

+ ‖bαβ(x, t)‖
C

1+α̃,
1+α̃
2 (∂M×[0,T ])

+ ‖bnn(x, t)‖
C

1+α̃,
1+α̃
2 (∂M×[0,T ])

).

We compute the linearization of the Deturck Ricci-Bourguignon flow at g(t) = g0−tE(g(0), 0).

Denote gλ(t) = g(t) + λu(t), λ ∈ (−ǫ, ǫ). The linearized operator −DE(g(t), t) is

−DE(g(t), t)(u)ik = −
∂E(gλ(t))

∂λ

∣∣∣
λ=0

= ∆uik − 2ρ(∆(tru)−∇s∇tust)gik

+M1(g, ∂ig, t) ∗ ∇u(x, t) +M2(g, ∂ig, ∂
2
ijg, t) ∗ u(x, t).

Here ∆ and ∇ are Laplace operator and covariant differential operator respectively with respect

to the metric g(t). M1 and M2 are smooth functions.

Next we compute the linearization of the boundary operator B(g(t), t). Recall the boundary

operator is
{
PrFB(g(t), t) = PrFg(t),

P rF⊥B(g(t), t) = PrF⊥(gnn(x, t)(g(0)nn)
1
2∇

g(0)
n g(x, t))− ζ(g(x, t), t),

where ζ is a (0,2)-tensor

ζαβ(g(x, t), t) = −µ(t)(g(0)nng
nn(x, t))

1
2 (gαγ(x, t)g(0)

γσA0
σβ(x) + gβγ(x, t)g(0)

γσA0
σα)

+ g(0)nng
nn(x, t)(gαγ(x, t)g(0)

γσA0
σβ + gβγ(x, t)g(0)

γσA0
σα),

ζnn(g(x, t), t) = −2gnn(x, t)(µ(t)(g(0)nng
nn(x, t))

1
2H(x, 0)

+ g(0)
1
2
nng

nn(x, t)(Γn
nn(g0)− Γn

nn(g̃(t)))− gαβ(t)g(0)
1
2
nnΓ

n
αβ(g̃(t))),

and ζαn(g(x, t), t) = 0, x ∈ ∂M, t ∈ [0, T ).

By computation, the linearization of the boundary operator is
{
PrFDB(g(t), t)(u(x, t)) = PrFu(x, t),

P rF⊥DB(g(t), t)(u(x, t)) = PrF⊥(gnn(x, t)(g(0)nn)
1
2∇

g(0)
n u(x, t) +M3(g, ∂ig, ∂g̃, t) ∗ u(x, t)),
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where M3 is a smooth function.

Now we consider the solvability of linear equation

∂u

∂t
−DE(g(t), t)u =

∂uik

∂t
−∆uik + 2ρ(∆(tru) −∇s∇tust)gik

+M1(g, ∂ig, t) ∗ ∇u(x, t) +M2(g, ∂ig, ∂
2
ijg, t) ∗ u(x, t)

= f(x, t)

with boundary condition

{
PrFu(x, t) = PrFb(x, t),

P rF⊥(gnn(x, t)(g(0)nn)
1
2∇

g(0)
n u(x, t) +M3(g, ∂g, ∂g̃, t) ∗ u(x, t)) = PrF⊥b(x, t)

and initial condition

u(x, 0) = 0, x ∈ M,

where b(x, t) ∈ B4, f(x, t) ∈ B3. From the conditions u(x, 0) = 0 and f(x, 0) = 0, we

have ∂
∂t
|t=0u = 0. Since b(x, 0) = 0, ∂tuαn(x, 0) = 0 = ∂tbαn(x, 0), x ∈ ∂M, the neces-

sary compatibility conditions for C2+α̃, 2+α̃
2 regularity are satisfied on ∂M × {t = 0}. Since

g(t) = g(0) − tE(g(0)) ∈ C2+α̃, 2+α̃
2 (MT ), the regularity assumptions about the coefficients in

Theorem 4.1 are satisfied. By Theorem 4.1, there is only one solution u(x, t) ∈ B1 with

‖u‖
C

2+α̃,2+ α̃
2
≤ C(‖f(x, t)‖

C
α̃, α̃

2 (MT )
+ ‖bαβ(x, t)‖

C
1+α̃,

1+α̃
2 (∂MT )

+ ‖bnn(x, t)‖
C

1+α̃,
1+α̃
2 (∂MT )

+ ‖bαn(x, t)‖
C

2+α̃,
2+α̃
2 (∂MT )

).

In the following, we verify that the map E is continuously differentiable.

Lemma 5.1 For ‖gi − g0‖
C

2+α̃,2+ α̃
2
≤ R, i = 1, 2,

‖(DE(g1, t)−DE(g2, t))vij‖
C

α̃, α̃
2 (MT )

≤ C(R, g0)‖g1 − g2‖
C

2+α̃,2+ α̃
2 (MT )

‖v‖
C

2+α̃,2+ α̃
2 (MT )

.

Proof By computation, we have

DE(g(t), t)vij = ∆vij + 2ρ∇l∇kvklgij − 2ρ∆trvgij +M1 ∗ ∇v +M2 ∗ v, (5.2)

whereM1(g(t), g̃(t)) is a smooth function of g, ∂g, g̃, ∂g̃ andM2 is smooth function of g, ∂g, ∂2g, g̃,

∂g̃, ∂2g̃. Since DE(g(t), t)vij is a linear operator, we can write

DE(g(t), t)vij = a(g, g−1)∂2vij +M1∂vij +M2vij ,

where a, b, c are smooth functions. So we have

‖(DE(g1, t)−DE(g2), t)vij‖
C

α̃, α̃
2 (MT )

≤ ‖a(g1, g
−1
1 )− a(g2, g

−1
2 )‖

C
α̃, α̃

2 (MT )
‖v‖

C
2+α̃,

2+α̃
2 (MT )
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+ ‖M1(g1(t), g̃(t)) −M1(g2(t), g̃(t))‖
C

α̃, α̃
2 (MT )

‖v‖
C

2+α̃,
2+α̃
2 (MT )

+ ‖M2(g1(t), g̃(t)) −M2(g1(t), g̃(t))‖
C

α̃, α̃
2 (MT )

‖v‖
C

2+α̃,
2+α̃
2 (MT )

.

Since a, b, c are smooth function, we have

‖(DE(g1, t)−DE(g2), t)vij‖
C

α̃, α̃
2 (MT )

≤ C(R, g0, ‖g̃(t)‖
C

2+α̃,2+ α̃
2
)‖g1 − g2‖

C
2+α̃,2+ α̃

2 (MT )
‖v‖

C
2+α̃,2+ α̃

2 (MT )
.

Lemma 5.2 If ‖gi − g(0)‖
C

2+α̃,2+ α̃
2 (MT )

≤ R, i = 1, 2, for the boundary operator B,

‖(DB(g1, t)−DB(g2, t))v‖
C

1+α̃,
1+α̃
2 (∂M×[0,T ])

≤ C(R, g0, g̃)‖g1 − g2‖
C

2+α̃,
2+α̃
2

‖v‖
C

2+α̃,
2+α̃
2

.

Proof By the definition of the boundary operator, we have

(DB(g1, t)−DB(g2, t))vnα = 0.

Hence

‖(DB(g1, t)−DB(g2, t))vnα‖
C

2+α̃,
2+α̃
2 (∂M×[0,T ])

= 0

and

((DB(g1, t)−DB(g2, t))v)αβ = (gnn1 (x, t) − gnn2 (x, t))(g(0)nn)
1
2∇g(0)

n v(x, t)

+ (M(g1, ∂g1, g̃, ∂g̃, µ(t))−M(g2, ∂g2, g̃, ∂g̃, µ(t))) ∗ v,

where M is a smooth function. So we have

‖((DB(g1, t)−DB(g2, t))v)αβ‖
C

1+α̃,
1+α̃
2 (∂M×[0,T ])

≤ C(R, g0, g̃)‖g1 − g2‖
C

2+α̃,
2+α̃
2

‖v‖
C

2+α̃,
2+α̃
2

.

Similarly, we have

‖((DB(g1)−DB(g2))v)nn‖
C

1+α̃,
1+α̃
2 (∂M×[0,T ])

≤ C(R, g0, g̃)‖g1 − g2‖
C

2+α̃,
2+α̃
2

‖v‖
C

2+α̃,
2+α̃
2

.

We now prove the short time existence of the Deturck Ricci Bourguignon flow on manifold

with boundary. Let g(t) = g0 − tE(g0, 0). We have

R(E) =
∂g(t)

∂t
+ E(g(t), t)

= E(g0 − tE(g0, 0), t)− E(g0, t) + E(g0, t)− E(g0, 0)

= −t

∫ 1

0

DE(g0 − θtE(g0, 0), t)dθ · E(g0, 0) + LW (g0,g̃(t))g0 − LW (g0,g̃(0))g0,

where LW (g0,g̃(0))g0 = 0. By choosing smooth

g̃(t) = g0(x) + tĝ(x, t),

where

ĝ(x, t) ∈ C2+α̃, 2+α̃
2 (MT )
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is a symmetric 2 tensor, we have

‖LW (g0,g̃(t))g0‖Cα̃, α̃
2 (MT )

→ 0 as T → 0.

On the boundary ∂M × [0, T ], we also have for i, j = 1, · · · , n− 1 or i = j = n,

R(B, t)ij = B(g0 − tE(g0, 0), t)

= B
( 1

µ(t)2
g0, t

)
−

∫ 1

0

DB
(
s(g0 − tE(g0, 0)) + (1− s)

1

µ(t)2
g0, t

)
ds

·
(
g0 − tE(g0, 0)−

1

µ(t)2
g0

)
.

Obviously, B
(

1
µ(t)2 g0, t

)
αβ

= 0. As for B
(

1
µ(t)2 g0, t

)
nn

, we have

∥∥∥B
( 1

µ(t)2
g0, t

)
nn

∥∥∥
C

1+α̃,
1+α̃
2 (∂M×[0,T ])

→ 0 as T → 0.

For α = 1, · · · , n− 1,

R(B, t)αn = B(g0 − tE(g0, 0), t)αn = 0.

Hence

‖PrF(R(B, t))‖
C

2+α̃,
2+α̃
2 (∂M×[0,T ])

= 0.

Now we estimate ‖R(E, t)‖
C

α̃, α̃
2 (M×[0,T ])

and ‖PrF⊥(R(B, t))‖
C

1+α̃,
1+α̃
2 (∂M×[0,T ])

. Since g(0) ∈

C4+α̃(M, T ), we have E(g(0)) ∈ C2+α(M, T ). Choosing T ∗ so small that g(0)− tE(g(0)) is a

C2+α̃,2+ α̃
2 metric for t ∈ [0, T ∗]. By choosing R large, we can assume that

‖tE(g(0))‖
C

2+α̃,2+ α̃
2
(MT ) ≤ R.

Since the boundary operator B(g(t)) is continuously differential, we have the estimate

∥

∥

∥DB
(

s(g0 − tE(g0, 0)) + (1− s)
1

µ(t)2
g0, t

)

·
(

g0 − tE(g0)−
1

µ(t)2
g0

)∥

∥

∥

C
1+α̃,

1+α̃
2 (∂M×[0,T ])

≤ ‖t‖
C

1+α̃,
1+α̃
2 (∂M×[0,T ])

∥

∥

∥DB
(

s(g0 − tE(g0, 0)) + (1− s)
1

µ(t)2
g0, t

)

E(g0)
∥

∥

∥

C
1+α̃,

1+α̃
2 (∂M×[0,T ])

+
∥

∥

∥
1−

1

µ(t)2

∥

∥

∥

C
1+α̃,

1+α̃
2 (∂M×[0,T ])

∥

∥

∥
DB

(

s(g0 − tE(g0, 0)) + (1− s)
1

µ(t)2
g0, t

)

g0

∥

∥

∥

C
1+α̃,

1+α̃
2 (∂M×[0,T ])

.

Hence ‖PrF⊥(R(B, t))‖
C

1+α̃,
1+α̃
2 (∂M×[0,T ])

→ 0 as T → 0.

Similarly, we have

‖DE(g0 + θtE(g0, 0), t)E(g0, 0)‖
C

α̃, α̃
2 (M×[0,T ])

≤ ‖(DE(g0 + θtE(g0, 0), t)−DE(g0, t))E(g0, 0)‖
C

α̃, α̃
2 (M×[0,T ])

+ ‖DE(g0, t)E(g0, 0)‖
C

α̃, α̃
2 (M×[0,T ])

≤ C(g0, R).
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So for any ǫ > 0, we can choose a small 0 < T < T ∗ such that

‖R(E, t)‖
C

α̃, α̃
2 (M×[0,T ])

+ ‖PrF⊥(R(B, t))‖
C

1+α̃,
1+α̃
2 (∂M×[0,T ])

+ ‖PrF (R(B, t))‖
C

2+α̃,
2+α̃
2 (∂M×[0,T ])

≤ ǫ.

By classic inverse function theorem, there is an h(x, t) ∈ B1, such that g(x, t) = g(x, 0) −

tE(g(x, 0), 0) + h(x, t) satisfies

∂g(t)

∂t
+ E(g(t), t) = 0, (x, t) ∈ M × [0, T ]

and

B(g(t), t) = 0, (x, t) ∈ ∂M × [0, T ].

Now we have the local existence for the DeTurck Ricci-Bourguignon flow in C2+α̃, 2+α̃
2 (MT ).

By standard interior regularity and boundary regularity estimate for the strictly parabolic type

PDE systems, we obtain the following theorem.

Theorem 5.2 Let g(t) ∈ C2+α̃, 2+α̃
2 (MT ) be a solution to the DeTurck Ricci-Bourguignon

flow with boundary value (3.2). Let l = k + α. Then the following hold:

(1) (Interior regularity) Suppose that g̃(t) ∈ Cl+2, l+2
2 (M◦ × (0, T ]). Then g(x, t) ∈ C

l+2, l+2
2

loc

(M◦ × (0, T ]).

(2) (Boundary regularity) If µ(t) ∈ C
l+1
2 ([0, T ]), g0 ∈ Cl+2(M), g̃(t) ∈ Cl+2, l+2

2 (M ×

[0, T ]) and the data g0, µ(t), g̃(t) satisfy the necessary compatibility conditions at ∂M × {0},

then g(x, t) ∈ Cl+2, l+2
2 (MT ).

(3) (Boundary regularity for positive time) If µ(t) ∈ C
l+1
2 ([0, T ]) and g̃(t) ∈ Cl+2, l+2

2 (M ×

[0, T ]), then g(x, t) ∈ Cl+2, l+2
2 (M × [δ, T ]) for any 0 < δ < T.

Since Wl = glrg
pq(Γ(g(t))rpq − Γ(g̃(t))rpq), the DeTurck vector field W is in Cl−1, l−1

2 (MT ) if

g(t) ∈ Cl, 12 (MT ) and g̃(t) ∈ Cl, 12 (MT ).

By Theorem 5.2, the DeTurck vector field W (g(t), t) ∈ C∞(MT − ∂M × 0) if g̃(x, t) and

µ(t) are smooth. By the differentiability property of the flow, we can obtain a unique flow φt

for t > 0, which is smooth on M × (0, T ] and C1 on M × [0, T ], satisfying





d

dt
φ = −W ◦ φ,

φ(0) = idM .

By results in Section 3, ĝ(t) = φ∗
t (g(t)) solves the Ricci-Bourguignon flow equation. Since

(φ−1
t )∗(ĝ(t)) = g(t) and g(t) → g(0) in the C2+α̃(M) sense. So we get ĝ(t) converges to g0

in the geometric C2+α̃ sense. Since g(x, t) satisfies the boundary condition (1.5), by results in

Section 3, we have that ĝ(t) = φ∗
t (g(t)) satisfies the boundary condition (1.3).
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